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ABSTRACT

Causal abstraction inference is the task of inferring causal effects from limited
data by first mapping the complicated low-level data (e.g., pixels) into a simpler
high-level space (e.g., image representation) before performing causal inferences
on the high-level. A major restriction in this task is known as the abstract invariance
condition (AIC), which forces high-level representations to retain all information
from the low-level data to prevent any ambiguity in high-level inference. In this
work, we provide the first approach that can learn low-dimensional high-level
representations that satisfy the strictest form of the AIC without weakening the
allowable causal inferences. We show how the concept of invariances, such as
rotational invariance in image data, is related to causal abstractions and how
they can be used to learn lower dimensional representations using out-of-the-box
invariance learning tools such as contrastive learning. Finally, we demonstrate our
findings empirically, including in a high-dimensional image setting.

1 INTRODUCTION

Causality is a key component of human reasoning, allowing one to plan a course of action, to
determine blame and responsibility, and to generalize across changing environments. A key insight
from both causality and the philosophy of science is that effective reasoning often involves abstraction
– the process of simplifying a complex system by ignoring details deemed irrelevant to the task. In
this context, “irrelevant details” typically refer to certain transformations that leave important aspects
of the system unchanged, called invariances in the machine learning literature. For example, humans
interpret the object in the television as a “dog” rather than a collection of pixels, and this interpretation
does not change whether the pixels are rotated, flipped, or cropped. The pixels are abstracted to the
concept of a “dog”, and it is invariant to transformations such as rotation. Invariances, when studied
under the lens of causal abstractions, can therefore be a powerful tool for advancing AI systems.

Modern AI systems are often studied under the foundation of generative modeling. Deep generative
models have shown impressive results in many practical tasks such as image generation (Brown
et al., 2020), text generation (Ramesh et al., 2021), and style transfer (Gatys et al., 2015). Causal
inference is typically studied under the semantics of structural causal models (SCMs) (Pearl, 2000),
which are generative models that represent reality with a collection of mechanisms and exogenous
noise. Each SCM induces a collection of distributions that can be categorized into three successively
more descriptive layers known as the Pearl Causal Hierarchy (PCH) (Pearl and Mackenzie, 2018;
Bareinboim et al., 2022). These layers refer to the observational (L1), interventional (L2), and coun-
terfactual (L3) distributions. While traditional generative modeling focuses on a single distribution
(usually the observational distribution from L1), causal generative modeling is an emerging field that
aims to extend the capabilities of generative modeling to higher layers of the hierarchy. It has been
shown that, given the proper causal constraints, causal generative models are capable of identifying,
estimating, and sampling causal effects, trained on limited available data such as observational data
(Kocaoglu et al., 2018; Xia et al., 2021; 2023; Rahman and Kocaoglu, 2024).

Formal studies of causal abstractions typically aim to compare a low-level modelML with a high-
level counterpartMH through an abstraction function τ that maps low-level variables VL to high-
level variables VH . Semantic definitions such as exact transformations and τ -abstractions establish
key properties expected of abstractions such as the commutativity of interventions and abstractions
(Rubenstein et al., 2017; Beckers and Halpern, 2019; Beckers et al., 2019; Geiger et al., 2023a).
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Figure 1: An illustration of the causal abstraction
inference problem. The true model is a low-level
model ML which generates distributions of the
PCH over VL. VL is connected to its high-level
counterpart VH through τ . In practice,ML and
data from interventional (L2) and counterfactual
(L3) may not be available (in gray). The goal is
to construct an SCM M̂H on the high-level space,
apply causal assumptions in the form of constraints
(GC), train it on available observational data (L1),
and then use it to infer L2 and L3 queries.

These properties have been useful in the explain-
able AI domain, where a high-level causal model
is hypothesized to explain a black-box model
such as a neural network, and an abstraction
function τ is learned to test this hypothesis by
seeing how well the function satisfies these im-
portant properties (Geiger et al., 2023b; Mas-
sidda et al., 2023; Zennaro et al., 2023; Felekis
et al., 2024). Separately, constructive abstrac-
tions have been useful for an emerging field
of study called causal abstraction inference,
the main focus of this work. The concept is
shown in Fig. 1. While many established ab-
straction definitions focus on comparing SCMs
ML andMH , recent work has decomposed ab-
straction analysis into individual distributions of
the PCH, which allows one to perform causal
inferences in the high-level space given limited
data from the low-level space (Xia and Barein-
boim, 2024; 2025). This allows one to perform
high-dimensional causal inferences tractably by
first converting the data to a high-level abstract
space (akin to representation learning).

One particularly challenging restriction in the causal abstraction inference task that is not present in
typical noncausal representation learning problems is known as the abstract invariance condition
(AIC). The AIC states, informally, that to preserve correctness in high-level causal inferences, a
high-level representation must disambiguate values that have different causal effects on downstream
variables. This is illustrated in Fig. 2. A classic instance of this phenomenon is the study of the effects
of cholesterol on heart disease (Spirtes and Scheines, 2004). There are two types of cholesterol, HDL
and LDL, that both affect heart disease rates, so scientists may be tempted to abstract them together
as total cholesterol. However, deeper analysis shows that HDL lowers the risk of heart disease while
LDL raises it. Abstracting them together as total cholesterol leaves the analysis ambiguous, as one
would not be able to assess the risk of heart disease without knowing whether the total cholesterol
consists more of HDL or LDL cholesterol.

Since the true structural model is typically not available in most practical settings, it is generally
impossible to verify that the AIC holds, leading to severe constraints on the types of representations
that can be learned. Xia and Bareinboim (2024) accommodates this issue by enforcing bijectivity in
learned representations through an autoencoder structure, but this approach suffers from a lack of
dimensionality reduction, which is one of the main purposes of representation learning. Chalupka
et al. (2015) explores a weaker version of the AIC that is verifiable by data, but this implies weaker
inferences. Xia and Bareinboim (2025) generalizes the abstraction framework to show that high-level
inferences under AIC violations can be corrected by interpreting them as soft interventions on the
low-level model, but this requires additional assumptions to specify the form of the soft interventions
and leaves fewer identifiable results.

In this work, we present an approach that leverages the availability of invariance information to learn
representations that (1) satisfy the most fundamental form of the AIC, (2) allow for dimensionality
reduction, and (3) make no additional assumptions (other than invariance information) without
sacrificing inferential power. More specifically, in Sec. 2, we formally define invariances in the
context of causal models and prove that they can be used to generate low-dimensional representations
that still satisfy the AIC. Importantly, this allows for out-of-the-box techniques for invariance learning
used in noncausal contexts to learn representations in causal models. In Sec. 3, we show how
to use one such popular technique, contrastive learning (Chen et al., 2020), to accomplish this in
practice. We then empirically demonstrate the strength of the learned representations in Sec. 4 before
concluding our findings in Sec. 5. Due to space constraints, proofs can be found in App. A.

1.1 PRELIMINARIES
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Figure 2: An illustration of
an AIC violation. Note that
X causes Y , and x1 and x2

are different values of X that
provide different outputs in
Y . If they are abstracted into
the same high-level value xH ,
then the behavior of fY is am-
biguous on the input of xH .

This section introduces the notation and definitions used throughout
the paper. We use uppercase letters (X) to denote random variables
and lowercase letters (x) to denote corresponding values. Simi-
larly, bold uppercase (X) and lowercase (x) letters denote sets of
random variables and values respectively. We use DX to denote
the domain of X and DX = DX1

× · · · × DXk
for the domain of

X = {X1, . . . , Xk}. We denote P (X = x) (often shortened to
P (x)) as the probability of X taking the values x under the distri-
bution P (X). We use the notation z[W] to indicate the values of z
restricted to variables in Z∩W. We utilize the basic semantic frame-
work of structural causal models (SCMs) (Pearl, 2000), following
the presentation in Bareinboim et al. (2022).
Definition 1 (Structural Causal Model (SCM)). An SCMM is a
4-tuple ⟨U,V,F , P (U)⟩, where U is a set of exogenous variables
(or “latents”) that are determined by factors outside the model; V
is a set {V1, V2, . . . , Vn} of (endogenous) variables of interest that
are determined by other variables in the model – that is, in U ∪V;
F is a set of functions {fV1

, fV2
, . . . , fVn

} such that each fVi
is a

mapping from (the respective domains of) UVi
∪PaVi

to Vi, where
UVi

⊆ U, PaVi
⊆ V \ Vi, and the entire set F forms a mapping from U to V. That is, for

i = 1, . . . , n, each fVi ∈ F is such that vi ← fVi(paVi
,uVi); and P (U) is a probability function

defined over the domain of U. ■

Each SCM induces distributions from the 3 layers of the PCH. This work is general to all three layers,
but for clarity, we define the set of layer 2 distributions as follows.
Definition 2 (Layer 2 Valuation (Bareinboim et al., 2022, Def. 5)). An SCMM = ⟨U,V,F , P (U)⟩
induces a family of joint distributions over V, one for each intervention x. For each Y ⊆ V,
PM(y | do(x)) =

∫
DU

1{Yx(u) = y}dP (u), where Yx(u) is the solution for Y in the submodel
Mx = ⟨U,V,Fx, P (U)⟩, where Fx := {fV : V ∈ V \X} ∪ {fX ← x : X ∈ X}. ■

L2 is the set of all such distributions, and L1 is the subset where X = ∅. L3 is defined in App. A.2.
The theory of causal abstractions developed in this paper build on the foundations of constructive
abstraction functions, under which individual distributions of the PCH are well-defined between low
and high-level models.
Definition 3 (Inter/Intravariable Clusterings (Xia and Bareinboim, 2024, Def. 5)). LetM be an SCM
over V. A set C is said to be an intervariable clustering of V if C = {C1,C2, . . .Cn} is a partition
of a subset of V. C is further considered admissible w.r.t.M if for any Ci ∈ C and any V ∈ Ci, no
descendent of V outside of Ci is an ancestor of any variable in Ci. That is, there exists a topological
ordering of the clusters of C relative to the functions ofM. A set D is said to be an intravariable
clustering of variables V w.r.t. C if D = {DCi : Ci ∈ C}, where DCi = {D1

Ci
,D2

Ci
, . . . ,Dmi

Ci
} is a

partition (of size mi) of the domains of the variables in Ci, DCi . ■
Definition 4 (Constructive Abstraction Function (Xia and Bareinboim, 2024, Def. 6)). A function
τ : DVL

→ DVH
is said to be a constructive abstraction function w.r.t. inter/intravariable clusters C

and D iff τ is composed of subfunctions τCi for each Ci ∈ C such that vH = τ(vL) = (τCi(ci) :

Ci ∈ C), where τCi(ci) = vjH,i if and only if ci ∈ Dj
Ci

. ■

In this work, we leverage causal diagrams (often denoted as G) and their corresponding cluster causal
diagrams (C-DAGs) (denoted as GC, relative to a set of intervariable clusters C). See App. A.2 for
the formal definitions. Finally, we state the AIC formally below.
Definition 5 (Abstract Invariance Condition (AIC)). Let ML = ⟨UL,VL,FL, P (UL)⟩ be an
SCM and τ : DVL

→ DVH
be a constructive abstraction function relative to C and D. The SCM

ML is said to satisfy the abstract invariance condition (AIC, for short) with respect to τ if, for all
v1,v2 ∈ DVL

such that τ(v1) = τ(v2), ∀u ∈ DUL
,Ci ∈ C, the following holds:

τCi

((
fL
V (pa

(1)
V ,uV ) : V ∈ Ci

))
= τCi

((
fL
V (pa

(2)
V ,uV ) : V ∈ Ci

))
, (1)

where pa
(1)
V and pa

(2)
V are the values corresponding to v1 and v2. ■

Intuition for the AIC in the context of this paper is provided in Ex. 2.
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2 INVARIANCES IN CAUSAL ABSTRACTIONS

Figure 3: Visualization of Ex. 1. (a)
On the intervariable level, X1, X2,
and X3 are clustered together to form
XH , while Y is clustered by itself. (b)
On the intravariable level, the 8 possi-
ble values of C1 = {X1, X2, X3} are
clustered based on the number of votes
for A. (c) The corresponding causal
diagram G and C-DAG GC.

