
Under review as submission to TMLR

Non-Parametric Domain Adaptation Layer

Anonymous authors

Paper under double-blind review

Abstract

Normalization methods spurred the development of increasingly deep and efficient archi-
tectures as they reduce the distributions change during optimization, allowing for efficient
training. However, most normalization methods cannot account for test-time distribution
changes, increasing the vulnerability of the network concerning noise and input corruptions.
As noise is ubiquitous and diverse in many applications, machine learning systems often fail
drastically as they cannot cope with mismatches between training- and test-time activation
distributions. The most common normalization method, batch normalization, is agnostic to
changes in the input distribution during test time. This makes batch normalization prone to
performance degradation whenever noise is present during test-time. Parametric correction
schemes can only adjust for linear transformations of the activation distribution but not for
changes in the distribution shape; this makes the network vulnerable to distribution changes
that cannot be reflected in the normalization parameters. We propose an unsupervised non-
parametric distribution correction layer that adapts the activation distribution and reduces
the mismatch between the training and test-time distribution by minimizing the Wasserstein
distance of each layer. We empirically show that the proposed method effectively improves
the classification performance without the need for retraining or fine-tuning the model; on
ImageNet-C it achieves up to 11 % improvement in Top-1 accuracy.

1 Introduction

Early on, Neural Networks (NNs) excelled at interpolating between training data points but failed at extrap-
olating to regions beyond the training data (4; 13). Since sufficiently large datasets have not been available
then, NN could only be successfully applied to tasks with well-known input distributions that would prevent
any unpredictable behavior stemming from unknown data. The mismatch between training- and test-time
distributions is known as covariate shift. More precisely, covariate shifts occur when a model p(y|x, θ) with
parameters θ, output y, input x, and a static conditional probability evaluates samples x from a different
distribution than the training distribution (41; 43). The vulnerability of NNs to covariate shifts has been a
major concern in the past.

In recent years, we have seen immense growth in the number of available input samples with the rise of big
data and data augmentation techniques that have largely alleviated the mismatch between training- and
test-time distributions (28). Covariate shifts remained a problem though, albeit in a different form: when
training a neural network, every parameter update causes an internal distribution shift. This is particularly
problematic for training Deep Neural Networks (DNNs) and often leads to convergence problems, as the
internal shifts occur for every layer and are thus exacerbated by the large number of layers in DNNs. Thus,
the main impact of the covariate shift moved from test-time to training-time.

In order to reduce internal covariate shifts, Batch Normalization (BN) aims to match the distribution of
activations across different mini-batches (21). By doing so, BN greatly improved the convergence of DNNs
and deep Convolutional Neural Networks (CNNs).1 This, in turn, fueled the development of ever deeper
and more capable architectures and – by reducing the dependence on the weight initialization – facilitated
network training in an end-to-end fashion. Therefore, normalization became an elemental part of all deep

1Although later investigations of BN argue that the improved convergence properties actually result from smoothing the
optimization surface (39) or from decoupling the length and direction of the gradients during optimization (26).

1

Under review as submission to TMLR

been developed to correct for the effects of domain shifts. These correction methods can be grouped into
three main categories: data augmentation methods, learning-based methods, and normalization methods
that aim to correct the statistics within the network.

Data augmentation improves robustness by synthetically increasing the coverage of the input space. In
the simplest case, training samples are augmented – by the application of affine transformations or expected
noise types – and explicitly included into the training set (3; 42; 28). More elaborate methods optimize
the augmentation or use an additional neural network to increase the degree of realism of the augmented
images (8; 17; 15). The application of data augmentation, however, is somewhat limited as improving
robustness against one corruption type can decrease robustness against others (12; 5).

Learning-based approaches for improved robustness and prediction stability, comprise a large class
of methods. Many are based on representation learning techniques, which aim to minimize the difference
between source and target representations (47; 32; 45; 23; 24; 50; 37). Another line of research utilizes
unlabeled data from the target domain to bridge the gap between domains by unsupervised and adversarial
training (10; 11; 46; 7; 18; 19; 45). Others use semi-supervised methods and retrain the model based on
test samples to reduce domain shifts caused by image corruptions (31; 44; 48). While these methods can be
very effective in mitigating domain shifts, they require multiple unlabeled samples from the test set during
retraining.

