
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONE-STEP FLOW POLICY MIRROR DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion policies have achieved great success in online reinforcement learning
(RL) due to their strong expressive capacity. However, the inference of diffu-
sion policy models relies on a slow iterative sampling process, which limits their
responsiveness. To overcome this limitation, we propose Flow Policy Mirror De-
scent (FPMD), an online RL algorithm that enables 1-step sampling during flow
policy inference. Our approach exploits a theoretical connection between the dis-
tribution variance and the discretization error of single-step sampling in straight
interpolation flow matching models, and requires no extra distillation or consis-
tency training. We present two algorithm variants based on rectified flow policy
and MeanFlow policy, respectively. Extensive empirical evaluations on MuJoCo
and visual DeepMind Control Suite benchmarks demonstrate that our algorithms
show strong performance comparable to diffusion policy baselines while requiring
orders of magnitude less computational cost during inference.

1 INTRODUCTION

Diffusion models have established themselves as the state-of-the-art paradigm in generative model-
ing (Ho et al., 2020; Dhariwal & Nichol, 2021), capable of synthesizing data of unparalleled quality
and diversity across various modalities, including images, audio, and video. The success is rooted
in a principled, thermodynamically-inspired framework that learns to reverse a gradual noising pro-
cess (Sohl-Dickstein et al., 2015). Diffusion policies are now being used to create highly flexible
and expressive policies for decision-making tasks like robotic manipulation by modeling complex,
multi-modal action distributions from demonstration (Chi et al., 2023; Ke et al., 2024; Scheikl et al.,
2024). This approach has shown significant promise in both imitation learning and reinforcement
learning settings (Wang et al.; Chen et al., 2022; Team et al., 2024), enabling agents to learn flexible
and effective behaviors.

Despite the benefits of expressiveness, diffusion policies in online RL suffer from steep computa-
tional price for policy inference: the sampling process requires repeated neural-network evaluations
to produce a single sample, slowing down both the training and the testing of online RL. This
drawback hinders the application of diffusion models in tasks that require real-time and compute-
constrained inference, which is critical to many real-world applications, such as motion planning
and control. The current diffusion policy for online RL mostly focuses on the efficiency and opti-
mality of the training optimization (Psenka et al., 2023; Ding et al., 2024; Wang et al., 2024; Ren
et al., 2024; Ma et al., 2025; Celik et al., 2025), while little attention has been paid to the efficiency
of policy inference, which typically relies on more than 10 denoising steps. Although there is re-
cent work incorporating one-step policies, they learn the one-step policy by distillation a multi-step
policy (Park et al., 2025; Prasad et al., 2024) or applying additional consistency loss (Ding & Jin,
2023), which is redundant and even induces extra computational cost.

To handle this inference-time problem, we leverage flow-based models (Lipman et al., 2022; Liu
et al., 2022; Geng et al., 2025) as the policy structure of online RL. One intriguing property of
flow-based models with straight interpolation is that, when the target distribution has zero variance,
sampling trajectories are straight lines pointing directly toward the target point (Hu et al., 2024).
Moreover, the single-step sampling error is bounded by the variance of the target distribution, al-
lowing one-step generation of flow policy and easier training of MeanFlow policy when the target
distribution has a small variance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

However, applying the flow model in online RL is nontrivial. There is no closed-form of log prob-
ability of flow models, making the classic policy gradient non-compatible with flow policy. For-
tunately, we exploit the variational technique to derive an equivalent loss for online flow polices,
bypassing the inaccessibility of the probability of flow models. We also observe that the progress
to train a one-step flow model fits perfectly in the exploration-exploitation trade-off of online RL.
During the intermediate stage favoring exploration, the flow parametrization of policy can model
highly complex and multi-modal distributions, enabling rich exploratory behaviors. As learning
progresses and the policy converges, the optimal distribution favoring exploitation typically exhibits
low variance. This low-variance regime aligns with the straight-line interpolation property of flow
models, enabling efficient single-step sampling with no additional cost. This provides a free lunch
to leverage the rich expressiveness to improve performance without increasing the inference-time
computational cost like diffusion models.

Building upon this, we propose Flow Policy Mirror Descent (FPMD), an online RL algorithm that en-
ables one-step sampling during policy inference. We further introduce two variants of FPMD using
the flow parametrization and MeanFlow parametrization, denoted FPMD-R and FPMD-M respec-
tively. We conduct extensive evaluations on both state-based Gym MuJoCo environments and visual
DMControl environments. Empirical results show that the proposed algorithm achieve performance
comparable to diffusion policy baselines while using orders of magnitude less computational cost.

Our core contributions are summarized as follows:

• We propose tractable loss functions to train Flow and MeanFlow policies in online RL, allowing
one-step action generation during inference time.

• By making moderate assumptions on the variance of the optimal policy, we theoretically analyze
the single-step sampling error of the flow policy.

• We conduct extensive empirical evaluations on Gym MuJoCo and visual DMControl tasks. The
proposed algorithm shows strong performance comparable to diffusion policy baselines while
requiring orders of magnitude fewer function evaluations.

1.1 RELATED WORK

We briefly review the most relevant prior work here and provide the full details in Appendix A.

Diffusion policies have been leveraged in many recent online RL studies due to their expressiveness
and flexibility. To obtain tractable training objectives, existing methods explored reparameterized
policy gradient (Wang et al., 2024; Ren et al., 2024), weighted self-improvement (Ma et al., 2025;
Ding et al., 2024), and other variants of score matching (Psenka et al., 2023; Yang et al., 2023).
However, these methods have not considered the inference-time difficulties of diffusion policies.
A few recent studies on offline RL (Ding & Jin, 2023; Park et al., 2025) took a step toward one-
step action generation but their solutions are complicated and involve multi-stage training. Several
concurrent works have explored reinforcement learning for flow policy via reparameterized policy
gradient (Lv et al., 2025; Koirala & Fleming, 2025), reward-weighted regression (Pfrommer et al.,
2025), and policy gradient with log-likelihood approximation (McAllister et al., 2025). Compared
to these methods, ours is the only method that achieves an effective balance between policy distri-
bution expressiveness and action sampling efficiency, by introducing a practical training objective
equivalent to the flow matching objective and enabling one-step action generation.

2 PRELIMINARIES

Markov Decision Processes (MDPs). We consider Markov decision process (Puterman, 2014)
specified by a tuple M = (S,A, r, P, µ0, γ), where S is the state space, A is the action space,
r : S ×A → R is a reward function, P : S ×A → ∆(S) is the transition operator with ∆(S) as the
family of distributions over S, µ0 ∈ ∆(S) is the initial distribution and γ ∈ (0, 1) is the discount
factor. The goal of reinforcement learning is to find an optimal policy π (·|s) : S → ∆(A), which
maximizes the discounted cumulative rewards, i.e., ρ (π) := E [

∑∞
t=0 γ

tr (st, at)]. Given policy π,
the Q-function is defined as

Qπ(s, a) = Est+1∼P (·|st,at),at+1∼π(·|st+1),∀t⩾0 [
∑∞

t=0 γ
tr(st, at)|s0 = s, a0 = a] ,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and satisfies the Bellman equation (Bellman, 1966)

Qπ(s, a) = r(s, a) + γEs′∼P (·|s,a),a′∼π(·|s′) [Q
π(s′, a′)] .

