Towards Automated Distillation: A Systematic Study of
Knowledge Distillation in Natural Language Processing

Haoyu He! T Xingjian Shi® Jonas Mueller? Sheng Zha? Mu Li*> George Karypis®

!Northeastern University 2Amazon Web Services

Abstract Key factors underpinning the optimal Knowledge Distillation (KD) performance remain
elusive as the effects of these factors are often confounded in sophisticated distillation
algorithms. This poses a challenge for choosing the best distillation algorithm from the large
design space for existing and new tasks alike and hinders automated distillation. In this
work, we aim to identify how the distillation performance across different tasks is affected
by the components in the KD pipeline, such as the data augmentation policy, the loss
function, and the intermediate knowledge transfer between the teacher and the student. To
isolate their effects, we propose Distiller, a meta-KD framework that systematically combines
the key distillation techniques as components across different stages of the KD pipeline.
Distiller enables us to quantify each component’s contribution and conduct experimental
studies to derive insights about distillation performance: 1) the approach used to distill
the intermediate representations is the most important factor in KD performance, 2) the
best-performed distillation algorithms are quite different across various tasks, and 3) data
augmentation provides a large boost for small training datasets or small student networks.
Based on these insights, we propose a simple AutoDistiller algorithm that can recommend a
close-to-optimal KD pipeline for a new dataset/task. This is the first step toward automated
KD that can save engineering costs and democratize practical KD applications.

1 Introduction

To reduce the inference cost while preserving most of the accuracy of prevalent large pretrained
models used in natural language processing (NLP), task-aware KD is a popular and particularly
promising approach for supervised learning tasks. The idea is to first fine-tune an accurate and
large teacher model on the labeled data, and then train a separate student model that has much
fewer parameters to mimic the predictions of the teacher. Innovations in KD for NLP generally
improve the following aspects: 1) the loss function for gauging the discrepancy between student and
teacher predictions, 2) the method for transferring intermediate network representations between
teacher and student, 3) the use of data augmentation during student training, and 4) multiple stages
of distillation. Many studies have simultaneously introduced new variations of more than one of
these components, which confounds the impact of each component on the final performance of the
distillation algorithm. In addition, it is often unclear whether the proposed KD algorithms retain
their advantageous performance across different tasks besides those they are evaluated on. As a
result, selecting the solution from the large combined design space of KD algorithms for a new
application is increasingly challenging. This is a major obstacle for automated KD, of which the
goal is to recommend a good KD pipeline for a new dataset.

To understand the importance of different components in KD and lay the cornerstone for
automated KD, we conduct a systematic study of the design space of KD algorithms in NLP. We
compose several key configurable components in KD into a meta-distillation pipeline, called Distiller.
All candidate algorithms in the search space of Distiller work for two main types of NLP tasks: text
classification and sentence tagging. We run extensive hyper-parameter tuning algorithms to search

TWork done while being an intern at Amazon Web Services.

AutoML Conference 2022 Workshop Track © 2022 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

for the best Distiller-configuration choices over GLUE [22] and SQuAD [15]. The hyper-parameter
search helps us understand what impact different KD components have on student performance
and motivates us to propose AutoDistiller as the very first step towards automated KD that can
save engineering cost and democratize machine learning. AutoDistiller is designed to predict
distillation performance based on KD pipeline choices and characteristics of tasks. We expect
our proposed AutoDistiller, as a baseline of automated KD, to bring fresh insights to the rapidly
growing automated machine learning (AutoML) community. Experimental analysis of AutoDistiller
shows that it is potential to reliably prioritize high-performing KD configurations, and can suggest
good distillation pipelines on two new datasets. Main contributions of this work are:

+ A systematic study on the meta-KD pipeline Distiller to assess the impact of different components
in KD, including the: 1) data augmentation policy, 2) loss function for transferring intermediate
representations, 3) layer mapping strategies for intermediate representations, 4) loss function for
transferring outputs, as well as what role the task and dataset type play.

« Using experimental results collected from our Distiller study and features extracted from down-
stream datasets, we fit a model that automatically predicts the best distillation strategy for new
datasets. On hold-out datasets “BoolQ” [21] and “cloth”, predicted strategies achieve 0.99 and
0.14 distillation ratios (fraction of the student’s and teacher’s performance enhancement gained
from distillation) on average, outperforming randomly selected strategies with mean of -0.98
and -0.24. To the best of our knowledge, this is the first attempt toward automated KD in NLP,
providing a baseline solution to future automated KD study.

Related Work

Knowledge Distillation. In the domain of NLP, recent KD literature discussed how to transfer
knowledge from pretrained Transformer-based models efficiently. [17] proposed BERT-PKD that
transfers the knowledge from both the final layer and intermediate layers of the teacher network.
[9] proposed TinyBERT that first distills the general knowledge of the teacher by minimizing
the Masked Language Model (MLM) objective [2], followed by task-specific distillation. [11]
proposed a many-to-many layer mapping function leveraging the Earth Mover’s Distance to
transfer intermediate knowledge. [7] proposed DynaBERT, a multistage distillation pipeline to
distill the teacher Transformer to student Transformer with different widths and depths. Focusing
on AutoML settings with tabular data, [4] proposed a general KD algorithm for different classical
ML models and ensembles thereof. [10] compared Kullback-Leibler divergence and mean squared
error objectives in KD for image classification models, finding that the mean squared error performs
better. [24] introduced an open-source KD toolkit that supports various KD techniques. Our work
provides a systematic analysis of the different components in single-stage task-aware KD algorithms
in NLP and propose the first automated KD algorithm in this area.

Methodology

Our study is structured around a configurable meta-distillation pipeline called Distiller (details
in Appendix A). It contains four configurable components: the data augmentation policy a(-, -),
the layer mapping configuration of intermediate distillation {m; ;}, the intermediate distillation
objective ™' (., .), and the prediction layer distillation objective IP™4(-,.). Assume the teacher

network f7 has M layers and the student network f* has N layers, for a given data/label pair (x, y)
sampled from the dataset D, the student learns from the teacher by minimizing loss:

M N
L=Eggarymyn P » . mijlsTHEH) + B (FT (x), £5(x)) + folP (£ (2), £5(5)))
i=1 j=1

+ 1Py, 15 () + plP(g, £5(%)).

“The complete training and testing code are available at https://github.com/Cli212/Distiller.

3.1

oo itermediate
Distillation

/
Prediction Layer |,*
Distillation

T

=)= e

Figure 1: Overview of the Distiller pipeline. All configurable components are colored.

Here, m;; € [0, 1] represents the layer mapping weight between the i-th teacher layer and
Jj-th student layer, Hl.T, HJS are the i-th and the j-th layer of hidden representations of the teacher
and the student, 1, f; control the strength of distilling from class probabilities produced by the
teacher, and y1, y, control the strength of learning from ground truth data (x, y) and synthesized
data (%, §j). In Appendix C.2, we illustrate how previous model distillation algorithms [9, 11, 12] can
be encompassed in the Distiller framework.