Adapting normalization parameters based on test-time statistics has recently attracted increasing
interest (30). Adjusting the normalization parameters in an unsupervised fashion can drastically improve
the model robustness (particularly for batch normalization). The influence of input corruptions on networks
using batch normalization has been investigated in (5); this further led to a domain adaption method for the
normalization that improves the robustness of CNNs against corruptions. This adaption can substantially
improve the network’s performance but requires a re-computation of the batch normalization parameters for
each domain adaption. A similar approach was taken by (40), which adapts the normalization parameters
based on test-time statistics and can achieve improved robustness using only a single test sample. The
distribution correction is, however, limited to a shift and scaling.

3 Distribution correction for Convolutional Neural Networks (CNNs)

Input corruptions effectively introduce a distribution mismatch between training and test set. Thus, to make
models more robust against input corruptions, one can try to reduce this distribution mismatch. Although
such distribution corrections can indeed improve the classification performance of CNN architectures, most
existing approaches struggle to do this effectively, since they are restricted to parametric distributions (e.g.
Gaussians). Consequently, these methods can only correct for mismatches reflected in the distribution
parameters (e.g., the mean and variance).

In order to mitigate more general distribution mismatches of the test-time activations a, we must find an
effective way to suppress noisy activations while maintaining the classification performance in the subsequent
layers. Therefore, we will formulate this problem as a probabilistic denoising problem. We first need to
approximate the a-posteriori distribution,

p(ã|a) =
p(a|ã)p(ã)

p(a)
, (1)

of the corrected activations ã given the activations a. Then, we can use the maximum a-posteriori estimate
to determine the corrected activations; this is a well-established technique in image denoising (35; 6; 38; 51).
For our considerations, we recast the maximum a-posteriori problem into an equivalent energy minimization
problem to simplify the optimization procedure. We assume that the prior, likelihood, and posterior come
from an exponential family using a Gibbs measure so that

p(ã) = e
−

R(ã)
T , p(a|ã) = e

−
D(a|ã)

T , p(ã|a) = e
−

E(ã|a)
T . (2)

4

Under review as submission to TMLR

Note that we can omit the evidence term p(a), as we do not perform model comparison. Then, by applying
the logarithm to Eqn. 2 and by multiplying all terms with − 1

T
, we arrive at an energy minimization problem

ã∗ = arg min
ã

E(ã|a), (3)

with the optimal activation map ã∗ at its minimum. The energy E(ã|a) is composed of two terms R(ã)
(corresponding to the prior) and D(a|ã) (corresponding to the likelihood) so that

E(ã|a) = D(a|ã) + R(ã). (4)

For this form, we must, on the one hand, specify a suitable prior term R(ã) that reduces the covariate shift
in each layer without restricting the network (see Section 3.1). The data likelihood term D(a|ã), on the other
hand preserves the spatial correlations of the activation maps and prevents the loss of valuable information
(see Section 3.3). By minimizing both terms jointly, one can achieve an optimal trade-off between minimizing
the covariate shift and retaining the underlying information.

3.1 Constructing a non-parametric prior term

Typically, the activation distributions in CNNs cannot be represented well by parametric distributions.
Consequently, any correction method relying on a parametric approximation qθ(t) with target values t will
not capture the shape of the activations prior p(ã). Subsequent layers are thus exposed to different input
distributions than during training and suffer from the corresponding covariate shift. Ideally the target
distribution q(t) should enforce similar (corrected) distributions as during training since any mismatch
might outweigh the benefits of the noise-reduction otherwise. If q(t) should resemble the non-parametric
distribution from the training set, however, it must be non-parametric as well.

The Wasserstein distance proves to be particularly well-suited for a novel correction method: not only does
it allow to effectively minimize the mismatch between the distributions during training- and test-time, but
it also provides an elegant way of representing a non-parametric distribution in one dimension. Although
we would ideally have access to the distributions of the clean image, this is not possible in practice. Instead
we need to construct surrogate target distributions. As the Wasserstein distance can only be analytically
represented in one dimension, we need to find representative slices through the high dimensional activation
distributions, where each slice serves as a surrogate target distribution.

