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ABSTRACT

Causal abstraction inference is the task of inferring causal effects from limited
data by first mapping the complicated low-level data (e.g., pixels) into a simpler
high-level space (e.g., image representation) before performing causal inferences
on the high-level. A major restriction in this task is known as the abstract invariance
condition (AIC), which forces high-level representations to retain all information
from the low-level data to prevent any ambiguity in high-level inference. In this
work, we provide the first approach that can learn low-dimensional high-level
representations that satisfy the strictest form of the AIC without weakening the
allowable causal inferences. We show how the concept of invariances, such as
rotational invariance in image data, is related to causal abstractions and how
they can be used to learn lower dimensional representations using out-of-the-box
invariance learning tools such as contrastive learning. Finally, we demonstrate our
findings empirically, including in a high-dimensional image setting.

1 INTRODUCTION

Causality is a key component of human reasoning, allowing one to plan a course of action, to
determine blame and responsibility, and to generalize across changing environments. A key insight
from both causality and the philosophy of science is that effective reasoning often involves abstraction
— the process of simplifying a complex system by ignoring details deemed irrelevant to the task. In
this context, “irrelevant details” typically refer to certain transformations that leave important aspects
of the system unchanged, called invariances in the machine learning literature. For example, humans
interpret the object in the television as a “dog” rather than a collection of pixels, and this interpretation
does not change whether the pixels are rotated, flipped, or cropped. The pixels are abstracted to the
concept of a “dog”, and it is invariant to transformations such as rotation. Invariances, when studied
under the lens of causal abstractions, can therefore be a powerful tool for advancing Al systems.

Modern Al systems are often studied under the foundation of generative modeling. Deep generative
models have shown impressive results in many practical tasks such as image generation (Brown
et al., [2020), text generation (Ramesh et al.,|2021)), and style transfer (Gatys et al.| 2015). Causal
inference is typically studied under the semantics of structural causal models (SCMs) (Pearl, 2000),
which are generative models that represent reality with a collection of mechanisms and exogenous
noise. Each SCM induces a collection of distributions that can be categorized into three successively
more descriptive layers known as the Pearl Causal Hierarchy (PCH) (Pearl and Mackenzie, 2018}
Bareinboim et al2022)). These layers refer to the observational (L), interventional (L), and coun-
terfactual (L3) distributions. While traditional generative modeling focuses on a single distribution
(usually the observational distribution from £, ), causal generative modeling is an emerging field that
aims to extend the capabilities of generative modeling to higher layers of the hierarchy. It has been
shown that, given the proper causal constraints, causal generative models are capable of identifying,
estimating, and sampling causal effects, trained on limited available data such as observational data
(Kocaoglu et al., 2018; Xia et al.| 2021;2023; Rahman and Kocaoglu, [2024)).

Formal studies of causal abstractions typically aim to compare a low-level model M ;, with a high-
level counterpart M g through an abstraction function 7 that maps low-level variables V1, to high-
level variables V g. Semantic definitions such as exact transformations and 7-abstractions establish
key properties expected of abstractions such as the commutativity of interventions and abstractions
(Rubenstein et al., 2017} Beckers and Halpern, 2019; [Beckers et al., 2019; |Geiger et al., 2023al).
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These properties have been useful in the explain-
able Al domain, where a high-level causal model
is hypothesized to explain a black-box model
such as a neural network, and an abstraction
function 7 is learned to test this hypothesis by
seeing how well the function satisfies these im-
portant properties (Geiger et al., |2023b; Mas
sidda et al.l |2023; |Zennaro et al., [2023}; |[Felekis
et al.| [2024)). Separately, constructive abstrac-
tions have been useful for an emerging field
of study called causal abstraction inference,
the main focus of this work. The concept is
shown in Fig. [Il While many established ab-
straction definitions focus on comparing SCMs
My, and Mg, recent work has decomposed ab-
straction analysis into individual distributions of
the PCH, which allows one to perform causal
inferences in the high-level space given limited
data from the low-level space (Xia and Barein{
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Figure 1: An illustration of the causal abstraction
inference problem. The true model is a low-level
model M, which generates distributions of the
PCH over V. V[, is connected to its high-level
counterpart V g through 7. In practice, M, and
data from interventional (L3) and counterfactual
(L3) may not be available (in gray). The goal is

to construct an SCM M on the high-level space,

apply causal assumptions in the form of constraints
(Ge), train it on available observational data (L),
and then use it to infer £, and L3 queries.

boimy, [2024;2025). This allows one to perform
high-dimensional causal inferences tractably by
first converting the data to a high-level abstract
space (akin to representation learning).

One particularly challenging restriction in the causal abstraction inference task that is not present in
typical noncausal representation learning problems is known as the abstract invariance condition
(AIC). The AIC states, informally, that to preserve correctness in high-level causal inferences, a
high-level representation must disambiguate values that have different causal effects on downstream
variables. This is illustrated in Fig.[2] A classic instance of this phenomenon is the study of the effects
of cholesterol on heart disease (Spirtes and Scheines| [2004). There are two types of cholesterol, HDL
and LDL, that both affect heart disease rates, so scientists may be tempted to abstract them together
as total cholesterol. However, deeper analysis shows that HDL lowers the risk of heart disease while
LDL raises it. Abstracting them together as total cholesterol leaves the analysis ambiguous, as one
would not be able to assess the risk of heart disease without knowing whether the total cholesterol
consists more of HDL or LDL cholesterol.

Since the true structural model is typically not available in most practical settings, it is generally
impossible to verify that the AIC holds, leading to severe constraints on the types of representations
that can be learned. [Xia and Bareinboim)| (2024) accommodates this issue by enforcing bijectivity in
learned representations through an autoencoder structure, but this approach suffers from a lack of
dimensionality reduction, which is one of the main purposes of representation learning. |Chalupka
et al.[(2015) explores a weaker version of the AIC that is verifiable by data, but this implies weaker
inferences. Xia and Bareinboim|(2025) generalizes the abstraction framework to show that high-level
inferences under AIC violations can be corrected by interpreting them as soft interventions on the
low-level model, but this requires additional assumptions to specify the form of the soft interventions
and leaves fewer identifiable results.

In this work, we present an approach that leverages the availability of invariance information to learn
representations that (1) satisfy the most fundamental form of the AIC, (2) allow for dimensionality
reduction, and (3) make no additional assumptions (other than invariance information) without
sacrificing inferential power. More specifically, in Sec. [2] we formally define invariances in the
context of causal models and prove that they can be used to generate low-dimensional representations
that still satisfy the AIC. Importantly, this allows for out-of-the-box techniques for invariance learning
used in noncausal contexts to learn representations in causal models. In Sec. 3] we show how
to use one such popular technique, contrastive learning (Chen et al., [2020), to accomplish this in
practice. We then empirically demonstrate the strength of the learned representations in Sec. 4] before
concluding our findings in Sec. [5] Due to space constraints, proofs can be found in App. [Al

1.1 PRELIMINARIES
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This section introduces the notation and definitions used throughout ST s o

the paper. We use uppercase letters (X) to denote random variables : @ @
and lowercase letters (z) to denote corresponding values. Simi- Y

larly, bold uppercase (X) and lowercase (x) letters denote sets of f
random variables and values respectively. We use Dx to denote Y
the domain of X and Dx = Dx, X --- X Dx, for the domain of '
X = {Xy,...,Xx}. We denote P(X = x) (often shortened to m
P(x)) as the probability of X taking the values x under the distri-

bution P(X). We use the notation z[W] to indicate the values of z Figure 2: An illustration of
restricted to variables in ZN'W. We utilize the basic semantic frame- an AIC violation. Note that
work of structural causal models (SCMs) (Pearl, |2000), following X causes Y, and z; and x5
the presentation in |Bareinboim et al.|{(2022). are different values of X that
Definition 1 (Structural Causal Model (SCM)). An SCM M isa provide different outputs in
4-tuple (U, V, F, P(U)), where U is a set of exogenous variables Y. If they are abstracted into
(or “latents™) that are determined by factors outside the model; V  the same high-level value z g,

is a set {Vq, Vs, ..., V,} of (endogenous) variables of interest that then the behavior of fy- is am-
are determined by other variables in the model — that is, in U U V; biguous on the input of z 7.
F is a set of functions { fv,, fv,, ..., fv, } such that each fy, is a

mapping from (the respective domains of) Uy, U Pay, to V;, where

Uy, C U, Pay, C V \ V,, and the entire set F forms a mapping from U to V. That is, for
i=1,...,n,each fy, € Fissuch that v; < fy,(pay,,uy;); and P(U) is a probability function
deﬁned over the domain of U. ]

Each SCM induces distributions from the 3 layers of the PCH. This work is general to all three layers,
but for clarity, we define the set of layer 2 distributions as follows.

Definition 2 (Layer 2 Valuation (Bareinboim et al.| 2022, Def. 5)). An SCM M = (U, V, F, P(U))
induces a famlly of joint distributions over V, one for each intervention x. For each Y C V,
PM(y | do(x fD 1{Yx(u) = y}dP(u), where Yy(u) is the solution for Y in the submodel

My = (U, V me( )), where Fy := {fy : V€ V\X} U{fx < z: X € X}. |

L5 is the set of all such distributions, and £ is the subset where X = (). £3 is defined in App.
The theory of causal abstractions developed in this paper build on the foundations of constructive
abstraction functions, under which individual distributions of the PCH are well-defined between low
and high-level models.