AutoDistiller

To enable automated distillation, we fit a prediction model that recommends a good KD pipeline
based on the features extracted from the dataset and Distiller search space. To encode semantic
information of the dataset into features, the context and dataset descriptions are further represented
by aggregated GloVe [13] embeddings of words weighted by TF-IDF. We also extract numerical
features such as the finetuned baseline score and the finetuned teacher score to measure how
tough the task is in need of a complex network, and the number of samples in the dataset. Details
about dataset feature extraction are described in Table 2 in Appendix. To effectively measure the
performance enhancement gained by distillation over finetuning, AutoDistiller is trained to predict

the distillation ratio:
_ Sdistill - Sﬁnetune

)

Tfinetune — Sfinetune

where Sgisin is the evaluation score of the distilled student, Thnetune, Stinetune are evaluation
scores of finetuned student and teacher. This allows us to clearly represent how much performance
improvement the student gains from distillation rather than finetuning from scratch. Besides,
this ratio can be used across different tasks and different teacher/student architectures so we can
continuously update AutoDistiller by feeding more distillation results in the future. Once trained
on features extracted from datasets as well as features of each candidate distillation configuration,
AutoDistiller recommends distillation pipelines that maximize the predicted distillation ratio given
any downstream dataset/task. To the best of our knowledge, AutoDistiller is the first attempt toward
automated KD in NLP.

Experiments

Under the previously described experimental setup, we conduct experiments and collect more than
1300 sets of data points that include Distiller configuration, the dataset/task, and distillation results.
Analyzing the data reveals three major findings: 1) design of the intermediate distillation module
is the most important among all factors studied, 2) DA provides a large boost when the dataset
or the student model is small, and 3) the best distillation policy varies among datasets. Detailed
experimental results revealed these three findings can be found in Appendix C.5. Inspired by these
findings, we train a meta-learning model AutoDistiller that is able to recommend a good distillation
policy on a new dataset based on which configurations tended to work well for alike datasets
applied in our study.

4.1

4.2

o
o

X Iner:0.303
CZ3 m:0.118
E= I¢:0.094 0
KA a:0.123

[N}

o
o
o

o

>
o
©

[Ped-a:0.232

Importance
o
w
Importance
)
o

o

N}
IS
IS

o
o
)

MNLI QQP QNLI SST-2 ColA MRPC RTE MNLI QQP QNLI SST-2 ColA MRPC RTE
Task Task

o
o

o
o

(a) (b)

Figure 2: As assessed via fANOVA, we report the individual importance of the four Distiller compo-
nents in (a) and importance of interactions between any two of the four components in (b).
Four components are: [™¢" for intermediate distillation objective, IP*¢ for prediction layer
distillation objective, a for data augmentation and m for layer mapping strategy. Average
importance for each component (across tasks) is listed in the legend.

Importance of Components

To study the importance of each component described in the previous section, we randomly sample
Distiller configurations in the designed search space while controlling the optimizer and other
unrelated hyper-parameters. We apply each sampled distillation configuration on a diverse set
of NLP tasks and different teacher/student architectures. To analyze the importance of different
components in Distiller, we adopt fANOVA [8], an algorithm for quantifying the importance of
individual hyper-parameters as well as their interactions in determining downstream performance.
We use fANOVA to evaluate the importance of the four components in Distiller as well as their
pairwise combinations: data augmentation, intermediate distillation objective, layer mapping
strategy, and prediction layer distillation objective. We report the results in Figure 2, which
illustrates that the objective function for intermediate distillation [P**¢ has the highest individual
importance, and the combination of the intermediate distillation objective and layer mapping
strategy has the highest joint importance. One hypothetical explanation is that the teacher can
provide token-level supervision to the student via intermediate distillation, which can better guide
the learning process of the student. Therefore, one should most critically focus on these two
components when selecting or designing a particular KD pipeline.

Performance of AutoDistiller

Recall that in Section 3.1, we construct the performance prediction model AutoDistiller on the
extracted dataset features and previously collected experimental results (over 1300 pieces). Here
we split all experimental results in a (80/20) train/test ratio then train and evaluate AutoDistiller via
AutoGluon-Tabular [3], a simple AutoML tool for supervised learning.

As we construct dataset features from scratch, it is essential to evaluate how much these features
contribute to the final performance of AutoDistiller. Therefore, we compute permutation feature
importance [1], which is defined as the drop of prediction accuracy after the values of a particular
feature are shuffled in the test data. From the results in Figure 4 in Appendix, we observe that all
features pertain positive importance, among which the task and context embeddings are the two
features with the highest feature importance. This shows that the dataset domain and problem
type are important factors to consider when constructing AutoDistiller features.

Given that the objective of AutoDistiller is to recommend near optimal distillation configurations
for new datasets, we applied AutoDistiller on two datasets “BoolQ” [21] and “cloth” [16] that are not
considered in our previous experiments to evaluate its adaptability. In Section 3.1, we discussed that

AutoDistiller trained on different scales of data AutoDistiller on BoolQ and Cloth

1.50
125 1=
1.00
i<} o
= = = 0 __I__, —1
< 075 o<
c c \T/
2)
=1 =
B 050 B
@ 2
a 0.25 a
0.00 -2 3 mean: 0.99, std: 0.11
1 mean: 0.524, std: 0.592 1 mean: -0.979, std: 1.759
_0.25 =1 mean: 0.905, std: 0.366 = 42, std: 0.221
. == mean: 0.99, std: 0.11 [mean: -0.235, std: 0.249

3
2-Datasets 4-Datasets 8-Datasets BoolQ AD BoolQ Random Cloth AD Cloth Random

(a) AD trained on results of 2, 4, 8 tasks. (b) Top-5 AD strategies vs. 5 randomly

The scaling of AD training data avoid selected strategies. AD significantly
producing trivial strategies where dis- outperforms random search on both
tillation is worse than finetuning. tasks.

Figure 3: Distillation ratio of AutoDistiller (AD) recommended strategies given teacher BERTpasg and
student TinyBERT, under two settings. Higher ratio indicates better distillation performance.
Mean and standard deviation of the groups of ratios are listed in the legend.

AutoDistiller can be continuously updated with more distillation results due to the carefully designed
scheme. Here we conducted an ablation experiment to verify the necessity of having more datasets
for training AutoDistiller. We gradually increase the number of datasets for training AutoDistiller and
compare the performance of the students trained under the recommended distillation configurations.
Results in Figure 3a demonstrate that scaling of AD training data produces more stable distillation
strategies. In addition, we evaluate the effectiveness of AutoDistiller by comparing the distillation
ratios obtained by the top-N strategies suggested by AutoDistiller with the distillation ratios from
N randomly sampled strategies. Results are shown in Figure 3b. We observe that both groups of
randomly selected strategies experience high variance in performance and may even be worse
than a finetuned student from scratch (distillation ratio < 0). Randomly combining techniques in
different components to form a KD strategy performs as a lottery ticket, which is inefficient in
practical AutoML cases. We see great potential that a tool as AutoDistiller can solve this issue as a
result of the stable and effective KD strategies it recommends.