In order to obtain an appropriate surrogate target distribution from our training set, we consider two
statistics: first, the layer-wise statistics where the activations are flattened to create a single distribution
across the height H, width W , and channel C dimension of the layer, and second channel-wise statistics that
contain H ×W values for each of the channel statistics, resulting in C + 1 target distributions per layer.
To create useful target distributions, we need to ensure that the distributions only differ in shape but not
in their mean. This is especially important when considering channel-wise statistics, as – depending on the
input features – the individual means can vary significantly. Therefore, we remove the mean values before
collecting the N activations, i.e.,

a
′(m) = a

(m) −
1

N

N
∑

i=1

a
(m)
i , (5)

where N corresponds to the Nl = H ×W × C values for the layer-wise statistic and to the Nc = H ×W

values for the channel-wise statistics.

To find a well-suited prior distribution, we must first sort the N activations a′ for each training sample m

in ascending order. Let [·] be the vector of all corresponding elements, then

[a
′(m)

(i)
] = sort(a′(m)), (6)

where a
(m)
(i) are the sorted activations with a(i) < a(i+1). Note that the subscript (i) always denotes sorted

values.

5

Under review as submission to TMLR

Next, we utilize the Wasserstein barycenter, i.e., the distribution that minimizes the sum of the Wasserstein
distances W over all M training distributions (9; 2):

min
q

M
∑

m=1

Wd

(

q(t′), p(a′(m)
)
)

, (7)

to construct the target values t(i) for the correction of the sample under test. In one dimension, the Wasser-
stein barycenter is simply the average over the order statistics of each sample m so that

t
′

(i) =
1

M

M
∑

m=1

a
′(m)

(i)
. (8)

Finally, to account for the mean correction of t(i) (see Eqn. 3.1), we must now re-add the channel mean µc

and the sample specific mean µl to the respective target values,

t(i) = t
′

(i) + µ. (9)

This means that we collect separate mean values for all of the C +1 targets over the training set. The values
t = [t(i)] now represent our non-parametric target distributions q(tl) and q(tc) for the layer and channel-wise
statistics respectively.3

3.2 Minimizing the Wasserstein distance

The one-dimensional Wasserstein distance between the target distribution q(t) and the test-time distribution
p(a(m)) of sample m is given according to

Wd

(

p(a(m)), q(t)
)

=

(

N
∑

i=1

||a
(m)

(i) − t(i)||
r

) 1
r

, (10)

where t(i) are the sorted target values and a
(m)
(i) are the sorted test-time activations:

[a
(m)

(i)
], j = sort(a(m)), (11)

and j are the indices of the activations that are required for mapping the updates from the sorted to the
unsorted activations.

For r = 1; the Wasserstein distance between p(a) and q(t) in Eqn. 10 is minimized by,

∆
(m) = [t(i)] − [a

(m)

(i)]. (12)

As the layer-wise ∆l as well as the channel-wise correction ∆c can create updates to the current activation
map a, we need to add both contributions:

∆
(m) = ∆

l,(m) + ∆
c,(m)

. (13)

We now assign the updates ∆(m) to the corresponding unsorted activations using the mapping indices j. To
decrease the computational effort, we apply the correction after the ReLU activation function; thus, many
activations are zero and sorting can be done more efficiently.

3.3 Data likelihood

Minimizing only the prior term might have undesired side effects and destroy important structures in the
channels of the network, i.e., the spatial correlations. Therefore, the energy minimization needs to find a

3Whenever there is no ambiguity about the particular statistics, we will omit the superscript and simply write q(t).

6

Under review as submission to TMLR

Algorithm 1 Activation Correction Algorithm

Input: Activations a, sorted target value vectors tl and tc, step-sizes λ1, λ2, number of channels C