Causal abstractions are useful since they provide a frame-
work for bridging the gap between models of different gran-
ularities, allowing one to work in a simpler high-level space
despite having complicated data from the low-level space.
The task of performing causal inferences across abstractions
is well-studied in the case where the abstraction function τ
is given. When the inter/intravariable clusters C and D are
provided alongside the structural assumptions of a graphical
model GC, one can straightforwardly construct τ and then
make high-level inferences using low-level data.

Example 1. Suppose a country is voting to elect an of-
ficial, deciding between candidate A and B. Votes are
collected from three districts, X1, X2, and X3, and the
outcome of the election (Y ) is based on which candi-
date receives the most votes. On the low level, VL =
{X1, X2, X3, Y }, all with a domain of {A,B}. In-
stead of collecting data on individual district votes, one
may wish to abstract the votes into a single variable
representing their sum (i.e., XH = τ(X1, X2, X3) =
X1 + X2 + X3). This corresponds to the intervari-
able clusters C = {C1 = {X1, X2, X3},C2 =
{Y }}, shown in Fig. 3(a). The high level variables
XH and YH correspond to the clusters C1 and C2.
The intravariable clusters over C1 would be DC1

=
{{BBB}, {ABB,BAB,BBA}, {AAB,ABA,BAA}, {AAA}}, with the 4 sets corresponding to the
values of XH = 0, 1, 2, and 3 respectively (Fig. 3(b)). Then the abstraction is quite natural, with
(XH , YH)← τ(X1, X2, X3, Y ) = (X1 +X2 +X3, Y ). The corresponding causal diagram G and
C-DAG GC are shown in Fig. 3(c). ■

In practice, it may not be the case that C and D are readily available. For intervariable clusters C, it is
often the case that the clusters are fixed in advance when deciding on the assumptions of the graphical
model GC. The C-DAG GC over C can be much simpler to specify than the full causal diagram G,
which requires a full specification of every pairwise relationship in VL. Given the prevalence of
hierarchical structures in data, it can often be quite intuitive which choices of clusters make sense.
If all else fails, intervariable clusters can be chosen through a heuristical approach (see (Xia and
Bareinboim, 2024, Alg. 3)).

Specifying intravariable clusters D is a much more difficult challenge. In extremely high-dimensional
scenarios such as those involving image data, the size of the domain can become prohibitively large
(e.g., a 128 × 128 × 3 image with 256 possible pixel values has 256128×128×3 different values in
its domain). Specifying a partition over such a large space is intractable in general since doing so
would require enumerating each possible image and assigning a corresponding cluster label. It would
therefore be desirable to use a machine learning approach to learn intravariable clusters from data in
a tractable manner.

Learning intravariable clusters is a representation learning task. For each intervariable cluster Ci,
the goal is to find which values of Ci map to which values of VH,i (i.e., learning the mapping
τCi

: DCi
→ DVH,i

). VH,i can then be interpreted as the representation of Ci. Unfortunately, there
are strict requirements on what kinds of representations are allowed, shown by the following result.

Proposition 1 ((Xia and Bareinboim, 2024, Prop. 5)). Consider a low level SCMML and construc-
tive abstraction function τ w.r.t. clusters C and D.ML is guaranteed to satisfy the AIC w.r.t. τ if and
only if DCi

= {{ci} : ci ∈ DCi
} for all Ci ∈ C. ■

In words, the only choice of intravariable clusters that is guaranteed to satisfy the AIC (Def. 5) is
the one where every value in the domain of Ci is clustered by itself. Any other set of clusters that
group two values together may potentially violate the AIC, which is undesirable since it may result in
incorrect causal inferences in the high-level model.
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Figure 4: Three images of DIL , for
Ex. 2. i2 is simply a π/2 rotation
of i1, represented by the invariance
function gI .

For intuition on why this presents a problem, consider the
following example.
Example 2. Consider an image classification task where
VL = {IL, Y } for image IL and label Y . For the sake of
simplicity, suppose Y is binary, and IL can only take three
possible values: i1, i2, and i3, shown in Fig. 4. Intuitively, it
seems that i1 and i2 are the same image but rotated, so it may
be tempting to cluster them into the same high-level value (i.e.,
DI = {x1 = {i1, i2}, x2 = {i3}}). That is, one may wish
to construct high-level representation IH that takes only two
possible values, x1 or x2, where x1 refers to both i1 and i2.

Unfortunately, without information or assumptions about the underlying causal model, performing
this clustering violates the AIC and may result in incorrect inferences. For example, suppose in
one possible SCM of the setting,M1, the function f1

Y (iL, uY ) = 1{iL ∈ {i1, i2}} ⊕ uY , while in
another,M2, f2

Y (iL, uY ) = 1{iL ∈ {i1, i3}} ⊕ uY . An interpretation might be that inM1, Y is a
label that refers to whether the image is a cat or a dog, while inM2, Y represents whether the animal
in the image is on its side. The proposed clusters for DI satisfy the AIC forM1, but in the case of
M2, clustering these two images leads to ambiguity over whether x1 should receive the label Y = 0
or Y = 1. However, without additional information about fY , it is not clear whetherM1 orM2 (or
neither) is the true model. ■

An implication of Prop. 1 is that the only kinds of representations τCi that can be learned for each
cluster Ci are ones where τCi is bijective, also implying that the cardinality of the representation
stays the same (i.e., |DCi | = |DVH,i

|). Still, this bijectivity requirement is limiting in that it does not
allow for dimensionality reduction, one of the main benefits of representation learning.

We now focus on a new strategy of learning intravariable clusters leveraging invariances. Prop. 1 only
holds given no additional information about the underlying generating model. However, it may be
given that certain invariances hold in the setting. This approach allows for a reduction in the cardinality
of the representation without relaxing the AIC definition or removing any causal constraints. We use
the concept of cluster coarseness to formalize this idea of dimensionality reduction.
Definition 6 (Intravariable Cluster Coarsening). Let D1 and D2 be two sets of intravariable clusters
w.r.t. intervariable clusters C. We say that D2 is coarser than D1 (or D1 is finer than D2) if for all
Ci ∈ C and all Dj1

Ci
∈ D1

Ci
, there exists Dj2

Ci
∈ D2

Ci
such that Dj1

Ci
⊆ Dj2

Ci
. ■

In words, a set of intravariable clusters D2 is coarser than D1 if all clusters within D1 are subsumed
by some cluster in D2. For example, in Ex. 1, one could merge the clusters of XH = 2 and XH = 3
and still conclude that candidate A won from a majority vote. A coarser cluster is therefore more
desirable because it implies a lower cardinality in the high-level space. Note that by this definition,
all possible sets of intravariable clusters are coarser than the set of individual clusters from Prop. 1.
The goal is to see when it is possible to obtain coarser clusters without violating the AIC.

Invariances are used throughout the deep learning literature to improve the efficiency of models
for high-dimensional data with rich patterns. For example, in computer vision, many image tasks
are assumed to be invariant to rotation, translation, scale, cropping, and jitter (Hadsell et al., 2006;
Krizhevsky et al., 2017). In recurrent tasks like with language, it is assumed that a prediction is
invariant to all information outside of the context window (Bengio et al., 2000) (temporal invariance).
For tasks related to sets and pooling, often permutation invariance can be applied (Zaheer et al., 2017;
Murphy et al., 2019). In these tasks, instead of working on the raw data, it is often beneficial to
work on a simpler representation that removes unnecessary information by incorporating all of these
invariances. We formally define how invariances are interpreted in this work below.
Definition 7 (Structural Invariance). Given intervariable cluster Ci ∈ C over variables VL, define
ChCi

= {V ∈ VL : V /∈ Ci,PaV ∩Ci ̸= ∅} as the children of Ci. Let gCi
: DCi

×Dϕ → DCi

be a function (with parameters ϕ) that transforms a value of Ci to another value of Ci. gCi is said
to be a structural invariance of SCMML = ⟨UL,VL,FL, P (UL)⟩ for Ci iff, for all V ∈ ChCi ,
ϕ ∈ Dϕ, uV ∈ DUV

, ci ∈ DCi , and z ∈ DPaV \Ci
,

fL
V (ci[PaV ], z,uV ) = fL

V (gCi
(ci, ϕ)[PaV ], z,uV ). (2)

■
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Figure 5: An illustration of
constructing the maximal in-
variance clusters. The values
of the intervariable cluster C
(black dots) are connected to
each other (via dotted lines)
through functions gk ∈ I
(each color representing a dif-
ferent k). Values that are con-
nected together in some way
form an intravariable cluster
that defines a high-level value
for XH = τ(C).

In words, gCi
is a structural invariance ofM if transforming values

of Ci with gCi
does not affect the output of the functions of any of

its children. Taking advantage of these structural invariances, we
define the following set of intravariable clusters which group values
based on available invariance information.