Discussion

Large amount of KD algorithms are under a tendency to optimize separate components in the
entire KD pipeline, complicating the search space of distillation techniques that are applied on
different benchmarks, which fails to match industry demand to automatically select the best
distillation strategy for heterogeneous downstream tasks. Our work makes efforts to approach this
by proposing an automated distillation system AutoDistiller and experimental results reveal the
promising vision of a stable and evolvable automated KD system.

Since automated distillation is fairly a new concept, this work aims to put forth a proof-of-
concept and seeks to answer research questions instead of making a ‘sotaeesque’ comparison. We
leave extensive comparisons on other setups and baselines to future work. Because AutoDistiller
serves as a baseline solution to automated KD, it has several limitations: 1) AutoDistiller lacks of
training data because the 1300+ data points we collect from our experimental results are not a
formally constructed dataset but products of meta-learning, and 2) AutoDistiller is compared only
to randomly selected strategies, which is a low bar given the complex KD pipeline. We hope that
as the AutoDistiller shows its potential, automated KD will become a research area that bridges
academic research and industry demands.

References

(1]

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of

(3]

[10]

[11]

[12]

[13]

[14]

[15]

deep bidirectional transformers for language understanding. In NAACL, 2019.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and
Alexander Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv
preprint arXiv:2003.06505, 2020.

Rasool Fakoor, Jonas W Mueller, Nick Erickson, Pratik Chaudhari, and Alexander J Smola.
Fast, accurate, and simple models for tabular data via augmented distillation. In Advances in
Neural Information Processing Systems, volume 33, 2020.

Hongyu Guo, Yongyi Mao, and Richong Zhang. Augmenting data with mixup for sentence
classification: An empirical study. arXiv preprint arXiv:1905.08941, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
In NIPS 2014 Deep Learning Workshop, 2014.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. DynaBERT: Dynamic
bert with adaptive width and depth. In Advances in Neural Information Processing Systems,
2020.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An efficient approach for assessing
hyperparameter importance. In ICML, pages 754-762. PMLR, 2014.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun
Liu. TinyBERT: Distilling BERT for natural language understanding. In EMNLP, 2020.

Taehyeon Kim, Jaehoon Oh, NakYil Kim, Sangwook Cho, and Se-Young Yun. Comparing
kullback-leibler divergence and mean squared error loss in knowledge distillation. In IJCAL
2021.

Jianquan Li, Xiaokang Liu, Honghong Zhao, Ruifeng Xu, Min Yang, and Yaohong Jin. BERT-
EMD: Many-to-many layer mapping for bert compression with earth mover’s distance. In
EMNLP, 2020.

Kevin J Liang, Weituo Hao, Dinghan Shen, Yufan Zhou, Weizhu Chen, Changyou Chen, and
Lawrence Carin. MixKD: Towards efficient distillation of large-scale language models. In
ICLR, 2021.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In EMNLP, pages 1532-1543, 2014.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In ICML, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In EMNLP, 2016.

Xingjian Shi, Jonas Mueller, Nick Erickson, Mu Li, and Alexander J Smola. Benchmarking
multimodal automl for tabular data with text fields. In Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks, 2021.

[17]

[18]

[19]

[20]

[21]

[22]

Sigi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for BERT model
compression. In EMNLP, 2019.

Michael Tschannen, Josip Djolonga, Paul K Rubenstein, Sylvain Gelly, and Mario Lucic. On
mutual information maximization for representation learning. ICLR, 2020.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn
better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998-6008, 2017.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. arXiv preprint arXiv:1905.00537, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
ICLR, 2019.

[23] Jason Wei and Kai Zou. EDA: Easy data augmentation techniques for boosting performance

[24]

on text classification tasks. In EMNLP, 2019.

Ziqing Yang, Yiming Cui, Zhipeng Chen, Wanxiang Che, Ting Liu, Shijin Wang, and Guoping
Hu. TextBrewer: An Open-Source Knowledge Distillation Toolkit for Natural Language
Processing. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 9-16. Association for Computational Linguistics,
2020.

Appendix. — Towards Automated Distillation: A Systematic Study of
Knowledge Distillation in Natural Language Processing

A Distiller

A1l

A2

Data Augmentation Policy

When the amount of labeled data is small, data scarcity becomes a key challenge for training
students. This can be mitigated via Data Augmentation (DA) by generating additional data samples.
Unlike in supervised learning, where labels for synthetic augmented data may be unclear unless the
augmentation is limited to truly benign perturbations, the soft labels for augmented data in KD are
simply provided by the teacher which allows for more aggressive augmentation [4]. Denote the set
of training samples of the downstream task as Dyy,in, any augmenter a(-, -) stretches the distribution
from Ex y~Dyyn 10 Ex g~a(x,),x,y~Dyain- We consider various elementary DA operations including: 1)
MLM-based contextual augmentation (CA) , 2) random augmentation (RA), 3) backtranslation (BT)
and 4) mixup. The search space of possible augmentations in Distiller is constructed by stacking
these four elementary operations in an arbitrary order, as detailed in Algorithm 1.

Mixup constructs a synthetic training example via the weighted average of two samples (in-
cluding the labels) drawn at random from the training data. To use it in NLP, [5, 12] applied mixup
on the word embeddings at each sentence position x;; with A € [0, 1] as the mixing-ratio for a
particular pair of examples x;, x;:

Xip = Axip + (1 - A)xj,ta Ui = Ayi + (1 - Nyjs 3)

Here A is typically randomly drawn from a Uniform or Beta distribution for each pair, y;, y; are
labels in one-hot vector format, and (X, §;) denotes the new augmented sample. To further extend
mixup for sentence tagging tasks, in which each token has its own label, we propose calculating
the weighted combination of the ground-truth target at each location ¢ as the new target:

J?i,t = Axi,t + (1 - A)Xj,t, gi,t = Ayi,t + (1 - A)yj,t, (4)

Fundamental settings of the other three DA operations can be found in Appendix.

Prediction Layer Distillation

In traditional KD, the student network learns from the output logits of the teacher network, adopting
these as soft labels for the student’s training data [6]. Here we penalize the discrepancy between
the outputs of student vs. teacher via:

Lprea = P4(fT(x), £2(x)), (5)

where [P*d(., .) is the KD loss component whose search space in this work includes either: softmax
Cross-Entropy (CE) or Mean Squared Error (MSE).