Output: Corrected activations ã

∆l ← Calculate correction(a, tl)
for k < C do

∆c

k
← Calculate correction(ak, tc

k
)

end for

∆←∆l + ∆c

a′ ← λ1∆

ã← a′ + λ2(a − a′)

function Calculate correction(a,t)
N ← len(a)
[a(i)], j← sort(a)
for i < N do

k ← ji

∆k ← (tl

(i) − a(i))
end for

return ∆
end function

4 Experiments

In our experiments, we first investigate our proposed method concerning its distribution matching capabilities
by empirically analysing how the correction affects the activation maps (see Section 4.1). Second, we consider
models trained on MNIST and CIFAR-10 and evaluate how well and how consistent our correction performs
on the corrupted variants of these datasets (27; 29) (see Section 4.2; we further analyze the impact of different
noise types.4 Third, we consider different CNN architectures (pre-trained on ImageNet and with weights
provided by Keras) and evaluate the performance of our proposed correction layer on the corrupted ImageNet
(ImageNet-C) dataset (see Section 4.3). Finally, we discuss the current limitations of our proposed method
(see Section 4.4). All datasets are publicly available on TensorFlow datasets (34; 16).5

4.1 Analyzing the correction on activation maps

The goal of our approach is to reduce the distribution shift within the network; to verify this, we analyze
the activation maps and their distributions before and after applying the correction. First, we verify if our
proposed surrogate distributions are expressive enough to decrease the Wasserstein distance to the clean
activation distributions. Therefore, we compare the activations of a ResNet-20 trained on CIFAR-10 (see
experimental detail in Section 4.2) from clean images with those of noisy images containing Gaussian noise.
In Figure 3, we see that the correction successfully minimizes the Wasserstein distance and brings the
activations from the corrupted samples closer to the clean ones. This is especially pronounced within the
first seven layers, for which the correction reduces the distance by almost one-half. Layers 8-17 only seem to
result in minor changes in Wasserstein distance. However, if we analyze the average classification accuracy
with respect to the number of used NP-C layers in Figure 4, we see that with the exception of layer 13,
performance still improves or is stable within those layers. This indicates that a small Wasserstein distance
does not directly translate to good classification performance, which might be an effect of only using slices
through the high dimensional activation space.

Next, we analyze the effect of the correction on the activation maps and the underlying distributions. In
Figure 5, we see an example image passed through a ResNet-50 with and without a correction layer. This

4Models were trained on an NVIDIA Tesla V100 GPU.
5More detailed results are provided in the Appendix.

8

Under review as submission to TMLR

contrast

defocus blur
frost

gaussia
n blur

gaussia
n noise

impulse noise
pixelate

shot noise snow
spatter

speckle noise

0
10
20
30
40

R
el

.
ch

an
ge

/
%

BN adapt.

NP-C (ours)

brightness
elastic fog

frosted
glass blur

jpeg compress
ion

motion blur
saturate

zoom blur

0
10
20
30
40

R
el

.
ch

an
ge

/
%

BN adapt.

NP-C (ours)

20×

Figure 6: Relative change of the classification accuracy of a ResNet-20 trained on CIFAR-10 for specific
corruption types. The top figure shows the corruption types for which the non-parametric correction (NP-
C) performs better, and the bottom figure shows the corruptions where NP-C performs worse compared to
the parametric BN adaptation method (40).

4.2.1 MNIST

We trained 10 randomly initialized ResNet-20 models for 50 epochs using an SGD optimizer with a base
learning rate of 0.1 on the clean MNIST dataset (29). We decayed the learning rate after 25 and 40 epochs
by a factor of 0.1. The input data was normalized to a range [0, 1]. The corrupted MNIST dataset contains
15 different corruption variants of the original MNIST images (see (34) for details). It contains 10.000
grayscale images of size 28×28 per corruption; we used all of them for our evaluations. For this experiment,
we choose different weighting parameters λ1 and λ2 for each normalization method. We performed a coarse
hyperparameter search fixing the reconstruction weight at λ2 = 0.8 for all experiments. For BN we found
λ1 = 1.2 optimal, while for GN λ1 = 1.0 provided the best results. We also optimized the parametric
BN adaptation concerning its hyperparameter N , representing the pseudo sample size for samples from the
training set. Here N = 1 resulted in the best performance. For GN the parametric adaption is not possible
as it is sample-based by default.

Table 1: Avg. classification accuracy of ResNets for the corrupted MNIST dataset; we compare our method
(NP-C) to the method presented in (40) (BN adapt.) and to the baseline (BN and GN).