Definition 8 (Maximal Invariance Clusters). Let I = {gkCik
}ℓk=1

be a set of structural invariances of SCMM for some intervariable
cluster in C (each gk could apply to a different cluster Cik ). For each
Ci ∈ C, define DI

Ci
as the partition over DCi

relative to the closure
of I. That is, for any Dj

Ci
∈ DI

Ci
, ca, cb are both in Dj

Ci
if and only

if there exists a sequence c1 = ca, c2, c3, . . . , cN = cb such that for
each ℓ ∈ {1, . . . , N − 1}, there exists gkCi

and some ϕk ∈ Dϕk
such

that either gkCi
(cℓ, ϕk) = cℓ+1 or gkCi

(cℓ+1, ϕk) = cℓ. Then, the
intravariable clusters D = {DI

Ci
: Ci ∈ C} are called the maximal

invariance clusters of I. ■

In words, two values are clustered together in the maximal invariance
clusters if they are connected through a series of any of the available
structural invariances. Intuitively, one can imagine a graph connected
by the functions of I, as illustrated in Fig. 5. Values (nodes) are
connected with edges corresponding to functions gk ∈ I (e.g., an
edge is added between c1 and c2 if c1 = gk(c2, ϕk) or c2 = gk(c1, ϕk) for some gk and ϕk). The
corresponding maximal invariance clusters are simply the connected components of the graph.

Example 3. Continuing Ex. 1, note that Y is permutation invariance to X1, X2, X3 (i.e., the order
of the votes does not matter). One can define a structural invariance gX(X1, X2, X3, ϕ) where ϕ
indicates some permutation of the three values. Then, the clusters chosen in Fig. 3 correspond to the
maximal invariance clusters of I = {gX}. ■

It turns out that despite potentially clustering infinite values together, the maximal invariance clusters
always satisfy the AIC, as shown next.

Theorem 1 (Invariance Abstraction Connection). Let I be a set of structural invariances of SCM
ML. ThenML satisfies the AIC w.r.t. intervariable clusters C and the maximal invariance clusters
D of I. ■

The maximal invariance clusters are maximal in the sense that no coarser cluster is guaranteed to
satisfy the AIC with the same set of structural invariances, as shown next.

Corollary 1. ML may not satisfy the AIC w.r.t. C and D′ of structural invariances I for any D′ that
is coarser than the maximal invariance clusters D, and D′ ̸= D. ■

The concept of maximal invariance clusters is powerful since it provides a much coarser set of clusters
that nontrivially reduces the representation size given information about invariances, which is often
intuitively assumed to hold in many high-dimensional data settings.

Example 4. Continuing Ex. 2, suppose we are given that fY is rotationally invariant to the image
input IL. This implies that gI(i, ϕ), which rotates i by ϕ radians, is a structural invariance ofML.
In this case, the maximal invariance clusters of I = {gI} is the originally proposed set of clusters
DI = {x1 = {i1, i2}, x2 = {i3}} because i2 = gI(i1, ϕ = π/2). By Thm. 1, we can therefore
eliminate the possibility thatML =M2 and conclude that D does indeed satisfy the AIC. ■

Nonetheless, the uniqueness of the maximal invariance clusters makes it difficult to achieve that
specific set of clusters in practice. The following two results help relax this requirement.

Corollary 2. ML is guaranteed to satisfy the AIC w.r.t. C and D′ for any D′ that is finer than the
maximal invariance clusters D of structural invariances I. ■

Corollary 3. Let I1 and I2 be two sets of structural invariances of SCMML such that I1 ⊆ I2 (i.e.,
there are more invariances in I2 than I1). Then, the maximal invariance clusters of I2 is a coarsening
of the maximal invariance clusters of I1. ■
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Figure 6: (a) An example construction of a GC-RNCM. Data is
given in low-level form (VL, at bottom in red) and is mapped
to high-level form (VH , in yellow) through neural networks τ̂ .
Structural functions f̂ are neural networks that take inputs accord-
ing to GC and are trained to output their respective variables. (b)
An example of contrastive learning applied for training τ̂ in an
RNCM. A low-level sample xL is transformed through structural
invariances g′ and g′′ to achieve two transformed samples xL,i

and xL,j . These samples are passed through neural abstraction
function τ̂ to produce representations xH,i and xH,j , which are
compared for similarity in the loss function.

Corol. 2 implies that the AIC is
still satisfied even if not all aspects
of the invariances are accounted
for and a finer set of clusters is
learned instead of the maximal
one. Corol. 3 implies that the AIC
will still hold even if not all of the
possible invariances in I are ac-
counted for. The maximal invari-
ance clusters continue to become
increasingly coarse as more invari-
ance functions are added, imply-
ing that taking into account more
invariances allows for greater di-
mensionality reduction at no risk
of AIC violations.
Example 5. Continuing Ex. 1,
suppose we are given another
structural invariance g′X such that
g′X(AAA) = AAB. Incorporat-
ing this invariance into the max-
imal invariance clusters would
merge the XH = 3 cluster with
the XH = 2 cluster. Note that
this is indeed a coarsening of the original clusters, consistent with Corol. 3. Moreover, even though
the coarser clusters satisfy the AIC, Corol. 3 guarantees that the original clusters do as well. ■

3 CONTRASTIVE LEARNING FOR ABSTRACTIONS

Thm. 1 establishes that the maximal invariance clusters obtained through a set of structural invariances
will satisfy the AIC. In this section, we explore how to perform representation learning to obtain
these clusters in practice. Many sources in the deep learning literature have tackled the interesting but
challenging problem of learning invariances, and we leverage the celebrated approach of contrastive
learning, following the presentation of Chen et al. (2020).

For causal modeling, we leverage the GC-constrained representational neural causal model (GC-
RNCM) (Xia and Bareinboim, 2024), which constructs an SCM using neural networks to fit a given
C-DAG GC (based on intervariable clusters C). An example architecture is shown in Fig. 6(a). Data
is provided from the low-level variables VL, and for each XL ∈ VL, a neural network abstraction
function τ̂X maps XL to its high-level representation XH ∈ VH . For each XH , a structural function
f̂X outputs values of XH according to inputs specified by GC. Exogenous variables are sampled
from a random distribution such as N(0, 1) or Unif(0, 1). Collectively, these exogenous variables
combined with the structural functions form an SCM that models the high-level variables VH .

The RNCM follows a two-step training procedure. In the first step, the abstraction functions τ̂ must
be trained to learn a representation XH for each XL ∈ VL. Following the results of Sec. 2, we use
contrastive learning in this step to learn invariances for a simpler and more robust representation
compared to previous methods of training RNCMs. Fig. 6(b) illustrates this process. Given a
low-level sample xL ∈ DXL

, xL is transformed through structural invariances g′, g′′ ∈ I to obtain
xL,i, xL,j ∈ DXL

(g′ and g′′ can be any composition of functions in I with any parameters ϕ).
xL,i and xL,j are then mapped through neural network abstraction function τ̂X to obtain high-level
representation values xH,i, xH,j ∈ DXH

. Given a batch of 2n transformations from n data samples,
the following loss function is used.

L(xH,i, xH,j) = − log
exp (sim(h(xH,i), h(xH,j))/T )∑

k∈{1,...,2n}:k ̸=i exp (sim(h(xH,i), h(xH,k))/T )
, (3)

where h is a neural-parameterized projection head, sim is any function that computes the similarity
of its inputs, and T is a temperature hyperparameter. We leverage cosine similarity for comparing
representations, defined as sim(zi, zj) =

zi·zj
∥zi∥∥zj∥ for vectors zi, zj .
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Figure 7: Results for the Votes experiment. (a) The
C-DAG GC for the model. Provinces X and Z each
have three districts that vote for their preferred candi-
date, influencing the outcome of the election Y . (b)
Error at different amounts of data for computing the
query P (Y = A | do(X = (A, A, A)). The con-
trastive RNCM (blue, ours) is compared with the orig-
inal RNCM (orange). The dashed red line shows the
error of using the noncausal P (Y | X) as the estimate.

An interesting aspect of this loss is that neg-
ative samples are not explicitly penalized.
Two values that are not intended to be clus-
tered together have representations that are
expected to be different due to the nature
of how the loss function handles batches.
Each sample is implicitly penalized for hav-
ing too similar of a representation to other
samples in the same batch. Nonetheless,
in ideal data and computation settings, one
can expect this procedure to achieve the
maximal invariance clusters, as shown in
the next result.
Theorem 2. Under sufficiently large rep-
resentation size and batch diversity (see
Assumption 1 in App. A for details), a set
of intravariable clusters D minimizes loss
from Eq. 3 for a given set of structural in-
variances I if and only if D is the maximal invariance clusters of I. ■

In the second step of RNCM training, the structural functions f̂ are trained to fit available data on
the representation space (e.g., observational data P (VH) = P (τ(VL))). It is likely that the queries
of interest arise from a higher layer of the PCH than the data (e.g., inferring interventional (L2)
quantities from observational (L1) data). Before inferring these queries, it must be shown that they are
identifiable, which can be done through the RNCM model using the NeuralAbstractID algorithm (Xia
and Bareinboim, 2024, Alg. 2). Identifiable queries can then be computed directly from the trained
RNCM. We leverage the generative adversarial network (GAN) version of the RNCM architecture
for training purposes (Xia et al., 2023). We defer the full discussion of RNCM design, training, and
inference to prior works, but the details of the models used in this work can be found in App. B.

4 EXPERIMENTAL RESULTS

In this section, we validate our findings experimentally. Additional experimental details can be found
in App. B. Code will be released after paper acceptance.

4.1 VOTING EXPERIMENT

We first test our approach in a synthetic toy experiment. A democratic country is collecting votes to
determining who to elect for an office position (C-DAG illustrated in Fig. 7(a)). Votes come from
either province X or Z, and both provinces have three districts which each have a representative vote.
Each vote can go towards candidate A or B, and the outcome (Y ) will be one of these candidates.
The goal is to determine the probability of A winning the election if all votes in X are set to go to
A (i.e., P (Y = A | do(X = (A, A, A))). Note that there is confounding between the votes of X
and Z (a popular candidate will sway the votes of both provinces), so the query is not equivalent to
the conditional distribution P (Y | X). However, it is identifiable from observational data and the
C-DAG (full proof in App. B).

While the values of X and Z are represented by 3-dimensional vectors, we aim to first learn a
representation τ of the two variables and work in the high-level space. The representations take the
form of [0, 1]2, so it will be challenging to learn a 2D representation that captures the original 3D
inputs. That said, it is noted that the values of X and Z are permutation invariant, that is, the order
of the values do not matter for deciding Y . The contrastive approach is able to leverage a structural
invariance g that maps values of X and Z to permutations of itself.

The results are shown in Fig. 7. Our approach (blue) is an RNCM that leverages contrastive learning
to learn its embedding, and it is compared to the original RNCM implementation (orange). Note that
the contrastive RNCM clearly outperforms the original RNCM, showing significantly lower error
with higher samples. In fact, the original RNCM has trouble outperforming the baseline error for
incorrectly using P (Y | X) as an estimator for P (Y | do(X)) (dashed red line).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 8: (a) Sample x-ray images of I . (b) C-DAG GC. (c) Comparison of the mean absolute error
(MAE) of the query P (Y | do(X), I) between the proposed contrastive learning approach (blue)
with the original RNCM (orange) across different sizes of embeddings. (d) Comparison of the two
approaches at classifying Y using P (Y | do(X), I) across different sizes of embeddings.