Policy Mirror Descent. We focus on extracting policies from a learned state-action value function
Qπold(s, a) = Eπold

[
∑∞

τ=0 γ
τr(st, at)|s0 = s, a0 = a] of the current policy πold. We consider

policy mirror descent with Kullback–Leibler (KL) divergence proximal term Tomar et al. (2021);
Lan (2023); Peters et al. (2010), which updates the policy with

π(a|s) := argmax
π:S→∆(A)

Ea∼π [Q
πold(s, a)]− λDKL (π||πold; s) (1)

The additional KL divergence objective constrains the updated policy to be approximately within the
trust region. Policy mirror descent is closely related to practical proximity-based algorithms such as
TRPO Schulman (2015) and PPO Schulman et al. (2017), but with a different approach to enforce
the proximity constraints. The closed-form solution of policy mirror descent in (1) satisfies

π (a|s) = πold (a|s)
exp (Qπold (s, a) /λ)

Z(s)
, (2)

and Z(s) =
∫
πold (a|s) exp (Q (s, a) /λ) da is the partition function or normalization constant.

Flow Matching and Mean Flow Flow-based generative models (Lipman et al., 2022; Liu et al.,
2022; Albergo & Vanden-Eijnden, 2023) define a time-dependent vector field v : [0, 1]× Rd → Rd

that constructs a probability density path p : [0, 1]× Rd → R>0. The target distribution p1(x1) can
be generated by first sampling from the tractable distribution p0(x0), and then solving the ordinary
differential equation (ODE) dxt

dt = vt(xt). Flow matching (Lipman et al., 2022) provides an efficient
and scalable way to learn the velocity field v by minimizing the following objective,

LCFM(θ) := Ex0∼p0,x1∼p1,t∼U [0,1] ∥(x1 − x0)− vθ (t, xt)∥22 (3)

with the straight interpolation xt = tx1 + (1− t)x0.

MeanFlow (Geng et al., 2025) was recently proposed to avoid the iterative sampling process in flow
matching and enable the one-step generative modeling. Instead of using instantaneous velocity,

MeanFlow characterizes flow fields with average velocity u (xt, r, t) ≜
∫ t
r
(v(aτ ,τ))dτ

t−r . The average
velocity field is learned with the variational iteration loss

LMF (θ) := E ∥uθ(xt, r, t)− sg (utgt)∥22 , (4)

where utgt = v(xt, t)− (t− r)(v(xt, t)∂xuθ + ∂tuθ), (5)

and sg(·) denotes the stop-gradient operation to avoid higher-order gradient calculation. Once we
learn the average velocity field u, sampling of p1 is performed in one step with x1 = x0+u(x0, 0, 1),
where x0 is sampled from the tractable prior distribution p0.

3 ONE-STEP EFFICIENT INFERENCE FOR FLOW POLICY

In this section, we introduce online RL policy learning method for rectified flow and MeanFlow
policy, both of which enable 1-step fast sampling for policy inference. We first derive a tractable
loss function for online RL with flow policy in Section 3.1, and then establish an upper bound on
the one-step sampling error in Section 3.2. In Section 3.3, we propose online RL training for the
MeanFlow policy, along with a convergence guarantee under mild assumptions on the MeanFlow
operator.

3.1 POLICY MIRROR DESCENT WITH FLOW MODEL

We parametrize the policy as a flow model that transport the simple Gaussian distribution
a0 ∼ N

(
µ, σ2

)
to the target distribution as the solution to policy mirror descent a1 ∼

πold (a1|s) exp (Qπold (s, a1) /λ) /Z(s), where Z(s) =
∫
πold (a1|s) exp (Qπold (s, a1) /λ) da1. The

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

corresponding velocity field v(at, t|s) can be learned by minimizing the flow matching loss in Equa-
tion (3):

Ea0∼N (µ,σ2),a1∼πold(a1|s) exp(Qπold (s,a1)/λ)/Z(s),t∼U [0,1]∥(a1 − a0)− vθ(at, t|s)∥2. (6)
One major difference between our case and flow matching in image generation or imitation learning
is that we do not have access to direct samples from the target distribution of a1. Consequently,
standard flow matching cannot be applied directly to learn the target policy distribution. To solve
this issue, we apply importance sampling to Equation (6) and sample from the base distribution πold
to get a per-state loss function:

L̃FPMD (θ; s) := Ea1∼πold(a1|s),a0∼N ,t∼U [0,1]

[
exp(Qπold (s,a1)/λ)

Z(s) ∥(a1 − a0)− vθ(at, t|s)∥2
]

(7)

Note that for each fixed s, Z(s) =
∫
πold (a|s) exp (Q (s, a) /λ) da > 0, and in Equation (7), Z(s)

is a constant independent of θ, a1, a0 and t. Multiplying an objective by a positive constant does not
change its minimizer, i.e.,

argmin
θ

L̃FPMD(θ; s) = argmin
θ

Z(s)L̃FPMD(θ; s),∀s ∈ S. (8)

Take the expectation of Z(s)L̃FPMD(θ; s) over S, we obtain the practical flow policy learning loss,

LFPMD (θ) := Es,a1∼πold(a1|s),a0∼N ,t∼U [0,1]

[
exp (Qπold (s, a1) /λ) ∥(a1 − a0)− vθ(at, t|s)∥2

]
.
(9)

Equation (9) gives a feasible loss function definition that only requires sampling state s from replay
buffer, action a0 from a Gaussian distribution, and action a1 from the old policy πold. This loss
formulation enables the use of replay buffer to estimate the loss function, which can efficiently learn
the velocity field by minimizing the loss function using stochastic gradient descent.

3.2 ONE-STEP SAMPLING OF FLOW POLICY AND DISCRETIZATION ERROR BOUND

One-step sampling is attractive in practice because it significantly reduces the inference latency
and computational cost in flow policy execution. In this subsection, we prove that the one-step
sampling discretization error of the flow policy in Section 3.1 is bounded by the variance of the
target policy distribution. Since the policy mirror descent target distribution typically converges to
an almost-deterministic distribution (Puterman, 2014; Johnson et al., 2023)(Also see Appendix C.2
for empircial evidence), the policy variance becomes small, which provably guarantees a small
discretization error. This property enables efficient one-step inference of flow policy without extra
distillation (Park et al., 2025) or consistency loss (Ding & Jin, 2023).
Proposition 1. [Proposition 3.3, (Hu et al., 2024)] Define p∗t as the marginal distribution of the
exact ODE dat = v(at, t|s)dt. Assume at ∼ pt = p∗t , and pt+ϵt the distribution of at+ϵt following
at+ϵt = at + ϵtv (at, t|s), where ϵt ∈ [0, 1− t] is a discretization step size. Then we have

W2

(
p∗t+ϵt , pt+ϵt

)2
⩽ ϵ2tEat∼pt

[
σ2 (at, t|s)

]
,

where σ2 (at, t|s) = var (a1 − a0|at, s), p∗t+ϵt denotes the marginal distribution of the exact ODE
at time t+ ϵt, and W2 denotes the 2-Wasserstein distance.