Accuracy

BN 75.42±0.82
BN adapt. 88.22±1.35

BN NP-C (ours) 89.09±0.87
GN 92.22±0.96

GN NP-C (ours) 92.66±1.03

The average classification results are presented in Table 1, detailed results are shown in Appendix A.1. We
see that both the parametric (BN adapt.) and the proposed non-parametric correction (NP-C) substantially
improve the performance compared to networks using BN. Here the results of our method outperform the
parametric BN adaptation by about 0.9 % on average and show less variability across all models. We further
observe that networks using GN are inherently more robust, as they can automatically adjust to changing
means and variances of the underlying activation distributions. Nonetheless, our correction method is capable
of improving the performance even further. This indicates the adverse influence of non-parametric distortions
on classification performance.

10

Under review as submission to TMLR

Table 3: Classification accuracy of a ResNet-50 for ad hoc domain adaptation with ImageNet-C; we compare
our method (NP-C) to the method presented in (40) (BN adapt.) and to the baseline (BN).

Architecture Method Top-1 mCE

DenseNet-121
BN 45.11 70.16

BN adapt. 46.46 68.49
NP-C (ours) 46.89 67.95

EfficientNet-B0
BN 38.88 77.87

BN adapt. 44.83 70.44
NP-C (ours) 49.88 64.04

InceptionNet-V3
BN 50.33 63.44

BN adapt. 53.03 60.08
NP-C (ours) 53.24 59.80

MobileNet-V3-L
BN 37.64 79.44

BN adapt. 38.42 78.77
NP-C (ours) 40.10 76.48

ResNet-50
BN 43.41 72.10

BN adapt. 46.38 68.38
NP-C (ours) 48.07 66.36

corruptions, such as contrast, benefit the most from our non-parametric correction. For the cases where our
correction performed worse than BN adaptation (bottom), we see only a minor performance gap. Interest-
ingly, both methods actually degrade the performance for the frosted glass blur corruption. This indicates
that in this case, the performance degradation of the model is not or only to a small extent caused by
distribution shifts.

4.3 Corrupted ImageNet classification

In this section, we analyze the effect of our proposed non-parametric correction on the performance of
different CNN architectures (DenseNet-121, EfficientNet-B0, InceptionNet-V3, MobileNet-V3-L, ResNet-50)
on the ImageNet dataset. We use pre-trained ImageNet weights, and pre-processing toolboxes provided by
Keras Applications. We then add our correction layers after the activation layers. For the evaluation of the
corrupted ImageNet (ImageNet-C) dataset, we again choose λ2 = 0.8 and perform a coarse hyperparameter
search using the ResNet50 architecture. Here λ1 = 0.2 provided the best results. This indicates that λ1

correlates with the complexity resulting from the image size of the used dataset. We again use the parametric
BN adaptation method as our baseline, using a pseudo sample size of N = 16, as suggested in (40). We
reuse this setting for all the investigated architectures. We adopt the mean corruption error (mCE) as an
additional evaluation metric, as suggested by (16). This metric uses the AlexNet errors on the five severities
of each corruption type c on ImageNet-C, to adjust for the different difficulty levels of the corruption types
for the classifier f (28):

mCEc =

∑5

i=1
E

f
i,c

∑5

i=1
EAlexNet

i,c

(17)

The ImageNet-C dataset contains 19 different corruption variants of the original dataset. It contains 50000
RGB images of size 224×224 per corruption that we used for our evaluations.

The results in Table 3 show, that our proposed correction layer can improve robustness for all of the inves-
tigated architectures, outperforming the parametric correction. While DenseNet-121 and InceptionNet-V3
perform almost on par with the parametric BN adaptation, the largest margin (11 % over baseline and ≈5 %
over BN adaptation) was achieved for the EfficientNet-B0 architecture. This is particularly interesting, as
the weighting factors were optimized for the ResNet-50 architecture. One possible explanation is that Eff-
cientNet is the only architecture that uses a Swish activation function (36). As this function is not piece-wise
linear, it also introduces more non-parametric distortions to the activation distribution.

12

Under review as submission to TMLR

Table 4: Evaluation times for different network architectures with and without the proposed correction layer.