4.2 PNEUMONIA EXPERIMENT

We next evaluate our approach on a semi-synthetic medical setting with patient records on chest
X-ray images (I), pneumonia symptoms (S), whether they were given treatment (X), and whether
they recovered within 30 days (Y ). The corresponding C-DAG is illustrated in Fig. 8(b). Note that
the causal effects from I are not literally from the image pixels themselves but from the underlying
conditions captured in the image, and capturing these abstract qualities is one goal of learning the
embeddings. Given a chest X-ray image I = i, we aim to estimate the causal effect of the treatment
X , computing the interventional quantity P (Y = 1 | do(x), i). Due to unobserved confounding of
X with S and I , this query differs from the observational P (Y = 1 | x, i). Nonetheless, the queries
remain identifiable from observational data given the C-DAG (full proof in App. B).

We use approximately 6,000 chest X-ray images of size 28 × 28 as provided in (Kermany et al.,
2018; Yang et al., 2021; 2023) (examples shown in Fig. 8(a)). We assume that the I is invariant to the
transformations presented in (Chen et al., 2020), including translation, zoom, crop, flip, jitter, and
blur (i.e., the set of structural invariances I consist of these transformation functions). Leveraging
these invariances, we apply the contrastive learning method from Sec. 3 to learn invariant image
embeddings, which are used in the RNCM when fitting the observational data. Using the trained
model, we estimate P (Y = 1 | do(x), i) and compare with the original RNCM as a baseline.

We vary the dimensionality of the learned embeddings and plot the resulting errors for both approaches.
The mean absolute errors (MAE) for both methods are shown in Fig. 8(c). Notably, our approach
(blue) significantly outperforms the baseline (orange) across all embedding dimensions, consistently
achieving lower MAE. In Fig. 8(d), we also evaluate the quality of the learned embeddings using
a simple linear classifier to predict ground truth labels from the original dataset, comparing the
accuracies of the two models. With the improved performance of the contrastive RNCM, it is
clear that improved embedding quality directly translates to more accurate estimates for high-level
causal queries. Interestingly, we note that the classification accuracy of the original RNCM slowly
approaches the accuracy of the contrastive RNCM, likely indicating a stronger performance when the
embedding size is sufficiently large to avoid AIC violations.

5 CONCLUSION

In this paper, we showed how invariance information can allow for lower-dimensional representations
in causal abstraction inference (Thm. 1, Corols. 1, 2, 3). We showed how to learn these invariant
representations using contrastive learning (Thm. 2), a state-of-the-art tool in noncausal settings. We
then demonstrated the strength of these representations empirically, showing how the contrastive
RNCM greatly outperforms the original RNCM. This research takes an important step in bridging the
gap between state-of-the-art deep learning techniques and causal methods.
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A PROOFS

In this section we present the proofs for the technical results of the paper.

A.1 EXTENDED PRELIMINARIES

Here we provide the full definition of important concepts from the preliminaries section.
Definition 3 (Inter/Intravariable Clusterings (Xia and Bareinboim, 2024, Def. 5)). LetM be an SCM
over V.

1. A set C is said to be an intervariable clustering of V if C = {C1,C2, . . .Cn} is a partition
of a subset of V. C is further considered admissible w.r.t.M if for any Ci ∈ C and any
V ∈ Ci, no descendent of V outside of Ci is an ancestor of any variable in Ci. That is,
there exists a topological ordering of the clusters of C relative to the functions ofM.

2. A set D is said to be an intravariable clustering of variables V w.r.t. C if D = {DCi : Ci ∈
C}, where DCi = {D1

Ci
,D2

Ci
, . . . ,Dmi

Ci
} is a partition (of size mi) of the domains of the

variables in Ci, DCi
(recall that DCi

is the Cartesian product DV1
×DV2

× · · · × DVk
for

Ci = {V1, V2, . . . , Vk}, so elements of Dj
Ci

take the form of tuples of the value settings of
Ci). ■

For clarity, we note that intervariable clusters C can be a partition of a subset of V. That is, variables
from V can be excluded from any cluster in C. In such cases, they are projected away (Lee and
Bareinboim, 2019). Additionally, admissibility of C states that no descendent of V outside of Ci is an
ancestor of any variable in Ci, implying acyclicity among clusters. No statement about descendents
inside of Ci are made.
Definition 4 (Constructive Abstraction Function (Xia and Bareinboim, 2024, Def. 6)). A function
τ : DVL

→ DVH
is said to be a constructive abstraction function w.r.t. inter/intravariable clusters C

and D iff

1. There exists a bijective mapping between VH and C such that each VH,i ∈ VH corresponds
to Ci ∈ C;

2. For each VH,i ∈ VH , there exists a bijective mapping between DVH,i
and DCi such that

each vjH,i ∈ DVH,i
corresponds to Dj

Ci
∈ DCi ; and

3. τ is composed of subfunctions τCi
for each Ci ∈ C such that vH = τ(vL) = (τCi

(ci) :

Ci ∈ C), where τCi
(ci) = vjH,i if and only if ci ∈ Dj

Ci
. We also apply the same notation

for any WL ⊆ VL such that WL is a union of clusters in C (i.e. τ(wL) = (τCi(ci) : Ci ∈
C,Ci ⊆WL)). ■

A.2 IMPORTANT DEFINITIONS

Quantities from the distributions of the three layers can be evaluated via the following definitions
from Bareinboim et al. (2022).
Definition 9 (Layer 1 Valuation (Bareinboim et al., 2022, Def. 2)). An SCMM = ⟨U,V,F , P (U)⟩
defines a joint probability distribution PM(V) such that for each Y ⊆ V:

PM(y) =

∫
DU

1{Y(u) = y}dP (u)

where Y(u) is the solution for Y after evaluating F with U = u. ■

Definition 10 (Layer 2 Valuation (Bareinboim et al., 2022, Def. 5)). An SCM M =
⟨U,V,F , P (U)⟩ induces a family of joint distributions over V, one for each intervention x. For
each Y ⊆ V:

PM(yx) =

∫
DU

1{Yx(u) = y}dP (u)

where Yx(u) is the solution for Y in the submodelMx = ⟨U,V,Fx, P (U)⟩, where Fx := {fV :
V ∈ V \X} ∪ {fX ← x : X ∈ X}. ■
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Definition 11 (Layer 3 Valuation (Bareinboim et al., 2022, Def. 7)). An SCM
M = ⟨U,V,F , P (U)⟩ induces a family of joint distributions over counterfactual events
Y1[x1],Y2[x2], . . . for any Yi,Xi ⊆ V:

PM(y1[x1],y2[x2], . . . ) =

∫
DU

1{Y1[x1](u) = y1,Y2[x2](u) = y2, . . . }dP (u).

■

The results of this work are general on all three layers of the PCH.

Every SCM induces a structure called a causal diagram, defined as follows.

Definition 12 (Causal Diagram (Bareinboim et al., 2022, Def. 13)). Each SCMM induces a causal
diagram G, constructed as follows:

1. add a vertex for each Vi ∈ V;

2. add a directed arrow (Vj → Vi) for every Vi ∈ V and Vj ∈ PaVi
; and

3. add a dashed-bidirected arrow (Vj L9999K Vi) for every pair Vi, Vj ∈ V such that UVi and
UVj are not independent (i.e., unobserved confounding is present). ■

Given the impossibility of inferring higher layers from lower layers without additional assumptions,
many works often assume the availability of the causal diagram and its corresponding implied
constraints (possibly in the form of a causal or counterfactual Bayesian network (Bareinboim et al.,
2022; Correa and Bareinboim, 2024)). In the context of causal abstractions, a causal diagram on the
low-level may be too difficult to specify given the potentially large amount of variables. Instead, a
cluster causal diagram is typically assumed instead, defined below.

Definition 13 (Cluster Causal Diagram (C-DAG) (Anand et al., 2023, Def. 1)). Given a causal
diagram G = ⟨V,E⟩ and an admissible clustering C = {C1, . . . ,Ck} of V, construct a graph
GC = ⟨C,EC⟩ over C with a set of edges EC defined as follows:

1. A directed edge Ci → Cj is in EC if there exists some Vi ∈ Ci and Vj ∈ Cj such that
Vi → Vj is an edge in E.

2. A dashed bidirected edge Ci ↔ Cj is in EC if there exists some Vi ∈ Ci and Vj ∈ Cj

such that Vi ↔ Vj is an edge in E. ■

The cluster causal diagram GC is constructed relative to a causal diagram G given intervariable
clusters C. It can be thought of as the causal diagram of the high-level modelMH , defined via the
constructive abstraction function τ defined over C.

Quantities between models of different granularities can be compared using the concept of Q-τ
consistency, defined below.

Definition 14. Denote YL,∗ as a set of counterfactual variables over VL. That is,

YL,∗ =
(
YL,1[xL,1],YL,2[xL,2], . . .

)
, (4)

where each YL,i[xL,i] corresponds to the potential outcomes of the variables YL,i under the interven-
tion XL,i = xL,i. Each YL,i and XL,i must be unions of clusters from C (i.e. YL,i =

⋃
C∈C′ C for

some C′ ⊆ C) such that τ(YL,i) and τ(XL,i) are well-defined (i.e. τ(YL,i) =
(∧

C∈C′ τC(C)
)
).

For the high-level counterpart, denote

YH,∗ = τ(YL,∗) (5)

=
(
τ(YL,1[τ(xL,1)]), τ(YL,2[τ(xL,2)]), . . .

)
. (6)

For any value yH,∗ ∈ DYH,∗ , denote

DYL,∗(yH,∗) = {yL,∗ : yL,∗ ∈ DYL,∗ , τ(yL,∗) = yH,∗}, (7)

that is, the set of all values yL,∗ such that τ(yL,∗) = yH,∗. ■
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Definition 15 (Q-τ Consistency (Xia and Bareinboim, 2024, Def. 7)). LetML andMH be SCMs
defined over variables VL and VH , respectively. Let τ : DVL

→ DVH
be a constructive abstraction

function w.r.t. clusters C and D. Let

Q =
∑

yL,∗∈DYL,∗ (yH,∗)

P (YL,∗ = yL,∗) (8)

be a low-level Layer 3 quantity of interest (for some yH,∗ ∈ DYH,∗ ), as expressed in Eq. 4, and let

τ(Q) = P (YH,∗ = yH,∗) (9)

be its high level counterpart. We say thatMH is Q-τ consistent withML if∑
yL,∗∈DYL,∗ (yH,∗)

PML(YL,∗ = yL,∗)

= PMH (YH,∗ = yH,∗),

(10)

that is, the value of Q induced byML is equal to the value of τ(Q) induced byMH
1. Furthermore,

ifMH is Q-τ consistent withML for all Q ∈ Li(ML) of the form of Eq. 8, thenMH is said to be
Li-τ consistent withML. ■

A.3 PROOFS OF SEC. 2

Theorem 1 (Invariance Abstraction Connection). Let I be a set of structural invariances of SCM
ML. ThenML satisfies the AIC w.r.t. intervariable clusters C and the maximal invariance clusters
D of I. ■

Proof. Let I be a set of structural invariances of SCMML = ⟨UL,VL,FL, P (UL)⟩ with respect
to intervariable clusters C. Let D be the maximal invariance clusters of I. Assume for the sake of
contradiction thatML does not satisfy the AIC with respect to the constructive abstraction function
τ constructed from C and D. This implies that for some Ci ∈ C, there exists ca, cb ∈ DCi such that
ca and cb belong in the same partition in DCi , but there is some fL

V ∈ FL that takes Ci as input such
that

τCi

((
fL
V (pa

(a)
V ,uV ) : V ∈ Ci

))
̸= τCi

((
fL
V (pa

(b)
V ,uV ) : V ∈ Ci

))
, (11)

where pa
(a)
V and pa

(b)
V correspond to inputs from ca and cb respectively.