This proposition establishes the relationship between the sampling discretization error
W2

(
p∗t+ϵt , pt+ϵt

)2
and the conditional variance σ2 (at, t|s). As a special case, when the target dis-

tribution a1 has zero variance, the discretization error W2

(
p∗t+ϵt , pt+ϵt

)2
= 0 for any ϵt ∈ [0, 1− t]

(Hu et al., 2024). We then focus on the single-step sampling case and obtain the following result.
Proposition 2. Define p∗t as the marginal distribution of the exact ODE dat = v(at, t|s)dt. Let p1
be the distribution of â1 such that â1 = a0 + v (a0, 0|s) using one-step sampling, then

W2 (p
∗
1, p1)

2 ⩽ var (a1|s) .

Proof. Take t = 0 and ϵt = 1 in Proposition 1, we obtain that

W2 (p
∗
1, p1)

2 ⩽ Ea0
[var (a1 − a0|a0, s)] = Ea0

[var (a1|a0, s)] = Ea0
[var (a1|s)] = var (a1|s) ,

which concludes the proof of Proposition 2.

The proposition implies the discretization error in one-step sampling is bounded by the variance
of the target distribution. In practical scenarios, where the learned policy tends to converge to one
deterministic solution with small variance, the one-step discretization error is neglectable.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 POLICY MIRROR DESCENT WITH MEANFLOW MODEL

In this subsection, we propose an alternative parametrization of the policy model using MeanFlow
model (Geng et al., 2025). Before presenting the MeanFlow policy, we first introduce the fixed-
point iteration view of MeanFlow, which fill the hole in the MeanFlow training (Geng et al., 2025).
Specifically, although the MeanFlow Identity is the condition derived in Geng et al. (2025) for
mean velocity, due to the stop-gradient operator induced in optimization for stability, it is not clear
whether the optimization is still converging to target solution. The revealed fixed-point view does
not only suggest the condition to guarantee the convergence of MeanFlow learning, but also justifies
our MeanFlow policy mirror descent method.

Consider the velocity field v(at, t|s) transporting a0 ∼ N
(
µ, σ2

)
to the policy mirror descent

closed-form solution a1 ∼ πold (a1|s) exp (Qπold (s, a1) /λ) /Z(s), we define the mean velocity field

u (at, r, t|s) ≜
∫ t
r
v(aτ ,τ |s)dτ

t−r . We define the MeanFlow operator applied to u under the given v:

MeanFlow operator: (T u) (at, r, t|s) = v(at, t|s)− (t− r) (v(at, t|s)∂au+ ∂tu) . (10)

Then, the original MeanFlow algorithm (Geng et al., 2025) can be viewed as variational imple-
mentation of the functional update un = T (un−1) (Wen et al., 2020). Concretely, the MeanFlow
operator is defined in a functional space with an unknown velocity field v, which is intractable to
implement. To develop a practical algorithm, in Proposition 3 we propose a variational method that
considers a reformulated problem whose optimal solution is equivalent to T (un−1).

Proposition 3. Given the previous iteration result un−1, define the residual loss

LCMF (θn; s) = Ea0,a1,r,t ∥uθn(at, r, t|s)− ((a1 − a0)− (t− r) ((a1 − a0) ∂aun−1 + ∂tun−1))∥2 ,
(11)

where at = ta1 + (1− t)a0. The optimal solution u∗
θn
(at, r, t|s) = argminθn LCMF (θn; s) matches

to the MeanFlow operator result T (un−1).

Proof. We characterize the optimality through the first-order condition, i.e.,

∇θnLCMF (θn; s)

= E
a0,a1,r,t

[
2 (uθn(at, r, t|s)− ((a1 − a0)−(t− r) ((a1 − a0) ∂aun−1 + ∂tun−1)))∇θnuθn (at, r, t|s)

]
= E

at,r,t
E

a0,a1|at

[
2 (uθn(at, r, t|s)−((a1−a0)−(t− r) ((a1−a0) ∂aun−1+∂tun−1)))∇θnuθn (at, r, t|s)

]
= E

at,r,t

[
2 (uθn(at, r, t|s)− (E [X1 −X0|Xt = at]− (t− r) (E [X1 −X0|Xt = at] ∂aun−1 + ∂tun−1)))

∇θnuθn (at, r, t|s)
]

= ∇θn Eat,r,t

[
∥uθn (at, r, t|s)− (v(at, t|s)− (t− r) (v(at, t|s)∂aun−1 + ∂tun−1)) ∥2

]︸ ︷︷ ︸
LMF(θn;s)

(12)

Therefore, we can show that the optimal solution u∗
θn

satisfies:

u
∗(CMF)
θn

(at, r, t|s) = u
∗(MF)
θn

(at, r, t|s) = v(at, t|s)−(t− r) (v(at, t|s)∂aun−1 + ∂tun−1)) . (13)

Consequently, this fix-point iteration view of MeanFlow immediately induces the sufficient condi-
tion to guarantee the convergence to target distribution, following the fixed-point theorem (Banach,
1922), i.e.,

Proposition 4. If the MeanFlow operator T satisfies the Contraction Condition, i.e., ∃q ∈ [0, 1)
such that ∥T (u1)− T (u2)∥ ⩽ q ∥u1 − u2∥ for ∀u1, u2 ∈ L2, then, with any initial point u0 ∈ L2,
the fix-point iteration un = T (un−1) for n ⩾ 1 converges to u∗ with u∗ = T (u∗), which satisfies
the MeanFlow Identity in (Geng et al., 2025).

With the target distribution convergence justified, we exploit important sammpling to avoid direct
sampling from target distribution π (a|s) = πold (a|s) exp(Qπold (s,a)/λ)

Z(s) , which leads to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 5 (MeanFlow Policy Mirror Descent). By sequentially minimizing the loss

LMPMD (θn; s) := Ea0,r,t,a1∼πold

[exp (Qπold (s, a1) /λ)

Z (s)

∥uθn(at, r, t|s)− ((a1 − a0)− (t− r) ((a1 − a0) ∂aun−1 + ∂tun−1))∥2
]
, (14)

for n = 1, 2, . . . , the learned u∗
θn
(at, r, t|s) converges to the mean velocity field u (at, r, t|s) =∫ t

r
v(aτ ,τ |s)dτ

t−r if T satisfies the Contraction Condition.

