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ABSTRACT

The growing ecosystem of Large Language Models (LLMs) with diverse capabili-
ties and costs has motivated the need for LLM routing systems that dynamically
select the most appropriate model for each query. Evaluating these routing systems
is important yet inherently challenging due to the complex interplay of multiple
factors: the selection of representative input queries, the composition of the model
pool, and the definition of comprehensive evaluation metrics for optimal routing
decisions. Through extensive analysis of existing benchmarks, we identify critical
limitations that may lead to incomplete results and/or misleading conclusions about
router performance: (1) limited task diversity, (2) imbalanced model pools, and (3)
oversimplified evaluation methodologies. To address these limitations, we propose
a novel evaluation framework that incorporates diverse task distributions (33,337
queries across 68 categories), a balanced model pool of 85 models with complemen-
tary model strengths, and multi-faceted metrics that reflect real-world deployment
scenarios. We implement this framework as an open-source benchmark, enabling
researchers to rigorously assess routing strategies under realistic conditions. The
code and dataset are shared anonymously at: https://anonymous.4open.
science/r/rethinking-routing-evaluation-DE30

1 INTRODUCTION

Large Language Models (LLMs) are proliferating rapidly, resulting in a growing ecosystem of models
with diverse parameter scales, capabilities, and computational costs (Varangot-Reille et al., 2025;
Feng et al., 2025; Li, 2025). While this diversity offers rich options for model selection, it also raises
a key question: which model best achieves the desired performance while minimizing cost? Today,
a common practice is to use a single model to handle all requests. However, this approach faces
inherent trade-offs between performance and cost, as no LLM is universally optimal. For example,
massive models like GPT-4 excel at complex reasoning but are significantly more costly than smaller
alternatives such as Mixtral-8×7B (Jiang et al., 2024) or Llama-3.1-8B (Grattafiori et al., 2024).
Meanwhile, domain-specialized models often outperform general-purpose ones within their specific
areas of expertise (Yang et al., 2024; Tu et al., 2024).

To address this, LLM routing systems (shown in Figure 1) have been proposed to dynamically
select the most appropriate model for each query, matching query characteristics to model strengths
while optimizing costs (Feng et al., 2025; Varangot-Reille et al., 2025; Li, 2025; Dekoninck et al.,
2025; Stripelis et al., 2024; Wang et al., 2025; Diamond; NVIDIA). To design effective LLM routers,
rigorous evaluation becomes especially crucial (Hu et al., 2024; Huang et al., 2025). Routing
decisions directly impact user experience and system cost-efficiency, yet the complexity of query-
model matching makes it difficult to reason about routing strategies analytically. Moreover, the
rapid evolution of LLMs demands continual reassessment of these strategies. Without a standardized
evaluation framework (Hu et al., 2024; Huang et al., 2025), it is challenging to compare different
routing approaches, identify weaknesses, or confidently deploy systems where substantial costs and
user satisfaction are at stake.

However, evaluating LLM routers is inherently challenging, as optimal routing decisions are
context-dependent and shaped by specific priorities and constraints, such as cost, latency, and accuracy.
Therefore, to build an effective evaluation framework that assesses router optimality across diverse
scenarios, we must comprehensively consider the requirements from three core components of an
LLM routing system: input queries/tasks, model candidates, and routing evaluation methodologies.
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First, it requires carefully chosen input queries that reflect realistic usage patterns, encompassing a
diverse range of tasks with varying levels of difficulty. Second, it requires a thoughtfully composed
model pool that is sufficiently large and diverse—capturing variations in capabilities and costs—to
enable meaningful routing decisions. Third, it requires effective evaluation methodologies that
capture the multifaceted nature of routing performance, such as cost–performance trade-offs, latency
constraints, and task accuracy.

Unfortunately, our extensive analysis of existing evaluation benchmarks, including RouterBench (Hu
et al., 2024), LLM-Blender (Jiang et al., 2023), and EmbedLLM (Zhuang et al., 2024), reveals that
current evaluation frameworks suffer from three fundamental shortcomings. (1) Limited task diversity:
They often rely on artificially constructed tasks that fail to capture the complexity, diversity, and
distribution of real-world queries. (2) Imbalanced model pools: They use imbalanced model sets
where one model consistently outperforms others across all tasks, making routing decisions trivial.
(3) Oversimplified evaluation methodologies: Many evaluations prioritize accuracy and aggregate
metrics. While cost-aware analyses exist (e.g., ROUTERBENCH) and recent work proposes explicit
cost–performance trade-offs, important aspects like routing-rate trade-offs, robustness under domain
shift, and latency-awareness remain under-explored in a unified framework. Our work complements
existing efforts by adding these facets.

These limitations underscore the urgent need for a more comprehensive and effective evaluation
framework. In response, we introduce RouterBench+, a new, well-designed, and open-source bench-
mark that addresses these critical gaps and establishes a new standard for LLM routing evaluation.
Our solution includes: (1) a specialist-score-based task sampling method that creates a diverse
set of 33,337 queries across 68 categories, (2) a similarity-aware greedy model pruning and
extension strategy that yields a balanced pool of 85 models with complementary strengths, and (3) a
comprehensive evaluation methodology combining classification-based and routing-rate paradigms
with explicit Out-of-Distribution (OOD) testing. Using our evaluation pipeline, researchers can
rigorously assess routing strategies under realistic conditions and make informed decisions about
model selection trade-offs. We summarize our contributions as follows:
• A systematic analysis of LLM routing evaluation requirements and key limitations in existing

benchmarks, showing how current approaches overlook real-world challenges and can lead to
misleading conclusions about router performance.

• A comprehensive evaluation methodology that includes three key aspects: diverse task distributions
reflecting realistic query patterns; balanced model pools that avoid single-model dominance; and
multi-faceted evaluation metrics that capture complex constraints and trade-offs.

• An open-source, extensible evaluation platform that implements our methodology, enabling rigorous
routing evaluation under realistic conditions and helping toward designing optimal LLM routers.