Definition 3 (Inter/Intravariable Clusterings (Xia and Bareinboim, [2024} Def. 5)). Let M be an SCM
over V. A set C is said to be an intervariable clustering of V if C = {C;, Ca,...C,} is a partition
of a subset of V. C is further considered admissible w.r.t. M if for any C; € C and any V' € C;, no
descendent of V' outside of C; is an ancestor of any variable in C;. That is, there exists a topological
ordering of the clusters of C relative to the functions of M. A set D is said to be an intravariable
clustering of variables V w.r.t. Cif D = {Dg, : C; € C}, where D¢, = {Dg,, Dg,, ..., DG Hisa
partition (of size m;) of the domains of the variables in C;, D¢, |
Definition 4 (Constructive Abstraction Function (Xia and Bareinboim), 2024, Def. 6)). A function
7 : Dy, — Dy, is said to be a constructive abstraction function w.r.t. inter/intravariable clusters C
and D iff 7 is composed of subfunctions ¢, for each C; € C such that vy = 7(vy) = (7¢;(ci) :
C; € C), where 7¢, (c;) = vy ; if and only if ¢; € Dg,. ]

In this work, we leverage causal diagrams (often denoted as G) and their corresponding cluster causal
diagrams (C-DAGs) (denoted as G, relative to a set of intervariable clusters C). See App. for
the formal definitions. Finally, we state the AIC formally below.
Definition 5 (Abstract Invariance Condition (AIC)). Let My = (U, V., Fr, P(Up)) be an
SCM and 7 : Dy, — Dy, be a constructive abstraction function relative to C and D. The SCM
M, is said to satisfy the abstract invariance condition (AIC, for short) with respect to 7 if, for all
v, Vg € Dy, such that 7(vy) = 7(v3), Vu € Dy, C; € C, the following holds:
((fv(pav ,uy):V e Cl)) =1¢, ((fv(pav ,uy):V e Cl)> , e))
where pa§/1 ) and paﬁ/) are the values corresponding to v; and vo. |

Intuition for the AIC in the context of this paper is provided in Ex.
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2 INVARIANCES IN CAUSAL ABSTRACTIONS

Causal abstractions are useful since they provide a frame- (a) (C) @ @
work for bridging the gap between models of different gran- Yy

ularities, allowing one to work in a simpler high-level space

despite having complicated data from the low-level space. Xy
The task of performing causal inferences across abstractions

is well-studied in the case where the abstraction function 7

is given. When the inter/intravariable clusters C and D are
provided alongside the structural assumptions of a graphical

model G, one can straightforwardly construct 7 and then (b) . =0)(x,=1)(x. =2
make high-level inferences using low-level data. [[SBB]] [ZBB] [ 1: AB)

2

Example 1. Suppose a country is voting to elect an of- C,
ficial, deciding between candidate A and B. Votes are Ea=e @J @J
(aAA])|(BBA))|(BAA)

collected from three districts, X1, X5, and X3, and the
outcome of the election (YY) is based on which candi-
date receives the most votes. On the low level, Vi, = Fjgyre 3: Visualization of Ex.[I] (a)
{X1, X5, X3, Y}, all with a domain of {A,B}. In- QOp the intervariable level, X, X,
stead of collecting data on individual district votes, one and X are clustered together to form
may wish to abstract the votes into a single variable x,  while Y is clustered by itself. (b)

representing their sum (i.e., Xy = 7(X1,X5,X3) = On the intravariable level, the 8 possi-
X1 + X + X3). This corresponds to the intervari- ple values of C; = {X1, X5, X3} are
able clusters C = {C; = {X3,X5 X3},C2 = (lustered based on the number of votes

{Y'}}, shown in Fig. B[a). The high level variables for A (c) The corresponding causal
Xy and Yy correspond to the clusters C; and Ci. diagram G and C-DAG Gc.

The intravariable clusters over C; would be D¢, =

{{BBB}, {ABB,BAB,BBA}, {AAB, ABA,BAA}, {AAA}}, with the 4 sets corresponding to the
values of Xy = 0, 1, 2, and 3 respectively (Fig. Ekb)). Then the abstraction is quite natural, with
(Xp,Yy) <+ 7(X1, X9, X35,Y) = (X1 + Xo + X3,Y). The corresponding causal diagram G and
C-DAG G are shown in Fig.[3c). [ ]

In practice, it may not be the case that C and ID are readily available. For intervariable clusters C, it is
often the case that the clusters are fixed in advance when deciding on the assumptions of the graphical
model G¢. The C-DAG G over C can be much simpler to specify than the full causal diagram G,
which requires a full specification of every pairwise relationship in V. Given the prevalence of
hierarchical structures in data, it can often be quite intuitive which choices of clusters make sense.
If all else fails, intervariable clusters can be chosen through a heuristical approach (see (Xia and
Bareinboim) 2024, Alg. 3)).

Specifying intravariable clusters D is a much more difficult challenge. In extremely high-dimensional
scenarios such as those involving image data, the size of the domain can become prohibitively large
(e.g., a 128 x 128 x 3 image with 256 possible pixel values has 256128*128%3 different values in
its domain). Specifying a partition over such a large space is intractable in general since doing so
would require enumerating each possible image and assigning a corresponding cluster label. It would
therefore be desirable to use a machine learning approach to learn intravariable clusters from data in
a tractable manner.

Learning intravariable clusters is a representation learning task. For each intervariable cluster C;,
the goal is to find which values of C; map to which values of Vi ; (i.e., learning the mapping
7c; : Do; = Dvy, ;). Va,i can then be interpreted as the representation of C;. Unfortunately, there
are strict requirements on what kinds of representations are allowed, shown by the following result.

Proposition 1 ((Xia and Bareinboim| 2024}, Prop. 5)). Consider a low level SCM My, and construc-
tive abstraction function T w.r.t. clusters C and D. M, is guaranteed to satisfy the AIC w.r.t. T if and
only ifDe, = {{ci} : ¢; € D¢, } forall C; € C. [ |

In words, the only choice of intravariable clusters that is guaranteed to satisfy the AIC (Def.[5) is
the one where every value in the domain of C; is clustered by itself. Any other set of clusters that
group two values together may potentially violate the AIC, which is undesirable since it may result in
incorrect causal inferences in the high-level model.
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For intuition on why this presents a problem, consider the
following example.

Example 2. Consider an image classification task where
Vi = {I.,Y} for image I, and label Y. For the sake of
simplicity, suppose Y is binary, and I, can only take three
possible values: i1, 72, and ¢3, shown in Fig. E[ Intuitively, it
seems that ¢; and i, are the same image but rotated, so it may
be tempting to cluster them into the same high-level value (i.e., Figure 4: Three images of Dy, , for
D; = {x1 = {i1,i2}, 22 = {i3}}). That is, one may wish Ex. i9 is simply a 7/2 rotation
to construct high-level representation I that takes only two of i1, represented by the invariance
possible values, x; or x3, where z; refers to both 4; and 5. function g;.

Unfortunately, without information or assumptions about the underlying causal model, performing
this clustering violates the AIC and may result in incorrect inferences. For example, suppose in
one possible SCM of the setting, M, the function fy-(ir, uy) = 1{iy, € {i1,i2}} ® uy, while in
another, Mo, f&(ir,uy) = 1{is € {i1,43}} @ uy. An interpretation might be that in M1, Y is a
label that refers to whether the image is a cat or a dog, while in M, Y represents whether the animal
in the image is on its side. The proposed clusters for Dy satisfy the AIC for M, but in the case of
M, clustering these two images leads to ambiguity over whether x; should receive the label Y = 0
or Y = 1. However, without additional information about fy-, it is not clear whether My or My (or
neither) is the true model. ]

An implication of Prop.[T]is that the only kinds of representations 7c, that can be learned for each
cluster C; are ones where 7¢, is bijective, also implying that the cardinality of the representation
stays the same (i.e., [Dg,| = [Dyy, , ). Still, this bijectivity requirement is limiting in that it does not
allow for dimensionality reduction, one of the main benefits of representation learning.

We now focus on a new strategy of learning intravariable clusters leveraging invariances. Prop.[Tjonly
holds given no additional information about the underlying generating model. However, it may be
given that certain invariances hold in the setting. This approach allows for a reduction in the cardinality
of the representation without relaxing the AIC definition or removing any causal constraints. We use
the concept of cluster coarseness to formalize this idea of dimensionality reduction.

Definition 6 (Intravariable Cluster Coarsening). Let D' and D? be two sets of intravariable clusters
w.r.t. intervariable clusters C. We say that D* is coarser than D' (or D! is finer than D?) if for all

C; € Candall D, € DY, there exists DZ, € D such that DZ C DE . [ |

In words, a set of intravariable clusters D? is coarser than D! if all clusters within D! are subsumed
by some cluster in D?. For example, in Ex. [1} one could merge the clusters of Xz = 2 and Xz = 3
and still conclude that candidate A won from a majority vote. A coarser cluster is therefore more
desirable because it implies a lower cardinality in the high-level space. Note that by this definition,
all possible sets of intravariable clusters are coarser than the set of individual clusters from Prop.[T]
The goal is to see when it is possible to obtain coarser clusters without violating the AIC.

Invariances are used throughout the deep learning literature to improve the efficiency of models
for high-dimensional data with rich patterns. For example, in computer vision, many image tasks
are assumed to be invariant to rotation, translation, scale, cropping, and jitter (Hadsell et al., [2006;
Krizhevsky et al.,[2017). In recurrent tasks like with language, it is assumed that a prediction is
invariant to all information outside of the context window (Bengio et al.|[2000) (temporal invariance).
For tasks related to sets and pooling, often permutation invariance can be applied (Zaheer et al.,|2017;
Murphy et al.| 2019). In these tasks, instead of working on the raw data, it is often beneficial to
work on a simpler representation that removes unnecessary information by incorporating all of these
invariances. We formally define how invariances are interpreted in this work below.

Definition 7 (Structural Invariance). Given intervariable cluster C; € C over variables V ,, define
Che, ={V € V. :V ¢ C;,Pay N C,; # (I} as the children of C;. Let gc, : D¢, x Dy — D,
be a function (with parameters ¢) that transforms a value of C; to another value of C;. g¢, is said
to be a structural invariance of SCM M, = (U, V, Fr, P(UL)) for C; iff, for all V € Chg,,
¢ S Dd)’ uy € DUV, C; € Dci, and z € DPaV\Ci’

f¥(ci[Pay], z,uy) = f{#(gc,(ci, ¢)[Pay], z,uy). (2)
|
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In words, g, is a structural invariance of M if transforming values
of C; with g¢, does not affect the output of the functions of any of
its children. Taking advantage of these structural invariances, we
define the following set of intravariable clusters which group values
based on available invariance information.