The full proof of Theorem 5 is provided in Appendix B.1. Since the learned mean velocity field
uθ(at, r, t|s) converges to the true mean velocity field u(at, r, t|s), we recover the target policy
distribution a1 by first sampling a0 ∼ N (µ, σ2), and then setting a1 = a0 + uθ(a0, 0, 1|s).
We take the expectation w.r.t. LMPMD (θn; s) over S and obtain the following practical policy learn-
ing loss:

LMPMD (θn) := Es,r,tEa1∼πold(a1|s),a0∼N

[
exp (Qπold (s, a1) /λ)

∥uθn(at, r, t|s)− ((a1 − a0)− (t− r) ((a1 − a0) ∂aun−1 + ∂tun−1))∥2
]
. (15)

Although flow policy in Section 3.1 can achieve one-step sampling during inference of a trained
policy, it still requires multiple sampling steps when sampling from πold during training. MeanFlow
policy reduces this computational cost by using one-step sampling throughout the training process.

4 FLOW POLICY MIRROR DESCENT ALGORITHM

In this section, we introduce Flow Policy Mirror Descent (FPMD), a practical off-policy RL algo-
rithm achieving strong expressiveness, efficient training and efficient inference. We present two
variants, FPMD-R and FPMD-M, using the flow and MeanFlow policy parametrization described in
3 respectively. An overview of our algorithm is provided in Algorithm 1.

Algorithm 1 Flow Policy Mirror Descent (FPMD)

Require: initial policy πθ, Q-function Qϕ, replay buffer D = ∅, MDP M, total epochs T
1: for epoch e = 1, 2, . . . , T do
2: Interact with M using policy πθ and update replay buffer D
3: Sample batch {(s, a, r, s′)} ∼ D
4: Sample a′ via flow sampling with πθ

5: Critic learning: update Qϕ by minimizing double Q-learning loss in Equation (18)
6: Actor learning: represent πθ by flow policy (FPMD-R) or MeanFlow policy (FPMD-M):

7:


FPMD-R: Sample a0 ∼ N , t ∼ U [0, 1], sample a1 via flow sampling with πθ,

Update πθ by minimizing Equation (9)
FPMD-M: Sample a0 ∼ N , sample r, t, sample a1 via flow sampling with πθ,

Update πθ by minimizing Equation (15)
8: end for

Actor-Critic Algorithm Our training follows the standard off-policy actor-critic paradigm:

• Critic learning: we employ clipped double Q-learning (Fujimoto et al., 2018) and use n-step
return estimation (Barth-Maron et al., 2018) in visual control environments. See Appendix D.1
for more details.

• Actor learning: we parametrize the policy distribution with flow model in FPMD-R and Mean-
Flow model in FPMD-M for flexible distribution modeling. The policy is updated to fit the policy
mirror descent closed-form solution Equation (2) for policy improvement. At each iteration, we
sample a1 from πold(a1|s) via flow sampling with the current policy network parameters, sample
a0 from Gaussian distribution, and then compute the practical loss in Equation (9) for FPMD-R or
Equation (15) for FPMD-M to run gradient descent.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results on OpenAI Gym MuJoCo environments. Reported are the best mean returns and
standard deviations over 5 random seeds. Values highlighted in blue correspond to the method
achieving the best result among all the algorithms, and values highlighted in green indicate the best
result among all methods with NFE=1 sampling.

HALFCHEETAH REACHER HUMANOID PUSHER INVERTEDPENDULUM

Classic
Model-Free RL

PPO (NFE=1) 4852± 732 −8.69± 11.50 952± 259 −25.52± 2.60 1000± 0
TD3 ((NFE=1) 8149± 688 −3.10± 0.07 5816± 358 −25.07± 1.01 1000± 0
SAC (NFE=1) 8981± 370 −65.35± 56.42 2858± 2637 −31.22± 0.26 1000± 0

Diffusion Policy RL

DIPO (NFE=20) 9063± 654 −3.29± 0.03 4880± 1072 −32.89± 0.34 1000± 0
DACER (NFE=20) 11203± 246 −3.31± 0.07 2755± 3599 −30.82± 0.13 801± 446
QSM (NFE=20× 32 1) 10740± 444 −4.16± 0.28 5652± 435 −80.78± 2.20 1000± 0
QVPO (NFE=20× 32) 7321± 1087 −30.59± 16.57 421± 75 −129.06± 0.96 1000± 0
DPMD (NFE=20× 32) 11924± 609 −3.14± 0.10 6959± 460 −30.43± 0.37 1000± 0

Flow Policy RL RF-1 (NFE=1) 10163± 590 −3.32± 0.22 6469± 344 −23.29± 1.63 1000± 0
MF (NFE=1) 9917± 698 −3.34± 0.15 6030± 664 −23.08± 0.58 1000± 0

ANT HOPPER SWIMMER WALKER2D INVERTED2PENDULUM

Classic
Model-Free RL

PPO (NFE=1) 3442± 851 3227± 164 84.5± 12.4 4114± 806 9358± 1
TD3 (NFE=1) 3733± 1336 1934± 1079 71.9± 15.3 2476± 1357 9360± 0
SAC (NFE=1) 2500± 767 3197± 294 63.5± 10.2 3233± 871 9359± 1

Diffusion Policy RL

DIPO (NFE=20) 965± 9 1191± 770 46.7± 2.9 1961± 1509 9352± 3
DACER (NFE=20) 4301± 524 3212± 86 103.0± 45.8 3194± 1822 6289± 3977
QSM (NFE=20× 32) 938± 164 2804± 466 57.0± 7.7 2523± 872 2186± 234
QVPO (NFE=20× 32) 718± 336 2873± 607 53.4± 5.0 2337± 1215 7603± 3910
DPMD (NFE=20× 32) 5683± 138 3275± 55 79.3± 52.5 4365± 266 9360± 0

Flow Policy RL RF-1 (NFE=1) 5378± 78 3255± 86 60.2± 10.6 3973± 541 9359± 1
MF (NFE=1) 5461± 147 2865± 603 54.7± 10.2 4404± 285 9355± 2

Number of Sampling Steps Sampling step number significantly influences the inference speed
and sample quality of flow models. For FPMD-R, we take 20 sampling steps during training to
accurately model the potentially high-variance intermediate policy distributions. During evaluation,
we switch to one-step sampling instead to test its efficient inference capability. For FPMD-M we use
one sampling step in both training and evaluation due to the average velocity parametrization.

5 EXPERIMENTS

SAC DPMD FPMD-R FPMD-M
0.0

0.5

1.0

1.5

In
fe

re
nc

e
Ti

m
e

(m
s)

0.13

1.46

0.13 0.14

Figure 1: Policy inference time com-
parison between FPMD, Gaussian pol-
icy method SAC, and diffusion policy
method DPMD.