2 PRELIMINARY: LLM ROUTING AND ITS IDEAL EVALUATION

2.1 FORMALIZATION OF LLM ROUTING AND OPTIMIZATION PROBLEM

An LLM routing system dynamically assigns a user query to the most suitable model from a pool of
available LLMs under certain constraints. The system consists of:

Input: A user query p ∈ P , represented by a query embedding p ∈ Rd.

Model Pool: A set of LLMs M = {m1,m2, ...,mn} with per-query ground-truth quality qi(p)
under the benchmark metric and per-query cost ci(p) (e.g., parameters, tokens, latency, or USD when
available).

Routing Function: A routing function R : P → M that selects a model m∗ = R(p) for each input.
This may be deterministic or probabilistic, outputting a distribution s(p) over M.

Routers are trained to estimate per-query quality q̂i(p) (or confidence) for model mi given p. We
distinguish two objective views for clarity:

(1) Per-query selection at a quality threshold. Given a target quality threshold T , select the cheapest
model meeting the threshold or, equivalently, maximize estimated quality:

m∗ = arg min
mi∈M

ci(p) s.t. q̂i(p) ≥ T or m∗ = arg max
mi∈M

q̂i(p). (1)
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Figure 1: An illustration of LLM routing systems. An ideal LLM router should choose the model
with highest expected performance under the specified constraints like costs.

(2) Budgeted performance over a distribution of queries. Under a budget B, optimize a (possibly
stochastic) policy s to maximize expected ground-truth quality while respecting expected cost:

max
s

Ep∼P

[ n∑
i=1

si(p) qi(p)
]

s.t. Ep∼P

[ n∑
i=1

si(p) ci(p)
]
≤ B. (2)

In our experiments, we train using q̂i(p) surrogates and evaluate with qi(p). We report deferral curves
for (2) across budgets and routing-rate trade-off curves for fixed small/large pairs.

2.2 IDEAL ROUTER EVALUATION

Figure 1 illustrates the architecture of an LLM routing system. An effective router should direct
each query to the model with the highest expected performance while satisfying specified constraints
like costs. To evaluate router performance and guide their design toward optimality, an effective and
comprehensive evaluation framework is essential. However, designing such an evaluation framework
presents inherent challenges. Unlike evaluating LLM performance—where each query can be
assessed against a common ground truth—optimal routing strategies are highly context-specific. They
depend on specific priorities and constraints, such as cost, latency, and accuracy. Even for the same
query, the optimal routing decision may vary under different constraints.

To address these challenges, we return to the first principles by reconsidering what constitutes a “good
router.” We argue that ideal router evaluation should comprehensively assess routing strategies across
diverse constraints and scenarios, providing clear differentiation between effective and suboptimal
approaches. To this end, we distill three key requirements for a robust evaluation framework, which
we examine in detail in the following sections.

• Rich and realistic queries. The task distribution should be diverse and representative of real-world
usage, spanning various domains and difficulty levels. It should include both common and rare
query patterns to evaluate router performance on familiar cases as well as unseen scenarios.

• Diverse and balanced models. The model pool should avoid single-model dominance, ensuring that
each model has distinct strengths and weaknesses. It should include a mix of general-purpose and
domain-specific models to ensure that routing decisions have a meaningful impact on performance.

• Comprehensive evaluation metrics. The evaluation framework should assess router effectiveness
under varying constraints, capture trade-offs among performance, cost, and latency, and include
OOD queries to evaluate robustness.

3 RELATED WORK

LLM Model Selection and Routing. Intelligent LLM routers have emerged to route queries across
diverse models to balance performance, cost, and latency (Feng et al., 2025; Varangot-Reille et al.,
2025; Li, 2025; Yue et al., 2025; Zhang et al., 2025a). System-level cost-aware usage frameworks
include FrugalGPT (Chen et al., 2023) and EcoAssistant (Zhang et al., 2023). Preference-data
and contrastive approaches learn routing policies directly from feedback (Ong et al., 2025; Chen
et al., 2024). Routing strategies can be categorized as predictive and non-predictive (Varangot-
Reille et al., 2025; Hu et al., 2024). Predictive approaches include classification based on prompt
features (Srivatsa et al., 2024), graph-based methods (GraphRouter (Feng et al., 2025)), dynamic
routing (MixLLM (Wang et al., 2025)), and multi-armed bandit formulations (LLM Bandit (Li, 2025)).
Non-predictive methods include cascading, while hybrid approaches like Cascade Routing (Dekoninck
et al., 2025) combine routing flexibility with sequential processing. Frameworks like TensorOpera
Router (Stripelis et al., 2024) further enhance multi-model inference efficiency. The proliferation
of LLM routing methods has produced the requirement for effective router evaluation (Chen et al.,
2024; Lu et al., 2024; Zhang et al., 2025b; Chuang et al., 2024).

3
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Benchmarks for Multi-LLM Systems. Several benchmarks have been developed to evaluate routing
strategies. RouterBench (Hu et al., 2024) provides a framework with inference outcomes across
models and tasks (Dekoninck et al., 2025; Wang et al., 2025). EmbedLLM (Zhuang et al., 2024)
introduces compact vector embeddings for efficient model selection. MixInstruct (Jiang et al., 2023)
offers a mixture-of-instructions dataset with a two-stage ensembling approach. RouterEval (Huang
et al., 2025) presents a large-scale benchmark with over 8,500 models and 200 million routing
records. CARROT (Somerstep et al., 2025) proposes cost-advantage trade-off curves to quantify
accuracy versus cost explicitly. Additional related work includes RouteLLM (Ong et al., 2025) and
RouterDC (Chen et al., 2024). Shnitzer et al. (Shnitzer et al., 2023) discuss dataset construction for
routing. These benchmarks are crucial for developing robust routing systems that enable cost-effective
LLM deployment (Feng et al., 2025; Srivatsa et al., 2024; Varangot-Reille et al., 2025; Li, 2025).

