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ABSTRACT

Diffusion policies have achieved great success in online reinforcement learning
(RL) due to their strong expressive capacity. However, the inference of diffu-
sion policy models relies on a slow iterative sampling process, which limits their
responsiveness. To overcome this limitation, we propose Flow Policy Mirror De-
scent (FPMD), an online RL algorithm that enables 1-step sampling during flow
policy inference. Our approach exploits a theoretical connection between the dis-
tribution variance and the discretization error of single-step sampling in straight
interpolation flow matching models, and requires no extra distillation or consis-
tency training. We present two algorithm variants based on rectified flow policy
and MeanFlow policy, respectively. Extensive empirical evaluations on MuJoCo
and visual DeepMind Control Suite benchmarks demonstrate that our algorithms
show strong performance comparable to diffusion policy baselines while requiring
orders of magnitude less computational cost during inference.

1 INTRODUCTION

Diffusion models have established themselves as the state-of-the-art paradigm in generative model-
ing (Ho et al.} |2020; [Dhariwal & Nichol, 2021)), capable of synthesizing data of unparalleled quality
and diversity across various modalities, including images, audio, and video. The success is rooted
in a principled, thermodynamically-inspired framework that learns to reverse a gradual noising pro-
cess (Sohl-Dickstein et al |2015). Diffusion policies are now being used to create highly flexible
and expressive policies for decision-making tasks like robotic manipulation by modeling complex,
multi-modal action distributions from demonstration (Chi et al., 2023} [Ke et al.,|[2024; Scheikl et al.,
2024). This approach has shown significant promise in both imitation learning and reinforcement
learning settings (Wang et al.; |Chen et al., 2022} [Team et al.,|2024)), enabling agents to learn flexible
and effective behaviors.

Despite the benefits of expressiveness, diffusion policies in online RL suffer from steep computa-
tional price for policy inference: the sampling process requires repeated neural-network evaluations
to produce a single sample, slowing down both the training and the testing of online RL. This
drawback hinders the application of diffusion models in tasks that require real-time and compute-
constrained inference, which is critical to many real-world applications, such as motion planning
and control. The current diffusion policy for online RL mostly focuses on the efficiency and opti-
mality of the training optimization (Psenka et al.l 2023} Ding et al., 2024; [Wang et al., 2024; Ren
et al., [2024; Ma et al.| [2025; [Celik et al., [2025)), while little attention has been paid to the efficiency
of policy inference, which typically relies on more than 10 denoising steps. Although there is re-
cent work incorporating one-step policies, they learn the one-step policy by distillation a multi-step
policy (Park et al., 2025} |Prasad et al., 2024)) or applying additional consistency loss (Ding & Jin,
2023)), which is redundant and even induces extra computational cost.

To handle this inference-time problem, we leverage flow-based models (Lipman et al., 2022; Liu
et al) [2022; |Geng et al., 2025) as the policy structure of online RL. One intriguing property of
flow-based models with straight interpolation is that, when the target distribution has zero variance,
sampling trajectories are straight lines pointing directly toward the target point (Hu et al., |2024)).
Moreover, the single-step sampling error is bounded by the variance of the target distribution, al-
lowing one-step generation of flow policy and easier training of MeanFlow policy when the target
distribution has a small variance.
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However, applying the flow model in online RL is nontrivial. There is no closed-form of log prob-
ability of flow models, making the classic policy gradient non-compatible with flow policy. For-
tunately, we exploit the variational technique to derive an equivalent loss for online flow polices,
bypassing the inaccessibility of the probability of flow models. We also observe that the progress
to train a one-step flow model fits perfectly in the exploration-exploitation trade-off of online RL.
During the intermediate stage favoring exploration, the flow parametrization of policy can model
highly complex and multi-modal distributions, enabling rich exploratory behaviors. As learning
progresses and the policy converges, the optimal distribution favoring exploitation typically exhibits
low variance. This low-variance regime aligns with the straight-line interpolation property of flow
models, enabling efficient single-step sampling with no additional cost. This provides a free lunch
to leverage the rich expressiveness to improve performance without increasing the inference-time
computational cost like diffusion models.

Building upon this, we propose Flow Policy Mirror Descent (FPMD), an online RL algorithm that en-
ables one-step sampling during policy inference. We further introduce two variants of FPMD using
the flow parametrization and MeanFlow parametrization, denoted FPMD-R and FPMD-M respec-
tively. We conduct extensive evaluations on both state-based Gym MuJoCo environments and visual
DMControl environments. Empirical results show that the proposed algorithm achieve performance
comparable to diffusion policy baselines while using orders of magnitude less computational cost.

Our core contributions are summarized as follows:

* We propose tractable loss functions to train Flow and MeanFlow policies in online RL, allowing
one-step action generation during inference time.

* By making moderate assumptions on the variance of the optimal policy, we theoretically analyze
the single-step sampling error of the flow policy.

* We conduct extensive empirical evaluations on Gym MuJoCo and visual DMControl tasks. The
proposed algorithm shows strong performance comparable to diffusion policy baselines while
requiring orders of magnitude fewer function evaluations.

1.1 RELATED WORK
We briefly review the most relevant prior work here and provide the full details in Appendix

Diffusion policies have been leveraged in many recent online RL studies due to their expressiveness
and flexibility. To obtain tractable training objectives, existing methods explored reparameterized
policy gradient (Wang et al.l 2024; Ren et al., 2024)), weighted self-improvement (Ma et al., 2025}
Ding et al., |2024), and other variants of score matching (Psenka et al., [2023; [Yang et al.| [2023).
However, these methods have not considered the inference-time difficulties of diffusion policies.
A few recent studies on offline RL (Ding & Jin, 2023} |Park et al., 2025) took a step toward one-
step action generation but their solutions are complicated and involve multi-stage training. Several
concurrent works have explored reinforcement learning for flow policy via reparameterized policy
gradient (Lv et al., 2025} |[Koirala & Fleming, 2025), reward-weighted regression (Pfrommer et al.,
2025), and policy gradient with log-likelihood approximation (McAllister et al., 2025). Compared
to these methods, ours is the only method that achieves an effective balance between policy distri-
bution expressiveness and action sampling efficiency, by introducing a practical training objective
equivalent to the flow matching objective and enabling one-step action generation.