Definition 8 (Maximal Invariance Clusters). Let I = {g¢&;, }j_;

be a set of structural invariances of SCM M for some intervariable
cluster in C (each g* could apply to a different cluster C;, ). For each
C; € C, define ]D%i as the partition over D¢, relative to the closure

Figure 5: An illustration of
constructing the maximal in-

of I. That is, for any ’Déi € D%i, Cq, Cp are both in Df:i if and only
if there exists a sequence ¢; = c,, C2,C3,...,CN = Cp such that for
each € {1,..., N — 1}, there exists g¢ and some ¢, € Dy, such

that either g& (cg, dr) = cop1 or g& (o1, ¢x) = co. Then, the

intravariable clusters D = {Dg, : C; € C} are called the maximal
invariance clusters of II. |

In words, two values are clustered together in the maximal invariance
clusters if they are connected through a series of any of the available
structural invariances. Intuitively, one can imagine a graph connected
by the functions of I, as illustrated in Fig.[5] Values (nodes) are

variance clusters. The values
of the intervariable cluster C
(black dots) are connected to
each other (via dotted lines)
through functions g ¢ 1
(each color representing a dif-
ferent k). Values that are con-
nected together in some way
form an intravariable cluster
that defines a high-level value
for Xi = 7(C).

connected with edges corresponding to functions g* € T (e.g., an
edge is added between c; and c; if ¢; = g¥(ca, ¢1) or ca = g¥(c1, ¢ ) for some g* and ¢;). The
corresponding maximal invariance clusters are simply the connected components of the graph.

Example 3. Continuing Ex. El, note that Y is permutation invariance to X1, X2, X3 (i.e., the order
of the votes does not matter). One can define a structural invariance gx (X1, X2, X3, ¢) where ¢
indicates some permutation of the three values. Then, the clusters chosen in Fig. 3] correspond to the
maximal invariance clusters of I = {gx }.

It turns out that despite potentially clustering infinite values together, the maximal invariance clusters
always satisfy the AIC, as shown next.

Theorem 1 (Invariance Abstraction Connection). Let [ be a set of structural invariances of SCM

M. Then My, satisfies the AIC w.r.t. intervariable clusters C and the maximal invariance clusters
D of 1. |

The maximal invariance clusters are maximal in the sense that no coarser cluster is guaranteed to
satisfy the AIC with the same set of structural invariances, as shown next.

Corollary 1. M may not satisfy the AIC w.r.t. C and ) of structural invariances 1 for any ' that
is coarser than the maximal invariance clusters D, and D' £ D. |

The concept of maximal invariance clusters is powerful since it provides a much coarser set of clusters
that nontrivially reduces the representation size given information about invariances, which is often
intuitively assumed to hold in many high-dimensional data settings.

Example 4. Continuing Ex.[2] suppose we are given that fy is rotationally invariant to the image
input I,. This implies that g; (¢, ¢), which rotates i by ¢ radians, is a structural invariance of M.
In this case, the maximal invariance clusters of I = {g;} is the originally proposed set of clusters
D; = {x1 = {i1,i2}, 20 = {iz}} because is = g;(i1,¢ = 7/2). By Thm. I} we can therefore
eliminate the possibility that M = M5 and conclude that D does indeed satisty the AIC. ]

Nonetheless, the uniqueness of the maximal invariance clusters makes it difficult to achieve that
specific set of clusters in practice. The following two results help relax this requirement.

Corollary 2. M is guaranteed to satisfy the AIC w.r.t. C and I for any IV that is finer than the
maximal invariance clusters D of structural invariances 1. |

Corollary 3. Let I; and Iy be two sets of structural invariances of SCM M, such that 1, C I (i.e.,
there are more invariances in s than 11 ). Then, the maximal invariance clusters of s is a coarsening
of the maximal invariance clusters of 1;. |
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Corol. 2] implies that the AIC is
still satisfied even if not all aspects
of the invariances are accounted
for and a finer set of clusters is
learned instead of the maximal
one. Corol. [3]implies that the AIC
will still hold even if not all of the
possible invariances in I are ac-
counted for. The maximal invari-
ance clusters continue to become
increasingly coarse as more invari-
ance functions are added, imply-
ing that taking into account more
invariances allows for greater di-
mensionality reduction at no risk
of AIC violations.

Example 5. Continuing Ex. [I]
suppose we are given another
structural invariance g’y such that
g% (AAA) = AAB. Incorporat-

XH,i

N

Figure 6: (a) An example construction of a G¢c-RNCM. Data is
given in low-level form (V, at bottom in red) and is mapped
to high-level form (V g, in yellow) through neural networks 7.
Structural functions f are neural networks that take inputs accord-
ing to G¢ and are trained to output their respective variables. (b)
An example of contrastive learning applied for training 7 in an
RNCM. A low-level sample x, is transformed through structural
invariances ¢’ and ¢"’ to achieve two transformed samples x, ;
and x, ;. These samples are passed through neural abstraction

similarity

ing this invariance into the max-
imal invariance clusters would
merge the Xy = 3 cluster with
the Xg = 2 cluster. Note that
this is indeed a coarsening of the original clusters, consistent with Corol. [3} Moreover, even though
the coarser clusters satisfy the AIC, Corol. |3| guarantees that the original clusters do as well. |

function 7 to produce representations x 7 ; and x g ;, which are
compared for similarity in the loss function.

3 CONTRASTIVE LEARNING FOR ABSTRACTIONS

Thm. [T)establishes that the maximal invariance clusters obtained through a set of structural invariances
will satisfy the AIC. In this section, we explore how to perform representation learning to obtain
these clusters in practice. Many sources in the deep learning literature have tackled the interesting but
challenging problem of learning invariances, and we leverage the celebrated approach of contrastive
learning, following the presentation of |(Chen et al.| (2020).

For causal modeling, we leverage the Gc-constrained representational neural causal model (Gc-
RNCM) (Xia and Bareinboiml 2024)), which constructs an SCM using neural networks to fit a given
C-DAG G (based on intervariable clusters C). An example architecture is shown in Fig. [6(a). Data
is provided from the low-level variables V1, and for each X € V[, a neural network abstraction
function 7x maps X, to its high-level representation Xz € V . For each X, a structural function

fx outputs values of Xy according to inputs specified by G¢. Exogenous variables are sampled
from a random distribution such as N (0, 1) or Unif(0, 1). Collectively, these exogenous variables
combined with the structural functions form an SCM that models the high-level variables V .

The RNCM follows a two-step training procedure. In the first step, the abstraction functions 7 must
be trained to learn a representation Xy for each X € V. Following the results of Sec.[2| we use
contrastive learning in this step to learn invariances for a simpler and more robust representation
compared to previous methods of training RNCMs. Fig. [6(b) illustrates this process. Given a
low-level sample z, € Dx, , xy, is transformed through structural invariances ¢’, g’ € I to obtain
zri,2n,; € Dx, (¢’ and g” can be any composition of functions in I with any parameters ¢).
2r,; and x 1, ; are then mapped through neural network abstraction function 7x to obtain high-level
representation values xrr ;, v57,; € Dx,,. Given a batch of 2n transformations from n data samples,
the following loss function is used.

exp (sim(h(zn i), M(zm,5))/T)
Zke{l,...,2n}:k;ﬁi exp (sim(h(zpqi), M(zn ) /T)’
where h is a neural-parameterized projection head, sim is any function that computes the similarity

of its inputs, and 7' is a temperature hyperparameter. We leverage cosine similarity for comparing

representations, defined as sim(z;, z;) = Hﬁlﬁ for vectors z;, z;.
: M= :

3

L(xH,iyl'H,j) = —1og
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An interesting aspect of this loss is that neg-
ative samples are not explicitly penalized.
Two values that are not intended to be clus-
tered together have representations that are
expected to be different due to the nature
of how the loss function handles batches.
Each sample is implicitly penalized for hav-
ing too similar of a representation to other
samples in the same batch. Nonetheless,
in ideal data and computation settings, one
can expect this procedure to achieve the
maximal invariance clusters, as shown in
the next result.

Theorem 2. Under sufficiently large rep-
resentation size and batch diversity (see
Assumption[l|in App. [Alfor details), a set
of intravariable clusters D minimizes loss

(b)
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Figure 7: Results for the Votes experiment. (a) The
C-DAG G for the model. Provinces X and Z each
have three districts that vote for their preferred candi-
date, influencing the outcome of the election Y. (b)
Error at different amounts of data for computing the
query P(Y = A | do(X = (A, A, A)). The con-
trastive RNCM (blue, ours) is compared with the orig-
inal RNCM (orange). The dashed red line shows the
error of using the noncausal P(Y | X) as the estimate.

from Eq.[3\for a given set of structural in-
variances 1 if and only if D is the maximal invariance clusters of L. ]

In the second step of RNCM training, the structural functions f are trained to fit available data on
the representation space (e.g., observational data P(V ) = P(7(V))). It is likely that the queries
of interest arise from a higher layer of the PCH than the data (e.g., inferring interventional (Ls)
quantities from observational (£;) data). Before inferring these queries, it must be shown that they are
identifiable, which can be done through the RNCM model using the Neural AbstractID algorithm (Xia
and Bareinboim| [2024, Alg. 2). Identifiable queries can then be computed directly from the trained
RNCM. We leverage the generative adversarial network (GAN) version of the RNCM architecture
for training purposes (Xia et al.,[2023). We defer the full discussion of RNCM design, training, and
inference to prior works, but the details of the models used in this work can be found in App. B}

4 EXPERIMENTAL RESULTS

In this section, we validate our findings experimentally. Additional experimental details can be found
in App.[B] Code will be released after paper acceptance.

4.1 VOTING EXPERIMENT

We first test our approach in a synthetic toy experiment. A democratic country is collecting votes to
determining who to elect for an office position (C-DAG illustrated in Fig.[7(a)). Votes come from
either province X or Z, and both provinces have three districts which each have a representative vote.
Each vote can go towards candidate A or B, and the outcome (YY) will be one of these candidates.
The goal is to determine the probability of A winning the election if all votes in X are set to go to
A (e, P(Y = A| do(X = (A, A, A))). Note that there is confounding between the votes of X
and Z (a popular candidate will sway the votes of both provinces), so the query is not equivalent to
the conditional distribution P(Y" | X). However, it is identifiable from observational data and the
C-DAG (full proof in App. B).

While the values of X and Z are represented by 3-dimensional vectors, we aim to first learn a
representation 7 of the two variables and work in the high-level space. The representations take the
form of [0, 1]2, so it will be challenging to learn a 2D representation that captures the original 3D
inputs. That said, it is noted that the values of X and Z are permutation invariant, that is, the order
of the values do not matter for deciding Y. The contrastive approach is able to leverage a structural
invariance g that maps values of X and Z to permutations of itself.