Despite the growing body of work on LLM routing techniques and benchmarks, we identify a critical
gap: the evaluation methodology itself has not been systematically examined. Even the most
comprehensive and recently released benchmarks, such as RouterEval (Huang et al., 2025), primarily
aggregate large volumes of data and models without addressing fundamental flaws in evaluation
design. This paper fills that gap by critically analyzing current evaluation practices and providing
concrete recommendations for improvement. In the following sections, we systematically examine
the assumptions underlying current practices in query distribution, model selection, and evaluation
metrics, highlighting how they can lead to misleading conclusions about router performance.

4 RETHINKING CURRENT EVALUATION PRACTICES

This section examines current LLM routing evaluations, beginning with an overview of our method-
ology. We then analyze the three core components of a routing system: tasks, models, and evaluation
metrics. For each component, we (a) explain the underlying assumption or practice, (b) describe our
experimental setup, including the dataset or benchmark used, and (c) present and discuss the results,
highlighting what they reveal about the assumption.

4.1 EXPERIMENTAL SETUP

Benchmark & Datasets. We evaluate routing performance using three widely used benchmarks:
EMBEDLLM (Zhuang et al., 2024), ROUTERBENCH (Hu et al., 2024), and MIXINSTRUCT (Jiang
et al., 2023).

Routing Methods. The state-of-the-art LLM routing approaches can be broadly categorized into
two groups: clustering-based methods, such as K-Means (Jitkrittum et al., 2025), K-NN (Hu et al.,
2024); and learning-based methods, including MLP (Hu et al., 2024) and Collaborative Filtering
(Matrix Factorization) (Zhuang et al., 2024). Additionally, we include two reference baselines to
provide contextual performance benchmarks: a Heuristic Router, which routes all queries to the
model with the highest average training accuracy within the allowed cost, and an Oracle Router,
which serves as an upper bound by assuming access to ground-truth model performance at test time.

Evaluation Metrics and Deferral Curve. We evaluate routing performance on each bench-
mark using its corresponding evaluation metrics. For ROUTERBENCH (Hu et al., 2024) and EM-
BEDLLM (Zhuang et al., 2024), each LLM either answers a query correctly or not, producing a
binary correctness label. For MIXINSTRUCT (Jiang et al., 2023), we follow prior work (Jitkrittum
et al., 2025; Jiang et al., 2023) to adopt the exponentiated BARTScore for evaluation. Routing
quality is visualized using a deferral curve, where the X-axis indicates the model cost budget, such
as cost in dollars or parameter size; and the Y-axis represents routing quality, such as accuracy or
exp(BARTScore). The deferral curve captures the trade-off between routing quality and resource
usage, allowing comparison of different routing strategies under cost constraints.

For more details on the experimental setups, please refer to Appendix C–F.

4.2 TASKS: MORE DIVERSITY AND LESS REDUNDANCY

Problem 1: Lack of Specialized Tasks. Generally, LLM tasks can be categorized as common-sense
or domain-specific. For instance, piqa (Bisk et al., 2019), a physical common-sense task, is handled
well by general models (generalists), with an average accuracy of 78.03%. In contrast, the medical
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Table 1: Comparison of routing performance before and after removing duplicate queries.

Method Avg. Acc. (%) ↑ Peak Acc. (%) ↑

Original Reduced Original Reduced
K-NN 54.35 54.04 67.37 66.50
Universal (KMeans) 54.03 54.00 66.77 66.70
MLP 53.78 53.84 64.17 65.13
Matrix Factorization 50.48 50.90 60.07 60.87

domain’s medmcqa (Pal et al., 2022) has a lower average of 41.73% with general models, while a
domain-specific model (specialist) can achieve 69.8%.

To evaluate routing performance across different scenarios, the task set should be sufficiently diverse,
including both common-sense and domain-specific tasks. However, current benchmarks such as
ROUTERBENCH and EMBEDLLM are biased toward common-sense tasks. This bias could lead to
a failure to evaluate routers’ ability to handle domain-specific tasks, a critical class of queries that
benefit a lot from model routing.

To quantify this imbalance, we propose a specialist score for each task: the average (across cost
budgets) of the difference in accuracy between the best-performing domain-specific model and the
general model:

specialist scoretask = Eb∈B

[
max

m∈M(b)
non-gen

ACC(b)
m,t − ACC(b)

gen,t

]
,

Figure 2: The specialist scores reveal that current
datasets lack diverse, specialized tasks.

where B represents cost budgets, M(b)
non-gen ex-

cludes the general model, and ACC measures ac-
curacy. This score captures how much special-
ists outperform generalists on specific tasks. We
computed this score on both benchmarks; Fig-
ure 2 shows the results on EMBEDLLM, and the
ROUTERBENCH counterpart is provided in Ap-
pendix G (Figure 7). Ideally, we expect a long-
tail distribution—most tasks having moderate or
negative scores, and a few showing high special-
ist scores—indicating that while general models
suffice for many tasks, some benefit from special-
ization. However, we observed only a limited
number of specialist tasks across both bench-
marks.

Problem 2: Task Redundancy. We have also found that current benchmarks suffer from significant
task redundancy, which can lead to not only performance bias but also routers learning shortcuts. As
detailed in Appendix G, many task categories exhibit high similarity in their average query embed-
dings. Even after removing duplicate categories from the training set, the router maintains strong
performance. To investigate potential redundancy in the benchmarks, we moved from category-level
analysis to query-level inspection, identifying semantically equivalent queries that appeared multiple
times in the training set. We computed cosine similarity between normalized query embeddings.
Queries qi and qj were considered duplicates if:

sim(qi, qj) =
⟨ei, ej⟩

∥ei∥ · ∥ej∥
≥ δ, where δ = 0.999

Our analysis revealed 1,346 duplicate groups (average size 2.7). Compounding this issue, 99.9% of
these groups contained label disagreements across models—far exceeding the overall label mismatch
rate of 37.7%. This suggests that semantically identical queries often received inconsistent labels.
By removing such duplicates and retraining routers on the cleaned dataset, we observed improved
performance for learning-based methods, as shown in Table 1. This confirms that duplicate queries
with conflicting labels can mislead routers to learn from noise rather than meaningful patterns.