2 PRELIMINARIES

Markov Decision Processes (MDPs). We consider Markov decision process (Puterman, [2014)
specified by a tuple M = (S, A,r, P, no,7), where S is the state space, A is the action space,
r: S x A — Risareward function, P : § x A — A(S) is the transition operator with A(S) as the
family of distributions over S, o € A(S) is the initial distribution and v € (0, 1) is the discount
factor. The goal of reinforcement learning is to find an optimal policy 7 (+|s) : S — A (.A), which
maximizes the discounted cumulative rewards, i.e., p (1) := E[>_,;2 77 (s¢, a¢)]. Given policy T,
the (Q-function is defined as

Qﬂ-(sa CL) = ]Est+1~P(~|st,at)7at+1~ﬂ'(-|st+1)7Vt>O [Z?io ’Ytr(sta at)|50 = S,a0 = CL] s
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and satisfies the Bellman equation (Bellman, |1966)
Qﬂ-(sa a) = T(S7 a) + 7Es’~P(-|s,a),a’~7r(~|s’) [Qﬂ(sla a/)] :

Policy Mirror Descent. We focus on extracting policies from a learned state-action value function
Q™ (s,a) = Ex, [>70 o7 (s, ai)|s0 = s,ap = a] of the current policy mo1q. We consider
policy mirror descent with Kullback—Leibler (KL) divergence proximal term [Tomar et al.| (2021);
Lan|(2023); |Peters et al.|(2010), which updates the policy with

m(als):= argmax Eqr [Q™(s,a)] — ADkr (7||mowd; 8) (1)
mS—=A(A)

The additional KL divergence objective constrains the updated policy to be approximately within the
trust region. Policy mirror descent is closely related to practical proximity-based algorithms such as
TRPO |Schulman| (2015) and PPO |Schulman et al.| (2017), but with a different approach to enforce
the proximity constraints. The closed-form solution of policy mirror descent in (1)) satisfies

exp (Q™ (s,a) /A)
Z(s) ’

2

7 (als) = moa (als)
and Z(s) = [ mou (als) exp (Q (s, a) /A) da is the partition function or normalization constant.

Flow Matching and Mean Flow Flow-based generative models (Lipman et al.|, |2022; [Liu et al.,
2022; |Albergo & Vanden-Eijnden, 2023)) define a time-dependent vector field v : [0, 1] x R & R4
that constructs a probability density path p : [0,1] x R? — R+. The target distribution p; (z;) can
be generated by first sampling from the tractable distribution po (o), and then solving the ordinary
differential equation (ODE) 92t = v¢(x¢). Flow matching (Lipman et al.,2022)) provides an efficient

dt
and scalable way to learn the velocity field v by minimizing the following objective,

LCFM(Q) = Emuwpo,aclwpl,twu[o,l] ||(II?1 - IIT()) — Vg (tv xt)”g (3)
with the straight interpolation z; = tx1 + (1 — t)xo.

MeanFlow (Geng et al., [2025) was recently proposed to avoid the iterative sampling process in flow
matching and enable the one-step generative modeling. Instead of using instantaneous velocity,
A [‘: (’U(a, rT))dT

MeanFlow characterizes flow fields with average velocity u (x4, 7,t) = *———""——. The average
velocity field is learned with the variational iteration loss

Lk (0) = E Jug(wt, 7, ) — sg (ug)ll3 C)

where Uge = V(x¢,t) — (t — 1) (v(2e, t)Opttg + Orug), 5)

and sg(-) denotes the stop-gradient operation to avoid higher-order gradient calculation. Once we
learn the average velocity field u, sampling of p; is performed in one step with 1 = z¢+u(xo,0, 1),
where x is sampled from the tractable prior distribution pq.

3 ONE-STEP EFFICIENT INFERENCE FOR FLOW POLICY

In this section, we introduce online RL policy learning method for rectified flow and MeanFlow
policy, both of which enable 1-step fast sampling for policy inference. We first derive a tractable
loss function for online RL with flow policy in Section [3.1} and then establish an upper bound on
the one-step sampling error in Section In Section we propose online RL training for the
MeanFlow policy, along with a convergence guarantee under mild assumptions on the MeanFlow
operator.

3.1 PoLICY MIRROR DESCENT WITH FLOW MODEL

We parametrize the policy as a flow model that transport the simple Gaussian distribution
ag ~ N (u,aQ) to the target distribution as the solution to policy mirror descent a; ~

Towd (a1]s) exp (Q™" (s,a1) /\) /Z(s), where Z(s) = [ moua (a1]s) exp (Q™" (s,a1) /A) daq. The



Under review as a conference paper at ICLR 2026

corresponding velocity field v(a¢, t|s) can be learned by minimizing the flow matching loss in Equa-
tion (3):

Eoag N (11,02) a1 ~ g (a1 |) exp(Qld (s,a1)/3) /2 () i~ 0,11 | (@1 — ao) — vg(az, tls)[[2. (6)
One major difference between our case and flow matching in image generation or imitation learning
is that we do not have access to direct samples from the target distribution of a;. Consequently,
standard flow matching cannot be applied directly to learn the target policy distribution. To solve
this issue, we apply importance sampling to Equation (6)) and sample from the base distribution g
to get a per-state loss function:

I’FPMD (6‘; S) = ]Ea1~’ﬂ'uld(a1|S),ao~N,t~Z/{[071] [WH(M - ao) - Ue(at’ tls)HQ} @)

Note that for each fixed s, Z(s) = [ moua (a|s) exp (Q (s,a) /) da > 0, and in Equation , Z(s)
is a constant independent of 6, a1, ag and t. Multiplying an objective by a positive constant does not
change its minimizer, i.e.,

argmin EFPMD(O; s) = argmin Z(s)f/FPMD(H; s),Vs € S. 8)
) 0

Take the expectation of Z(s) Lepmp (6; s) over S, we obtain the practical flow policy learning loss,

Lepmp (0) = Eg o, ~maa(as|),a0~N t~u4[0,1] [€XP (Q7 (s,a1) /A) |[(a1 — ao) — vo(a, t|5)||2] .
9)
Equation (9) gives a feasible loss function definition that only requires sampling state s from replay
buffer, action ag from a Gaussian distribution, and action a; from the old policy 7. This loss
formulation enables the use of replay buffer to estimate the loss function, which can efficiently learn
the velocity field by minimizing the loss function using stochastic gradient descent.