The results are shown in Fig.[7] Our approach (blue) is an RNCM that leverages contrastive learning
to learn its embedding, and it is compared to the original RNCM implementation (orange). Note that
the contrastive RNCM clearly outperforms the original RNCM, showing significantly lower error
with higher samples. In fact, the original RNCM has trouble outperforming the baseline error for
incorrectly using P(Y | X) as an estimator for P(Y | do(X)) (dashed red line).
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Figure 8: (a) Sample x-ray images of I. (b) C-DAG G¢. (¢) Comparison of the mean absolute error
(MAE) of the query P(Y | do(X), I) between the proposed contrastive learning approach (blue)
with the original RNCM (orange) across different sizes of embeddings (d) Comparison of the two
approaches at classifying Y using P(Y | do(X), I) across different sizes of embeddings.

4.2 PNEUMONIA EXPERIMENT

We next evaluate our approach on a semi-synthetic medical setting with patient records on chest
X-ray images (I), pneumonia symptoms (.5), whether they were given treatment (X), and whether
they recovered within 30 days (Y). The corresponding C-DAG is illustrated in Fig. [8(b). Note that
the causal effects from I are not literally from the image pixels themselves but from the underlying
conditions captured in the image, and capturing these abstract qualities is one goal of learning the
embeddings. Given a chest X-ray image I = 7, we aim to estimate the causal effect of the treatment
X, computing the interventional quantity P(Y = 1| do(z), 7). Due to unobserved confounding of
X with S and I, this query differs from the observational P(Y =1 | z,4). Nonetheless, the queries
remain identifiable from observational data given the C-DAG (full proof in App. [B).

We use approximately 6,000 chest X-ray images of size 28 x 28 as provided in (Kermany et al.,
2018;|Yang et al., 2021;|2023) (examples shown in Fig. Eka)). We assume that the [ is invariant to the
transformations presented in (Chen et al., [2020), including translation, zoom, crop, flip, jitter, and
blur (i.e., the set of structural invariances I consist of these transformation functions). Leveraging
these invariances, we apply the contrastive learning method from Sec. [3|to learn invariant image
embeddings, which are used in the RNCM when fitting the observational data. Using the trained
model, we estimate P(Y =1 | do(x), ) and compare with the original RNCM as a baseline.

We vary the dimensionality of the learned embeddings and plot the resulting errors for both approaches.
The mean absolute errors (MAE) for both methods are shown in Fig. [8|c). Notably, our approach
(blue) significantly outperforms the baseline (orange) across all embedding dimensions, consistently
achieving lower MAE. In Fig. [§[d), we also evaluate the quality of the learned embeddings using
a simple linear classifier to predict ground truth labels from the original dataset, comparing the
accuracies of the two models. With the improved performance of the contrastive RNCM, it is
clear that improved embedding quality directly translates to more accurate estimates for high-level
causal queries. Interestingly, we note that the classification accuracy of the original RNCM slowly
approaches the accuracy of the contrastive RNCM, likely indicating a stronger performance when the
embedding size is sufficiently large to avoid AIC violations.

5 CONCLUSION

In this paper, we showed how invariance information can allow for lower-dimensional representations
in causal abstraction inference (Thm. [T} Corols. [T} 2} B). We showed how to learn these invariant
representations using contrastive learning (Thm. 2)), a state-of-the-art tool in noncausal settings. We
then demonstrated the strength of these representations empirically, showing how the contrastive
RNCM greatly outperforms the original RNCM. This research takes an important step in bridging the
gap between state-of-the-art deep learning techniques and causal methods.
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A PROOFS
In this section we present the proofs for the technical results of the paper.

A.1 EXTENDED PRELIMINARIES

Here we provide the full definition of important concepts from the preliminaries section.

DeﬁnitionE] (Inter/Intravariable Clusterings (Xia and Bareinboim), 2024} Def. 5)). Let M be an SCM
over V.

1. A set C is said to be an intervariable clustering of V if C = {C1, Cs, ... C,} is a partition
of a subset of V. C is further considered admissible w.r.t. M if for any C; € C and any
V € C;, no descendent of V outside of C; is an ancestor of any variable in C;. That is,
there exists a topological ordering of the clusters of C relative to the functions of M.

2. A set D is said to be an intravariable clustering of variables V w.r.t. Cif D = {Dg, : C; €

C}, where D¢, = {Dg,, Dg,, - - D"“} is a partition (of size m;) of the domains of the
variables in C;, D¢, (recall that Dc is the Cartesian product Dy, x Dy, X --- x Dy, for
C, = {WV1,Va,..., Vi }, so elements of D C, take the form of tuples of the value settings of
C,). |

For clarity, we note that intervariable clusters C can be a partition of a subset of V. That is, variables
from V can be excluded from any cluster in C. In such cases, they are projected away (Lee and
Bareinboim| [2019). Additionally, admissibility of C states that no descendent of V" outside of C; is an
ancestor of any variable in C;, implying acyclicity among clusters. No statement about descendents
inside of C; are made.

Definition 4| (Constructive Abstraction Function (Xia and Bareinboim), [2024} Def. 6)). A function
7 : Dy, — Dy is said to be a constructive abstraction function w.r.t. inter/intravariable clusters C
and D iff

1. There exists a bijective mapping between V g and C such that each Vi ; € V i corresponds
to C; € C;

2. For each Vg ; € Vg, there exists a bijective mapping between Dy, ; and D¢, such that
each v}, ; € Dy, , corresponds to Déi € D¢,; and

3. 7 is composed of subfunctions 7¢, for each C; € C such that vy = 7(vy) = (7¢,(c;)
C; € C), where 7¢;, (c;) = vy, if and only if ¢; € Dg;,. We also apply the same notation

for any Wy, C 'V, such that W _, is a union of clusters in C (.e. 7(wp) = (1¢,(ci) : C; €
C,C; CTWyp)). |

A.2 IMPORTANT DEFINITIONS

Quantities from the distributions of the three layers can be evaluated via the following definitions
from Bareinboim et al.| (2022)).

Definition 9 (Layer 1 Valuation (Bareinboim et al.,[2022| Def. 2)). An SCM M = (U, V, F, P(U))
defines a joint probability distribution P**'(V) such that foreach Y C V:

PMy) = [ 1(Y(w) = y}dP()
Du

where Y (u) is the solution for Y after evaluating F with U = u. [ |

Definition 10 (Layer 2 Valuation (Bareinboim et al., 2022 Def. 5)). An SCM M =
(U, V,F, P(U)) induces a family of joint distributions over V, one for each intervention x. For
eachY CV:

PM) = [ 1Y) = y)P()
u
where Yy (u) is the solution for Y in the submodel My = (U, V, Fy, P(U)), where Fy := {fv :
VeV\X}U{fx +x: X eX}. |
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Definition 11 (Layer 3 Valuation (Bareinboim et al) [2022, Def. 7)). An SCM
M = (U,V,F,P(U)) induces a family of joint distributions over counterfactual events
Y1[x1], YQ[X2], ... forany Y;, X; CV:

PM(yipa) Yopa)s-- ) = /D H{Y1x,)(0) = y1, Yo ) (1) = y2,. .. }JdP(u).
u

The results of this work are general on all three layers of the PCH.

Every SCM induces a structure called a causal diagram, defined as follows.

Definition 12 (Causal Diagram (Bareinboim et al.,[2022] Def. 13)). Each SCM M induces a causal
diagram G, constructed as follows:

1. add a vertex for each V; € V;
2. add a directed arrow (V; — V;) for every V; € V and V; € Pay;; and

3. add a dashed-bidirected arrow (V; «----+ V) for every pair V;, V; € V such that Uy, and
Uy, are not independent (i.e., unobserved confounding is present). |

Given the impossibility of inferring higher layers from lower layers without additional assumptions,
many works often assume the availability of the causal diagram and its corresponding implied
constraints (possibly in the form of a causal or counterfactual Bayesian network (Bareinboim et al.|
2022; (Correa and Bareinboim| [2024)). In the context of causal abstractions, a causal diagram on the
low-level may be too difficult to specify given the potentially large amount of variables. Instead, a
cluster causal diagram is typically assumed instead, defined below.

Definition 13 (Cluster Causal Diagram (C-DAG) (Anand et al., 2023| Def. 1)). Given a causal
diagram G = (V,E) and an admissible clustering C = {Cjy,...,Cy} of V, construct a graph
Gc = (C, E¢) over C with a set of edges E¢ defined as follows:

1. A directed edge C; — C; is in Ec if there exists some V; € C; and V; € C; such that
Vi — Vj is an edge in E.

2. A dashed bidirected edge C; <+ C; is in Ec if there exists some V; € C; and V; € C;
such that V; <> Vj is an edge in E. |

The cluster causal diagram G¢ is constructed relative to a causal diagram G given intervariable
clusters C. It can be thought of as the causal diagram of the high-level model M f, defined via the
constructive abstraction function 7 defined over C.

Quantities between models of different granularities can be compared using the concept of Q-7
consistency, defined below.

Definition 14. Denote Y, . as a set of counterfactual variables over V.. That is,

Y= Yoixoa) Yo oxpas---) @

where each Y ;[x, ,] corresponds to the potential outcomes of the variables Y, ; under the interven-
tion X1, ; = xr, ;. Bach Y, ; and X, ; must be unions of clusters from C (i.e. Y ; = Uceo C for
some C’' C C) such that 7(Y ;) and 7(X ;) are well-defined (i.e. 7(Y1 ;) = (Agee 7c(C))).
For the high-level counterpart, denote

YH,* = T(YL,*) (5)
= (T(Y e ) T(Y Lofr(xs 2)])s - - ) - (6)
For any value y . € DYH’*, denote
IDYL,*(yH,*) = {yL-,* 'YL« € DYL,*7T(yL7*) = YH,*}; @)
that is, the set of all values y, . such that 7(yr ) = Y # . [ |
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Definition 15 (Q-7 Consistency (Xia and Bareinboim, [2024, Def. 7)). Let M and M g be SCMs
defined over variables V1, and V 7, respectively. Let 7 : Dy, — Dy, be a constructive abstraction
function w.r.t. clusters C and D. Let

Q= > P(Yp.=yLs) ®)

YL «€Dy,  (YHx)

be a low-level Layer 3 quantity of interest (for some y g « € Dy, ,), as expressed in Eq. (4} and let

T(Q) = P(YH,* = YH,*) )
be its high level counterpart. We say that M g is Q-7 consistent with M, if
> PMU(Y . =yr.)
yL«€Dy, , (yms) (10)

=PM1 (Y, =y,

that is, the value of @ induced by M, is equal to the value of 7(Q) induced by M Hﬂ Furthermore,
if My is Q-7 consistent with M, for all @ € £;(M,) of the form of Eq.[8} then M g is said to be
L;-T consistent with M. [ |

A.3 PROOFS OF SEC.[2]

Theorem 1 (Invariance Abstraction Connection). Let [ be a set of structural invariances of SCM
M. Then My, satisfies the AIC w.r.t. intervariable clusters C and the maximal invariance clusters

D of L. ]

Proof. Let I be a set of structural invariances of SCM M = (U, V1, Fr, P(Up)) with respect
to intervariable clusters C. Let ID be the maximal invariance clusters of I. Assume for the sake of
contradiction that M, does not satisfy the AIC with respect to the constructive abstraction function
7 constructed from C and ID. This implies that for some C; € C, there exists ¢, ¢, € D¢, such that
¢, and c;, belong in the same partition in D¢, but there is some f& € JFy, that takes C; as input such

that
o, ((fEma ) : Ve C)) #o, ((fipaluv):vea)),  an
where pa( *) and pai,) correspond to inputs from ¢, and c;, respectively.