5
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Table 2: Top-5 models by their average rank across tasks. Lower values indicate greater dominance.

EMBEDLLM ROUTERBENCH
Rank Model ID Avg. Rank (↓) Rank Model ID Avg. Rank (↓)

1 50 6.43 1 5 1.36
2 83 9.88 2 10 3.20
3 42 10.03 3 4 3.78
4 49 10.95 4 9 3.88
5 5 11.24 5 3 5.39

Table 3: Selected tasks for pseudo specialist models.

Task Prompt % Mean Acc. (%) Best Model Acc. (%) Pseudo Model Acc. (%)

Social Reasoning 5.42 33.76 36.22 65.00
Logical Reasoning 1.82 28.28 45.93 70.00
Graduatel-Level Reasoning 3.23 22.44 33.51 60.00

Insights. Current benchmarks overestimate the value of large but non-diverse training sets; in
reality, much of the routing signal is concentrated in a smaller, more representative subset of tasks. To
build more effective routing benchmarks, we should improve task diversity—especially by including
more domain-specific tasks—and reduce redundancy, particularly tasks with inconsistent labels.

4.3 MODELS: MORE SPECIALISTS AND LESS DOMINANCE

Problem 1: Model Dominance. A meaningful model pool should ensure that each LLM contributes
unique strengths—some serving as generalists, others as specialists. This diversity is essential to the
routing task: matching each input to the most capable model. If a single model dominates across all
tasks, routing becomes redundant.

To quantify dominance, we compute each model’s average rank across task categories. Table 2
shows that EMBEDLLM (112 models) has multiple competitive models, whereas ROUTERBENCH
(11 models) has a single generalist with average rank 1.36.

In a well-constructed benchmark or a more realistic routing scenario, some tasks (e.g., symbolic
math, medicine, or historical reasoning) should require domain-specific expertise that only specialist
models can provide. This mirrors the real-world objective of a router finding a small yet expert
model for a given task. However, in current benchmarks, strong generalist models often fill this role,
even for tasks they were not explicitly designed for. This reduces the routing objective to simply
identifying the best generalist, undermining the value of fine-grained model selection.

Effective Expert Model Extension. We propose augmenting the model pool with pseudo-specialist
models to break dominance and test whether routers make task-aware selections beyond top generalists.
These pseudo-models are not meant for deployment but serve as controlled interventions to examine
how task-specialized models influence routing behavior. They allow us to test whether the router
moves beyond favoring top generalists and begins making more diverse, task-aware selections. We
choose three target tasks that are challenging (low mean accuracy), non-dominated (modest best–mean
gap), and have non-negligible representation in the benchmark.

We inject three pseudo-specialist models to break single-model dominance and diagnose routers’
ability to select specialists. For a chosen target task t meeting criteria (Table 3), we set the pseudo-
model accuracy close to BestAcc(t) + 25% and set average accuracy for other tasks.

Table 4: Changes in router agreement with the
top-1 generalist model after adding pseudo
specialist models. Negative values indicate
decreased reliance on the dominant model.

Task K-NN KMeans MF MLP
Overall -0.84 -2.40 -0.64 -8.40
logiqa -20.55 -31.03 -2.81 -17.48
social iqa -2.69 0.00 +0.29 -7.92
gpqa -1.59 -13.15 +1.90 -9.75

We further define the agreement score as the aver-
age percentage of queries for which a router selects
the same model as the heuristic router. This metric
reflects how closely a learned router mimics static
generalist selection. A lower score indicates more di-
verse, task-specific choices, suggesting less reliance
on the generalist strategy. As shown in Table 4, over-
all agreement with the heuristic router drops slightly
across all methods. However, on the tasks targeted
by the pseudo models, the reduction is significantly
more pronounced.
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Problem 2: Model Redundancy. We also observe redundancy in the model pool, which adds
little value to training or evaluating router performance. We quantify model-level similarity using
a Jaccard-style score based on shared correct predictions as detailed in Appendix H. We apply this
strategy to the EmbedLLM benchmark, reducing the model pool from 112 to 82 (a 27% reduction).
The experimental result (in Appendix H) shows that routing performance across methods remains
comparable to the full model pool. This shows that removing redundant models does not degrade
routing quality and that meaningful routing decisions can still be made with a leaner model pool.

Insights. Effective routing evaluation depends on a model pool with meaningful diversity, both
in capability and specialization. Rather than including many models with overlapping strengths,
the pool should consist of models with distinct specialties. A simple yet effective way to enhance
current model pools is to introduce pseudo-specialist models that simulate task-specific expertise,
encouraging routers to move beyond generic selection and make more nuanced, task-aware decisions.

4.4 EVALUATION PARADIGMS: COMPREHENSIVE MEASUREMENTS

Problems. Current evaluation paradigms still have two gaps: (1) Incomplete cost awareness: Beyond
aggregate cost–accuracy curves, evaluations rarely measure explicit routing-rate trade-offs (how
accuracy evolves with the fraction of queries deferred to a more expensive model). (2) Lack of OOD
evaluation: Frameworks seldom test router performance on OOD inputs, an essential aspect for
ensuring robustness in real-world deployments.

Figure 3: Binary routing evaluation
paradigm showing performance trade-offs,
between Llama-2 7B and Llama-2 70B

Multi-Faceted Evaluation: We argue that model rout-
ing evaluation should be multi-faceted, which should
employ metrics that capture both performance quality
and resource efficiency:

• Cost-aware evaluation: It should implement evalua-
tion scenarios that explicitly consider cost constraints
and encourage efficient model selection.

• OOD testing framework: It should develop a system-
atic approach to evaluate router performance on OOD
scenarios, ensuring robustness in real-world deploy-
ment.