3.2 ONE-STEP SAMPLING OF FLOW POLICY AND DISCRETIZATION ERROR BOUND

One-step sampling is attractive in practice because it significantly reduces the inference latency
and computational cost in flow policy execution. In this subsection, we prove that the one-step
sampling discretization error of the flow policy in Section is bounded by the variance of the
target policy distribution. Since the policy mirror descent target distribution typically converges to
an almost-deterministic distribution (Puterman, 2014; Johnson et al., [2023))(Also see Appendix
for empircial evidence), the policy variance becomes small, which provably guarantees a small
discretization error. This property enables efficient one-step inference of flow policy without extra
distillation (Park et al.l 2025) or consistency loss (Ding & Jin, 2023).

Proposition 1. [Proposition 3.3, (Hu et al.| [2024)] Define p; as the marginal distribution of the
exact ODE da; = v(ay,t|s)dt. Assume a; ~ py = pf, and pyy., the distribution of a;.., following
Atte, = At + €10 (ag, t|s), where €, € [0,1 — t] is a discretization step size. Then we have

2 2 2
Wo (p:-ygtvpt—i-et) < et]Eatht [O' (atat|5)} )
where o (ay,t|s) = var (a1 — aglay, s), p;y.., denotes the marginal distribution of the exact ODE
at time t + ¢;, and W denotes the 2-Wasserstein distance.
This proposition establishes the relationship between the sampling discretization error
2 o . . .
Wa (pj; tepr Pe t) and the conditional variance o2 (ay, t|s). As a special case, when the target dis-

tribution a; has zero variance, the discretization error W (p}., , Pt+et)2 = 0forany ¢ € [0,1 — ¢]
(Hu et al.} 2024). We then focus on the single-step sampling case and obtain the following result.
Proposition 2. Define p} as the marginal distribution of the exact ODE da; = v(ay, t|s)dt. Let p;
be the distribution of 41 such that a; = ag + v (ag, 0|s) using one-step sampling, then

W (p},p1)° < var (ails).

Proof. Take t = 0 and ¢; = 1 in Proposition[I]} we obtain that
Wo (9%, p1)? < Eqg [var (a1 — aglag, s)] = Eq [var (a1]ag, s)] = Eq, [var (a1]s)] = var (ay]s) ,
which concludes the proof of Proposition O

The proposition implies the discretization error in one-step sampling is bounded by the variance
of the target distribution. In practical scenarios, where the learned policy tends to converge to one
deterministic solution with small variance, the one-step discretization error is neglectable.
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3.3 PoOLICY MIRROR DESCENT WITH MEANFLOW MODEL

In this subsection, we propose an alternative parametrization of the policy model using MeanFlow
model (Geng et al., [2025). Before presenting the MeanFlow policy, we first introduce the fixed-
point iteration view of MeanFlow, which fill the hole in the MeanFlow training (Geng et al., 2025).
Specifically, although the MeanFlow Identity is the condition derived in |Geng et al.| (2025) for
mean velocity, due to the stop-gradient operator induced in optimization for stability, it is not clear
whether the optimization is still converging to target solution. The revealed fixed-point view does
not only suggest the condition to guarantee the convergence of MeanFlow learning, but also justifies
our MeanFlow policy mirror descent method.

Consider the velocity field v(a¢, |s) transporting ag ~ N (u,0?) to the policy mirror descent

closed-form solution a; ~ 7o (a1]$) exp (Q™" (s,a1) /N) /Z(s), we define the mean velocity field
A f: v(ar,7|s)dr

u (ag,r,t|s) P

. We define the MeanFlow operator applied to « under the given v:
MeanFlow operator: (7Tu) (at,7,t|s) = v(a, t|s) — (t —r) (v(as, t|s)0qu + Opu) . (10)

Then, the original MeanFlow algorithm (Geng et al., |2025) can be viewed as variational imple-
mentation of the functional update w,, = T (u,—1) (Wen et al.,[2020). Concretely, the MeanFlow
operator is defined in a functional space with an unknown velocity field v, which is intractable to
implement. To develop a practical algorithm, in Proposition 3| we propose a variational method that
considers a reformulated problem whose optimal solution is equivalent to 7 (t,—1).
Proposition 3. Given the previous iteration result u,,_1, define the residual loss

Lewr (0 $) = Bag,ar .t [lue, (ar,7,ts) = (a1 — ao) = (t = 7) (a1 — ao) Datt—1 + Spun—1)) |,
1D

where a; = tay + (1 —t)ag. The optimal solution uy (at,r,t|s) = argming  Lcyr (0n; s) matches
to the MeanFlow operator result T (tn,—1).