In this section, we present the empirical results of our
proposed online RL algorithms FPMD-R and FPMD-M2.
First, we demonstrate the superior performance and infer-
ence speed of FPMD with comparison to prior Gaussian
and diffusion policy methods. For a comprehensive eval-
uation, we benchmark on both proprioceptive state obser-
vation Gym MuJoCo (Todorov et al., 2012) and visual ob-
servation DMControl (Tassa et al., 2018) environments.
We then visualize the action sampling trajectory for an
intuitive understanding.

5.1 GYM-MUJOCO TASKS

Experiment Settings We evaluate the performance on 10 Gym MuJoCo v4 environments. For all
environments except Humanoid-v4, we train the policy for 200K iterations with 1M environment
steps. For Humanoid-v4, we train for 1M iterations and 5M environment steps due to its more
complex dynamics and higher-dimensional action space. We compare our method to two families
of model-free online RL algorithms spanning both Gaussian and diffusion policy methods. See
Appendix D.2 for more details.

Comparative Evaluation As shown in Table 1, FPMD achieves comparable performance with the
best diffusion policy baseline while using 20× fewer sampling steps during inference. Moreover,
among methods using NFE=1 sampling, FPMD obtains the best overall performance.

1Here, 32 denotes the number of particles used for the best-of-N sampling mentioned in Section 4.
2Our implementation of FPMD can be found at https://anonymous.4open.science/r/flow_

policy_iclr-DD2B.

7

https://anonymous.4open.science/r/flow_policy_iclr-DD2B
https://anonymous.4open.science/r/flow_policy_iclr-DD2B

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Evaluation on DMControl. The numbers show the best mean returns and standard devi-
ations over 1M frames and 5 random seeds.3 Values highlighted in blue correspond to the method
achieving the best result among all the model-free algorithms, and values highlighted in green indi-
cate the best result among all model-free methods with NFE=1 inference sampling.

CUP CATCH WALKER WALK CARTPOLE SWINGUP FINGER SPIN

Gaussian Policy SAC 4 (NFE=1) 956.80± 14.58 865.29± 67.17 866.41± 10.27 927.09± 62.33
DDPG 5 (NFE=1) 967.59± 4.91 215.29± 413.94 867.63± 10.90 752.10± 178.04

Diffusion Policy DPMD (NFE=20× 32) 979.70± 1.91 957.39± 13.18 843.23± 17.00 856.03± 13.35

Flow Policy FPMD-R (NFE=1) 977.39± 2.00 957.05± 5.39 863.47± 7.50 862.29± 42.98
FPMD-M (NFE=1) 974.96± 7.05 956.35± 10.78 849.88± 7.56 898.55± 68.76

Model-based DreamerV3 979.70± 1.34 967.28± 3.76 864.56± 9.70 622.25± 164.38

CHEETAH RUN DOG STAND DOG TROT DOG WALK

Gaussian Policy SAC (NFE=1) 507.70± 40.32 306.84± 254.63 92.60± 22.31 87.55± 68.23
DDPG (NFE=1) 623.30± 104.36 321.26± 200.80 94.01± 23.82 109.33± 52.31

Diffusion Policy DPMD (NFE=20× 32) 631.74± 32.43 617.15± 97.13 113.93± 56.68 245.73± 67.56

Flow Policy FPMD-R (NFE=1) 633.90± 18.87 599.92± 168.44 101.55± 30.09 221.08± 137.77
FPMD-M (NFE=1) 619.97± 51.30 442.46± 246.38 94.10± 35.99 211.36± 148.37

Model-based DreamerV3 883.82± 4.57 542.12± 295.74 127.07± 44.50 139.54± 12.51

Figure 2: Performance curves on visual continuous control tasks. FPMD outperforms all baselines
with NFE=1 sampling.

To demonstrate the efficient policy inference ability of FPMD, we showcase the inference
time in Figure 1. Inference speed was measured on a single RTX 6000 GPU and aver-
aged over 10 rollouts on Ant-v4. All methods were implemented in JAX with JIT en-
abled and we performed one warm-start rollout that was not included in the measure-
ments. As expected, both variants of FPMD achieve inference times more than 10×
faster than the diffusion policy method SDAC and match the speed of Gaussian policy.

DDPG DPMD FPMD-R FPMD-M
0.0

0.5

1.0

1.5

2.0

2.5

In
fe

re
nc

e
Ti

m
e

(m
s)

0.76

2.40

0.57 0.57

Figure 3: Policy inference time com-
parison between FPMD, Gaussian pol-
icy method DDPG, and diffusion policy
method DPMD.

5.2 VISUAL RL TASKS

We next evaluate FPMD on 8 visual-input continuous con-
trol tasks from the DeepMind Control Suite (Tassa et al.,
2018). We compare FPMD against three policy learning
algorithms: SAC (Haarnoja et al., 2018), DDPG (Lill-
icrap et al., 2015) and DPMD (Ma et al., 2025). The
implementations of SAC and DDPG are based on DrQ
(Kostrikov et al., 2020) and DrQ-v2 (Yarats et al.) respec-
tively. As there are currently no online diffusion policy
methods that achieve competitive results on visual DM-
Control tasks, we implement a DPMD variant that aligns
with FPMD in all components except the policy learning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Sampling trajectories of FPMD-R and DPMD policy after 5K and 200K training iterations.
From left to right: FPMD-R policy trained for 5K iterations, FPMD-R policy trained for 200K
iterations, DPMD policy trained for 5K iterations, DPMD policy trained for 200K iterations.

As model-based algorithm use additional model learning losses and more training computation, it is
not strictly fair to compare model-free and model-based algorithms. We only include the DreamerV3
(Hafner et al., 2023) results for reference.

Table 2 and Figure 2 show the benchmarking results on visual control tasks. FPMD achieves higher
overall performance than all model-free gaussian policy baselines, with significant improvement in
the most challenging dog domain. While matching the performance of the diffusion policy method
DPMD, FPMD requires far fewer sampling steps and achieves over 4× faster inference during eval-
uation, as shown in Figure 3.

Comparing our two flow policy variants FPMD-R and FPMD-M, we observe that the performance
of FPMD-M slightly falls behind FPMD-R on all tasks except the relatively simple Finger Spin task.
This gap could be due to the suboptimal action samples during training. Despite this, FPMD-M
still has a clear advantage over the Gaussian policy baselines on most tasks. Since the MeanFlow
policy parametrization can reduce the computational cost in sampling from πold during training,
how to improve the performance of MeanFlow policy in visual control is a direction worth further
investigation.

5.3 SAMPLING TRAJECTORY VISUALIZATION

We visualize the sampling trajectory to provide an intuitive demonstration of the small discretization
error in single-step sampling of a well-trained FPMD-R policy. For comparison, we also visualize
the sampling trajectory of the representative diffusion policy algorithm DPMD (Ma et al., 2025). We
train the agents on Ant-v4 and plot the sampling trajectory of the first 2 action dimensions. Results
are shown in Figure 4.