Routing Tradeoff Evaluation: To complement traditional cost-accuracy deferral curves, we intro-
duce a binary routing evaluation paradigm to assess how effectively a router balances between a strong
generalist (large model) and a lightweight alternative (small model). This connects to cost-advantage
curves (Somerstep et al., 2025) but specializes to routing-rate control for a fixed model pair. For each
router, we vary the fraction of queries routed to the small model based on the router’s confidence and
measure the resulting accuracy. This produces a continuous trade-off curve between routing accuracy
and reliance on expensive models, as shown in Figure 3.

Paradigm Distinction. The deferral curve asks: “What accuracy at a given budget across the full
pool?” The binary routing trade-off asks: “For a fixed small/large pair, how does accuracy change as
we reduce reliance on the large model?” We use the former for overall budgeted performance, and
the latter to diagnose cost-efficiency under single dominant model scenarios.

Per-Query Cost and CoT. While we primarily use parameter count as a proxy for cost/latency,
our framework supports per-query metrics (tokens, wall-clock latency) and dynamic strategies (e.g.,
CoT), which we discuss in Appendix F.

Table 5: OOD Performance change on math-
related categories in EMBEDLLM when these cat-
egories are excluded from training.

Category K-NN ∆ KMeans ∆ MF ∆ MLP ∆

mathqa -9.29 -16.88 -6.33 -14.34
asdiv -58.59 -69.19 -40.40 -57.07
gsm8k -14.28 -14.29 -29.47 -35.72

OOD Testing Framework: In real-world de-
ployment, routers are likely to encounter out-
of-distribution (OOD) queries—inputs from do-
mains or tasks not represented during training.
While benchmark designers should strive to in-
clude diverse tasks to improve generalization,
OOD inputs are inevitable given the open-ended
nature of user interactions with LLMs. Thus,
evaluating router robustness in such scenarios is crucial. We design an OOD evaluation setup by

7
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holding out a subset of queries (e.g., Math tasks in EMBEDLLM) from training and evaluating
performance on them separately. Table 5 illustrates an example split; we can see that different
methods have different abilities for the OOD task.

Insights. Current benchmarks inadequately assess the ability of router in realistic scenarios. The OOD
performance degradation (Table 5) reveals the brittleness of routers with novel queries, highlighting
the need for better generalization testing. Additionally, the binary routing paradigm (Figure 3) shows
that routing algorithms have distinct efficiency-performance trade-offs, requiring evaluation beyond
single-point metrics.

5 REMASTERED EVALUATION PIPELINE

Building on our analysis of current evaluation limitations and the ideal characteristics of router
evaluation, we present a comprehensive framework for assessing LLM routing systems. While
developing a “perfect” evaluation pipeline presents challenges comparable to designing an “ideal”
LLM router itself, we provide a framework that addresses the key shortcomings identified in our
experimental analysis.

5.1 BENCHMARK DESIGN

Our evaluation framework is built upon core principles that directly address the limitations identified
in our experimental analysis, as shown in Figure 4.

Diverse task distributions: Drawing from our findings on data representation issues, we incorporate
tasks with varying levels of difficulty, domain coverage, and redundancy ❶ to reflect real-world
scenarios where task distributions are rarely static or uniform. This addresses the limitations identified
in our analysis of current benchmarks that assume representative and static task distributions. To
achieve this, we subsample tasks and queries from EMBEDLLM using the proposed specialist score,
highlighting tasks where non-generalist models provide additional values. This results in a task pool
that emphasizes both broad coverage and the need for routing.

Balanced model pool: To reduce single-model dominance observed in some benchmarks, we
curate model pools that increase meaningful specialization and diversity ❷. This design choice
enables rigorous evaluation of fine-grained routing decisions. We apply the greedy model pruning
strategy discussed in Sec 4.3 to eliminate redundant models, using a similarity-aware scoring function
balancing accuracy and uniqueness. This reduces 30 models from the model pool. Additionally, we
introduce three pseudo specialist models targeting challenging tasks (Table 3) to diversify the routing
model pool.

For reproducibility and extensibility, we release the complete model list in the repository
(EmbedLLM/data/model order.csv) and mirror it in Appendix. The tooling supports modu-
lar updates to the pool as LLM capabilities evolve.

Multi-faceted evaluation metrics: Responding to our findings about oversimplified evaluation
approaches, we combine both classification-based and routing-rate paradigms ❸ to provide a
comprehensive assessment of router performance under different constraints. This moves beyond
binary evaluation approaches that fail to capture the complexity of real-world routing scenarios,
incorporating critical factors like cost-performance trade-offs, latency constraints, and reliability under
varying workloads. We integrate cost-constrained evaluation with routing-rate analysis to provide
researchers with multiple perspectives on router performance. Furthermore, our metrics specifically

Figure 4: The improvements of our proposed benchmark.
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(a) Deferral curve on Remastered Benchmark

Method Area ↑ Peak Acc. (%) ↑

K-NN 0.567 69.83
Universal (KMeans) 0.560 68.93
MLP 0.554 67.60
Matrix Factorization 0.515 61.60
Heuristic 0.507 60.73

(b) Area and peak accuracy of routing methods

Figure 5: Routing performance on our Remastered Benchmark.

(a) Llama-2 7B and Llama-2 70B (b) Mistral 7B and Llama-2 70B

Figure 6: Binary routing evaluation on Remastered Benchmark shows performance trade-offs.

account for OOD performance ❹, ensuring that routers are evaluated on their ability to generalize
to novel scenarios. We include dedicated OOD testing phases that assess router performance on novel
task types and difficulty levels, providing insights into real-world deployment readiness.

The final dataset has 85 models, 68 categories, and 33,337 queries, in total of 3 million datapoints.