Proof. We characterize the optimality through the first-order condition, i.e.,
in LCMF (9717 S)
= B [2(u,a,ntls) = (a1 = a0)=(t =) (a1 = a0) Dati—1 + Brttn-1))) Vo, uo, (ar, 7. 1]s) |

ag,a1,nrt

= E E [2 (ug, (at,r,t|s)—((a1—ao)—(t — 7) ((a1 —ao) Oatn—1+0tun—1))) Vo, ug, (at,hﬂs)]

at,mtag,aq|at

- E [2 (up,, (ar, 7, t|s) — (E[X1 — Xo|Xe = ar] — (t — 1) (E[X1 — Xo| Xt = ar] Datin1 + Stin_1)))

at,r,t
Ve, ue, (at,r,tls)]
= Vo, Ea,rt [us, (ar,m,t]s) — (v(ar, t]s) = (t — 1) (v(at, t|$)atin—1 + rtin—1)) ||*] (12)

Lmp(Onss)

Therefore, we can show that the optimal solution w;, satisfies:

up ™M (ay, 7, t)s) = up™M (ag, 7, t]s) = v(ar, t]s) — (¢ — ) (0(ar, t]8)dattn-1 + Fyun—1)) . (13)

O

Consequently, this fix-point iteration view of MeanFlow immediately induces the sufficient condi-
tion to guarantee the convergence to target distribution, following the fixed-point theorem (Banach,
1922), i.e.,

Proposition 4. If the MeanFlow operator T satisfies the Contraction Condition, i.e., 3¢ € [0,1)
such that | T (uy) — T (u2)|| < q||ur — ual| for Vui,us € L?, then, with any initial point ug € L2,
the fix-point iteration u, = T (un—1) for n = 1 converges to u* with u* = T (u*), which satisfies
the MeanFlow Identity in (Geng et al.| 2025).

With the target distribution convergence justified, we exploit important sammpling to avoid direct
sampling from target distribution 7 (a|s) = o (als) W, which leads to
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Theorem 5 (MeanFlow Policy Mirror Descent). By sequentially minimizing the loss

exp (Q™ (s, a1) /A)
Z(s)

[ug, (a, 7 ts) = (a1 — ao) = (¢ = 7) (a1 — ao) Datin—1 + 3tun—1))H2}, (14)

Lypmp (env 3) = Ea()y'r,tyal""ﬂ'nld {

forn = 1,2,..., the learned uy (ay,r,t|s) converges to the mean velocity field u (a;,7,t|s) =

Jrv(ar,Tls)dr
t—r

if T satisfies the Contraction Condition.

The full proof of Theorem [5 is provided in Appendix [B.1] Since the learned mean velocity field
ug(a, r,t|s) converges to the true mean velocity field u(as,r,t|s), we recover the target policy
distribution a; by first sampling ag ~ N (1, 02), and then setting a; = ag + ug(ag, 0, 1|s).

We take the expectation w.r.t. Lypmp (65,; s) over S and obtain the following practical policy learn-
ing loss:
Lnvemp (0n) = Es 1t Ea, ~rga(as |s),a0~N [GXP (Q™ (s,a1) /A)
llug, (az,r ts) — (a1 — ao) — (t — ) ((a1 — ag) Datin—1 + Ostin_1))|? } (15)

Although flow policy in Section [3.1] can achieve one-step sampling during inference of a trained
policy, it still requires multiple sampling steps when sampling from 7,4 during training. MeanFlow
policy reduces this computational cost by using one-step sampling throughout the training process.

4  FLow POLICY MIRROR DESCENT ALGORITHM

In this section, we introduce Flow Policy Mirror Descent (FPMD), a practical off-policy RL algo-
rithm achieving strong expressiveness, efficient training and efficient inference. We present two
variants, FPMD-R and FPMD-M, using the flow and MeanFlow policy parametrization described in
respectively. An overview of our algorithm is provided in Algorithm

Algorithm 1 Flow Policy Mirror Descent (FPMD)

Require: initial policy 79, Q-function ()4, replay buffer D = (), MDP M, total epochs T’
1: forepoche =1,2,...,T do
2:  Interact with M using policy 7y and update replay buffer D
Sample batch {(s,a,r,s')} ~ D
Sample a’ via flow sampling with 7y
Critic learning: update (), by minimizing double Q-learning loss in Equation
Actor learning: represent 7y by flow policy (FPMD-R) or MeanFlow policy (FPMD-M):
FPMD-R: Sample ag ~ N, ¢ ~ U[0, 1], sample a; via flow sampling with 7y,

A A

Update 7y by minimizing Equation (9
FPMD-M: Sample ay ~ N, sample r, ¢, sample a; via flow sampling with 7,
Update 7y by minimizing Equation (T3]
8: end for

Actor-Critic Algorithm Our training follows the standard off-policy actor-critic paradigm:

* Critic learning: we employ clipped double Q-learning (Fujimoto et al., 2018) and use n-step
return estimation (Barth-Maron et al.| [2018)) in visual control environments. See Appendix
for more details.

* Actor learning: we parametrize the policy distribution with flow model in FPMD-R and Mean-
Flow model in FPMD-M for flexible distribution modeling. The policy is updated to fit the policy
mirror descent closed-form solution Equation for policy improvement. At each iteration, we
sample a; from 7,q(aq|s) via flow sampling with the current policy network parameters, sample
ao from Gaussian distribution, and then compute the practical loss in Equation (9} for FPMD-R or
Equation for FPMD~M to run gradient descent.
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Table 1: Results on OpenAl Gym MuJoCo environments. Reported are the best mean returns and
standard deviations over 5 random seeds. Values highlighted in blue correspond to the method
achieving the best result among all the algorithms, and values highlighted in green indicate the best
result among all methods with NFE=1 sampling.