Algorithm 1: Data Augmentation Policy

Params: A sequence of elementary data augmentation operations G, VG; € {CA, RA, BT, Mixup}.
Input: Training Dataset Dhyain
Output: Augmented dataset Dgynthesize

Initialize Dgynthesize < {}
foreach {x;, y;} € Dirqin do
for j « 1tolen(G)do
Xi, Ui = Gj (xi, yi);
Xi, Yi < Xi, Ui
end
Dsynthesize — Dsynthesize U {xi, yi}
end

® N w oA W N

A.3 Intermediate Representation Distillation

To ensure the knowledge is sufficiently transferred, we can allow the student to learn from the
intermediate layers of the teacher rather than only the latter’s output predictions by minimizing the
discrepancies between selected layers from the teacher and the student. These high-dimensional
intermediate layer representations constitute a much richer information-dense signal than is
available in the low-dimensional predictions from the output layer. [17] shows that this intermediate
distillation scheme enables the student to patiently learn the rich information in the teacher’s
hidden layers. As teacher and student usually have different number of layers and hidden-state
dimensionalities, it is not clear how to map teacher layers to student layers and how to measure the
discrepancy between their hidden states. Previous works proposed various discrepancy measures
for intermediate distillation, including: Cross-Entropy (CE), Mean Squared Error (MSE), L2 distance,
Cosine Similarity (CS), and Patient Knowledge Distillation (PKD) [17]. For these objectives, we
establish the following result. Proof is in Appendix B.

Theorem 1. Minimizing MSE, L2, or PKD loss, and maximizing CS between two random variables
X, Y are equivalent to maximizing particular lower bounds of the mutual information I1(X;Y).

In our KD setting, X and Y correspond to the hidden state representations of the student and
teacher model (for random training examples), respectively. Inspired by this theorem, it is reasonable
to use the bounds of MI as intermediate objective functions in KD. Particularly, we consider the
multisample MI lower bound of [14], which estimates I(X;Y) given the sample x, y from p(x, y)
and another K additional IID samples z;.x that are drawn from a distribution independent from
X,Y:

of (x.1)
am(y;x, z1:x) + (1 - a)q(y)

of (x.1)
+1
am(y; x, z1.5) + (1 - a)q(y)

Ay

21,

I(X; Y) > EP(X,leK)P(y|x) log log

} = Ep(xz6)p(y)
(6)

In I, f(-,-) and q(-) are critic functions for approximating unknown densities and m(-, -) is a
Monte-Carlo estimate of the partition function that appears in MI calculations. Typically, the space
z and the sample x, y are from the same mini-batch while training, namely the mini-batch size is
K +1. I, € [0, 1] flexibly trade off bias and variance, since increasing « reduces the variance of the
estimator while increasing its bias. We propose to use I, as an objective for intermediate distillation
and call it MI-a. Our implementation leverages a Transformer encoder [20] to learn f(-,-) and q(-).
To our knowledge, this is the first attempt to utilize complex neural network architectures for critic
functions in MI estimation; typically only shallow multi-layer perceptrons (MLPs) are used [18].
Our results in Table 6 reveal that Transformer produces a better critic function than MLP.

Note that for intermediate distillation, objectives like MSE attempt to ensure the teacher and
student representations take matching values, whereas objectives like MI (and tighter bounds
thereof) merely attempt to ensure the information in the teacher representation is also captured
in the student representation. The latter aim is conceptually better suited for KD, particularly in
settings where the student’s architecture differs from the teacher, in which case forcing intermediate
student representations to take the same values as teacher representations may even be harmful
for tiny student networks that lack the capacity to learn the same function composition used by
the teacher. Besides, MSE in theory measures two variables with matched size, while MI-« is more
flexible in variable size due to the use of neural critic functions. This feature of MI-a makes it
particularly suitable for KD, where the intermediate representations of the student and the teacher
may differ in dimensions. We emphasize that a high MI between student and teacher representations
suffices for the teacher’s prediction to be approximately recovered from the student’s intermediate
representation (assuming the teacher uses deterministic output layers as is standard in today’s NLP
models). Given that high MI suffices for the student to match the teacher, we expect tighter MI

bounds like MI-« can outperform looser bounds like MSE that impose additional requirements on
the student’s intermediate representations beyond just their information content.

A.3.1 Layer Mapping Strategy. We investigate three intermediate layer mapping strategies: 1) Skip: the
student learns from every | M/N | layer of the teacher, i.e., m; ; = 1 when j =i X [M/N]; 2) Last:
the student learns from the last k layers of the teacher, i.e., m;; = 1 when j = i+ M — N; and 3)
EMD: a many-to-many learned layer mapping strategy [11] based on Earth Mover’s Distance. The
intermediate loss with EMD mapping can be denoted as:

Ml N wh gH

S T i= j= lj i,j

Lemp (Hns Hypp) = M N H @)
i=1 & j=1 "i,j

where DH = [dﬁ] is a distance matrix representing the cost of transferring the hidden states
knowledge from H' to H®. And WH = [wg] is the mapping flow matrix which is learned by

minimizing the cumulative cost required to transfer knowledge from H” to H®. In Distiller, the
distance matrix is calculated via intermediate objective function: dfi. = [inter (1 lS , HJ.T).

B Proof of Theorem 1

Denote the Mutual Information (MI) between two random variables X and Y as I(X;Y). Based
on the results on variational bounds of MI [14], we derive a theorem that optimizing common
knowledge distillation objectives, including Mean Squared Error (MSE), L2 distance, and cosine
similarity between X and Y, can be viewed as maximizing certain lower bounds of I(X;Y). To
prove the theroem, we leverage this lemma:

Lemma 1 (Itypa). Assume that f(x,y) is an arbitrary neural network that takes x and y as inputs
and outputs a scalar and a(y) > 0. The lower bound of x and y can be estimated by:

ef (xy) ef (x:1) n
I(X;Y) 2 Ep(x y) [log —— a(y) 1- Ep(x)p(y)[Ty)] = Itupa.

Proof. Based on the definition of MI, we have:
p(ylx)
r(y)

Replacing the intractable conditional distribution p(x|y) with a tractable variational distribution
q(x|y) yields a lower bound on MI due to the non-negativity of the KL divergence:

I(X§ Y) = p(x y) [logp((:;)] Ep(x y) [1

1.

q(x Iy)]

106Y) = By llog £ 75 Ep e llog 2514

q(xly)
q((x|y))] +Ep(y [KL(p(x|y)lg(x[y))]

2 Ep(x.y [log g(x|y)] + H(X),

where H(X) is the entropy of X. Then we choose an energy-based variational family that uses
a critic function f(x, y) and is scaled by the data density p(x) to represent q(x|y):

p(x)
Z(y)

Substituting this distribution into (B) gives a lower bound on MI:

I(X5Y) 2 Ep(xy) [f (5,)] = Ep(y) [log Z(y)].