Suppose that two values, c,cy € Dg, are “linked” if ¢; = gF(ca, ¢1) or ca = g¥(cy, ¢x) for
some g € Iand ¢, € Dy, . Ifitis the latter, then this would imply that for all uy € Dy, and
z E DPav\Cly

fi(er[Pav],z,uy) = fi(g"(c1, 61)[Pay], z,uy) = fi?(co[Pav],z,uy) (12)
c1 and ¢y can be swapped in the case of the former.

By Def. [§] if D is the set of max1ma1 invariance clusters of I, then there must ex1st some sequence of
C1,C2,...,Cp_ L and g', g%, ..., g* € I such that c; is lmked with ¢, through g, ¢y is linked with
Ci—1 through g*, and c; is 11nked with c,_; through ¢*.

If T is a set of structural invariances of M, then by definition (Eq. , it must be the case that for all
uy € Dy, and z € Dp,\c;»

fi#(ca[Pav],z,uv) = fi(c:[Pav],z,uy) (13)
= fL(co[Pay],z,uy) (14)
_ (15)
= fl(ci_1[Pay], z,uy) (16)
= ft(cy[Pay], z,uy) a7

following Eq. This contradicts the inequality in Eq.|11|since all such f‘fv must therefore produce
the same output for any such cy, ¢, in the same cluster. Therefore, the AIC must be satisfied with
these clusters. O

"Note that the equality in Eq. is consistent with the push-forward measure through 7.
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Corollary 1. M may not satisfy the AIC w.r.t. C and I of structural invariances 1 for any ' that
is coarser than the maximal invariance clusters D, and D' # D. |

Proof. For the premise of this proof, we make no assumptions about the underlying generating model
other than that I is a set of structural invariances of M. That is, M, can be any SCM such that this
applies.

Consider a set of intravariable clusters D' that is coarser than D such that D’ 7é D. By Def.[6] this
means, for some C; € C, there must exist some Dg , Dl ¢, € D¢, and some D] € D, such that

DE. C DJC and DE C Dj Consider ¢; € DY and ¢y € DE .

Construct M, = (UL,VL,]-"L,P(UL)) as follows.

1. Define Uy, and P(U},) arbitrarily.

2. For some C;s # C; and some X € C;/, define f£(c;) = x1 ifc; € D& and f&(c;) = xo
for all other ¢; € Dc¢;.

3. For all other f‘e where V € C;/, V # X, define them such that they have no endogenous
inputs, and there exists c}, ¢, € Dg,, such that ¢} [X] = z; and c5,[X] = x5, and c; and
cy are in separate clusters in Dci, .

4. Define all other functions in J, arbitrarily, but with no endogenous inputs.

Note that this construction of M, satisfies the AIC with respect to the constructive abstraction
function 7 from C and D. Eq.[l]is trivially satisfied for any f where V' ¢ C; since it does not
belong in the input set of any other function. For f£, note that it will output the same value for any
set of inputs ¢; € D¢, that belong in the same cluster, so Eq. is also satisfied for f‘f; where V € C;.

However, M clearly does not satisfy the AIC for 7 from C and I’. Note that f )I;(cl) = x1 and

fE(ca) = x9, and 7(c}) # 7(c}). Therefore, it is not guaranteed that any coarser clustering than D
will allow for the AIC to be satisfied. O

For the next proof, first consider the following result.

Lemma 1 ((Xia and Bareinboim, 2024, Lem. 6)). For any choice of intravariable clusters D such
that My, satisfies the AIC w.r.t. the corresponding T, M, will also satisfy the AIC w.r.t. any finer

clustering V. [ |
Corollary 2. M is guaranteed to satisfy the AIC w.r.t. C and D' for any D' that is finer than the
maximal invariance clusters D of structural invariances 1. |
Proof. This directly follows from Thm.[Tjand Lemmal[T} O

Corollary 3. Let I, and 15 be two sets of structural invariances of SCM My, such that 1, C I (i.e.,
there are more invariances in lly than 1,). Then, the maximal invariance clusters of 15 is a coarsening
of the maximal invariance clusters of 1. |

Proof. Denote D; and D5 as the maximal invariance clusters of I; and Is respectively. If I; C I,
then if two values are in the same cluster in D, they must also be in the same cluster in Dy. This is
because there must be some sequence of functions in I; that link the two values (as in the proof of
Thm. El) and those same functions must exist in I.

Trivially, if Is = I, then Dy = Dy, so it must be a coarsening. Otherwise, starting with the baseline
of D1, consider two values c,, ¢, € C; such that they are linked by some function gk e\ I,
that is, either c, = g*(cp, ¢r.) or ¢ = g¥(cq, ¢ for some ¢y, € Dy, . If ¢, and ¢, are in the same
cluster in Dy, then this function is redundant, and nothing is changed in D5. Otherwise, ¢, and c; are
linked through g*, implying that all values of C; in the same cluster as c, can be connected through
some sequence of functions in Iy with all values of in the same cluster as c;, merging the two clusters
together in D. Given that any additional function in I3 can only merge clusters of ID; into larger and
larger clusters, Dy must be a coarsening of D . O
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A.4 PROOFS OF SEC.

Assumption 1. We assume the following for proofs in this section.
(a) sim(z;, zj) is maximized if and only if z; = z;
(b) T>0
(c) his bijective

(d) Every value of Dy, is either in the training dataset or can be achieved through a series of
transformations from I on some point in the dataset.

(e) [Sufficient Representation Size] For any intervariable cluster C € C and corresponding
high-level representation Xy, |Dx,, | is sufficiently high-dimensional such that there exists
a mapping 7¢ : D¢ — Dx,, where 7(c1) = 7(c2) only if ¢; and cs belong in different
intravariable clusters.

(f) [Sufficient Batch Diversity] For any two original data points vy, vo provided in the batch
and every intervariable cluster C € C, the corresponding values c1, c2 belong in different
clusters (i.e., two values in the batch are only in the same cluster following the transformation
step if one is a transformation of the other).

We argue that these assumptions are reasonable. Assumptions (a) and (b) are in place to avoid
unexpected behavior in the mathematical definitions. Assumption (c) is without loss of generality,
since technically & can be subsumed into 7 otherwise. Assumption (d) ensures that the lack of
convergence is not due to a lack of data. Assumption (e) places a natural limitation on the size of
the representation: it must at least be as large as the intended number of clusters. Otherwise, values
may be clustered together simply due to the pigeonhole principle. Assumption (f) ensures that, as
intended by Eq.[3] two values are expected to be qualitatively different if they are not transformations
of each other. In cases with high-dimensional data like with images, this is almost guaranteed to be
the case since it is highly unlikely that one image is a transformation of another image in the original
dataset. In low-dimensional cases, this assumption may not hold, so we provide Corol. [Z_f] to show
how violations of this assumption affect the validity of the clusters. |

Theorem 2. Under sufficiently large representation size and batch diversity (see Assumption|l|in
App. [Alfor details), a set of intravariable clusters D minimizes loss from Eq. 3| for a given set of
structural invariances 1 if and only if 1 is the maximal invariance clusters of 1. ]

Proof. For this proof, we make the assumptions in Assumption [} For short, we denote each
assumption as Al(a)-(f).

For simplicity, consider a single intervariable cluster C € C, since the loss can be applied indepen-
dently for each cluster. For this cluster C, denote x g ; and x ; as the representations of ¢y, ; and
cr,j respectively (ie., 7(cr ;) = zm ), T(cr,j) = Zm ;). cr; and ¢y, ; are derived from applying
transformations (in I) to some original value c;, € D¢, and then their high-level representations g7 ;
and z g ; are evaluated through Eq.

When £ is bijective (A1(c)), we can continue the rest of the proof assuming without loss of generality
that the similarity function sim is applied directly on top of the embeddings 7 ; and x ;.

By Al(a), Al(b), and the monotonicity of the log and exp function, note that Eq. [3|is minimized
when sim(« g ;, g,;) is maximized and sim(z g ;, ¢z 1) for ¢ # k is minimized.

Note that cz,; and cy, ; are placed in the same intravariable cluster if x5 ; = 2 g ;, and Eq. |3is
only applied when cy, ; and ¢y, ; are intended to be in the same intravariable cluster in the maximal
invariance clusters of I, since both ¢y, ; and cz, ; are transformations of ¢z, by some composition of
functions in I.

If cr; is in the same cluster as cz, ;, and it is not in the same cluster as any cz, . (A1(f)), then any
representation such that xy ; # xp ; or g ; = T g, can change this (Al(e)) to further optimize
Eq.|3} concluding the proof. [
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We note that there may be additional practical concerns not addressed by this proof. Notably,
optimization procedures are not perfect in practice, and they may not find a more optimal set of
representations just because they exist. The stochastic nature of batch optimization may affect this
as well. Nonetheless, the effectiveness of contrastive learning is generally well-understood (von
Kiigelgen et al.| 2021; Zimmermann et al., 2021).

Note that the above proof requires that ¢, ; is not in the same cluster as any cy, 5. In practice, this
is likely to be true for high-dimensional data settings such as with images, since it is unlikely that
any image (or transformation of one) is going to be identical to another image in the same batch.
Nonetheless, this may be a concern in discrete low-dimensional data settings. To understand the
limitations of Eq.[3] consider the following results.