Suppose that two values, c1, c2 ∈ DCi
are “linked” if c1 = gk(c2, ϕk) or c2 = gk(c1, ϕk) for

some gk ∈ I and ϕk ∈ Dϕk
. If it is the latter, then this would imply that for all uV ∈ DUV

and
z ∈ DPaV \Ci

,

fL
V (c1[PaV ], z,uV ) = fL

V (g
k(c1, ϕk)[PaV ], z,uV ) = fL

V (c2[PaV ], z,uV ) (12)

c1 and c2 can be swapped in the case of the former.

By Def. 8, if D is the set of maximal invariance clusters of I, then there must exist some sequence of
c1, c2, . . . , cℓ−1 and g1, g2, . . . , gℓ ∈ I such that c1 is linked with ca through g1, ck is linked with
ck−1 through gk, and cb is linked with cℓ−1 through gℓ.

If I is a set of structural invariances ofML, then by definition (Eq. 2), it must be the case that for all
uV ∈ DUV

and z ∈ DPaV \Ci
,

fL
V (ca[PaV ], z,uV ) = fL

V (c1[PaV ], z,uV ) (13)

= fL
V (c2[PaV ], z,uV ) (14)

= . . . (15)

= fL
V (cℓ−1[PaV ], z,uV ) (16)

= fL
V (cb[PaV ], z,uV ) (17)

following Eq. 12. This contradicts the inequality in Eq. 11 since all such fL
V must therefore produce

the same output for any such c1, c2 in the same cluster. Therefore, the AIC must be satisfied with
these clusters.

1Note that the equality in Eq. 10 is consistent with the push-forward measure through τ .
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Corollary 1. ML may not satisfy the AIC w.r.t. C and D′ of structural invariances I for any D′ that
is coarser than the maximal invariance clusters D, and D′ ̸= D. ■

Proof. For the premise of this proof, we make no assumptions about the underlying generating model
other than that I is a set of structural invariances ofML. That is,ML can be any SCM such that this
applies.

Consider a set of intravariable clusters D′ that is coarser than D such that D′ ̸= D. By Def. 6, this
means, for some Ci ∈ C, there must exist some Dj1

Ci
,Dj2

Ci
∈ DCi and some Dj′

Ci
∈ D′

Ci
such that

Dj1
Ci
⊂ Dj′

Ci
and Dj2

Ci
⊂ Dj′

Ci
. Consider c1 ∈ Dj1

Ci
and c2 ∈ Dj2

Ci
.

ConstructML = ⟨UL,VL,FL, P (UL)⟩ as follows.

1. Define UL and P (UL) arbitrarily.

2. For some Ci′ ̸= Ci and some X ∈ Ci′ , define fL
X(ci) = x1 if ci ∈ Dj1

Ci
and fL

X(ci) = x2

for all other ci ∈ DCi
.

3. For all other fL
V where V ∈ Ci′ , V ̸= X , define them such that they have no endogenous

inputs, and there exists c′1, c
′
2 ∈ DCi′ such that c′1[X] = x1 and c′2[X] = x2, and c1 and

c2 are in separate clusters in DCi′ .

4. Define all other functions in FL arbitrarily, but with no endogenous inputs.

Note that this construction of ML satisfies the AIC with respect to the constructive abstraction
function τ from C and D. Eq. 1 is trivially satisfied for any fL

V where V /∈ Ci since it does not
belong in the input set of any other function. For fL

X , note that it will output the same value for any
set of inputs ci ∈ DCi

that belong in the same cluster, so Eq. 1 is also satisfied for fL
V where V ∈ Ci.

However,ML clearly does not satisfy the AIC for τ from C and D′. Note that fL
X(c1) = x1 and

fL
V (c2) = x2, and τ(c′1) ̸= τ(c′2). Therefore, it is not guaranteed that any coarser clustering than D

will allow for the AIC to be satisfied.

For the next proof, first consider the following result.
Lemma 1 ((Xia and Bareinboim, 2024, Lem. 6)). For any choice of intravariable clusters D such
thatML satisfies the AIC w.r.t. the corresponding τ ,ML will also satisfy the AIC w.r.t. any finer
clustering D′. ■

Corollary 2. ML is guaranteed to satisfy the AIC w.r.t. C and D′ for any D′ that is finer than the
maximal invariance clusters D of structural invariances I. ■

Proof. This directly follows from Thm. 1 and Lemma 1.

Corollary 3. Let I1 and I2 be two sets of structural invariances of SCMML such that I1 ⊆ I2 (i.e.,
there are more invariances in I2 than I1). Then, the maximal invariance clusters of I2 is a coarsening
of the maximal invariance clusters of I1. ■

Proof. Denote D1 and D2 as the maximal invariance clusters of I1 and I2 respectively. If I1 ⊆ I2,
then if two values are in the same cluster in D1, they must also be in the same cluster in D2. This is
because there must be some sequence of functions in I1 that link the two values (as in the proof of
Thm. 1), and those same functions must exist in I2.

Trivially, if I2 = I1, then D2 = D1, so it must be a coarsening. Otherwise, starting with the baseline
of D1, consider two values ca, cb ∈ Ci such that they are linked by some function gk ∈ I2 \ I1,
that is, either ca = gk(cb, ϕk) or cb = gk(ca, ϕk) for some ϕk ∈ Dϕk

. If ca and cb are in the same
cluster in D1, then this function is redundant, and nothing is changed in D2. Otherwise, ca and cb are
linked through gk, implying that all values of Ci in the same cluster as ca can be connected through
some sequence of functions in I2 with all values of in the same cluster as cb, merging the two clusters
together in D2. Given that any additional function in I2 can only merge clusters of D1 into larger and
larger clusters, D2 must be a coarsening of D1.
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A.4 PROOFS OF SEC. 3

Assumption 1. We assume the following for proofs in this section.

(a) sim(zi, zj) is maximized if and only if zi = zj

(b) T > 0

(c) h is bijective

(d) Every value of DVL
is either in the training dataset or can be achieved through a series of

transformations from I on some point in the dataset.

(e) [Sufficient Representation Size] For any intervariable cluster C ∈ C and corresponding
high-level representation XH , |DXH

| is sufficiently high-dimensional such that there exists
a mapping τC : DC → DXH

where τ(c1) = τ(c2) only if c1 and c2 belong in different
intravariable clusters.

(f) [Sufficient Batch Diversity] For any two original data points v1,v2 provided in the batch
and every intervariable cluster C ∈ C, the corresponding values c1, c2 belong in different
clusters (i.e., two values in the batch are only in the same cluster following the transformation
step if one is a transformation of the other).

We argue that these assumptions are reasonable. Assumptions (a) and (b) are in place to avoid
unexpected behavior in the mathematical definitions. Assumption (c) is without loss of generality,
since technically h can be subsumed into τ otherwise. Assumption (d) ensures that the lack of
convergence is not due to a lack of data. Assumption (e) places a natural limitation on the size of
the representation: it must at least be as large as the intended number of clusters. Otherwise, values
may be clustered together simply due to the pigeonhole principle. Assumption (f) ensures that, as
intended by Eq. 3, two values are expected to be qualitatively different if they are not transformations
of each other. In cases with high-dimensional data like with images, this is almost guaranteed to be
the case since it is highly unlikely that one image is a transformation of another image in the original
dataset. In low-dimensional cases, this assumption may not hold, so we provide Corol. 4 to show
how violations of this assumption affect the validity of the clusters. ■

Theorem 2. Under sufficiently large representation size and batch diversity (see Assumption 1 in
App. A for details), a set of intravariable clusters D minimizes loss from Eq. 3 for a given set of
structural invariances I if and only if D is the maximal invariance clusters of I. ■

Proof. For this proof, we make the assumptions in Assumption 1. For short, we denote each
assumption as A1(a)-(f).

For simplicity, consider a single intervariable cluster C ∈ C, since the loss can be applied indepen-
dently for each cluster. For this cluster C, denote xH,i and xH,j as the representations of cL,i and
cL,j respectively (i.e., τ(cL,i) = xH,i), τ(cL,j) = xH,j). cL,i and cL,j are derived from applying
transformations (in I) to some original value cL ∈ DC, and then their high-level representations xH,i

and xH,j are evaluated through Eq. 3.

When h is bijective (A1(c)), we can continue the rest of the proof assuming without loss of generality
that the similarity function sim is applied directly on top of the embeddings xH,i and xH,j .

By A1(a), A1(b), and the monotonicity of the log and exp function, note that Eq. 3 is minimized
when sim(xH,i, xH,j) is maximized and sim(xH,i, xH,k) for i ̸= k is minimized.

Note that cL,i and cL,j are placed in the same intravariable cluster if xH,i = xH,j , and Eq. 3 is
only applied when cL,i and cL,j are intended to be in the same intravariable cluster in the maximal
invariance clusters of I, since both cL,i and cL,j are transformations of cL by some composition of
functions in I.

If cL,i is in the same cluster as cL,j , and it is not in the same cluster as any cL,k (A1(f)), then any
representation such that xH,i ̸= xH,j or xH,i = xH,k can change this (A1(e)) to further optimize
Eq. 3, concluding the proof.
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We note that there may be additional practical concerns not addressed by this proof. Notably,
optimization procedures are not perfect in practice, and they may not find a more optimal set of
representations just because they exist. The stochastic nature of batch optimization may affect this
as well. Nonetheless, the effectiveness of contrastive learning is generally well-understood (von
Kügelgen et al., 2021; Zimmermann et al., 2021).