=E p(x,y) [log
L) 7(y) = Epx) [ef V)],

q(xly) =

10

However, this objective is still intractable. To form a tractable bound, we can upper bound the log
partition function by this inequality: log(x) < Z +log(a) — 1 for all x,a > 0. Apply this inequality
to get:

I(X5Y) 2 Ep(xy) [f (. 9)] = Ep(y [log Z(y)]
Ep(x) [ef(xﬂy)]

a(y)

= Ep(x,y) [f (%, 9)] = Ep(x,y) [log a(y)]
5 [ef(x,y)]

- x — | +1
p(x)p(y) a(y)

ef (5 ef ()
2 Byt llog 1 = Epmptn 1057

2 Ep(xy) [f (5 9)] = Epiy) [+loga(y) — 1]

This bound holds for any a(y) > 0.

Theorem 1. Minimizing MSE, L2, or PKD loss, and maximizing the cosine similarity between two
random variables X, Y are equivalent to maximizing particular lower bounds of the mutual information
I(X;Y). In knowledge distillation, samples x € X andy € Y are hidden states generated by the student
model and teacher model.

Proof. We prove this theorem by constructing f(x,y) and a(y) in Lemma 1 for each loss function.

MSE Luse(x,y) = [lx = yll5, let f(x,y) = ~llx - yll3, a(y) = 1, we have:
106 Y) 2 Ep(xy [log e ¥ 7¥1E] = By [e7 715
> Ep(uy llog e W ¥1E] = By [e°]
= Ep(xy [loge Y] -1
= Ep(xy [=Ilx = yll3] - 1.

Therefore, minimizing the MSE loss between x and y can be viewed as maximizing the lower
bound of I(X;Y).

PKD Loss Lpkp(x,y) = ||ﬁ - ||y%llz, let f(x,y) = —||m - Hz;%”g’ we have:

I(X;Y) = Ep(xy [loge” Tl]
- Ep(ayp(y [T T 1)
XY 2
> Epegloge™ T TE 1] — Ep iy (€]
=Epxy) [log eillﬁimllé] -1
Y 2
-] =
lyll, ™

Consequently, minimizing the PKD loss between x and y can be viewed as maximizing the
lower bound of I(X;Y).

= Ep(y [~ —
B TP

L2 Loss Lr,(x,y) = ||x —y||2, let f(x,y) = —||x — yl|2, a(y)=1, we have:
I(X;Y) > Ep(x,y) [logeflleyllz] _Ep(x)p(y) [eflleyl\z]
> Ep(ey log e W] — Ep)y €]

= By llogeFvl] — 1
= Ep(x,y [=llx = yll2] - 1.

11

Consequently, minimizing the L2 loss between x and y is equivalent to maximizing the lower
bound of I(X,Y).

Cosine Similarity The cosine similarity between two hidden states x and y is calculated as
Xy __xy _
T et f (% Y) = rppam — Le(y) =1

I(X,Y) 2 Ep(xy) [10g67\|xﬁ;ﬁyu‘1] _Ep(x)p(y)[einxﬁ%ﬂyn‘l]

xy
> Ep(x,y) [log e TFIXIT 1 _Ep(x)p(y)[eo]

1 xy
= ng(x,y) [log e M| — 1

1 xX-y
= “Ep(ey [-
T

Consequently, maximizing the cosine similarity between x and y can be viewed as maximizing
mutual information between x and y.

C Additional Experiment/Computation Details
C.1 Distiller Search Space

Here we recap the full search space considered for each stage of the KD pipeline in Distiller: /™t
€ {MSE, L2, CS, PKD, M- (« = 0.1, 0.5, or 0.9)}, IP*¢ € {MSE, CE}, {m; ;} € {Skip, Last, EMD},
augmentation policy a is one or combinations of elementary augmentation operations in {CA, RA,
BT, Mixup} .

C.2 Relationship to Other Distillation Methods

Distiller is a generic meta-framework that encompasses various KD pipelines used in previous
work. For example, Distiller with the following configurations corresponds to the KD pipeline used
in each of the cited works: [P = CE, [i*f = MSE, m; ; = Skip, a = CA [9]; [P**d = CE, ['"*r = MSE,
m; ; = EMD [11]; [P = CE, a = Mixup [12].

C.3 Architecture of Teacher and Student Networks

In Table 3, we use two baseline models BERT-PKD, and BERT-EMDy,. As described in the original
paper [17], we initialize BERT-PKD, with the first 4 layers of parameters from pretrained BERTgAsE.
BERT-EMD; is initialized from TinyBERT, so they have the same architecture. We list the detailed
configurations of the teacher and student architectures investigated in Table 1.

C.4 Experimental Setup & Computing Details

All experiments are evaluated on GLUE [22] and SQuAD v1.1 [15] that contain classification,
regression, and tagging tasks. We view SQuAD as a span part-of-speech tagging task by finding
the correct answer span from the given context. The same metrics for these tasks as in the original
papers [22, 15] are adopted.

[19] finds initializing students with pretrained weights is better for distillation, therefore,
we initialize student models with either weights obtained from task-agnostic distillation [9] or
pretrained from scratch [19]. Task-specific fine-tuned models BERTgasg, ROBERTay arce, and
ELECTRALaRrGE are considered as teacher models in our experiments. Models with comparably
fewer parameters such as TinyBERT,, ELECTRAga11. and others detailed in Table 1 in Appendix
are selected as students.

For data augmentation, We consider various elementary DA operations including: 1) MLM-
based contextual augmentation (CA) , 2) random augmentation (RA), 3) backtranslation (BT) and

12

C.5

Table 1: Network architectures of the teacher and student models used in the paper.

Model #Params hunits Mlayers hmid Theads
Teacher architectures

RoBERTay arGe 335M 1024 24 4096 16

ELECTRA;1 ARGE 335M 1024 24 4096 16

BERTgASE 110M 768 12 3072 12
Student architectures
TinyBERT6 67M 768 6 3072 12
BERT-PKD,4 52M 768 4 3072 12
BERTMEDIUM 41M 512 8 2048 8
BERTspmarL 29M 512 4 2048 8
TinyBERT, 14M 312 4 1200 12
ELECTRASMALL 14M 256 12 1024 4
BERT Mg 11M 256 4 1024 4
BERT Ny 4M 128 2 512 2

4) mixup. For contextual augmentation, we use the pretrained BERT model to do word level
replacement by filling in randomly masked tokens. As in EDA [23], our random augmentation
randomly swaps words in the sentence or replaces words with their synonyms. For backtranslation,
we translate the sentence from one language (in this paper, English) to another language (in this
paper, German) and then translate it back. Unlike existing implementations of DA in NLP that
separately generate an augmented dataset first and then recall it over training, in Distiller, we apply
a dynamic DA strategy where we generate a new augmented dataset every U (= 5) epochs during
training. We find this strategy to be more time-consuming and flexible as a DA pipeline. In addition,
we use the teacher network to compute the soft label § assigned to any augmented sample x.