In the early stage of training, the policy mirror descent target distribution has a large variance, and
the velocity varies significantly during the sampling process. Performing single-step sampling in
this stage results in a large discretization error. By contrast, in the final stage of training, the tar-
get distribution exhibits small variance and the velocity is almost constant throughout the sampling
process. Consequently, single-step sampling achieves small discretization error. However, for dif-
fusion policy such as DPMD, directly performing single-step sampling would cause large error as
demonstrated in Figure 4.

6 CONCLUSION

In this paper, we exploit the intrinsic connection between policy distribution variance and the dis-
cretization error of single-step sampling in straight interpolation flow matching. This insight leads to
Flow Policy Mirror Descent (FPMD), an online RL algorithm that enables single-step sampling dur-
ing policy inference while preserving expressive capability during training. We further present two
algorithm variants based on flow and MeanFlow policy parametrizations respectively. Evaluation
results on MuJoCo and DMControl benchmarks demonstrate performance comparable to diffusion
policy methods while requiring two orders of magnitude less computational cost during inference.
Future directions include extending FPMD to pretrained flow model finetuning and developing sim-
ilar techniques for discrete decision-making domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on reinforcement learning for flow policy, and our proposed method addresses
the slow inference issue of flow policy via one-step sampling. All benchmarks used are publicly
available. Our research does not involve human subjects and raises no specific ethical concerns
requiring special attention.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our method and training settings in Section 4 and Section 3.
Additional implementation details, hyperparameters and evaluation protocol are available in Ap-
pendix D. The code for reproducing our results is provided in https://anonymous.4open.
science/r/flow_policy_iclr-DD2B.

REFERENCES

Michael Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
In ICLR 2023 Conference, 2023.

Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations
intégrales. Fundamenta Mathematicae, 3(1):133–181, 1922. URL http://eudml.org/
doc/213289.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. arXiv preprint arXiv:1804.08617, 2018.

Richard Bellman. Dynamic programming. science, 153(3731):34–37, 1966.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. arXiv
preprint arXiv:2502.02316, 2025.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization.
Advances in Neural Information Processing Systems, 37:53945–53968, 2024.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. arXiv preprint arXiv:2309.16984, 2023.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Jiajun Fan, Shuaike Shen, Chaoran Cheng, Yuxin Chen, Chumeng Liang, and Ge Liu. Online
reward-weighted fine-tuning of flow matching with wasserstein regularization. arXiv preprint
arXiv:2502.06061, 2025.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

10

https://anonymous.4open.science/r/flow_policy_iclr-DD2B
https://anonymous.4open.science/r/flow_policy_iclr-DD2B
http://eudml.org/doc/213289
http://eudml.org/doc/213289

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. Advances in Neural Information Processing Systems, 37:
133345–133385, 2024.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. Pmlr, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Xixi Hu, Bo Liu, Xingchao Liu, et al. Rf-policy: Rectified flows are computation-adaptive decision
makers. In NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023.

Xixi Hu, Qiang Liu, Xingchao Liu, and Bo Liu. Adaflow: Imitation learning with variance-adaptive
flow-based policies. Advances in Neural Information Processing Systems, 37:138836–138858,
2024.

Emmeran Johnson, Ciara Pike-Burke, and Patrick Rebeschini. Optimal convergence rate for exact
policy mirror descent in discounted markov decision processes. Advances in Neural Information
Processing Systems, 36:76496–76524, 2023.

Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion
with 3d scene representations. arXiv preprint arXiv:2402.10885, 2024.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Prajwal Koirala and Cody Fleming. Flow-based single-step completion for efficient and expressive
policy learning. arXiv preprint arXiv:2506.21427, 2025.

Nikita Kornilov, Petr Mokrov, Alexander Gasnikov, and Aleksandr Korotin. Optimal flow match-
ing: Learning straight trajectories in just one step. Advances in Neural Information Processing
Systems, 37:104180–104204, 2024.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling
complexity, and generalized problem classes. Mathematical programming, 198(1):1059–1106,
2023.

Sangyun Lee, Zinan Lin, and Giulia Fanti. Improving the training of rectified flows. Advances in
neural information processing systems, 37:63082–63109, 2024.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. arXiv
preprint arXiv:2505.05470, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, 2023.

Lei Lv, Yunfei Li, Yu Luo, Fuchun Sun, Tao Kong, Jiafeng Xu, and Xiao Ma. Flow-based policy for
online reinforcement learning. arXiv preprint arXiv:2506.12811, 2025.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning
for diffusion policy. arXiv preprint arXiv:2502.00361, 2025.

David McAllister, Songwei Ge, Brent Yi, Chung Min Kim, Ethan Weber, Hongsuk Choi, Haiwen
Feng, and Angjoo Kanazawa. Flow matching policy gradients. arXiv preprint arXiv:2507.21053,
2025.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

Bao Nguyen, Binh Nguyen, and Viet Anh Nguyen. Bellman optimal stepsize straightening of flow-
matching models. arXiv preprint arXiv:2312.16414, 2023.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. arXiv preprint arXiv:2502.02538,
2025.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 24, pp. 1607–1612, 2010.

Samuel Pfrommer, Yixiao Huang, and Somayeh Sojoudi. Reinforcement learning for flow-matching
policies. arXiv preprint arXiv:2507.15073, 2025.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch cou-
plings. arXiv preprint arXiv:2304.14772, 2023.

Aaditya Prasad, Kevin Lin, Jimmy Wu, Linqi Zhou, and Jeannette Bohg. Consistency policy: Ac-
celerated visuomotor policies via consistency distillation. CoRR, 2024.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
from rewards via q-score matching. arXiv preprint arXiv:2312.11752, 2023.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion. arXiv preprint arXiv:2409.00588, 2024.

Paul Maria Scheikl, Nicolas Schreiber, Christoph Haas, Niklas Freymuth, Gerhard Neumann,
Rudolf Lioutikov, and Franziska Mathis-Ullrich. Movement primitive diffusion: Learning gentle
robotic manipulation of deformable objects. IEEE Robotics and Automation Letters, 2024.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Juyi Sheng, Ziyi Wang, Peiming Li, and Mengyuan Liu. Mp1: Mean flow tames policy learning in
1-step for robotic manipulation. arXiv preprint arXiv:2507.10543, 2025.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy
optimization, 2021. URL https://arxiv.org/abs/2005.09814.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator.
Advances in Neural Information Processing Systems, 37:54183–54204, 2024.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations.

Christopher John Cornish Hellaby Watkins et al. Learning from delayed rewards. 1989.

Junfeng Wen, Bo Dai, Lihong Li, and Dale Schuurmans. Batch stationary distribution estimation.
arXiv preprint arXiv:2003.00722, 2020.

Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei
Liu, Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation. arXiv
preprint arXiv:2505.07818, 2025.

Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting Wen,
Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for rein-
forcement learning. arXiv preprint arXiv:2305.13122, 2023.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. In International Conference on Learning
Representations.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-
ing sample efficiency in model-free reinforcement learning from images. In Proceedings of the
aaai conference on artificial intelligence, volume 35, pp. 10674–10681, 2021.

Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline
reinforcement learning. In The Thirteenth International Conference on Learning Representations.

Tonghe Zhang, Chao Yu, Sichang Su, and Yu Wang. Reinflow: Fine-tuning flow matching policy
with online reinforcement learning. arXiv preprint arXiv:2505.22094, 2025.

13

https://arxiv.org/abs/2005.09814

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

Reinforcement Learning for Diffusion Policy. Diffusion policies have been leveraged in many
recent online RL studies due to their expressiveness and flexibility. To obtain tractable training
objectives, existing methods explored reparameterized policy gradient (Wang et al., 2024; Ren et al.,
2024; Celik et al., 2025), weighted self-improvement (Ma et al., 2025; Ding et al., 2024), and other
variants of score matching (Psenka et al., 2023; Yang et al., 2023). However, these methods have
not considered the inference-time difficulties of diffusion policies. A few recent studies on offline
RL (Ding & Jin, 2023; Park et al., 2025) took a step toward one-step action generation. However,
the solutions are complicated and involve multi-stage training.

Reinforcement Learning for Flow Policy. Several concurrent works have explored reinforcement
learning for flow policy via reparameterized policy gradient (Lv et al., 2025; Koirala & Fleming,
2025), reward-weighted regression (Pfrommer et al., 2025), and policy gradient with log-likelihood
approximation (McAllister et al., 2025). Related approaches have also been proposed for offline RL
(Zhang et al.), and finetuning pretrained flow policy and image generation models, including ORW-
CFM-W2 (Fan et al., 2025), ReinFlow (Zhang et al., 2025), Flow-GRPO (Liu et al., 2025) and
DanceGRPO (Xue et al., 2025). Compared to these concurrent methods, ours is the only method
that achieves an effective balance between policy distribution expressiveness and action sampling
efficiency, by introducing a practical training objective equivalent to the flow matching objective and
enabling one-step action generation.

Efficient Sampling of Flow Models. Although flow models are strong in modeling complex and
multi-modal distributions, they typically require multiple sampling steps to generate high-quality
samples (Lipman et al., 2022; Gat et al., 2024). To overcome this limitation, previous works have
focused on producing high-quality samples in one- and few-step sampling settings. These methods
mainly fall into the following two categories. The first category still learns a continuous velocity
field but keeps the Euler truncation error small by either straightening the velocity field (Liu et al.,
2022; 2023; Lee et al., 2024; Pooladian et al., 2023; Kornilov et al., 2024) or adjusting the sampling
step size (Hu et al., 2024; 2023; Nguyen et al., 2023). The second category of methods distills the
learned velocity field or directly learns the sampling trajectory, including CTM (Kim et al., 2023),
shortcut model (Frans et al., 2024), and MeanFlow (Geng et al., 2025; Sheng et al., 2025). These
efficient sampling strategies are orthogonal and compatible with our flow policies learned through
online RL.

B DERIVATIONS

B.1 PROOF OF THEOREM 5

Theorem (MeanFlow Policy Mirror Descent). By sequentially minimizing the loss

LMPMD (θn; s) := Ea0,r,t,a1∼πold

[
exp (Qπold (s, a1) /Z(s))

∥uθn(at, r, t|s)− ((a1 − a0)− (t− r) ((a1 − a0) ∂aun−1 + ∂tun−1))∥2
]
, (16)

for n = 1, 2, . . . , the learned u∗
θn
(at, r, t|s) converges to the mean velocity field u (at, r, t|s) =∫ t

r
v(aτ ,τ |s)dτ

t−r if T satisfies the Contraction Condition.

Proof. By substituting the target distribution πold (a1|s) exp (Qπold (s, a1) /λ) /Z(s) into (11) and
applying importance sampling, we obtain the per-state loss:

L̃MPMD (θn; s) := Ea0,r,t,a1∼πold

[
exp (Qπold (s, a1) /λ) /Z(s)

∥uθn(at, r, t|s)− ((a1 − a0)− (t− r) ((a1 − a0) ∂aun−1 + ∂tun−1))∥2
]
. (17)

Observe that for each fixed s, Z(s) =
∫
πold (a|s) exp (Q (s, a) /λ) da > 0 and is a constant inde-

pendent of θ, a1, a0, and t. Since multiplying an optimization objective by a positive constant does

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

not change its minimizer,

argmin
θn

L̃MPMD(θn; s) = argmin
θn

Z(s)L̃MPMD(θn; s) = argmin
θn

LMPMD(θn; s),∀s ∈ S.

Using Proposition 3,

u
∗(MPMD)
θn

(at, r, t|s) = u
∗(CMF)
θn

(at, r, t|s) = v(at, t|s)− (t− r) (v(at, t|s)∂aun−1 + ∂tun−1))

Then under Assumption 4, fixed point iteration theory implies

lim
n→∞

u
∗(MPMD)
θn

(at, r, t|s) = u (at, r, t|s) =
∫ t

r
v(aτ , τ |s)dτ
t− r

C ADDITIONAL RESULTS

C.1 ABLATION STUDY

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

2000

1000

0

1000

2000

3000

4000

5000

Re
tu

rn

Ant-v4
alg

1
10
20

(a) Ablation study on training sampling steps.

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

1000

2000

3000

4000

5000
Re

tu
rn

Ant-v4

alg
Gaussian
Uniform
Gaussian Mixture

(b) Ablation study on flow source distributions.

To assess how the number of sampling steps and source distribution affect policy performance, we
conduct ablation experiments on the Gym MuJoCo Ant-v4 environment. In Figure 5a, we report
results for different numbers of sampling steps when sampling from πold in FPMD-R. The results
show that using too few sampling steps either fails to learn or results in suboptimal performance,
likely due to the large discretization error in the early stage of training. We further study the effect
of the source distribution by varying it across Gaussian distribution, bounded uniform distribution
and a mixture of 2 Gaussians. As presented in Figure 5b, all the three variants perform similarly, so
we select the commonly used Gaussian distribution for the main experiments.

C.2 ADDITIONAL SAMPLING TRAJECTORY EXAMPLES

We provide additional FPMD-R action sampling trajectories in Figure 6. The flow policy is trained
on Ant-v4 and we plot the sampling trajectories of the first 2 action dimensions throughout the
training process. As shown in Figure 6, in the early stage of training the velocity learned by the
policy network varies significantly in the sampling process, which leads to large discretization error
for few step sampling. In contrast, once the policy is fully trained, the sampling velocity is nearly
constant, enabling single step sampling with high accuracy.