Lemma 2. Ifz,y,c,d > 0 and y > dx, then

T +c x
> —. 18
y+dc "y (18)
Proof. Observe that
x(y+c)=zy+cy > zy+c(de) = z(y + cd), (19)
and (y + ¢) and (y + ¢d) can be divided from both sides to achieve the result. O

Corollary 4. Denote s; as exp(sim(z i,z ;)/T) and sy as exp(sim(z g, 2m,)/T). Denote
§* = max., ., sim(z, z;), achieved when z; = z;. Denote c = s* — s;, and let D be the indices of
k of the batch samples that are in the same cluster as cr,; (i.e., Xp 1, = T ; in the intended clusters).
Suppose Y ;.. p sk < dc. Then, the maximal invariance clusters minimize Eq.3|if >, s > ds;. B

Proof. For any particular set of representations, the loss of Eq.[3|can be written as
Sj
)
>k Sk
55

which is minimized when o is maximized. Forcing xg; = 2 ,; would result in the value of
% Sk

*

L(zp,xmj) = —log (20)

W where D represents the d values that are also forced into the same cluster. Now
kgD keD *

observe that

s* s*
> 2n
Zk¢D$k+ZkEDS* ZkSkerC
> 5 ¢ from Lem. 2] (22)
2ok Sk
il (23)

_stk.

Therefore, the new clusters with 2 ; = x ; is more optimal with respect to Eq. [3] than any
alternative set of clusters.

B EXPERIMENTAL DETAILS

This section provides detailed information about our experiments. Our models were implemented
primarily in PyTorch |Paszke et al.|(2017), and training was facilitated by PyTorch Lightning |[Falcon
and The PyTorch Lightning team|(2019).

The models in this paper are based on neural causal models, specifically G-constrained neural causal
models, defined below.

Definition 16 (G-Constrained Neural Causal Model (G-NCM) (Xia et al., 2021}, Def. 7)). Given a
causal diagram G, a G-constrained Neural Causal Model (for short, G-NCM) M (0) over variables V
with parameters @ = {0y, : V; € V} is an SCM (U, V, F, P(U)) such that

« U= {Uc : C € C(G)}, where C(G) is the set of all maximal cliques over bidirected edges
of G;
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« F = { fw : Vi € V}, where each fvi is a feedforward neural network parameterized by

Oy, € 0 mapping values of Uy, U Pay, to values of V; for Uy, = {(70 :UceUst Ve
C} and PaVi = Pag(‘é);

o P(U) is defined s.t. U ~ Unif(0,1) for each U € U. [ |

A G-NCM is a causal generative model that takes the form of a neurally-parameterized SCM, with
functions following the graphical structure of G. In particular, in the context of abstractions, we use
the representational version, defined below.

Definition 17 (Representational NCM (RNCM) (Xia and Bareinboim, [2024, Def. 11)). A representa-
tional NCM (RNCM) is a tuple (7, M ), where 7(vy,; ;) is a function parameterized by 6, mapping
from Vi, to Vg, and M is an NCM defined over V H. A Ge-constrained RNCM (Ge-RNCM) is an
RNCM (7, M ) such that 7 is composed of subfunctions 7¢, for each C; € C (each with its own

parameters OTci ), and Misa Gc-NCM (Def. . |

That is, a Gc-RNCM is an NCM constructed over the high-level representation V g7, which is learned
through neural paramerized functions 7, as discussed in Sec. [3]

B.1 VOTING EXPERIMENT
In this section, we discuss the experimental setup of the voting experiment in Sec.

B.1.1 DATA GENERATION

The SCM M* = My, = (U, Vy, Fr, P(UL)) that was used to generate the data for the experi-
ment can be described as

U ={Uxyz € [0, 1},UX S {0,1}37UZ S {0,1}3,UY € {0,1}}
\'%7 ={X €{0,1}3,Z € {0,1}3,Y € {0,1}}

X « Ux
}—L = Z(—UZ

M = (24)

Y + 1{sum(X) + sum(Z) > 3} & Uy ’

Usxy ~ Unif(O,l)-gUnif(O,l)
P(Uy) =(Ux,Uz ~ Bernoulli(Uxz)*
Uy ~ Bernoulli(0.1)

that is, the votes of X and Z are sampled independently according to a Bernoulli distribution with a
bias determined by Ux 7. Candidates 0 and 1 correspond to B and A respectively. Y indicates a win
for candidate 1 if the collected total votes is larger than 3, with Uy occasionally flipping the result
randomly. The C-DAG G is shown in Fig.[7(a).

The query of interest, P(Y = 1 | do(X = (1,1,1))), corresponding to P(Y = A | do(X =
(A, A, A))), is approximately equal to 0.855, which has a 0.105 error compared to the observational
P(Y | X) = 0.75.

B.1.2 IDENTIFIABILITY OF THE QUERY

Given observational data from P(V 1), which can be mapped to P(V g ) through 7, and the C-DAG
Gc in Fig. [T(a), the query P(Y | do(X)) can be shown to be identifiable. Specifically, backdoor
adjustment on Z can be applied, resulting in P(y | do(z)) = >, P(y | z, 2) P(2).

B.1.3 MODEL ARCHITECTURE

Both the original RNCM approach and contrastive RNCM approach follow the definition of Def.
For 7, applied to X and Z, a multilayer perceptron (MLP) is used with 2 16-dimensional hidden
layers, with ReLU activations and a 2-dimensional sigmoid output (i.e., constrained between [0, 1]).
For the original RNCM, which uses an autoencoder structure, an inverse 71 is used for each 7, also
an MLP with 2 16-dimensional hidden layers, ReLLU activations, and a 3-dimensional sigmoid output.
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For the NCM body, neural networks f X fZ, and fy are constructed to generate X, Z, and YV
respectively, following the graph Gc. f x and f 7 share a 12-dimensional exogenous input Ux z
sampled from Unif (0, 1)'2, and fy takes X, Z, and Uy ~ Unif(0,1)2. All three neural networks
are MLPs with 2 16-dimensional hidden layers, ReLU activations, and sigmoid outputs. f x and f A
are modeled to output the representations 7(X) and 7(Z), which take the form of [0, 1] and are
not rounded at inference time. Y is not mapped through a representation 7, so fy directly outputs
samples of Y, where the sigmoid outputs are rounded at inference time.

In training, NCMs are implemented using a generative adversarial approach (Goodfellow et al.|
2014). During the distribution-learning phase, the NCM serves as the generator, while a separate
discriminator (or critic) network is used to compare fake generated samples with the real samples
from the data. In this experiment, the discriminator is an MLP with 2 32-dimensional hidden layers,
ReLU activations, and real-valued outputs, which takes the entirety of V g as input.

In all MLPs, we apply layer normalization after each hidden layer (Ba et al., 2016). All weights are
initialized via Glorot initialization (Glorot and Bengio} 2010). Hyperparameters are largely chosen
based on recommendations from prior works, but similar hyperparameters flexibly provided similar
quality results.

B.1.4 EXPERIMENTAL PROCEDURE

In the experiment procedure, first, low-level data is generated from the data-generating model from
Sec.[B.I.1] The model is then instantiated according to Sec.[B.1.3] A two part training phase is used,
as described in Sec.[3l

In the first phase, the representation networks 7 are trained. In each epoch, the dataset is passed in
batches of 256 through a forward pass through the 7 functions to obtain the representations Xz and
Zp . For the contrastive RNCM, the loss in Eq. [3]is computed for the representations (the projection
head h is not used for this experiment). In this case, the set of structural invariances I contains a single
function g in which g(xz,) outputs a permutation of x,. For the original RNCM, a reconstruction
loss is applied leveraging 7~ !. That is,

L(Xp) = d(7 ' (7(XL)), X1), (25)

where d is a distance metric (MSE is used in this work). The loss is then backpropagated, and the
weights are updated using the Adam optimizer (Kingma and Ba, 2015). A learning rate of 10~% was
used, and the procedure is run for 200 epochs. A temperature value of 7' = 0.01 is used for the
contrastive RNCM.

In the second phase, the NCM is trained to fit the high-level observational data P(V ). In each
epoch, a fake and a real batch of 128 samples are generated. The real batch is sampled from the
data, while the fake batch is generated from the NCM through a forward pass of the NCM functions.
Both batches are passed through the discriminator, and both the NCM and the discriminator are then
trained using the Wasserstein GAN loss (Arjovsky et al., 2017). A learning rate of 10~ is used for
the NCM, while 2 x 10~* is used for the discriminator. The procedure is run for 200 epochs.

After models are trained, they are evaluated on the query P(Y = 1 | do(X = (1,1,1)), corre-
sponding to the query P(Y = A | do(X = (A, A, A)). The NCM is evaluated on 10> Monte-Carlo
samples of the query, sampled via Def. The ground truth is sampled similarly but from the
data-generating model.

We reran this procedure for different sample sizes n € {103,103, 10%, 10} and reran each setting
10 times, displaying 95% confidence intervals for the 10 trials. The results are shown in Fig.

The trials of this experiment were run on Nvidia H100 GPUs, requiring approximately 100 GPU
hours.

B.2 PNEUMONIA EXPERIMENT

In this section, we discuss the experimental setup of the pneumonia experiment in Sec.
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Figure 9: (a) Classification accuracy of a linear model trained to predict image labels, using either
the contrastive-learning embeddings (blue) or the autoencoder embeddings (orange). (b) Mean
absolute error (MAE) of the interventional query P(Y | do(X), I) for the proposed contrastive
learning approach (blue) versus the original RNCM (orange), evaluated across different embedding
dimensionalities. All results are based on N = 10 experimental runs and are summarized as box
plots.

B.2.1 ADDITIONAL RESULTS

To corroborate the findings presented in Fig. [8] we repeated each experiment N = 10 times and
summarize the outcomes as box plots in Fig.

To evaluate the quality of the learned encoders, we extracted embeddings for every image in the
PneumoniaMNIST dataset |[Kermany et al.| (2018);|Yang et al| (2021} [2023) and fit a linear classifier
to predict the presence of pneumonia using the dataset’s ground-truth labels. The resulting accuracies
are shown in Fig.[9(a).