For hyper-parameters in Equation 1, our preliminary experiments suggest that setting f;, f, to
1 produces the best overall performance so we fix their values to 1 in subsequent results. y; and y,
are set to 0.5 when DA is applied (otherwise S, y; and y; are set to 0). For controlled experiments,
unless specified explicitly, we fix """ as MI-a (& = 0.9) and the layer mapping as “Skip”. Critic
functions in MI-a are powered by a shallow Transformer.

All experiments are performed on a single machine with 4 NVIDIA T4 GPUs. To reduce the
hyper-parameter search space, we fix the batch size as 16 and the learning rate as 5e-5 for all
experiments. We used automated mix precision FP16 for training. Maximum sequence length
is set to 128 for sentence-pair tasks in GLUE, 64 for single sentence tasks, and 320 for SQuAD.
Most of the experiments are trained for 15 epochs except 30 epochs for the challenging task CoLA
and 30 epochs for SQuAD. As for the critic functions in MI-«, two-layer Transformer(hpq = 256,
Nheads = 8) or 4-layer MLP is the choice in our implementation.

Additional Experimental Results

MI-« for Intermediate Distillation. We submitted our MI-a model predictions to the official GLUE
leaderboard to obtain test set results and report the average scores over all tasks (the “AVG” column)
as summarized in Table 3. The results show that the student model distilled via the MI-« objective
function outperforms previous student models distilled via MSE or PKD loss. Results in Table
5 in Appendix indicate that MI-« also works well for tagging tasks. MI-«a can be interpreted as
learning to maximize the lower bound by updating parameters in the neural network-powered
critic functions, resulting in a tighter bound than other objectives/bounds without the minimax
learning.

Benefits of Data Augmentation. Data augmentation in KD provides the student additional op-
portunities to learn from the teacher, especially for datasets of limited size. Thus, we investigate

13

Table 2: We extract features from downstream datasets so that every task can be represented as a
fixed-dimension embedding. The extracted embedding can be fed into AutoDistiller as dense
features. In this table, we describe how the embedding is acquired.

Feature Description
Every document can be represented as a weighted average of the GloVe vectors,
where the weights are defined by the TF-IDF scheme.
Each downstream dataset is viewed as a “document” in the TF-IDF scheme.
Precisely, the embedding of a dataset s is v5 = ﬁ ZE“ IDF,, 0y,

wes

Context Embedding .
where |s| denotes the number of words in the dataset,

and IDF,, := log :}{X is the inverse document frequency of word w.
N is the total number of datasets, and N, denotes the number of datasets containing w.
Intuitively, this feature represents the content of datasets.

For the dataset, we collect their literal descriptions, usually one or two sentences.

Task Embedding Then aggregate GloVe vectors of every word in these sentences and get a description embedding.
This feature represents the semantic objective of the task and how the data is formatted.

We use a lite Bi-LSTM model as the baseline model and fintune it on the downstream dataset.
Baseline Score This feature aims to measure the difficulty of each task by measuring

how well a simple architecture can perform on the specific dataset.

The fine-tuned teacher score on the dataset. Comparing the teacher score to aforementioned
baseline score tells how much boost can a complex model has on this dataset.

Number of Examples | Number of training samples in the dataset.

Teacher Score

Table 3: Comparison of evaluation results on GLUE test set. BERTgasg (G) and BERTgasg (T) indicate
the fine-tuned BERTpsg from [2] and the teacher model trained by ourselves, respectively.
BERT-Skip-MSE,, BERT-EMDy, and MI-a are both initialized from TinyBERT,, the difference
is that BERT-Skip-MSE, is trained with “Skip” as intermediate layer mapping strategy and
MSE as intermediate loss, BERT-EMDy is trained with “EMD” as intermediate layer mapping
strategy and MSE as intermediate loss, our MI-a model is trained with “Skip” as intermediate
layer mapping strategy and MI-« as intermediate loss.

Model #Params | MNLI-m MNLI-mm QQP ONLI SST-2 CoLA MRPC RTE STS-B AVG
(393k) (393k) (364k) (108k) (67k) (8.5k) (3.5k) (2.5k) (5.7k)
BERTgAsk (G) 110M 84.6 83.4 71.2 90.5 93.5 52.1 88.9 66.4 85.8 79.6
BERTgsk (T) 110M 84.5 83.6 717 909 934 493 870 673 847 792
BERT-PKDy [17] 52M 79.9 79.3 70.2 85.1 89.4 24.8 82.6 62.3 82.3 72.9
BERT-Skip-MSE, 14M 81.3 80.3 69.1 86.1 90.0 25.3 85.6 63.2 80.3 73.5
BERT-EMDy [11] 14M 82.1 80.6 69.3 87.2 91.0 25.6 87.6 66.2 82.3 74.7
MI-a (@ = 0.9, ours) 14M 81.9 80.6 69.8 87.4 91.5 25.9 87.0 67.4 84.0 75.1

the effect of DA on four data-limited tasks: CoLA, MRPC, RTE and STS-B. We also study whether
various student model architectures/sizes benefit differently from DA. Table 4 demonstrates that
DA generally provides a boost to student performance and is especially effective upon small models
(BERTynt and BERTNy), which is consistent with previous papers [9].

Experiments on SQuAD. We conduct an ablation study on SQuAD to verify the effectiveness of
our MI-a objective and also the proposed mixup strategy for sentence tagging tasks in Section A.1.
Table 5 shows that both MI-a and mixup boost comparable student performance.

MI-a constructed with different critic functions. We implement MI-a using various neural-
network architectures as critic functions. Here we compare the performance of MI-a powered
by two kinds of critic functions Transformer and MLP in Table 6. The result shows that a small
Transformer architecture performs as a better critic function than an MLP in MI-« especially when
the task is a token-level task (SQuAD v1.1).

How much do larger/better teachers help. Table 7 shows the performance of different students
distilled from teachers of different sizes and pretraining schemes. From the results, we observe
that although the teacher ELECTRA] arcg has the best performance on average score, most of the
students of ELECTRA1 arge performs worse than students of ROBERTay orgg- ELECTRAgMaLL is
the only student that performs the best with ELECTRA;] argg, as teacher, that may be attributed to

14

Table 4: Student performance with (out) augmentation (augmenter initialized as CA+RA+mixup). We
report the relative improvement for rows starting with “+ aug”.