HALFCHEETAH REACHER HUMANOID  PUSHER INVERTEDPENDULUM
Classic PPO (NFE=1) 4852 £+ 732 —8.69£11.50 952 + 259 —25.52+£2.60 100040
Model-Free RL TD3 ((NFE=1) 8149 + 688 —3.10£0.07 5816 +£358  —25.07+1.01 1000 £ 0
SAC (NFE=1) 8981 + 370 —65.35 £56.42 2858 £ 2637 —31.224+0.26 1000 £+ 0
DIPO (NFE=20) 9063 + 654 —3.29+0.03 4880 +£1072 —32.89+0.34 1000 £ 0
DACER (NFE=20) 11203 + 246 —3.31 £0.07 2755+ 3599 —30.82+0.13 801 + 446
Diffusion Policy RL  QSM (NFE=20 x 32@ 10740 + 444 —4.16 £0.28 5652 £435  —80.78 £2.20 1000 £ 0
QVPO (NFE=20 x 3 7321 £+ 1087 —30.59 £16.57 421+75 —129.06 +£0.96 1000 + 0
DPMD (NFE=20 x 32) 11924 + 609 —3.14£0.10 6959 +460  —30.43+0.37 1000 £ 0
Flow Policy RL RF-1 (NFE=1) 10163 + 590 —3.32£0.22 6469 +344  —23.29+1.63 1000 £ 0
Y MF (NFE=1) 9917 + 698 —3.34+0.15 6030 664  —23.08+0.58 1000 + 0
ANT HOPPER SWIMMER ‘WALKER2D INVERTED2PENDULUM
Classic PPO (NFE=1) 3442 + 851 3227 + 164 84.5+124 4114 + 806 9358 + 1
Model-Free RL TD3 (NFE=1) 3733 £ 1336 1934 + 1079 71.9+15.3 2476 £ 1357 9360 + 0
SAC (NFE=1) 2500 + 767 3197 + 294 63.5+10.2 3233 £871 9359 + 1
DIPO (NFE=20) 965+ 9 1191 + 770 46.7+2.9 1961 + 1509 9352+ 3
DACER (NFE=20) 4301 + 524 3212 + 86 103.0 +£45.8 3194 + 1822 6289 + 3977
Diffusion Policy RL  QSM (NFE=20 x 32) 938 + 164 2804 + 466 57.0+£7.7 2523 + 872 2186 + 234
QVPO (NFE=20 x 32) 718 £+ 336 2873 + 607 53.4+5.0 2337 +£ 1215 7603 &+ 3910
DPMD (NFE=20 x 32) 5683 & 138 3275 + 55 79.3+52.5 4365 + 266 9360 = 0
Flow Policy RL RF-1 (NFE=1) 5378 £ 78 3255 + 86 60.2+10.6 3973 £ 541 9359 + 1
Y MF (NFE=1) 5461 + 147 2865 + 603 54.7+10.2 4404 £ 285 9355 + 2

Number of Sampling Steps Sampling step number significantly influences the inference speed
and sample quality of flow models. For FPMD-R, we take 20 sampling steps during training to
accurately model the potentially high-variance intermediate policy distributions. During evaluation,
we switch to one-step sampling instead to test its efficient inference capability. For FPMD-M we use
one sampling step in both training and evaluation due to the average velocity parametrization.

5 EXPERIMENTS

15 1.46
In this section, we present the empirical results of our £
proposed online RL algorithms FPMD-R and FPMD— g10
First, we demonstrate the superior performance and infer- ':.3
ence speed of FPMD with comparison to prior Gaussian g %>
and diffusion policy methods. For a comprehensive eval- £ 0.13 0.13 0.14

uation, we benchmark on both proprioceptive state obser- ' sAC DPMD  FPMD-R  FPMD-M

vation Gym MuJoCo (Todorov et al.,[2012) and visual ob-
servation DMControl (Tassa et al 2018) environments. Figure 1: Policy inference time com-
We then visualize the action sampling trajectory for an parison between FPMD, Gaussian pol-

intuitive understanding. icy method SAC, and diffusion policy
method DPMD.

o
o

5.1 GyM-MuJoCo TASKS

Experiment Settings We evaluate the performance on 10 Gym MuJoCo v4 environments. For all
environments except Humanoid-v4, we train the policy for 200K iterations with 1M environment
steps. For Humanoid-v4, we train for 1M iterations and 5M environment steps due to its more
complex dynamics and higher-dimensional action space. We compare our method to two families
of model-free online RL algorithms spanning both Gaussian and diffusion policy methods. See
Appendix [D.2]for more details.

Comparative Evaluation As shown in Table[T} FPMD achieves comparable performance with the
best diffusion policy baseline while using 20x fewer sampling steps during inference. Moreover,
among methods using NFE=1 sampling, FPMD obtains the best overall performance.

"Here, 32 denotes the number of particles used for the best-of-N sampling mentioned in SectioanI
2Our implementation of FPMD can be found at https://anonymous.4open.science/r/flow
policy_iclr—-DD2B.
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Table 2: Evaluation on DMControl. The numbers show the best mean returns and standard devi-
ations over 1M frames and 5 random seeds[] Values highlighted in blue correspond to the method
achieving the best result among all the model-free algorithms, and values highlighted in green indi-

cate the best result among all model-free methods with NFE=1 inference sampling.

Cup CATCH WALKER WALK  CARTPOLE SWINGUP  FINGER SPIN
Gaussian Polic sacH NFE=1) 956.80 £ 14.58  865.29 £ 67.17  866.41 + 10.27 927.09 £ 62.33
Y DDPG (NFE=1) 967.59 +£4.91 215.29 +413.94 867.63 + 10.90 752.10 £ 178.04
Diffusion Policy DPMD (NFE=20 x 32) 979.70 & 1.91 957.39 £ 13.18  843.23 + 17.00 856.03 + 13.35
Flow Polic FPMD-R (NFE=1) 977.39 £ 2.00 957.05 £ 5.39 863.47 £+ 7.50 862.29 + 42.98
y FPMD-M (NFE=1) 974.96 + 7.05 956.35 £10.78  849.88 £+ 7.56 898.55 £ 68.76
Model-based DreamerV3 979.70 £ 1.34 967.28 £ 3.76 864.56 £+ 9.70 622.25 + 164.38
CHEETAH RUN  DOG STAND DoOG TROT DOG WALK
Gaussian Polic SAC (NFE=1) 507.70 £40.32  306.84 £+ 254.63  92.60 £ 22.31 87.55 + 68.23
Y DDPG (NFE=1) 623.30 £104.36  321.26 +200.80 94.01 + 23.82 109.33 + 52.31

Diffusion Policy DPMD (NFE=20 x 32) 631.744+32.43  617.154+97.13  113.93 &+ 56.68 245.73 £ 67.56
Flow Polic FPMD-R (NFE=1) 633.90 £18.87  599.92 £168.44 101.55 £ 30.09 221.08 £ 137.77
¥ FPMD-M (NFE=1) 619.97 £51.30  442.46 £246.38 94.10 £ 35.99 211.36 £ 148.37
Model-based DreamerV3 883.82 +4.57 542.12 £295.74  127.07 £ 44.50 39.54 £ 12.51
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Figure 2: Performance curves on visual continuous control tasks. FPMD outperforms all baselines
with NFE=1 sampling.