Correction applied No Yes

ResNet-20@CIFAR-10 0.2 ms 3.7 ms
MobileNet-V3-L@ImageNet 0.3 ms 17 ms
EfficientNet-B0@ImageNet 0.4 ms 26 ms

ResNet-50@ImageNet 0.5 ms 38 ms
DenseNet-121@ImageNet 0.6 ms 67 ms

4.4 Limitations and ethical concerns

The main limitation of this approach is the additional computational requirements. As the algorithm requires
the sorting of K activations, the complexity scales with O(K log K). This causes an overhead, especially for
datasets with large images, such as ImageNet. Table 4 shows the evaluation times for different architecture
with and without the correction layer. For a ResNet-20 on CIFAR-10, the average evaluation time of a
single sample increases from 0.2 ms to 3.7 ms on a single Tesla V100 GPU. This translates to approximately
a factor of 19 for the evaluation time per image. On ImageNet the average evaluation time of the same
system increases from a factor of around 57 for MobileNet-V3-L, to a factor of around 112 for DenseNet-121.
This problem currently limits the method to relatively shallow networks but also opens a future research
direction.

We do not have particular ethical concerns regarding our proposed method and do not expect a negative
societal impact. One should note, however, that any method that makes image classifiers more robust
inevitably broadens the field of potential unethical applications.

5 Conclusion and Outlook

We proposed a non-parametric domain adaptation layer based on the Wasserstein distance. It reduces
the domain shift between test-time and training activations caused by input corruptions. The proposed
method uses a maximum a-posteriori estimate, determined by minimizing the energy with respect to a
data likelihood and a non-parametric prior term. Our proposed method works in an unsupervised set-
ting for randomized corruption types and can be retrofitted into existing networks without retraining. In
our experiments, we discussed the effects of distribution mismatches between clean and corrupted data
and demonstrated how our correction layer successfully reduces this mismatch. On corrupted input (for
MNIST-C, CIFAR-10-C, and ImageNet-C) the non-parametric correction layer consistently improved the
classification performance and outperformed parametric approaches. In the future, we aim to consider al-
ternative target distributions, improve the efficiency, and extend our method beyond convolutional neural
networks.

References

[1] Mohammad Abdullah-Al-Wadud, Md Hasanul Kabir, M Ali Akber Dewan, and Oksam Chae. A dynamic
histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 2007. 2

[2] Ethan Anderes, Steffen Borgwardt, and Jacob Miller. Discrete Wasserstein barycenters: Optimal transport for
discrete data. Mathematical Methods of Operations Research, 2016. 2, 6

[3] Henry S Baird. Document image defect models. In Structured Document Image Analysis. 1992. 4
[4] E. Barnard and L.F.A. Wessels. Extrapolation and interpolation in neural network classifiers. IEEE Control

Systems Magazine, 1992. 1
[5] Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. Revisiting batch normalization for improving

corruption robustness. In IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), January
2021. 2, 4

[6] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. A review of image denoising algorithms, with a new
one. Multiscale Modeling & Simulation, 2005. 2, 4

[7] Fabio Maria Carlucci, Lorenzo Porzi, Barbara Caputo, Elisa Ricci, and Samuel Rota Bulo. Autodial: Automatic
domain alignment layers. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017. 4

[8] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: learning
augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018. 4

13

Under review as submission to TMLR

[9] Marco Cuturi and Arnaud Doucet. Fast computation of Wasserstein barycenters. In International Conference
on Machine Learning, 2014. 2, 6

[10] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In International
Conference on Machine Learning, 2015. 3, 4

[11] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. Journal of Machine Learning
Research, 2016. 4

[12] Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin Cubuk. Adversarial examples are a natural consequence
of test error in noise. In International Conference on Machine Learning, 2019. 2, 4

[13] P.J. Haley and D. Soloway. Extrapolation limitations of multilayer feedforward neural networks. In International
Joint Conference on Neural Networks, 1992. 1

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern Recognition, 2016. 11

[15] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler
Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-of-distribution
generalization. In IEEE/CVF International Conference on Computer Vision, 2021. 4

[16] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and
perturbations. In International Conference on Learning Representations, 2018. 3, 8, 11, 12

[17] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshminarayanan. Aug-
mix: A simple data processing method to improve robustness and uncertainty. arXiv preprint arXiv:1912.02781,
2019. 4

[18] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros, and Trevor
Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International Conference on Machine
Learning, 2018. 4