Model #Params | CoLA MRPC RTE STS-B AVG
mcc f1/acc acc spearman/pearson
BERTgasE (T) 110M 55.0 89.6/85.0 65.0 88.4/88.6 78.6
TinyBERT, 67M 513 92.5/89.7 75.5 89.6/89.8 81.4
+ aug +0.1 -1.1/-18 -33 +0.2/+0.2 -1.0
BERTMeDIUM 41M 44.1 89.3/84.8 653 88.3/88.6 76.7
+ aug +53 -0.4/-07 +4.4 +0.6/+0.5 +1.6
BERTsmaLL 29M 374 86.8/80.6 64.6 87.7/88.0 74.2
+aug +5.0 +0.1/+0.8 +0.4 +0.3/+0.2 +1.1
TinyBERT, 14M 23.6 88.9/83.8 67.1 88.0/88.1 733
+ aug +7.9 +0.3/+0.0 +2.2 +0.7/+0.7 +2.0
ELECTRAgsMALL 14M 428 88.3/83.8 66.4 87.4/87.5 76.0
+ aug +16.2 +3.4/+3.7 +1.8 +1.0/+1.0 +4.5
BERT MmNt 1M 112 86.1/80.1 628 87.1/87.2 69.1
+ aug +23.2 +0.0/-0.1 +3.3 +0.2/+0.0 +4.4
BERTTINY 4aM 6.0 83.2/73.3 60.0 84.0/83.6 65.0
+ aug +6.6 +1.7/+3.7 +4.3 +0.1/+0.7 +2.9

Table 5: Ablation study of distillation performance on SQuUAD v1.1 dev set. The first line is the
statistics of the BERTgasg teacher. ELECTRAgMarr, and TinyBERT are two student networks.
ELECTRAspmarL (FT) means to fine-tune ELECTRAgparL, without KD. TinyBERTéJr represents
results obtained from [9]. Models that end with “(MSE)” are distilled with the MSE loss while
“+ MI-a” stands for MI-a (¢=0.9) as the intermediate loss function. “+ mixup” means to further
apply the mixup augmentation.

Model SQuAD v1.1
EM F1
BERTgask (1) 80.9 882

ELECTRAgyarL (FT) | 753 835
ELECTRAgpmarL (MSE) | 79.2 86.8

+ Ml-a 79.0 86.8
+ mixup, MSE 80.1 87.4
+ mixup, MI-a 80.2 87.6
TinyBERT," [9] 79.7 875
TinyBERT, (MSE) 77.8 855
+ MI-a 80.0 87.8
+ mixup, MSE 78.6 86.2
+ mixup, MI-a 81.1 88.6

ELECTRAgMmaLL and ELECTRA| aggg are pretrained on the same pretraining task, so they have a
similar knowledge representation scheme. And also, for datasets MNLI, QQP, QNLI, and SST-2,
which have abundant amount of training data, students of BERTgasg perform better.

Benefits of Intermediate Distillation. fANOVA results in Figure 2 indicate that intermediate distil-
lation achieves the highest importance among the components in distillation pipeline. To further
validate this observation, we compare distillation results between settings where intermediate
distillation is used or not. Table 8 shows that large datasets (>5k training sample) clearly benefit
from intermediate distillation, which can be interpreted as efficient data provides more iterations for
students to query the teacher and learn the intermediate function composition. This interpretation
shares the similar inner thought with our findings about data augmentation in Section C.5.

15

Table 6: Comparison of evaluation results on GLUE test set. We compare the distillation performance
when using MLP and Transformer as critic functions in MI-a respectively. BERTgasg (T)
indicates the teacher model trained by ourselves. Both of the students are initialized with
TinyBERT, [9] and distilled with “Skip” as intermediate layer mapping strategy and MI-a
as intermediate objective functions. The difference is, TinyBERT, (MLP) is trained with a
4-layer MLP with hidden state of 512 as critic function while TinyBERT, (Transformer) uses
a 2-layer Transformer with feed-forward hidden size 256.

Model MNLI-m MNLI-mm QQP QONLI SST-2 CoLA MRPC RTE STS-B SQuADv1.l AVG
(393Kk) (393k) (364k) (108k) (67k) (8.5k) (3.5k) (25k) (57k) (108k)
BERTgasE (T) 84.5 83.6 71.7 90.9 93.4 49.3 87.0 67.3 84.7 88.2 80.0
TinyBERT, (MLP) 81.7 80.6 69.7 87.6 91.6 249 87.0 67.4 81.9 70.1 74.3
TinyBERT4 (Transformer) | 81.9 80.6 69.8 87.4 91.5 259 87.0 67.4 84.0 71.7 74.7

Table 7: Performance comparison with different teacher and student models. We abbreviate three
teacher models BERTgasg, ROBERTay asrge and ELECTRA arGE as B, R, E. Results are evaluated

on GLUE dev set and best results are in-bold.

Model #Params Teacher MNLI-m MNLI-mm QQpP ONLI SST-2 CoLA MRPC RTE STS-B AVG
acc acc fl acc acc acc mcc fl acc acc spearman pearson
BERTgasg (T) 110M 84.1 84.7 88.0 91.1 917 93.0 55.0 89.6 85.0 65.0 88.4 88.6 83.7
RoBERTararce (T) 335M 90.2 90.1 89.6 921 947 963 646 913 880 787 91.7 91.8 883
ELECTRA¢pagce (T) 335M 90.5 90.4 90.3 92.8 95.1 96.6 67.4 917 885 845 88.7 88.9 88.8
BERTgAsE 110M R 84.5 84.6 88.6 915 917 93.2 59.3 916 880 664 89.0 89.4 84.8
E 84.4 84.6 88.8 91.7 91.6 92.8 59.5 919 88.7 69.3 89.1 89.6 85.2
TinyBERT, 67M B 83.9 84.0 88.1 912 913 91.6 50.5 903 86.5 755 89.4 89.4 84.3
R 83.5 83.5 88.0 91.2 9038 92.2 480 919 88.7 726 89.9 90.0 84.2
E 83.0 83.0 87.8 91.0 90.6 91.3 48.6 91.6 885 76.2 89.1 89.3 84.2
BERTyEDIUM 41IM B 82.6 83.0 879 91.0 90.0 908 483 889 841 65.0 88.2 884 824
R 80.9 81.4 87.6 90.8 89.0 91.4 50.5 889 84.6 643 88.2 88.6 82.2
E 81.0 81.3 87.5 90.7 89.0 90.9 51.0 89.5 853 643 88.0 88.2 82.2
BERTsmaLL 29M B 81.0 81.0 87.4 90.6 873 90.5 43.1 87.8 824 635 87.0 87.2 80.7
R 78.7 78.6 87.0 904 87.0 88.6 412 89.1 841 643 87.1 87.3 80.3
E 78.6 78.8 87.2 90.5 87.0 89.3 43.0 88.7 84.1 63.9 86.8 87.1 80.4
TinyBERT, 14M B 81.1 81.6 87.2 904 87.4 906 123 894 850 66.4 87.7 87.8 78.9
R 80.0 80.7 86.5 90.0 86.0 89.4 246 904 865 679 88.0 88.1 79.8
E 80.0 80.2 86.2 89.6 859 88.9 21.8 909 86.8 68.6 87.6 87.6 79.5
ELECTRAsMmALL 14M B 82.7 83.8 87.8 909 89.7 91.3 60.6 913 87.7 60.6 87.4 87.5 83.5
R 82.3 83.2 88.1 912 895 90.6 586 913 875 675 87.6 87.8 83.8
E 82.0 82.7 88.5 915 893 91.4 60.6 923 89.0 69.7 86.6 86.7 84.2
BERT MmNt 1M B 78.5 79.7 86.6 90.0 84.9 87.8 20.1 87.0 81.6 610 86.2 86.1 77.5
R 76.6 77.3 86.0 90.0 84.6 85.9 32.2 86.6 81.1 65.3 86.2 86.3 78.2
E 76.3 77.1 85.9 895 84.2 85.9 33.8 87.0 81.6 650 85.7 85.5 78.1
BERTTINY M B 72.8 73.4 835 872 813 83.9 0.0 845 757 585 81.4 79.9 71.8
R 71.5 72.0 829 86.7 80.2 83.1 6.2 849 76.2 603 81.9 79.9 721
E 71.2 71.8 82.9 87.0 80.0 82.8 6.7 852 77.0 628 78.4 77.3 71.9