Note that the above proof requires that cL,i is not in the same cluster as any cL,k. In practice, this
is likely to be true for high-dimensional data settings such as with images, since it is unlikely that
any image (or transformation of one) is going to be identical to another image in the same batch.
Nonetheless, this may be a concern in discrete low-dimensional data settings. To understand the
limitations of Eq. 3, consider the following results.
Lemma 2. If x, y, c, d > 0 and y ≥ dx, then

x+ c

y + dc
≥ x

y
. (18)

Proof. Observe that

x(y + c) = xy + cy ≥ xy + c(dx) = x(y + cd), (19)

and (y + c) and (y + cd) can be divided from both sides to achieve the result.

Corollary 4. Denote sj as exp(sim(xH,i, xH,j)/T ) and sk as exp(sim(xH,i, xH,k)/T ). Denote
s∗ = maxzi,zj sim(zi, zj), achieved when zi = zj . Denote c = s∗ − sj , and let D be the indices of
k of the batch samples that are in the same cluster as cL,i (i.e., xH,k = xH,i in the intended clusters).
Suppose

∑
k∈D sk ≤ dc. Then, the maximal invariance clusters minimize Eq. 3 if

∑
k sk ≥ dsj . ■

Proof. For any particular set of representations, the loss of Eq. 3 can be written as

L(xH,i, xH,j) = − log
sj∑
k sk

, (20)

which is minimized when sj∑
k sk

is maximized. Forcing xH,i = xH,j would result in the value of
s∗∑

k/∈D sk+
∑

k∈D s∗ , where D represents the d values that are also forced into the same cluster. Now
observe that

s∗∑
k/∈D sk +

∑
k∈D s∗

≥ s∗∑
k sk + dc

(21)

≥ s∗ − c∑
k sk

from Lem. 2 (22)

=
sj∑
k sk

. (23)

Therefore, the new clusters with xH,i = xH,j is more optimal with respect to Eq. 3 than any
alternative set of clusters.

B EXPERIMENTAL DETAILS

This section provides detailed information about our experiments. Our models were implemented
primarily in PyTorch Paszke et al. (2017), and training was facilitated by PyTorch Lightning Falcon
and The PyTorch Lightning team (2019).

The models in this paper are based on neural causal models, specifically G-constrained neural causal
models, defined below.
Definition 16 (G-Constrained Neural Causal Model (G-NCM) (Xia et al., 2021, Def. 7)). Given a
causal diagram G, a G-constrained Neural Causal Model (for short, G-NCM) M̂(θ) over variables V
with parameters θ = {θVi

: Vi ∈ V} is an SCM ⟨Û,V, F̂ , P (Û)⟩ such that

• Û = {ÛC : C ∈ C(G)}, where C(G) is the set of all maximal cliques over bidirected edges
of G;
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• F̂ = {f̂Vi
: Vi ∈ V}, where each f̂Vi

is a feedforward neural network parameterized by
θVi ∈ θ mapping values of UVi ∪PaVi to values of Vi for UVi = {ÛC : ÛC ∈ Û s.t. Vi ∈
C} and PaVi = PaG(Vi);

• P (Û) is defined s.t. Û ∼ Unif(0, 1) for each Û ∈ Û. ■

A G-NCM is a causal generative model that takes the form of a neurally-parameterized SCM, with
functions following the graphical structure of G. In particular, in the context of abstractions, we use
the representational version, defined below.
Definition 17 (Representational NCM (RNCM) (Xia and Bareinboim, 2024, Def. 11)). A representa-
tional NCM (RNCM) is a tuple ⟨τ̂ , M̂⟩, where τ̂(vL;θτ ) is a function parameterized by θτ mapping
from VL to VH , and M̂ is an NCM defined over VH . A GC-constrained RNCM (GC-RNCM) is an
RNCM ⟨τ̂ , M̂⟩ such that τ̂ is composed of subfunctions τ̂Ci

for each Ci ∈ C (each with its own
parameters θτCi

), and M̂ is a GC-NCM (Def. 16). ■

That is, a GC-RNCM is an NCM constructed over the high-level representation VH , which is learned
through neural paramerized functions τ , as discussed in Sec. 3.

B.1 VOTING EXPERIMENT

In this section, we discuss the experimental setup of the voting experiment in Sec. 4.1.

B.1.1 DATA GENERATION

The SCMM∗ =ML = ⟨UL,VL,FL, P (UL)⟩ that was used to generate the data for the experi-
ment can be described as

M∗ =



UL = {UXZ ∈ [0, 1], UX ∈ {0, 1}3, UZ ∈ {0, 1}3, UY ∈ {0, 1}}
VL = {X ∈ {0, 1}3, Z ∈ {0, 1}3, Y ∈ {0, 1}}

FL =


X ← UX

Z ← UZ

Y ← 1{sum(X) + sum(Z) > 3} ⊕ UY

P (UL) =


UXZ ∼ Unif(0,1)+Unif(0,1)

2

UX , UZ ∼ Bernoulli(UXZ)
3

UY ∼ Bernoulli(0.1)

, (24)

that is, the votes of X and Z are sampled independently according to a Bernoulli distribution with a
bias determined by UXZ . Candidates 0 and 1 correspond to B and A respectively. Y indicates a win
for candidate 1 if the collected total votes is larger than 3, with UY occasionally flipping the result
randomly. The C-DAG GC is shown in Fig. 7(a).

The query of interest, P (Y = 1 | do(X = (1, 1, 1))), corresponding to P (Y = A | do(X =
(A,A,A))), is approximately equal to 0.855, which has a 0.105 error compared to the observational
P (Y | X) ≈ 0.75.

B.1.2 IDENTIFIABILITY OF THE QUERY

Given observational data from P (VL), which can be mapped to P (VH) through τ , and the C-DAG
GC in Fig. 7(a), the query P (Y | do(X)) can be shown to be identifiable. Specifically, backdoor
adjustment on Z can be applied, resulting in P (y | do(x)) =

∑
z P (y | x, z)P (z).

B.1.3 MODEL ARCHITECTURE

Both the original RNCM approach and contrastive RNCM approach follow the definition of Def. 17.
For τ̂ , applied to X and Z, a multilayer perceptron (MLP) is used with 2 16-dimensional hidden
layers, with ReLU activations and a 2-dimensional sigmoid output (i.e., constrained between [0, 1]).
For the original RNCM, which uses an autoencoder structure, an inverse τ̂−1 is used for each τ̂ , also
an MLP with 2 16-dimensional hidden layers, ReLU activations, and a 3-dimensional sigmoid output.
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For the NCM body, neural networks f̂X , f̂Z , and f̂Y are constructed to generate X , Z, and Y

respectively, following the graph GC. f̂X and f̂Z share a 12-dimensional exogenous input UXZ

sampled from Unif(0, 1)12, and f̂Y takes X , Z, and UY ∼ Unif(0, 1)2. All three neural networks
are MLPs with 2 16-dimensional hidden layers, ReLU activations, and sigmoid outputs. f̂X and f̂Z
are modeled to output the representations τ̂(X) and τ̂(Z), which take the form of [0, 1]2 and are
not rounded at inference time. Y is not mapped through a representation τ̂ , so f̂Y directly outputs
samples of Y , where the sigmoid outputs are rounded at inference time.

In training, NCMs are implemented using a generative adversarial approach (Goodfellow et al.,
2014). During the distribution-learning phase, the NCM serves as the generator, while a separate
discriminator (or critic) network is used to compare fake generated samples with the real samples
from the data. In this experiment, the discriminator is an MLP with 2 32-dimensional hidden layers,
ReLU activations, and real-valued outputs, which takes the entirety of VH as input.

In all MLPs, we apply layer normalization after each hidden layer (Ba et al., 2016). All weights are
initialized via Glorot initialization (Glorot and Bengio, 2010). Hyperparameters are largely chosen
based on recommendations from prior works, but similar hyperparameters flexibly provided similar
quality results.

B.1.4 EXPERIMENTAL PROCEDURE

In the experiment procedure, first, low-level data is generated from the data-generating model from
Sec. B.1.1. The model is then instantiated according to Sec. B.1.3. A two part training phase is used,
as described in Sec. 3.

In the first phase, the representation networks τ̂ are trained. In each epoch, the dataset is passed in
batches of 256 through a forward pass through the τ̂ functions to obtain the representations XH and
ZH . For the contrastive RNCM, the loss in Eq. 3 is computed for the representations (the projection
head h is not used for this experiment). In this case, the set of structural invariances I contains a single
function g in which g(xL) outputs a permutation of xL. For the original RNCM, a reconstruction
loss is applied leveraging τ̂−1. That is,

L(XL) = d(τ̂−1(τ̂(XL)), XL), (25)

where d is a distance metric (MSE is used in this work). The loss is then backpropagated, and the
weights are updated using the Adam optimizer (Kingma and Ba, 2015). A learning rate of 10−4 was
used, and the procedure is run for 200 epochs. A temperature value of T = 0.01 is used for the
contrastive RNCM.

In the second phase, the NCM is trained to fit the high-level observational data P (VH). In each
epoch, a fake and a real batch of 128 samples are generated. The real batch is sampled from the
data, while the fake batch is generated from the NCM through a forward pass of the NCM functions.
Both batches are passed through the discriminator, and both the NCM and the discriminator are then
trained using the Wasserstein GAN loss (Arjovsky et al., 2017). A learning rate of 10−4 is used for
the NCM, while 2× 10−4 is used for the discriminator. The procedure is run for 200 epochs.

After models are trained, they are evaluated on the query P (Y = 1 | do(X = (1, 1, 1)), corre-
sponding to the query P (Y = A | do(X = (A,A,A)). The NCM is evaluated on 105 Monte-Carlo
samples of the query, sampled via Def. 2. The ground truth is sampled similarly but from the
data-generating model.

We reran this procedure for different sample sizes n ∈ {103, 103.5, 104, 104.5} and reran each setting
10 times, displaying 95% confidence intervals for the 10 trials. The results are shown in Fig. 7.

The trials of this experiment were run on Nvidia H100 GPUs, requiring approximately 100 GPU
hours.

B.2 PNEUMONIA EXPERIMENT

In this section, we discuss the experimental setup of the pneumonia experiment in Sec. 4.2.
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Figure 9: (a) Classification accuracy of a linear model trained to predict image labels, using either
the contrastive-learning embeddings (blue) or the autoencoder embeddings (orange). (b) Mean
absolute error (MAE) of the interventional query P (Y | do(X), I) for the proposed contrastive
learning approach (blue) versus the original RNCM (orange), evaluated across different embedding
dimensionalities. All results are based on N = 10 experimental runs and are summarized as box
plots.

B.2.1 ADDITIONAL RESULTS

To corroborate the findings presented in Fig. 8, we repeated each experiment N = 10 times and
summarize the outcomes as box plots in Fig. 9.