[19] Weixiang Hong, Zhenzhen Wang, Ming Yang, and Junsong Yuan. Conditional generative adversarial network
for structured domain adaptation. In IEEE Conference on Computer Vision and Pattern Recognition, 2018. 4

[20] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. CoRR, 2016.
11

[21] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. CoRR, 2015. 1

[22] Christoph Kamann and Carsten Rother. Benchmarking the robustness of semantic segmentation models. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. 3

[23] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot,
Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In Advances in Neural Information Processing
Systems, 2020. 4

[24] Dae Hoe Kim, Wissam J Baddar, Jinhyeok Jang, and Yong Man Ro. Multi-objective based spatio-temporal
feature representation learning robust to expression intensity variations for facial expression recognition. IEEE
Transactions on Affective Computing, 2017. 4

[25] Yeong-Taeg Kim. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE transac-
tions on Consumer Electronics, 1997. 2

[26] Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Thomas Hofmann, Ming Zhou, and Klaus Neymeyr. Ex-
ponential convergence rates for batch normalization: The power of length-direction decoupling in non-convex
optimization. In The 22nd International Conference on Artificial Intelligence and Statistics, 2019. 1

[27] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research). 8, 11
[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural

networks. Advances in Neural Information Processing Systems, 2012. 1, 4, 12
[29] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. 8, 10
[30] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normalization for

practical domain adaptation. arXiv preprint arXiv:1603.04779, 2016. 4
[31] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source hypothesis transfer

for unsupervised domain adaptation. In International Conference on Machine Learning, 2020. 2, 4
[32] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with deep

adaptation networks. In International Conference on Machine Learning, 2015. 4
[33] Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Evgenia Rusak, Oliver Bringmann, Alexander S Ecker,

Matthias Bethge, and Wieland Brendel. Benchmarking robustness in object detection: Autonomous driving
when winter is coming. arXiv preprint arXiv:1907.07484, 2019. 3

[34] Norman Mu and Justin Gilmer. MNIST-C: A robustness benchmark for computer vision. arXiv preprint
arXiv:1906.02337, 2019. 8, 10

[35] Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1990. 2, 4

[36] Prajit Ramachandran, Barret Zoph, and Quoc Le. Swish: a self-gated activation function. 10 2017. 12

14

Under review as submission to TMLR

[37] Fabio De Sousa Ribeiro, Georgios Leontidis, and Stefanos Kollias. Capsule routing via variational Bayes. In
AAAI Conference on Artificial Intelligence, 2020. 4

[38] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms.
Physica D: Nonlinear Phenomena, 1992. 2, 4

[39] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normalization help
optimization? arXiv preprint arXiv:1805.11604, 2018. 1

[40] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias Bethge. Im-
proving robustness against common corruptions by covariate shift adaptation. Advances in Neural Information
Processing Systems, 2020. 2, 3, 4, 9, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23

[41] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood
function. Journal of Statistical Planning and Inference, 2000. 1

[42] Patrice Y Simard, Dave Steinkraus, and John C Platt. Best practices for convolutional neural networks applied
to visual document analysis. In International Conference on Document Analysis and Recognition, 2003. 4

[43] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. Covariate shift adaptation by importance
weighted cross validation. Journal of Machine Learning Research, 2007. 1

[44] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training with
self-supervision for generalization under distribution shifts. In International Conference on Machine Learning,
2020. 2, 4

[45] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across domains and
tasks. In IEEE international Conference on Computer Vision, 2015. 4

[46] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain adaptation. In
IEEE Conference on Computer Vision and Pattern Recognition, 2017. 4

[47] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion: Maximizing
for domain invariance. arXiv preprint arXiv:1412.3474, 2014. 4

[48] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. In International Conference on Learning Representations, 2021. 2, 3, 4

[49] Yuxin Wu and Kaiming He. Group normalization. In European Conference on Computer Vision (ECCV), 2018.
9

[50] Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep autoencoders. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2017. 4

[51] Mingqiang Zhu and Tony Chan. An efficient primal-dual hybrid gradient algorithm for total variation image
restoration. Technical report, 2008. 2, 4

[52] John B Zimmerman, Stephen M Pizer, Edward V Staab, J Randolph Perry, William McCartney, and Bradley C
Brenton. An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE
Transactions on Medical Imaging, 1988. 2

15