To demonstrate the efficient policy inference ability of FPMD, we showcase the inference
time in Figure [l Inference speed was measured on a single RTX 6000 GPU and aver-
aged over 10 rollouts on Ant-v4. All methods were implemented in JAX with JIT en-
abled and we performed one warm-start rollout that was not included in the measure-
ments. As expected, both variants of FPMD achieve inference times more than 10x
faster than the diffusion policy method SDAC and match the speed of Gaussian policy.

2.5 2.40
5.2 VISUAL RL TASKS z.,
We next evaluate FPMD on § visual-input continuous con- ,qé 15
trol tasks from the DeepMind Control Suite (Tassa etal., 810 076
[2018). We compare FPMD against three policy learning £ 5 057 0-37
algorithms: SAC (Haarnoja et al., 2018), DDPG Eo - -
icrap et al 2015) and DPMD (Ma et al| [2025). The " DDPG  DPMD  FPMD-R  FPMD-M

implementations of SAC and DDPG are based on DrQ
(Kostrikov et al.|[2020) and DrQ-v2 respec-
tively. As there are currently no online diffusion policy
methods that achieve competitive results on visual DM-
Control tasks, we implement a DPMD variant that aligns
with FPMD in all components except the policy learning.

Figure 3: Policy inference time com-
parison between FPMD, Gaussian pol-
icy method DDPG, and diffusion policy
method DPMD.
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Figure 4: Sampling trajectories of FPMD-R and DPMD policy after SK and 200K training iterations.
From left to right: FPMD-R policy trained for 5K iterations, FPMD-R policy trained for 200K
iterations, DPMD policy trained for 5K iterations, DPMD policy trained for 200K iterations.

As model-based algorithm use additional model learning losses and more training computation, it is
not strictly fair to compare model-free and model-based algorithms. We only include the DreamerV3
(Hafner et al.,|2023)) results for reference.

Table 2] and Figure 2] show the benchmarking results on visual control tasks. FPMD achieves higher
overall performance than all model-free gaussian policy baselines, with significant improvement in
the most challenging dog domain. While matching the performance of the diffusion policy method
DPMD, FPMD requires far fewer sampling steps and achieves over 4 x faster inference during eval-
uation, as shown in Figure 3]

Comparing our two flow policy variants FPMD-R and FPMD-M, we observe that the performance
of FPMD-M slightly falls behind FPMD-R on all tasks except the relatively simple Finger Spin task.
This gap could be due to the suboptimal action samples during training. Despite this, FPMD-M
still has a clear advantage over the Gaussian policy baselines on most tasks. Since the MeanFlow
policy parametrization can reduce the computational cost in sampling from 7,y during training,
how to improve the performance of MeanFlow policy in visual control is a direction worth further
investigation.

5.3 SAMPLING TRAJECTORY VISUALIZATION

We visualize the sampling trajectory to provide an intuitive demonstration of the small discretization
error in single-step sampling of a well-trained FPMD—-R policy. For comparison, we also visualize
the sampling trajectory of the representative diffusion policy algorithm DPMD (Ma et al.| [2025). We
train the agents on Ant-v4 and plot the sampling trajectory of the first 2 action dimensions. Results
are shown in Figure [4]

In the early stage of training, the policy mirror descent target distribution has a large variance, and
the velocity varies significantly during the sampling process. Performing single-step sampling in
this stage results in a large discretization error. By contrast, in the final stage of training, the tar-
get distribution exhibits small variance and the velocity is almost constant throughout the sampling
process. Consequently, single-step sampling achieves small discretization error. However, for dif-
fusion policy such as DPMD, directly performing single-step sampling would cause large error as
demonstrated in Figure ]

6 CONCLUSION

In this paper, we exploit the intrinsic connection between policy distribution variance and the dis-
cretization error of single-step sampling in straight interpolation flow matching. This insight leads to
Flow Policy Mirror Descent (FPMD), an online RL algorithm that enables single-step sampling dur-
ing policy inference while preserving expressive capability during training. We further present two
algorithm variants based on flow and MeanFlow policy parametrizations respectively. Evaluation
results on MuJoCo and DMControl benchmarks demonstrate performance comparable to diffusion
policy methods while requiring two orders of magnitude less computational cost during inference.
Future directions include extending FPMD to pretrained flow model finetuning and developing sim-
ilar techniques for discrete decision-making domains.
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ETHICS STATEMENT

This work focuses on reinforcement learning for flow policy, and our proposed method addresses
the slow inference issue of flow policy via one-step sampling. All benchmarks used are publicly
available. Our research does not involve human subjects and raises no specific ethical concerns
requiring special attention.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our method and training settings in Section [ and Section [3]
Additional implementation details, hyperparameters and evaluation protocol are available in Ap-
pendix [D] The code for reproducing our results is provided in https://anonymous.4open.
science/r/flow_policy_iclr—-DD2B.
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A RELATED WORK

Reinforcement Learning for Diffusion Policy. Diffusion policies have been leveraged in many
recent online RL studies due to their expressiveness and flexibility. To obtain tractable training
objectives, existing methods explored reparameterized policy gradient (Wang et al.,|2024;|Ren et al.,
2024; Celik et al., [2025), weighted self-improvement (Ma et al.| 2025} Ding et al., [2024), and other
variants of score matching (Psenka et al.| 2023} |Yang et al., 2023). However, these methods have
not considered the inference-time difficulties of diffusion policies. A few recent studies on offline
RL (Ding & Jin, 2023} [Park et al., [2025) took a step toward one-step action generation. However,
the solutions are complicated and involve multi-stage training.