B.2.2 DATA GENERATION

For our pneumonia experiment, we generate synthetic training data from an SCM

M* =My =(Up,V,Fr, P(UL)) which can be described as follows

vV, ={I,5X,Y}

Up ={Urs,Usx, Uy}
I+ h(U[S)
5 —c(I) A ((Usx < 0.75) V (Usx > 0.90))

— (SA((Uy < 0.25) v (U; > 0.75)))
M = 7 o V(=S A ((Uz < 0.35) & (U > 0.45))) . (26)
L (e(I)=1AS=1AX=0)

y o | ATAD=IAS=0AX=00 g9
A=(c(I)=0AS=0AX=1) o
A=(c(I)=0AS=1AX=1)

P(Up) = {Uss,Usx,Uy ~U[0,1]

Here, @ denotes the logical XOR operator. The function ¢(I) returns the binary class label corre-
sponding to the presence of pneumonia in the image I, i.e., ¢(I) € {0,1}. The function h(Us;s)
randomly selects an image from class 0 if Uyg < 0.5, and from class 1 otherwise.

Therefore, each data point corresponds to a patient associated with an X-ray image of their lungs I.
Based on this image, a binary symptom variable S is inferred, indicating whether the patient exhibits
pneumonia symptoms. Depending on the presence or absence of symptoms, the patient might receive
treatment X . There is unobserved confounding between I and X, as well as between S and X.
Finally, a binary outcome variable Y indicates whether the patient recovered within a month, and it is
a function of I, S, and X.

To generate syntetic data from M*, we use the Pneumonia-MNIST dataset introduced in Kermany
et al. (2018);|Yang et al.| (20215 2023), which provides X-ray images and corresponding binary labels.

22



Under review as a conference paper at ICLR 2026

These images serve as a base for generating synthetic data using M*. The corresponding C-DAG G¢
is shown in Fig. [§(b).

B.2.3 MODEL ARCHITECTURE

Both the original RNCM and the contrastive RNCM approach follow the structure defined in Def.
In both cases, an abstraction function 7 is learned to map the low-level image variable I to its
high-level representation E = 77(I).

For the original RNCM approach, the abstraction function 7 is learned jointly with its inverse 7!

using an autoencoder. The encoder consists of two convolutional layers with 64 and 128 channels,
respectively, each followed by a ReLLU activation and max-pooling. The resulting feature map is
flattened and passed through two fully connected layers to produce the final embedding. The decoder
reverses this process, starting with two fully connected layers to reshape the embedding, followed by
two transposed convolutional layers that reconstruct the input image. During training we minimize
the mean squared error between the input and its reconstruction.

In the contrastive RNCM approach, 7 is learned using the unsupervised contrastive learning objective
from Eq.|3| Each image is augmented twice using random resized cropping and discrete rotations,
with the resulting views forming a positive pair. The encoder consists of three convolutional layers
with increasing channel widths (64, 128, 256), each followed by a ReLU activation and max-pooling.
After the convolutional blocks, a dense layer converts the pooled feature maps into a fixed-size vector.
This vector is then passed through a projection head consisting of two sequential dense layers with a
ReLU activation between them to produce the contrastive embedding. Finally, we £2-normalize these
embeddings before computing the contrastive loss.

To train the structural functions F in the GAN-RNCM, we adopt an adversarial training setup in
which the generator represents the structural functions of the causal model, and a discriminator (critic)

distinguishes real from generated samples|Goodfellow et al.{(2014). Each function in F is modeled
as a fully connected MLP with ReLLU activations and a hidden dimension of 128. The generator is

composed of five separate networks, namely fg, fs, fx, ff,mb, and fy.

fE maps a 2-dimensional noise vector U; to logits over discrete indices into a learned table of image
embeddings, using Gumbel-softmax sampling with a temperature of 7 = (0.5 to enable differentiable
index selection. Rather than generating embeddings directly, fE produces indices, a design choice
we justify in the following paragraphs. fs takes the selected image embedding and a second 2-
dimensional noise vector Us as input, and is implemented as a 3-layer MLP. fx receives Uy, Us, and
S, and is modeled as a 2-layer MLP. The image embedding is projected intoAa lower-dimensional

space using f , a 4-layer MLP that outputs a 4-dimensional representation. fy takes the projected
embedding, X and S, and an additional noise vector Uy as input, and is implemented as a 3-layer
MLP. The discriminator is a fully connected MLP with two hidden layers of width 128, using ReLU

activations. Spectral normalization (Miyato et al.|[2018) is applied to each linear layer.

emb

As described in Sec. our experiment involves performing interventions on real images from the
dataset. Consider, for example, a query () that requires intervening on a specific image /. Given
that () is admissible, we aim to estimate it using the trained GAN-RNCM model. This is achieved
through the mutilation procedure described next.

The standard inference process in GAN-RNCM involves sampling the noise variables U, Us, and
Uy, and then generating all variables in the SCM using the learned structural functions. However,
to model an intervention on the image variable, we override the output of the image generator f E
with 77(Iy). This ensures that all downstream components of the GAN-RNCM operate on the
specific intervention-defined embedding. This procedure can be extended to more variables as needed,
depending on the structure of the query (). For further details on the mutilation approach, we refer
the reader to prior work (Xia et al., [2023}; |Xia and Bareinboim, 2024).

In practice, however, we observed that this form of intervention introduces distribution shift. Specifi-
cally, the embeddings produced by the generator during regular training differ significantly from those
injected during mutilation, which are derived from real images. This discrepancy negatively affects

the reliability of downstream functions such as fs and fy when used on out-of-distribution inputs.
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To address this, we avoid training the generator to produce image embeddings directly. Instead, we
associate each training image with a unique index. During training, the generator is modified to
produce such indices instead of actual image embeddings. When downstream functions (e.g., fs,
fy) require the image embedding, we retrieve the embedding corresponding to the generated index.
This ensures that all image embeddings passed to the structural functions during both training and
inference correspond to real images, thereby eliminating the distribution shift described previously.

Although this approach restricts the generator from producing entirely new image embeddings,
this limitation is acceptable for our experimental setup since we are only interested in evaluating
interventional queries that intervene on image embeddings.

B.2.4 EXPERIMENTAL PROCEDURE

To evaluate the performance of the GAN-RNCM pipeline, we conduct experiments on the Pneu-
moniaMNIST dataset Kermany et al.| (2018); |Yang et al.[ (2021} 2023). The dataset is originally
imbalanced, with 1,214 images in the minority class and 3,484 in the majority class. To construct a
balanced dataset, we randomly subsample 1,214 images from the majority class, resulting in a total
of 2,428 images with equal class representation.

Using these images and their associated class labels, we generate synthetic training data following
the procedure in Sec. From the resulting dataset, we set aside 228 examples (approximately
10%) as a test set. The test set is balanced across class labels, with 50% positive and 50% negative
pneumonia cases. The remaining 2,200 examples are used for training.

As described in Sec. we train two variants of the RNCM model, one using representations
learned via unsupervised contrastive learning, and the other using representations from an autoencoder
baseline. For each representation type, we train models with embedding dimensionalities of 4, 8, 16,
and 32. In both cases, the encoder is trained for 25 epochs using the Adam optimizer Kingma and Ba
(2015) with a learning rate of 3 x 10~—* and a batch size of 32. For contrastive learning, we use the
loss from Eq. [3| with a temperature parameter of 7' = 0.1. The autoencoder baseline is trained using
a mean squared reconstruction loss.

In the second phase of training, the GAN-RNCM is optimized to approximate the high-level ob-
servational distribution P(V ). During each epoch, two batches of data are prepared. The real
batch is sampled directly from the training data, and the generated batch is created by sampling noise

variables and passing them through the generator, which consists of the structural functions F.

Both the real and generated batches contain 1,024 samples and are passed to the discriminator. The
discriminator is trained to assign higher values to real samples and lower values to generated samples.
At the same time, the generator is trained to produce samples that are indistinguishable from real data
based on the discriminator’s output. This procedure follows the WGAN-GP framework (Gulrajani
et al.l [2017)), which regularizes the discriminator through a soft penalty on the gradient norm to
enforce a relaxed Lipschitz condition.

The training alternates between updating the generator and the discriminator. For each generator
update, the discriminator is updated twice. Optimization is performed using the Adam optimizer
(Kingma and Bal [2015)). The learning rate for the generator is set to 2 x 10~°, and the learning rate
for the discriminator is set to 1 x 10~°. This training procedure is repeated for a total of 5,000 epochs.
All parameters of the generator and discriminator are updated jointly throughout this phase.

In practice, we observe that training the GAN-RNCMs benefit from incorporating a supervised loss
signal with the original adverserial loss. Specifically, at the beginning of each epoch, we perform a
supervised update for the structural functions fs, f x, and fy using real data from that epoch. Let
E., S, X,, and Y, denote the real values of the variables F, S, X, and Y/, respectively. We then
minimize the following supervised losses:
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Ly =Ep,s,.0. |CE (fs(B,.U2), 5, )], )
L3, = Es, x,0n0, |CE (fx (80, Un,U2), X, ) 28)
Ly =Eg s, x,.v..Uy [CE <fY(Er7 S, X, Uy ), Yrﬂ ; (29)

where CE denotes the cross-entropy loss and Uy, Us, and Uy are the i.i.d. noise variables from the
definition of the SCM M™. We optimize these supervised losses using the Adam optimizer Kingma
and Ba (2015) with a fixed learning rate of 103,

To evaluate each trained model, we estimate the interventional query P(Y =1 | I = Iy, do(X = z))
for every image Iy in the test set and for both values = € {0, 1}. Each estimate is computed using
10* Monte Carlo samples from the trained model. As we will show, this query is identifiable and has
a high-level counterpart P(Y =1 | E = 77(1j),do(X = z)), which can be estimated directly using
the learned generative model.

The identifiability follows from an application of Rule 2 of the do-calculus Pearl| (2000):
P(Y=1[I=1Ipdo(X =2)) =Y P(Y =1|I=1I,do(X =x),5=5)-P(S=s|1Io)

=Y PY=1|I=I),X=x,8=s)-P(S=s5|I).

Now, one could further apply Rule 2 to obtain:
P(S=s|I=1y) =P(S=s]|do(I =1Ip)),
PY=1|I=1p,do(X =2),S=5)=P(Y =1]|do(I =1I),do(X = z),do(S = s)),
which can both be estimated using the mutilation procedure described in Section However,
following the analysis in (Xia et al. 2023 Appendix B.2), we find that estimating the nested

counterfactual P(Y =1 | do(I = I),do(X = z)) directly tends to yield lower error, likely due to
avoiding the accumulation of error across multiple estimates.