5.2 EXPERIMENT RESULTS

We evaluate routing methods on our remastered benchmark, with results shown in Figure 5. K-
NN achieves the highest performance with an area under the deferral curve of 0.567 and peak
accuracy of 69.83%. Figure 5(a) illustrates the performance-deferral trade-offs, demonstrating
that our dataset has successfully mitigated the single model dominance problem. Figure 6 shows
the binary routing paradigm results, which reveal distinct efficiency-performance patterns across
different model combinations. One reason for this performance ranking is that the test prompts
form tight neighborhoods in the embedding space. K-NN leverages local similarity to aggregate
per-neighborhood model performance. Learning-based approaches (e.g., MLP, matrix factorization)
smooth over the input space and may underuse sharp local signals when clusters are tight and
heterogeneous across tasks. For the full results and additional evidence showcasing the improvements
of our benchmark, please refer to the Appendix.

6 CONCLUSION

In this work, we have conducted a comprehensive analysis of LLM routing evaluation practices
and identified critical limitations in current benchmarks. Through extensive experimentation, we
demonstrated that existing evaluation frameworks often fail to capture the true complexity of routing
decisions, leading to potentially misleading conclusions about router performance. Our findings reveal
fundamental issues in task distribution representation, model pool composition, and evaluation metrics
that significantly impact the validity and effectiveness of routing system evaluation. To address these
limitations, we proposed a novel evaluation framework that incorporates diverse task distributions,
balanced model pools, and multi-faceted metrics, providing researchers and practitioners with a more
robust tool for assessing routing strategies. This work not only advances our understanding of what
constitutes effective LLM routing but also establishes a foundation for more rigorous evaluation
practices in this rapidly evolving field.

9
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on evaluation methodology. The authors are not aware of conflicts of interest, and all experiments
comply with dataset licenses and legal requirements.

REPRODUCIBILITY STATEMENT

We provide an anonymous repository with code, configuration files, and scripts to reproduce data
subsampling, model-pool pruning/extension, metric computation, and figures; see the link in the
abstract. Implementation details for encoders, benchmarks, routing methods, and evaluation metrics
are described in Sections 5.1 and Appendices C, D, E, and F. The repository includes the full
model list (e.g., EmbedLLM/data/model order.csv), dataset splits, and seeds to facilitate
end-to-end replication.
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A THE USE OF LLMS

We used a large language model only for spelling and grammar correction of the manuscript text.
The LLM was not involved in research ideation, experimental design, analysis, or substantive writing
beyond copy-editing. All content and claims were authored and verified by the authors, who take full
responsibility for the paper. The LLM is not an author.

B DISCUSSION AND LIMITATIONS

Our benchmark is a diagnostic tool designed to reveal routing behaviors under controlled conditions.
First, we use pseudo-specialist models to simulate clear specialist advantages when real specialist
models are scarce; we study sensitivity to pseudo accuracy settings and plan replacement with real
specialists. Second, beyond parameter counts as a reproducible proxy, our framework supports
per-query costs (tokens, measured latency, USD) and dynamic strategies (e.g., CoT) via standardized
logging hooks. Third, results depend on the model pool and task mix; we release the full pool, enable
modular updates, and report bootstrap confidence intervals for all AUC and routing-rate comparisons.

Despite these contributions, several fundamental challenges remain. The absence of a universal
ground truth for optimal routing decisions means that what constitutes “optimal” depends heavily on
specific deployment contexts. The rapid evolution of model pools makes it challenging to maintain
stable evaluation benchmarks, while the difficulty in capturing the full spectrum of real-world query
patterns and task distributions remains a persistent issue. Additionally, the inherent trade-offs
between different evaluation metrics (e.g., cost vs. performance) present ongoing challenges for both
researchers and practitioners. While these limitations highlight the dynamic nature of LLM routing
evaluation, they also emphasize the need for continued research in this area as the field evolves
alongside the rapid development of LLM.

C DETAILS ABOUT TEXT ENCODER

Text encoder is a critical component of LLM routers, which transforms input prompts into em-
beddings used for routing decisions. To ensure faithful and fair comparison, we follow prior
work (Zhuang et al., 2024; Hu et al., 2024) and adopt consistent encoder choices per benchmark:
we use all-MiniLM-L12-v2 (Sentence-Transformers, 2021a) for ROUTERBENCH and MIXIN-
STRUCT, and all-mpnet-base-v2 (Sentence-Transformers, 2021b) for EMBEDLLM.

D DETAILS ABOUT BENCHMARKS

Table 6 summarizes the statistics of used benchmarks. EmbedLLM provides the largest number of
models, while RouterBench provides a realistic cost setting. MixInstruct focuses on open-domain
user prompts, using soft metrics like BARTScore to evaluate output quality.

Table 6: Comparison of benchmark datasets for LLM routing evaluation.
Benchmark # Models # Queries # Categories Metric Cost Info

EmbedLLM (Zhuang et al., 2024) 112 35,673 80 Binary (0/1) param size (B)
RouterBench (Hu et al., 2024) 11 36,497 86 Binary (0/1) USD per 1k queries
MixInstruct (Jiang et al., 2023) 12 110,000 5 (Open-domain) exp(BARTScore) param size (B)

E DETAILS ABOUT ROUTING METHODS

The state-of-the-art LLM routing approaches fall into two primary categories: clustering-based and
learning-based. We also include two reference baselines to contextualize performance.

• K-Means (Jitkrittum et al., 2025): This method clusters training queries into K clusters based
on their embeddings. Given a test query q, the router finds the closest cluster Ck and selects the
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model m∗ that performs best on average within that cluster:

m∗ = arg max
mi∈M

[
1

|Ck|
∑
l∈Ck

metric(mi, l)

]
where Ck is the set of training prompts in the cluster of q, and metric denotes either a binary
correctness label or exp(BARTScore).

• K-NN (Hu et al., 2024): Instead of relying on cluster centroids, this method finds the K nearest
neighbors of the query q in the training set (based on embedding distance) and routes to the model
with the highest average score on those neighbors.

• MLP (Hu et al., 2024): For each LLM mi, a separate MLP is trained to predict the performance
score for query q:

Pi(x) = f(Wn · σ(. . . σ(W1 · x+ b1) . . .) + bn)

where x is the query embedding, σ denotes the activation function, and f is the final output layer.
The model m∗ with the highest predicted score Pi(q) is selected.