Reinforcement Learning for Flow Policy. Several concurrent works have explored reinforcement
learning for flow policy via reparameterized policy gradient (Lv et al 2025} Koirala & Fleming,
2025)), reward-weighted regression (Pfrommer et al.,[2025), and policy gradient with log-likelihood
approximation (McAllister et al., 2025)). Related approaches have also been proposed for offline RL
(Zhang et al.), and finetuning pretrained flow policy and image generation models, including ORW-
CFM-W2 (Fan et al.| [2025), ReinFlow (Zhang et al.l 2025), Flow-GRPO (Liu et al.l [2025) and
DanceGRPO (Xue et al., [2025). Compared to these concurrent methods, ours is the only method
that achieves an effective balance between policy distribution expressiveness and action sampling
efficiency, by introducing a practical training objective equivalent to the flow matching objective and
enabling one-step action generation.

Efficient Sampling of Flow Models. Although flow models are strong in modeling complex and
multi-modal distributions, they typically require multiple sampling steps to generate high-quality
samples (Lipman et al.| 2022} |Gat et al., [2024). To overcome this limitation, previous works have
focused on producing high-quality samples in one- and few-step sampling settings. These methods
mainly fall into the following two categories. The first category still learns a continuous velocity
field but keeps the Euler truncation error small by either straightening the velocity field (Liu et al.,
2022;[2023; |Lee et al.l 2024} Pooladian et al., 2023} [Kornilov et al.,|2024) or adjusting the sampling
step size (Hu et al., [2024; 2023; [Nguyen et al.,|[2023). The second category of methods distills the
learned velocity field or directly learns the sampling trajectory, including CTM (Kim et al., [2023),
shortcut model (Frans et al., 2024), and MeanFlow (Geng et al., 2025} [Sheng et al., [2025). These
efficient sampling strategies are orthogonal and compatible with our flow policies learned through
online RL.

B DERIVATIONS

B.1 PROOF OF THEOREM 5
Theorem (MeanFlow Policy Mirror Descent). By sequentially minimizing the loss
Litewtn (00 ) = B om | 5P (Q (5,01) /Z(s))

lug, (a7 ts) = (a1 — ao) = (¢ = 7) (a1 — ao) Datin—1 + atun—l))H2i|7 (16)

forn = 1,2,..., the learned uy (ay,r,t|s) converges to the mean velocity field u (a;,7,t|s) =
t
Lrls)dr . ) ) .
w if T satisfies the Contraction Condition.

Proof. By substituting the target distribution o (a1|s) exp (@™ (s,a1) /) /Z(s) into and
applying importance sampling, we obtain the per-state loss:

-Z/MPMD (6717 S) = ]an,'r‘,t,alr\«m,m {exp (Qﬂdd (S, al) />‘) /Z(S)
llwa, (at,r,tls) — ((a1 — ap) — (¢ — 1) ((a1 — ag) Ogtn—1 + 8tun_1))|\2 ] (17)

Observe that for each fixed s, Z(s) = [ 7o (als)exp (Q (s,a) /A) da > 0 and is a constant inde-
pendent of 6, a1, ag, and ¢. Since multiplying an optimization objective by a positive constant does
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not change its minimizer,

argmin [NszMD(en; §) = argmin Z(s)ijpMD(Gn; s) = argmin Lypmp (0 8), Vs € S.

6 0, O,
Using Proposition 3]
SOPMD) (0, 7 t]s) = up ™M (ag, 7, t]s) = v(ag, t]s) — (8 — 1) (v(ag, t]5)0atin-1 + Dyun—1))

Then under Assumption ] fixed point iteration theory implies

f: v(ar, |s)dr

. MPMD)
lim )¢ at, Ty tls) = u(as,r,t|s) =
nosoo n ( th 1 | ) ( (2R I ) t—r
O
C ADDITIONAL RESULTS
C.1 ABLATION STUDY
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(a) Ablation study on training sampling steps. (b) Ablation study on flow source distributions.

To assess how the number of sampling steps and source distribution affect policy performance, we
conduct ablation experiments on the Gym MuJoCo Ant-v4 environment. In Figure 5a we report
results for different numbers of sampling steps when sampling from 7,)q in FPMD-R. The results
show that using too few sampling steps either fails to learn or results in suboptimal performance,
likely due to the large discretization error in the early stage of training. We further study the effect
of the source distribution by varying it across Gaussian distribution, bounded uniform distribution
and a mixture of 2 Gaussians. As presented in Figure[5b] all the three variants perform similarly, so
we select the commonly used Gaussian distribution for the main experiments.

C.2 ADDITIONAL SAMPLING TRAJECTORY EXAMPLES

We provide additional FPMD-R action sampling trajectories in Figure[] The flow policy is trained
on Ant-v4 and we plot the sampling trajectories of the first 2 action dimensions throughout the
training process. As shown in Figure [6] in the early stage of training the velocity learned by the
policy network varies significantly in the sampling process, which leads to large discretization error
for few step sampling. In contrast, once the policy is fully trained, the sampling velocity is nearly
constant, enabling single step sampling with high accuracy.

D EXPERIMENTAL DETAILS

D.1 IMPLEMENTATION AND TRAINING DETAILS

Network Architecture Both policy network and critic network in FPMD are MLPs with Mish
(Misra, 2019) activations. We encode the flow time ¢ using the sinusoidal position embedding
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Figure 6: Sampling trajectories of FPMD—-R on Ant-v4. At the beginning of training, the sampling
trajectories are highly curved with non-uniform spacing between points of adjacent timesteps. As
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training proceeds, the trajectories become nearly straight with uniform spacing between points.
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(Vaswanti et al.l |2017) and concatenate it to the policy network input. For visual control environ-
ments, we adopt the same convolutional encoder architecture as in |Yarats et al.| (2021)), [Kostrikov
et al.|(2020) and |Yarats et al.. The visual encoder is updated using only gradient from the critic loss

Equation (I8).