To evaluate the quality of the learned encoders, we extracted embeddings for every image in the
PneumoniaMNIST dataset Kermany et al. (2018); Yang et al. (2021; 2023) and fit a linear classifier
to predict the presence of pneumonia using the dataset’s ground-truth labels. The resulting accuracies
are shown in Fig. 9(a).

B.2.2 DATA GENERATION

For our pneumonia experiment, we generate synthetic training data from an SCM
M∗ =ML = ⟨UL,VL,FL, P (UL)⟩ which can be described as follows

M∗ =



VL = {I, S,X, Y }
UL = {UIS , USX , UY }

FL =



I ← h(UIS)

S ← c(I) ∧ ((USX < 0.75) ∨ (USX > 0.90))

X ← (S ∧ ((U1 < 0.25) ∨ (U1 > 0.75)))

∨ (¬S ∧ ((U2 < 0.35)⊕ (U1 > 0.45)))

Y ←


¬(c(I) = 1 ∧ S = 1 ∧X = 0)

∧ ¬(c(I) = 1 ∧ S = 0 ∧X = 0)

∧ ¬(c(I) = 0 ∧ S = 0 ∧X = 1)

∧ ¬(c(I) = 0 ∧ S = 1 ∧X = 1)

⊕ (UY < 0.2)

P (UL) =
{
UIS , USX , UY ∼ U [0, 1]

, (26)

Here, ⊕ denotes the logical XOR operator. The function c(I) returns the binary class label corre-
sponding to the presence of pneumonia in the image I , i.e., c(I) ∈ {0, 1}. The function h(UIS)
randomly selects an image from class 0 if UIS < 0.5, and from class 1 otherwise.

Therefore, each data point corresponds to a patient associated with an X-ray image of their lungs I .
Based on this image, a binary symptom variable S is inferred, indicating whether the patient exhibits
pneumonia symptoms. Depending on the presence or absence of symptoms, the patient might receive
treatment X . There is unobserved confounding between I and X , as well as between S and X .
Finally, a binary outcome variable Y indicates whether the patient recovered within a month, and it is
a function of I , S, and X .

To generate syntetic data fromM∗, we use the Pneumonia-MNIST dataset introduced in Kermany
et al. (2018); Yang et al. (2021; 2023), which provides X-ray images and corresponding binary labels.
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These images serve as a base for generating synthetic data usingM∗. The corresponding C-DAG GC
is shown in Fig. 8(b).

B.2.3 MODEL ARCHITECTURE

Both the original RNCM and the contrastive RNCM approach follow the structure defined in Def. 17.
In both cases, an abstraction function τ̂ is learned to map the low-level image variable I to its
high-level representation E = τ̂I(I).

For the original RNCM approach, the abstraction function τ̂ is learned jointly with its inverse τ̂−1

using an autoencoder. The encoder consists of two convolutional layers with 64 and 128 channels,
respectively, each followed by a ReLU activation and max-pooling. The resulting feature map is
flattened and passed through two fully connected layers to produce the final embedding. The decoder
reverses this process, starting with two fully connected layers to reshape the embedding, followed by
two transposed convolutional layers that reconstruct the input image. During training we minimize
the mean squared error between the input and its reconstruction.

In the contrastive RNCM approach, τ̂ is learned using the unsupervised contrastive learning objective
from Eq. 3. Each image is augmented twice using random resized cropping and discrete rotations,
with the resulting views forming a positive pair. The encoder consists of three convolutional layers
with increasing channel widths (64, 128, 256), each followed by a ReLU activation and max-pooling.
After the convolutional blocks, a dense layer converts the pooled feature maps into a fixed-size vector.
This vector is then passed through a projection head consisting of two sequential dense layers with a
ReLU activation between them to produce the contrastive embedding. Finally, we ℓ2-normalize these
embeddings before computing the contrastive loss.

To train the structural functions F̂ in the GAN-RNCM, we adopt an adversarial training setup in
which the generator represents the structural functions of the causal model, and a discriminator (critic)
distinguishes real from generated samples Goodfellow et al. (2014). Each function in F̂ is modeled
as a fully connected MLP with ReLU activations and a hidden dimension of 128. The generator is
composed of five separate networks, namely f̂E , f̂S , f̂X , f̂ emb

Y , and f̂Y .

f̂E maps a 2-dimensional noise vector U1 to logits over discrete indices into a learned table of image
embeddings, using Gumbel-softmax sampling with a temperature of τ = 0.5 to enable differentiable
index selection. Rather than generating embeddings directly, f̂E produces indices, a design choice
we justify in the following paragraphs. f̂S takes the selected image embedding and a second 2-
dimensional noise vector U2 as input, and is implemented as a 3-layer MLP. f̂X receives U1, U2, and
S, and is modeled as a 2-layer MLP. The image embedding is projected into a lower-dimensional
space using f̂ emb

Y , a 4-layer MLP that outputs a 4-dimensional representation. f̂Y takes the projected
embedding, X and S, and an additional noise vector UY as input, and is implemented as a 3-layer
MLP. The discriminator is a fully connected MLP with two hidden layers of width 128, using ReLU
activations. Spectral normalization (Miyato et al., 2018) is applied to each linear layer.

As described in Sec. B.2.4, our experiment involves performing interventions on real images from the
dataset. Consider, for example, a query Q that requires intervening on a specific image I0. Given
that Q is admissible, we aim to estimate it using the trained GAN-RNCM model. This is achieved
through the mutilation procedure described next.

The standard inference process in GAN-RNCM involves sampling the noise variables U1, U2, and
UY , and then generating all variables in the SCM using the learned structural functions. However,
to model an intervention on the image variable, we override the output of the image generator f̂E
with τ̂I(I0). This ensures that all downstream components of the GAN-RNCM operate on the
specific intervention-defined embedding. This procedure can be extended to more variables as needed,
depending on the structure of the query Q. For further details on the mutilation approach, we refer
the reader to prior work (Xia et al., 2023; Xia and Bareinboim, 2024).

In practice, however, we observed that this form of intervention introduces distribution shift. Specifi-
cally, the embeddings produced by the generator during regular training differ significantly from those
injected during mutilation, which are derived from real images. This discrepancy negatively affects
the reliability of downstream functions such as f̂S and f̂Y when used on out-of-distribution inputs.
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To address this, we avoid training the generator to produce image embeddings directly. Instead, we
associate each training image with a unique index. During training, the generator is modified to
produce such indices instead of actual image embeddings. When downstream functions (e.g., f̂S ,
f̂Y ) require the image embedding, we retrieve the embedding corresponding to the generated index.
This ensures that all image embeddings passed to the structural functions during both training and
inference correspond to real images, thereby eliminating the distribution shift described previously.

Although this approach restricts the generator from producing entirely new image embeddings,
this limitation is acceptable for our experimental setup since we are only interested in evaluating
interventional queries that intervene on image embeddings.

B.2.4 EXPERIMENTAL PROCEDURE

To evaluate the performance of the GAN-RNCM pipeline, we conduct experiments on the Pneu-
moniaMNIST dataset Kermany et al. (2018); Yang et al. (2021; 2023). The dataset is originally
imbalanced, with 1,214 images in the minority class and 3,484 in the majority class. To construct a
balanced dataset, we randomly subsample 1,214 images from the majority class, resulting in a total
of 2,428 images with equal class representation.

Using these images and their associated class labels, we generate synthetic training data following
the procedure in Sec. B.2.2. From the resulting dataset, we set aside 228 examples (approximately
10%) as a test set. The test set is balanced across class labels, with 50% positive and 50% negative
pneumonia cases. The remaining 2,200 examples are used for training.

As described in Sec. B.2.3, we train two variants of the RNCM model, one using representations
learned via unsupervised contrastive learning, and the other using representations from an autoencoder
baseline. For each representation type, we train models with embedding dimensionalities of 4, 8, 16,
and 32. In both cases, the encoder is trained for 25 epochs using the Adam optimizer Kingma and Ba
(2015) with a learning rate of 3× 10−4 and a batch size of 32. For contrastive learning, we use the
loss from Eq. 3 with a temperature parameter of T = 0.1. The autoencoder baseline is trained using
a mean squared reconstruction loss.

In the second phase of training, the GAN-RNCM is optimized to approximate the high-level ob-
servational distribution P (VH). During each epoch, two batches of data are prepared. The real
batch is sampled directly from the training data, and the generated batch is created by sampling noise
variables and passing them through the generator, which consists of the structural functions F̂ .

Both the real and generated batches contain 1,024 samples and are passed to the discriminator. The
discriminator is trained to assign higher values to real samples and lower values to generated samples.
At the same time, the generator is trained to produce samples that are indistinguishable from real data
based on the discriminator’s output. This procedure follows the WGAN-GP framework (Gulrajani
et al., 2017), which regularizes the discriminator through a soft penalty on the gradient norm to
enforce a relaxed Lipschitz condition.

The training alternates between updating the generator and the discriminator. For each generator
update, the discriminator is updated twice. Optimization is performed using the Adam optimizer
(Kingma and Ba, 2015). The learning rate for the generator is set to 2× 10−5, and the learning rate
for the discriminator is set to 1×10−5. This training procedure is repeated for a total of 5,000 epochs.
All parameters of the generator and discriminator are updated jointly throughout this phase.

In practice, we observe that training the GAN-RNCMs benefit from incorporating a supervised loss
signal with the original adverserial loss. Specifically, at the beginning of each epoch, we perform a
supervised update for the structural functions f̂S , f̂X , and f̂Y using real data from that epoch. Let
Er, Sr, Xr, and Yr denote the real values of the variables E, S, X , and Y , respectively. We then
minimize the following supervised losses:
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LS
sup = EEr,Sr,U2

[
CE

(
f̂S(Er, U2), Sr

)]
, (27)

LX
sup = ESr,Xr,U1,U2

[
CE

(
f̂X(Sr, U1, U2), Xr

)]
, (28)

LY
sup = EEr,Sr,Xr,Yr,UY

[
CE

(
f̂Y (Er, Sr, Xr, UY ), Yr

)]
, (29)

where CE denotes the cross-entropy loss and U1, U2, and UY are the i.i.d. noise variables from the
definition of the SCMM∗. We optimize these supervised losses using the Adam optimizer Kingma
and Ba (2015) with a fixed learning rate of 10−3.

To evaluate each trained model, we estimate the interventional query P (Y = 1 | I = I0,do(X = x))
for every image I0 in the test set and for both values x ∈ {0, 1}. Each estimate is computed using
104 Monte Carlo samples from the trained model. As we will show, this query is identifiable and has
a high-level counterpart P (Y = 1 | E = τI(I0),do(X = x)), which can be estimated directly using
the learned generative model.

The identifiability follows from an application of Rule 2 of the do-calculus Pearl (2000):

P (Y = 1 | I = I0,do(X = x)) =
∑
s

P (Y = 1 | I = I0,do(X = x), S = s) · P (S = s | I0)

=
∑
s

P (Y = 1 | I = I0, X = x, S = s) · P (S = s | I0).