The quality of each model is assessed by computing the mean absolute error between the estimated
and ground truth interventional probabilities, averaged over all test samples. Each configuration is
evaluated over 10 independent runs, and results are shown in Fig.[9]

C ADDITIONAL EXAMPLES
This section contains additional examples that supplement the main body.

C.1 EXAMPLES FOR SEC.[2|

Table|l{shows examples of structural invariances (Def.[/) for different tasks.

Consider the following example for a more nuanced understanding of maximal invariance clusters
relative to a given set of structural invariances.

Example 6. Suppose in a company, there are four employees (X1, X5, X3, X4) who are each trying
to decide if they wish to work on project A or B (i.e., X1, X0, X3, X4 € {A, B}). Suppose we
would like to cluster the decision of the four employees into a single variable X 7, and now the goal
is to learn an intravariable clustering of the 16 possible values of the joint tuple (X1, X2, X3, X4).
These variables impact the eventual project direction of the company (Y € {4, B}).

To proceed, we must ensure that any two values that are clustered together would not be ambiguous

for deciding Y (violating the AIC). Suppose we are given the information that X; is a higher-ranked

employee than X; for ¢ > j, and a higher-ranked employee overwrites the decision of a lower-ranked
employee. This can be represented by the structural invariance

(X23X2aX37X4) (b

g((X17X23X37X4)a¢) = (X17X37X37X4) (b

(X1, X0, X4, X4) ¢

2
3, (30)
4
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Name | Function Description | Mlustration
¢

. . i dering of the dimen-

Permutation Invariance g‘(x, ¢) 18 areor g ot the din
sions of x specified by indices in ¢ 'Y Y
8
Temporal Invariance g(x¢, ) = x4 for time step ¢ 2
t = Ti+¢
’ 0 +oo|—g>\oo| Xl

Rotational Invariance g(i, ¢) rotates image i by ¢ radians

g(i, ¢1, ¢2) zooms image i by ¢1

Scale Invariance . .
amount and crops it to region ¢o

Translational Invariance | ¢(%, ¢) pans image i by ¢ pixels

Table 1: Examples of invariances and their corresponding structural invariance functions. Many
invariances are specifically applicable to the image setting, such as the bottom three on this table.

where ¢ € {2, 3,4} represents an index of X. For example, g((4, B, A, B),2) = (B, B, A, B),
indicating that X; will take the value of Xy = B even if X; was originally A.

Suppose I = {g} and D is the maximal invariance clusters of I. Under the definition of maximal
invariance clusters, it is therefore the case that (A, B, A, B) and (B, B, A, B) are in the same
cluster of . However, note that g is not reversible in this case (i.e., there is no ¢ such that
g9((B,B,A,B),¢) = (A, B, A, B).

Interestingly, note that g((B, B, A, B),4) = (B, B, B, B), putting (B, B, A, B) and (B, B, B, B)
in the same cluster in D as well. This implies that (A4, B, A, B) and (B, B, B, B) are in the same
cluster despite the lack of direct connection through g in either direction (i.e., there is no ¢ such
that g((A, B, A, B),¢) = (B,B,B,B) or g((B,B, B, B),¢) = (A, B, A, B)). Hence, to fully
evaluate whether two values are in the same cluster, it must be checked whether there is a path that
connects the two values through some series of applications of functions in I, in either direction. W

D DISCUSSION

This section includes additional discussion points for this work.

D.1 LIMITATIONS

The results in this work, both theoretical and empirical, are limited by the validity of the assumptions.

Naturally, the most prominent assumption in this paper is the availability of invariance information,
with the properties described in Def. [7] Without this information or any other types of assumptions,
no set of intravariable clusters can be learned without potentially violating the AIC, as described by
Prop. m Furthermore, it is possible that the set of available structural invariances, I, does not contain
that much helpful information. If the functions are not flexible in terms of mapping to different values
given the parameterization ¢, it is possible that the corresponding maximal invariance clusters are
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still quite fine. Nonetheless, this is the crucial assumption that allows the applicability of the methods
of this paper. If this assumption cannot be met, then it is recommended to find alternative solutions to
navigate the AIC. Still, this assumption is quite reasonable in any setting in which invariances are
naturally assumed to hold anyways, such as rotational invariance in image settings.

In the context of causal abstraction inference, identification of causal queries is crucial for guarantee-
ing that the causal queries can be inferred from the available information. Notably, the assumption of
a graphical model such as the C-DAG G is necessary to avoid issues regarding the Causal Hierarchy
Theorem (Bareinboim et al.||2022)). Without graphical assumptions (or sometimes even with graphical
assumptions), non-identifiability of the desired query would pose a significant issue. Alternative
solutions are possible, such as using weaker assumptions for structural learning, or bounding the
query rather than precise identification. Still, it is generally the case that the set of inferrable results
grows in proportion to the strength of the assumptions.

For contrastive learning, notably Thm. [2] proper representation learning requires a diverse batch such
that equivalent values are always compared similarly and different values are always contrasted apart.
That is, in the ideal case, any pair of values intended to be in the same cluster will eventually be
compared as 7 ; and w7 ; in Eq. E], while all other values in the batch are intended to be in different
clusters. It is possible that this ideal case is violated, but the maximal invariance clusters are still
achieved, as shown in Corol.[d] In higher-dimensional cases like with image data, it is more likely
that this is not an issue, since it is unlikely that two different samples in the same batch belong in
the same cluster, and a representative set of samples from the invariance functions will eventually be
achieved with sufficient training.

Finally, in the context of empirical training, it is always a possibility that training may have issues
converging, either due to low compute, underparameterization, or difficulties with gradient-based
optimization. This can occur both in the representation training phase and in the generative modeling
phase. Failures in the representation training phase are more forgiving, since with a sufficiently
large representation dimensionality, this would simply mean a finer set of clusters, which while not
ideal, would not violate the AIC. Failures in the generative modeling phase may result in incorrect
inferences, but the inferences are guaranteed given proper fitting of the available data, so it is crucial
in this phase to ensure that the given data distribution is fitted properly.

D.2 MoSsT OPTIMAL CLUSTERS

We note that the maximal invariance clusters given the domains of Dy, and a set of structural
invariances I is unique, shown straightforwardly in the following result.

Proposition 2 (Maximal Invariance Clusters Uniqueness). The maximal invariance clusters D of a
set of structural invariance 1 are unique.

Proof. Assume for the sake of contradiction that D and I’ are two different sets of intravariable
clusters that are both maximal invariance clusters of I. Then there must be some set of values
c1,Co € D¢ for some intervariable cluster C € C such that c, and c; are in the same cluster in one
of D and I/ but not in the other. Assume without loss of generality that they are in the same cluster
in D. The presence of the two values in the same cluster would imply (by Def. [§)) that there exists a
sequence ¢; = Cg4,C2,C3,...,CN = Cyp such that for each £ € {1,..., N — 1}, there exists gé and
some ¢, € Dy, such that either g& (c¢, ¢r) = coq1 0 g& (Coy1, Pr) = c¢. If this is true, then D’
is not a maximal invariance cluster of I. Otherwise, ID is not a maximal invariance cluster of I. [

One interesting consequence of this result is that there is a unique set of intravariable clusters that is
most optimal given an SCM specification.

Proposition 3 (Most Optimal Clusters). Given an SCM M, there is a unique set of intravariable
clusters D* such that the AIC is not violated, and all coarser clusters do violate the AIC. Moreover,
these clusters are the maximal invariance clusters of structural functions I, where I = {gg,, : C; € C}
such that for any two ¢, ¢z € Dg;, ¢1 = g¢, (c2, ¢c, ) if and only if Eq. holds.

Proof. We first note that any set of clusters other than D* that is not finer than D* (including all
coarser clusters) will violate the AIC. Consider an alternative cluster D', which must contain two
values c¢1,cy € D¢ for some C € C that are in the same intravariable cluster in D’ but not in ID.
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However, this implies that two values for which Eq.[I]do not hold are clustered together, which
violates the AIC by definition.

The uniqueness of D* is guaranteed by Prop. 2] completing the proof. O

This result is interesting as it implies, in a sense, a lower bound on the size of possible clusters that
do not violate the AIC. Even with the most precise set of structural invariances, there are limitations
based on the complexity of the SCM functions.

D.3 OTHER RELATED WORKS

This paper makes a contribution in the direction of leveraging state-of-the-art representation learning
techniques in causal contexts, using the theory of causal abstraction inference. This is not to be
confused with disentangled causal representation learning (von Kiigelgen et al., 2021} [Shen et al.,
2022} Brehmer et al.,2022; Varici et al., 2023} |Ahuja et al., 2023 |Squires et al.| 2023 Wendong et al.
2023} [Wang and Jordan 2024; Zhang et al., [2024; |L1 et al., [2024)), which is a well-studied subtopic
of causal representation learning (Scholkopt™ et al., [2021)). The goal of such works is to discover
high-level causal variables from available data where the mapping between data and variables are not
immediately clear due to entanglement. Given the underspecification of such a challenging task, such
works often require assumptions to avoid identifiability issues, including assuming availability of
high-level variable labels, working in parametric spaces, or having the ability to perform interventions.
In contrast, this paper works in the setting where the high-level variables are understood to be a
constructive abstraction of the low-level variables in the data, and transformations are based on
invariance information. There is no disentanglement of causal variables required.

We note that the concept of inter- and intravariable clusters is not to be confused with inter- and
intraclass scatter (Vasilescul, [2024). While inter- and intravariable clusters describe the relationships
between multiple variables and their values, inter- and intraclass scatter describes the variance
comparing features with a label. Nonetheless, maximizing the ratio of interclass scatter to intraclass
scatter may be helpful for learning invariant representations in cases where the causal structure
involves several features pointing to a single important label.

While this work considers the most fundamental form of the AIC in Def. [5] there may be relaxed
definitions that are easier to achieve and verifiable from data. An example is|Chalupka et al.|(2015)),
which shows that, in a confounded image recognition setting, one can achieve a set of clusters that
almost always satisfies an interventional version of the AIC provided that it satisfies the observational
version. This is described in more detail in Xia and Bareinboim| (2024, App. D.2).
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