D EXPERIMENTAL DETAILS

D.1 IMPLEMENTATION AND TRAINING DETAILS

Network Architecture Both policy network and critic network in FPMD are MLPs with Mish
(Misra, 2019) activations. We encode the flow time t using the sinusoidal position embedding

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

25K Steps

200K Steps

400K Steps

600K Steps

800K Steps

1M Steps

Figure 6: Sampling trajectories of FPMD-R on Ant-v4. At the beginning of training, the sampling
trajectories are highly curved with non-uniform spacing between points of adjacent timesteps. As
training proceeds, the trajectories become nearly straight with uniform spacing between points.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(Vaswani et al., 2017) and concatenate it to the policy network input. For visual control environ-
ments, we adopt the same convolutional encoder architecture as in Yarats et al. (2021), Kostrikov
et al. (2020) and Yarats et al.. The visual encoder is updated using only gradient from the critic loss
Equation (18).

Selecting from Action Candidates Selecting from behavior candidates has been used in diffusion
policy to concentrate the selected actions in high Q-value regions and improve sample efficiency
(Chen et al., 2022; Ding et al., 2024; Ma et al., 2025). Instead of sampling only one action from
flow policy, we sample N actions for each state and select the action with the highest Q-value a =
argmax

ai

Q(s, ai). We also add additional Gaussian noise with scheduled variance to the sampled

actions for better exploration. During evaluation, we use the action sampled directly from the flow
model with a single step to test the efficient inference ability.

Critic Training For critic learning, we follow the common practice and employ clipped double
Q-learning (Fujimoto et al., 2018) to reduce overestimation in the target value. We empirically find
that in state-based environments n-step return estimation (Barth-Maron et al., 2018) leads to worse
performance in flow policy, so we remain the 1-step setting. For visual control tasks, we use 3-step
return estimation for faster reward propagation. Considering these empirical findings, the critic loss
is

Lθk = Es,a,s′,a′

[(
Qθk(s, a)−

(
r + γ min

k=1,2
Qθ̄k(s

′, a′)

))]
∀k ∈ {1, 2}. (18)

for state-based environments and Equation (19) for visual control environments.

Visual Reinforcement Learning As is common in model-free visual RL algorithms (Yarats et al.,
2021; Kostrikov et al., 2020), we encode raw pixel observations with a convolutional network and
use the resulting latent feature as input to the policy and critic network. Following prior work
(Kostrikov et al., 2020), we augment image observations with random image shifts and use the
n-step critic loss

Lθk = E{st+i,at+i}n
i=0∼D

[(
Qθk(st, at)−

(
n−1∑
i=0

γirt+i + γn min
k=1,2

Qθ̄k(st+n, at+n)

))]
∀k ∈ {1, 2}

(19)
for faster reward propagation (Watkins et al., 1989). We ablate the n-step TD target and find it
crucial for visual control tasks, especially in the most complex dog domain.

Timestep Schedule Time schedule in flow and MeanFlow model learning has a large impact on
the learned distribution as shown in prior work (Lee et al., 2024; Esser et al., 2024; Geng et al., 2025).
For FPMD-R, we choose the commonly used uniform distribution U [0, 1]. For the MeanFlow policy,
we follow the default settings in (Geng et al., 2025) but change the r ̸= t probability from 25% to
100% to handle the online changing target distribution.

Training and Evaluation Details We train for 1M environment frames by default, while for the
most challenging tasks we increase the training steps. In particular, we use 5M environment frames
on Humanoid-v4 and 3M frames on Dog Stand, Dog Trot and Dog Walk. Across all environments,
we perform one training iteration every 5 collected environment steps. We report the average per-
formance over 20 episodes for evaluation. For both FPMD-R and FPMD-M, we evaluate with single
step sampling and no best-of-N sampling.

D.2 BASELINES

Gym Mujoco Environments We compare our method to two families of model-free online RL al-
gorithms. The first family is classic RL algorithms with Gaussian policy parametrization, including
PPO (Schulman et al., 2017), TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018). Those
methods use 1-NFE (Number of Function Evaluations) sampling for action. The second family in-
cludes online diffusion policy algorithms DIPO (Yang et al., 2023), DACER (Wang et al., 2024),
QSM (Psenka et al., 2023), QVPO (Ding et al., 2024) and DPMD (Ma et al., 2025). These methods
require multiple sampling steps to generate high-quality actions in both training and inference. All
baseline results reported for MuJoCo enviroments are taken from the DPMD paper (Ma et al., 2025).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

DMControl Environments For visual environments, we compare FPMD against three policy
learning algorithms: SAC (Haarnoja et al., 2018), DDPG (Lillicrap et al., 2015) and DPMD (Ma
et al., 2025). The implementations of SAC and DDPG are based on DrQ (Kostrikov et al., 2020) and
DrQ-v2 (Yarats et al.) respectively. As there are currently no online diffusion policy methods that
achieve competitive results on visual DMControl tasks, we implement a DPMD variant that aligns
with FPMD in all components except the policy learning.

D.3 HYPERPARAMETERS

Table 3: Hyperparameters used for state-based Gym MuJoCo environments.

Hyperparameter Value
Critic learning rate 3e-4
Policy learning rate 3e-4, linear annealing to 3e-5
Value network hidden layers 3
Value network hidden neurons 256
Value network activation Mish
Policy network hidden layers 3
Policy network hidden neurons 256
Policy network activation Mish
Batch size 256
Replay buffer size 1M
Action repeat 1
Frame stack 1
n-step returns 1

Table 4: Hyperparameters used for visual observation DMControl environments.

Hyperparameter Value
Critic learning rate 3e-4
Policy learning rate 3e-4, linear annealing to 3e-5
Value network hidden layers 3
Value network hidden neurons 256
Value network activation Mish
Policy network hidden layers 3
Policy network hidden neurons 256
Policy network activation Mish
Encoder network convolutional layers 4
Encoder network kernel size 3× 3
Encoder network activation ReLU
Batch size 256
Replay buffer size 1M
Action repeat 2
Frame stack 3
n-step returns 3

E THE USE OF LLM

We used LLM for minor text polishing. The model did not contribute to research ideation, method-
ology, or results.

3We use 3M frames for tasks of the dog domain.
4Implementation based on DrQ-v1.
5Implementation based on DrQ-v2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: FPMD-R Hyperparameters.

Hyperparameter Value
Sampling stepsize (training) 0.05
Sampling stepsize (evaluation) 1.0
t sampler uniform(0, 1)

Table 6: FPMD-M Hyperparameters.

Hyperparameter Value
Sampling stepsize (training) 1.0
Sampling stepsize (evaluation) 1.0
t, r sampler uniform(0, 1)

19

	Introduction
	Related Work

	Preliminaries
	One-step Efficient Inference for Flow Policy
	Policy Mirror Descent with Flow Model
	One-step Sampling of Flow Policy and Discretization Error Bound
	Policy Mirror Descent with MeanFlow Model

	Flow Policy Mirror Descent Algorithm
	Experiments
	Gym-MuJoCo Tasks
	Visual RL Tasks
	Sampling Trajectory Visualization

	Conclusion
	Related Work
	Derivations
	Proof of Theorem 5

	Additional Results
	Ablation Study
	Additional Sampling Trajectory Examples

	Experimental Details
	Implementation and Training Details
	Baselines
	Hyperparameters

	The Use of LLM