Selecting from Action Candidates Selecting from behavior candidates has been used in diffusion
policy to concentrate the selected actions in high ()-value regions and improve sample efficiency
(Chen et al., |2022} Ding et al., [2024; Ma et al., 2025). Instead of sampling only one action from
flow policy, we sample N actions for each state and select the action with the highest Q-value a =
argmax (s, a;). We also add additional Gaussian noise with scheduled variance to the sampled

a;
actions for better exploration. During evaluation, we use the action sampled directly from the flow
model with a single step to test the efficient inference ability.

Critic Training For critic learning, we follow the common practice and employ clipped double
Q-learning (Fujimoto et al., 2018)) to reduce overestimation in the target value. We empirically find
that in state-based environments n-step return estimation (Barth-Maron et al.,|2018)) leads to worse
performance in flow policy, so we remain the 1-step setting. For visual control tasks, we use 3-step
return estimation for faster reward propagation. Considering these empirical findings, the critic loss
is

Lé)k = Es,a,s/,a/ |:<Q9k (S,CL) - <T + ’YkH:lian Qék (Slva/)>>:| Vk € {13 2} (18)

for state-based environments and Equation (I9) for visual control environments.

Visual Reinforcement Learning As is common in model-free visual RL algorithms (Yarats et al.,
2021} |Kostrikov et al., [2020), we encode raw pixel observations with a convolutional network and
use the resulting latent feature as input to the policy and critic network. Following prior work
(Kostrikov et al., 2020), we augment image observations with random image shifts and use the
n-step critic loss

n—1
L9k = E{st+i,at+i mo~D [(Q@k (St, at) - (Z ’ert—i-i + ’Yn knzlilr,lZ Qék (5t+n7 at+n)> > ] vk € {17 2}

i=0

(19)
for faster reward propagation (Watkins et al} |1989). We ablate the n-step TD target and find it
crucial for visual control tasks, especially in the most complex dog domain.

Timestep Schedule Time schedule in flow and MeanFlow model learning has a large impact on
the learned distribution as shown in prior work (Lee et al.,[2024; Esser et al.| 2024} /Geng et al.,[2025).
For FPMD-R, we choose the commonly used uniform distribution ¢/ [0, 1]. For the MeanFlow policy,
we follow the default settings in (Geng et al., 2025) but change the r # t probability from 25% to
100% to handle the online changing target distribution.

Training and Evaluation Details We train for 1M environment frames by default, while for the
most challenging tasks we increase the training steps. In particular, we use 5M environment frames
on Humanoid-v4 and 3M frames on Dog Stand, Dog Trot and Dog Walk. Across all environments,
we perform one training iteration every 5 collected environment steps. We report the average per-
formance over 20 episodes for evaluation. For both FPMD-R and FPMD-M, we evaluate with single
step sampling and no best-of-N sampling.

D.2 BASELINES

Gym Mujoco Environments We compare our method to two families of model-free online RL al-
gorithms. The first family is classic RL algorithms with Gaussian policy parametrization, including
PPO (Schulman et al., [2017), TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018). Those
methods use 1-NFE (Number of Function Evaluations) sampling for action. The second family in-
cludes online diffusion policy algorithms DIPO (Yang et al., [2023), DACER (Wang et al.| [2024),
QSM (Psenka et al.| [2023), QVPO (Ding et al.| 2024)) and DPMD (Ma et al.,2025). These methods
require multiple sampling steps to generate high-quality actions in both training and inference. All
baseline results reported for MuJoCo enviroments are taken from the DPMD paper (Ma et al., 2025)).
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DMControl Environments For visual environments, we compare FPMD against three policy
learning algorithms: SAC (Haarnoja et al., 2018), DDPG (Lillicrap et al., [2015) and DPMD (Ma
et al.,|2025). The implementations of SAC and DDPG are based on DrQ (Kostrikov et al.,2020) and
DrQ-v2 (Yarats et al) respectively. As there are currently no online diffusion policy methods that
achieve competitive results on visual DMControl tasks, we implement a DPMD variant that aligns
with FPMD in all components except the policy learning.

D.3 HYPERPARAMETERS

Table 3: Hyperparameters used for state-based Gym MuJoCo environments.

Hyperparameter

Value

Critic learning rate
Policy learning rate

3e-4

3e-4, linear annealing to 3e-5

Value network hidden layers 3
Value network hidden neurons 256
Value network activation Mish
Policy network hidden layers 3
Policy network hidden neurons 256
Policy network activation Mish
Batch size 256
Replay buffer size M
Action repeat 1
Frame stack 1
n-step returns 1

Table 4: Hyperparameters used for visual observation DMControl environments.

Hyperparameter Value
Critic learning rate 3e-4
Policy learning rate 3e-4, linear annealing to 3e-5
Value network hidden layers 3
Value network hidden neurons 256
Value network activation Mish
Policy network hidden layers 3
Policy network hidden neurons 256
Policy network activation Mish
Encoder network convolutional layers 4
Encoder network kernel size 3x3
Encoder network activation ReLU
Batch size 256
Replay buffer size IM
Action repeat 2
Frame stack 3
n-step returns 3

E THE USE OoF LLM

We used LLM for minor text polishing. The model did not contribute to research ideation, method-

ology, or results.

3We use 3M frames for tasks of the dog domain.
“Implementation based on DrQ-v1.
Implementation based on DrQ-v2.
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Table 5: FPMD-R Hyperparameters.

Hyperparameter Value
Sampling stepsize (training) 0.05
Sampling stepsize (evaluation) 1.0
t sampler uniform(0, 1)

Table 6: FPMD—-M Hyperparameters.

Hyperparameter Value
Sampling stepsize (training) 1.0
Sampling stepsize (evaluation) 1.0
t, r sampler uniform(0, 1)
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