• Collaborative Filtering (Matrix Factorization) (Zhuang et al., 2024): This method treats the
model routing task as a matrix completion problem. Given a binary matrix Y ∈ {0, 1}M×Q

representing whether model mi correctly answered query qj , it learns latent embeddings for
models and queries by factorizing Y as:

Yij ≈ u⊤
i vj

where ui ∈ Rd is the latent embedding for model mi and vj ∈ Rd for query qj . At inference time,
the router computes vq (e.g., via a linear projection from query embedding) and selects the model
with the highest predicted score:

m∗ = arg max
mi∈M

u⊤
i vq

• Heuristic Router: This baseline selects the best-performing model from the training set for each
cost budget. At each test time cost step, it routes all queries to the model that achieved the highest
average training accuracy within the allowed cost:

m∗ = arg max
mi∈M, cost(mi)≤c

TrainAcc(mi)

• Oracle Router: This upper-bound baseline assumes access to the ground truth performance of all
models at test time. For each query, it routes to the best model among those allowed by the cost
constraint:

m∗ = arg max
mi∈M, cost(mi)≤c

metric(mi, q)

It represents the best possible routing performance under the given budget.

F DETAILS ABOUT EVALUATION METRICS AND DEFERREL CURVE

Evaluation Metric. We evaluate routing performance using metrics aligned with each benchmark’s
design. For RouterBench (Hu et al., 2024) and EmbedLLM (Zhuang et al., 2024), the correctness
label is binary—each LLM either answers a query correctly or not. For MixInstruct (Jiang et al.,
2023), we adopt the exponentiated BARTScore, following prior work (Jitkrittum et al., 2025; Jiang
et al., 2023). While MixInstruct was originally intended to benchmark ensemble generation quality
from outputs of multiple LLMs, recent works have adapted it for routing by assigning scores to
individual LLM responses based on similarity to GPT-4. However, this introduces a dependency on
GPT-4 as a reference model, which we will discuss further in Section 4.4.

Deferral Curve. Routing quality is visualized using a deferral curve, where the x-axis corresponds
to the model cost budget and the y-axis reflects routing quality (accuracy or exp(BARTScore)). The
cost budget represents the maximum cost (e.g., in dollars) a router can spend per query. However,
because actual API pricing varies and is not always available, prior work (Jitkrittum et al., 2025)
approximates cost using the number of model parameters—a practical proxy that correlates with
both latency and financial cost for EmbedLLM (Zhuang et al., 2024) and MixInstruct (Jiang et al.,
2023). This deferral curve captures the trade-off between routing quality and resource usage, allowing
comparison of different routing strategies under cost constraints.
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Statistical Testing. To compare curves, we report the area under the deferral curve (AUC) with
95% bootstrap confidence intervals over queries. Unless otherwise specified, we use paired bootstrap
resampling (10,000 samples) of test queries and recompute method AUCs per sample; differences
are deemed significant when the 95% CI of the pairwise AUC difference excludes zero. As a sanity
check, we include a random-routing baseline (uniform over models within budget). We additionally
apply this procedure to routing-rate trade-off curves by integrating accuracy over deferral rates.

Per-Query Cost and Latency. Beyond parameter counts, our framework can evaluate per-query
costs using: (i) token-level accounting (prompt and completion tokens), (ii) measured wall-clock
latency, and (iii) USD cost when API pricing is available. Concretely, we support logging a per-query
tuple (cparams, ctokens, clatency, c$) and computing deferral curves and routing-rate trade-offs under each
cost. This enables analyses aligned with CARROT-style cost-advantage curves while remaining
reproducible across open-source and API models.

G SUPPLEMENTARY RESULT FOR TASK DIVERSITY

Figure 7: Specialist scores on ROUTERBENCH reveal limited specialized tasks.

Figure 8: Category similarity heatmap based
on average query embeddings. Redundancy is
visible across GPQA-like categories (Upper-
Left).

Figure 9: Routing accuracy when removing duplicate
categories (e.g., GPQA variants). Performance is
preserved even under OOD evaluation.

Here we provide more results and discussions on Task Imbalance and Redundancy Problem in
Section 4.2. As shown in Figure 8, several task categories exhibit high similarity in their average
query embeddings. For instance, GPQA-like categories cluster tightly in the embedding space,
suggesting that they may not offer distinct routing challenges.
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In our experiments, we found that even after removing duplicate categories from the training set—
those identified as redundant in the heatmap—the router still performs strongly. Figure 9 shows that
this holds true even under OOD evaluation, where the dropped categories are tested at inference time.
This suggests that current benchmarks may overestimate the value of large or diverse-looking training
sets when, in reality, much of the routing signal is concentrated in a smaller, more representative
subset of tasks. We also empirically assess the redundancy within categories, where we progressively
dropped a portion of training data within each category and retrained the router.

H SUPPLEMENTARY RESULT FOR MODEL DIVERSITY

Figure 10: Performance comparison after reducing the model pool by 30 models. This shows that
routers can maintain routing effectiveness across different cost budgets.

Here we provide more results and discussions Model Redundancy Problem in Section 4.3. We
observed redundancy in the model pool, as evidenced by overlapping performance points (Individual
Models’ grey crossings) across cost settings in Figure 10. Such redundancy adds little value for
training or evaluating router performance. We quantify model-level similarity using a Jaccard-style
score based on shared correct predictions:

sim(mi,mj) =
|{q | mi(q) = 1 ∧mj(q) = 1}|
|{q | mi(q) = 1 ∨mj(q) = 1}|

where mi(q) denotes whether model mi answered query q correctly. This metric captures functional
overlap across the entire benchmark.

To validate this, we propose a greedy pruning strategy to reduce model redundancy while preserving
routing effectiveness. At each step, we compute a score for each model based on:

score(mi) = λ · Accuracy(mi)− (1− λ) · AvgSim(mi)

where AvgSim(mi) is the average Jaccard similarity of model mi to all other models (based on
overlapping correct predictions), and λ balances performance versus uniqueness. The model with the
lowest score is removed, and the process repeats until a target number of models remains.