Now, one could further apply Rule 2 to obtain:
P (S = s | I = I0) = P (S = s | do(I = I0)),

P (Y = 1 | I = I0,do(X = x), S = s) = P (Y = 1 | do(I = I0),do(X = x),do(S = s)),

which can both be estimated using the mutilation procedure described in Section B.2.3. However,
following the analysis in (Xia et al., 2023, Appendix B.2), we find that estimating the nested
counterfactual P (Y = 1 | do(I = I0),do(X = x)) directly tends to yield lower error, likely due to
avoiding the accumulation of error across multiple estimates.

The quality of each model is assessed by computing the mean absolute error between the estimated
and ground truth interventional probabilities, averaged over all test samples. Each configuration is
evaluated over 10 independent runs, and results are shown in Fig. 9.

C ADDITIONAL EXAMPLES

This section contains additional examples that supplement the main body.

C.1 EXAMPLES FOR SEC. 2

Table 1 shows examples of structural invariances (Def. 7) for different tasks.

Consider the following example for a more nuanced understanding of maximal invariance clusters
relative to a given set of structural invariances.
Example 6. Suppose in a company, there are four employees (X1, X2, X3, X4) who are each trying
to decide if they wish to work on project A or B (i.e., X1, X2, X3, X4 ∈ {A,B}). Suppose we
would like to cluster the decision of the four employees into a single variable XH , and now the goal
is to learn an intravariable clustering of the 16 possible values of the joint tuple (X1, X2, X3, X4).
These variables impact the eventual project direction of the company (Y ∈ {A,B}).
To proceed, we must ensure that any two values that are clustered together would not be ambiguous
for deciding Y (violating the AIC). Suppose we are given the information that Xi is a higher-ranked
employee than Xj for i > j, and a higher-ranked employee overwrites the decision of a lower-ranked
employee. This can be represented by the structural invariance

g((X1, X2, X3, X4), ϕ) =


(X2, X2, X3, X4) ϕ = 2

(X1, X3, X3, X4) ϕ = 3

(X1, X2, X4, X4) ϕ = 4

, (30)
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Name Function Description Illustration

Permutation Invariance g(x, ϕ) is a reordering of the dimen-
sions of x specified by indices in ϕ

Temporal Invariance g(xt, ϕ) = xt+ϕ for time step t

Rotational Invariance g(i, ϕ) rotates image i by ϕ radians

Scale Invariance g(i, ϕ1, ϕ2) zooms image i by ϕ1

amount and crops it to region ϕ2

Translational Invariance g(i, ϕ) pans image i by ϕ pixels

Table 1: Examples of invariances and their corresponding structural invariance functions. Many
invariances are specifically applicable to the image setting, such as the bottom three on this table.

where ϕ ∈ {2, 3, 4} represents an index of X . For example, g((A,B,A,B), 2) = (B,B,A,B),
indicating that X1 will take the value of X2 = B even if X1 was originally A.

Suppose I = {g} and D is the maximal invariance clusters of I. Under the definition of maximal
invariance clusters, it is therefore the case that (A,B,A,B) and (B,B,A,B) are in the same
cluster of D. However, note that g is not reversible in this case (i.e., there is no ϕ such that
g((B,B,A,B), ϕ) = (A,B,A,B).

Interestingly, note that g((B,B,A,B), 4) = (B,B,B,B), putting (B,B,A,B) and (B,B,B,B)
in the same cluster in D as well. This implies that (A,B,A,B) and (B,B,B,B) are in the same
cluster despite the lack of direct connection through g in either direction (i.e., there is no ϕ such
that g((A,B,A,B), ϕ) = (B,B,B,B) or g((B,B,B,B), ϕ) = (A,B,A,B)). Hence, to fully
evaluate whether two values are in the same cluster, it must be checked whether there is a path that
connects the two values through some series of applications of functions in I, in either direction. ■

D DISCUSSION

This section includes additional discussion points for this work.

D.1 LIMITATIONS

The results in this work, both theoretical and empirical, are limited by the validity of the assumptions.

Naturally, the most prominent assumption in this paper is the availability of invariance information,
with the properties described in Def. 7. Without this information or any other types of assumptions,
no set of intravariable clusters can be learned without potentially violating the AIC, as described by
Prop. 1. Furthermore, it is possible that the set of available structural invariances, I, does not contain
that much helpful information. If the functions are not flexible in terms of mapping to different values
given the parameterization ϕ, it is possible that the corresponding maximal invariance clusters are
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still quite fine. Nonetheless, this is the crucial assumption that allows the applicability of the methods
of this paper. If this assumption cannot be met, then it is recommended to find alternative solutions to
navigate the AIC. Still, this assumption is quite reasonable in any setting in which invariances are
naturally assumed to hold anyways, such as rotational invariance in image settings.

In the context of causal abstraction inference, identification of causal queries is crucial for guarantee-
ing that the causal queries can be inferred from the available information. Notably, the assumption of
a graphical model such as the C-DAG GC is necessary to avoid issues regarding the Causal Hierarchy
Theorem (Bareinboim et al., 2022). Without graphical assumptions (or sometimes even with graphical
assumptions), non-identifiability of the desired query would pose a significant issue. Alternative
solutions are possible, such as using weaker assumptions for structural learning, or bounding the
query rather than precise identification. Still, it is generally the case that the set of inferrable results
grows in proportion to the strength of the assumptions.

For contrastive learning, notably Thm. 2, proper representation learning requires a diverse batch such
that equivalent values are always compared similarly and different values are always contrasted apart.
That is, in the ideal case, any pair of values intended to be in the same cluster will eventually be
compared as xH,i and xH,j in Eq. 3, while all other values in the batch are intended to be in different
clusters. It is possible that this ideal case is violated, but the maximal invariance clusters are still
achieved, as shown in Corol. 4. In higher-dimensional cases like with image data, it is more likely
that this is not an issue, since it is unlikely that two different samples in the same batch belong in
the same cluster, and a representative set of samples from the invariance functions will eventually be
achieved with sufficient training.

Finally, in the context of empirical training, it is always a possibility that training may have issues
converging, either due to low compute, underparameterization, or difficulties with gradient-based
optimization. This can occur both in the representation training phase and in the generative modeling
phase. Failures in the representation training phase are more forgiving, since with a sufficiently
large representation dimensionality, this would simply mean a finer set of clusters, which while not
ideal, would not violate the AIC. Failures in the generative modeling phase may result in incorrect
inferences, but the inferences are guaranteed given proper fitting of the available data, so it is crucial
in this phase to ensure that the given data distribution is fitted properly.

D.2 MOST OPTIMAL CLUSTERS

We note that the maximal invariance clusters given the domains of DVL
and a set of structural

invariances I is unique, shown straightforwardly in the following result.
Proposition 2 (Maximal Invariance Clusters Uniqueness). The maximal invariance clusters D of a
set of structural invariance I are unique.

Proof. Assume for the sake of contradiction that D and D′ are two different sets of intravariable
clusters that are both maximal invariance clusters of I. Then there must be some set of values
c1, c2 ∈ DC for some intervariable cluster C ∈ C such that ca and cb are in the same cluster in one
of D and D′ but not in the other. Assume without loss of generality that they are in the same cluster
in D. The presence of the two values in the same cluster would imply (by Def. 8) that there exists a
sequence c1 = ca, c2, c3, . . . , cN = cb such that for each ℓ ∈ {1, . . . , N − 1}, there exists gkCi

and
some ϕk ∈ Dϕk

such that either gkCi
(cℓ, ϕk) = cℓ+1 or gkCi

(cℓ+1, ϕk) = cℓ. If this is true, then D′

is not a maximal invariance cluster of I. Otherwise, D is not a maximal invariance cluster of I.

One interesting consequence of this result is that there is a unique set of intravariable clusters that is
most optimal given an SCM specification.
Proposition 3 (Most Optimal Clusters). Given an SCMM, there is a unique set of intravariable
clusters D∗ such that the AIC is not violated, and all coarser clusters do violate the AIC. Moreover,
these clusters are the maximal invariance clusters of structural functions I, where I = {g∗Ci

: Ci ∈ C}
such that for any two c1, c2 ∈ DCi

, c1 = g∗Ci
(c2, ϕCi

) if and only if Eq. 1 holds.

Proof. We first note that any set of clusters other than D∗ that is not finer than D∗ (including all
coarser clusters) will violate the AIC. Consider an alternative cluster D′, which must contain two
values c1, c2 ∈ DC for some C ∈ C that are in the same intravariable cluster in D′ but not in D.
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However, this implies that two values for which Eq. 1 do not hold are clustered together, which
violates the AIC by definition.

The uniqueness of D∗ is guaranteed by Prop. 2, completing the proof.

This result is interesting as it implies, in a sense, a lower bound on the size of possible clusters that
do not violate the AIC. Even with the most precise set of structural invariances, there are limitations
based on the complexity of the SCM functions.

D.3 OTHER RELATED WORKS

This paper makes a contribution in the direction of leveraging state-of-the-art representation learning
techniques in causal contexts, using the theory of causal abstraction inference. This is not to be
confused with disentangled causal representation learning (von Kügelgen et al., 2021; Shen et al.,
2022; Brehmer et al., 2022; Varici et al., 2023; Ahuja et al., 2023; Squires et al., 2023; Wendong et al.,
2023; Wang and Jordan, 2024; Zhang et al., 2024; Li et al., 2024), which is a well-studied subtopic
of causal representation learning (Schölkopf* et al., 2021). The goal of such works is to discover
high-level causal variables from available data where the mapping between data and variables are not
immediately clear due to entanglement. Given the underspecification of such a challenging task, such
works often require assumptions to avoid identifiability issues, including assuming availability of
high-level variable labels, working in parametric spaces, or having the ability to perform interventions.
In contrast, this paper works in the setting where the high-level variables are understood to be a
constructive abstraction of the low-level variables in the data, and transformations are based on
invariance information. There is no disentanglement of causal variables required.

We note that the concept of inter- and intravariable clusters is not to be confused with inter- and
intraclass scatter (Vasilescu, 2024). While inter- and intravariable clusters describe the relationships
between multiple variables and their values, inter- and intraclass scatter describes the variance
comparing features with a label. Nonetheless, maximizing the ratio of interclass scatter to intraclass
scatter may be helpful for learning invariant representations in cases where the causal structure
involves several features pointing to a single important label.

While this work considers the most fundamental form of the AIC in Def. 5, there may be relaxed
definitions that are easier to achieve and verifiable from data. An example is Chalupka et al. (2015),
which shows that, in a confounded image recognition setting, one can achieve a set of clusters that
almost always satisfies an interventional version of the AIC provided that it satisfies the observational
version. This is described in more detail in Xia and Bareinboim (2024, App. D.2).
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