We apply this strategy to the EmbedLLM benchmark, reducing the model pool from 112 to 82 (a 27%
reduction). As shown in Figure 10, routing performance across methods remains comparable to the
full model pool. This demonstrates that removing redundant models does not degrade routing quality
and that meaningful routing decisions can still be made with a leaner model pool.
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(a) Llama-2 7B and CausalLM-34B-Beta (b) Mistral 7B and CausalLM-34B-Beta

Figure 11: Binary routing evaluation paradigm showing performance trade-offs.

I SUPPLEMENTARY RESULT FOR EVALUATION METHODOLOGY

I.1 BINARY ROUTING EVALUATION DETAILS

To complement the traditional cost-accuracy deferral curves, we introduced a binary routing evaluation
paradigm in Section 4.4 to assess how effectively a router balances between a strong generalist (large
model) and a lightweight alternative (small model). Here, we provide additional details about the
evaluation setup and key observations.

We fix the large model to be CausalLM-34B-Beta, given its similar superior performance across
a wide range of general-purpose tasks, comparable to that of 70B-sized models. For small models,
we consider two widely used options: Mistral-7b-v0.1 and LLaMA-2-7b-chat-hf. These
models represent different trade-offs in model families and capability, making them ideal candidates
for evaluating routing flexibility.

In this setting, each routing method ranks the queries by its confidence score for the small model and
routes a varying fraction of queries accordingly, as in Figure 11. The remaining queries are deferred
to the large model. This produces a continuous accuracy curve as a function of the fraction of queries
routed to the large model.

Across both small model settings, we observe that learned routers generally follow a linear trade-off
curve, indicating that they lack precise mechanisms to identify which queries can be reliably handled
by the small model. Notably, clustering-based methods perform sub-linearly at lower deferral ratios,
suggesting they often misclassify harder queries as easy ones and route them to the small models. This
reinforces the need for more fine-grained routing strategies that can better distinguish between simple
and complex inputs. Surprisingly, Matrix Factorization performed extremely well on classifying
between Mistral-7B and CausalLM-34B-Beta, suggesting the potential of learning-based methods in
certain model pair settings.

I.2 OOD ROUTING EVALUATION DETAILS

We evaluate the robustness of routing methods under out-of-distribution (OOD) scenarios by training
and evaluating routers on different domains. We consider two distinct OOD settings: (1) excluding all
math-related queries (e.g., mathqa, asdiv, gsm8k), and (2) excluding all medical-related queries
(e.g., medmcqa, mmlu_clinical_knowledge). These categories are chosen for their semantic
distinctiveness and task specificity, providing strong settings to evaluate how well routers generalize
to unseen topics.

As shown in Table 7, all routing methods suffer performance degradation in OOD settings, with the
most significant drops occurring on asdiv and gsm8k. MLP-based routers tend to experience the
steepest accuracy declines overall, while matrix factorization (MF) demonstrates greater robustness,
particularly on math-related tasks.

These results highlight that existing routing strategies are brittle when deployed in domains un-
seen during training, reinforcing the need for more semantically aware or domain-adaptive routing
mechanisms.
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Table 7: OOD Performance change on selected categories in EMBEDLLM when these categories are
excluded from training.

Category K-NN ∆ KMeans ∆ MF ∆ MLP ∆

mathqa -9.29 -16.88 -6.33 -14.34
asdiv -58.59 -69.19 -40.40 -57.07
gsm8k -14.28 -14.29 -29.47 -35.72
medmcqa -11.58 -7.91 -6.78 -9.89
mmlu clinical knowledge 0.00 +7.41 -14.82 -3.70

Average -18.75 -20.17 -19.56 -24.14

Figure 12: Routing performance on MIX-INSTRUCT.

J SUPPLEMENTARY RESULT ON MIX-INSTRUCT

In Figure 12, we present the routing results in deferral curve on MIX-INSTRUCT dataset. While the
same baseline routers are evaluated, we do not consider MIX-INSTRUCT as our primary benchmark
due to several limitations:

• Limited Evaluation Metrics: MIX-INSTRUCT uses BARTScore to measure the similarity between
a model’s output and a reference response generated by GPT-4. This approach conflates model
quality with similarity to GPT-4, making it less suitable for evaluating true routing performance.
It favors models that mimic GPT-4’s phrasing—even when other models might generate more
informative or appropriate responses—thus undermining the purpose of routing for capability-based
model selection.

• Limited Task Diversity: The benchmark contains only five tasks, all of which fall under casual or
instruction-following dialog. These tasks do not capture the breadth of real-world user queries,
particularly in domains requiring specialized knowledge (e.g., science, math, law), thereby limiting
the opportunity for routing to leverage model specialization.

• Restricted Model Pool: MIX-INSTRUCT covers about 10 models—comparable to Router-
Bench—restricting the expressiveness of routing policies. In contrast, EMBEDLLM benchmark
includes over 100 models with diverse strengths while having some issues we listed in Section 4,
offered a more realistic and rigorous setting for evaluating routing capabilities.

18


	Introduction
	Preliminary: LLM Routing and its Ideal Evaluation
	Formalization of LLM Routing and Optimization Problem
	Ideal Router Evaluation

	Related Work
	Rethinking Current Evaluation Practices
	Experimental Setup
	Tasks: More Diversity and Less Redundancy
	Models: More Specialists and Less Dominance
	Evaluation Paradigms: Comprehensive Measurements

	Remastered Evaluation Pipeline
	Benchmark Design
	Experiment Results

	Conclusion
	The use of LLMs
	Discussion and Limitations
	Details about Text Encoder
	Details about Benchmarks
	Details about Routing Methods
	Details about Evaluation Metrics and Deferrel Curve
	Supplementary Result for Task Diversity
	Supplementary Result for Model Diversity
	Supplementary Result for Evaluation Methodology
	Binary Routing Evaluation Details
	OOD Routing Evaluation Details

	Supplementary Result on Mix-Instruct