Table 8: Comparison of evaluation results on GLUE dev set. We compare the distillation performance
with (out) intermediate distillation. A BERTgasg model is used as the teacher and TinyBERT,
is the student. TinyBERT, (KD) represents using a vanilla knowledge distillation (student
only learns from the outputs of teacher) and “+intermediate distillation” represents using

vanilla KD and intermediate distillation.

Model MNLI-m MNLI-mm QQP QNLI SST-2 CoLA MRPC RTE STS-B SQuAD v1.1 AVG
(393k) (393k) (364k) (108k) (67k) (8.5k) (3.5k) (2.5k) (5.7k) (108k)
acc acc f1/acc acc acc mcc f1/acc acc spearman/pearson f1/em
BERTgasg (T) 84.1 84.7 88.0/91.1 91.7 93.0 55.0 89.6/85.0 65.0 88.4/88.6 88.2/80.9 83.8
TinyBERT, (KD) 80.1 80.3 86.4/89.7 85.8 89.1 16.1 89.6/85.3 66.8 88.4/88.5 77.3/66.8 77.9
+intermediate distillation | 80.7 81.3 87.0/90.2 86.8 90.0 213 89.3/84.8 653 88.2/88.4 79.4/69.4 78.7

More about AutoDistiller. We evaluate the performance of AutoDistiller on the 8 GLUE datasets
via a leave-one-dataset-out cross-validation protocol. Figure 5 shows that AutoDistiller achieves
positive Spearman’s rank correlation coefficients for most datasets.

16

Task Embedding

Context Embedding

Teacher Score

Baseline Score

‘umber of Examples

0.00 0.02 004 0.06 0.08 010 012 014 016
Permutation importance of dataset features

Figure 4: Permutation importance of the five dataset features.

geo o o * ot 1
°
o J
0o, Do N, *
[] [] []
0.98 o "% -
N ° ° ’ °
.« °* ° °
R TRy 1 4
*f% S e3P
0.96 1 ‘ o0 ad o: - ¥ o0
[) []
2 o ° o 902°% ‘ °
< ° ® ° ®
g o [J °
= [@ °
0949 s See
.. [} o [] L
'y [) ‘ [)
® mnli: 0.48 ®
® qup:037 @ @ o~
0.924 ® anli:0.57 ® (14 °
@® sst2:05 .. [
® cola:-016 o []
@® mrpc: -0.0
® rte:0.54 L4
@® stsb: 0.32 o
0.90 =1 = - .
0.90 0.92 0.94 0.96 0.98 1.00

Predicted Ratio

Figure 5: Evaluating held-out AutoDistiller predictions on GLUE via leave-one-out estimates. We use

dataset-level cross-validation that holds out each GLUE dataset from AutoDistiller training.

For each held-out dataset, the legend lists Spearman’s rank correlation between the predicted

vs. actual ratio (teacher’s performance achieved by student’s) across different KD pipelines.

The average Spearman’s rank correlation value across the 8 datasets is 0.33.

17

D Top Configurations in Distiller

Here we list the top 5 configurations from the Distiller search space that performed best on each
dataset in Table 9.

Table 9: Top 5 configurations to distill a BERTgasg teacher to a TinyBERT, student on every dataset.
To reduce the search space, we only compare configurations that don’t use data augmentation.
As Hyper-parameter « is only valid for MI-a, the value of « is set to N for other intermediate
loss in the table.

Task Intermediate Loss « Layer Mapping Strategy KD Loss #Example Score
MNLI MI-a 0.9 EMD MSE 393000 81.7
MNLI MI-a 0.1 EMD MSE 393000 81.7
MNLI MI-a 0.5 Skip MSE 393000 81.7
MNLI MSE N EMD MSE 393000 81.6
MNLI MSE N Skip MSE 393000 81.6
QQP MI-a 0.9 EMD MSE 364000 90.2
QQP MI-a 0.1 EMD MSE 364000 90.2
QQP CE N Skip MSE 364000 90.2
QQpP MI-a 0.1 EMD MSE 364000 90.1
QQP MI-a 0.1 Skip MSE 364000 90.1
ONLI CE N Last MSE 105000 87.4
ONLI MI-a 0.5 Skip MSE 105000 87.4
QONLI MI-a 0.5 Last CE 105000 87.3
QONLI MI-a 0.9 Skip CE 105000 87.2
ONLI MI-a 0.1 Skip CE 105000 87.1
SST-2 Cos N Last MSE 67000 90.6
SST-2 MSE N Skip CE 67000 90.5
SST-2 MI-a 0.1 Last CE 67000 90.3
SST-2 CE N Skip MSE 67000 90.3
SST-2 MI-a 0.9 Skip CE 67000 90.3
CoLA MI-a 0.1 EMD MSE 8500 22.3
CoLA MI-a 0.5 EMD MSE 8500 21.6
CoLA MI-a 0.5 EMD CE 8500 21.1
CoLA MI-a 0.1 Last MSE 8500 21.1
CoLA MI-a 0.5 Skip MSE 8500 21.0
MRPC MI-a 0.1 EMD CE 3700 90.3
MRPC MI-a 0.5 EMD CE 3700 90.2
MRPC CE N Skip CE 3700 89.9
MRPC MI-a 0.9 EMD CE 3700 89.9
MRPC CE N Last MSE 3700 89.7
RTE MI-a 0.1 Skip CE 2500 70.8
RTE MI-a 0.9 Skip CE 2500 70.4
RTE MI-a 0.5 Skip CE 2500 70.0
RTE MI-a 0.1 Last CE 2500 70.0
RTE MI-a 0.5 Last CE 2500 69.3
STS-B MI-a 0.9 Skip MSE 7000 88.0
STS-B MI-a 0.5 Skip MSE 7000 88.0
STS-B MI-a 0.9 EMD MSE 7000 87.9
STS-B MI-a 0.1 Last MSE 7000 87.9
STS-B PKD N Skip MSE 7000 87.9
SQuAD v1.1 MSE N Skip MSE 130000 72.6
SQuAD v1.1 CE N Skip MSE 130000 72.4
SQuAD v1.1 MSE N EMD MSE 130000 72.3
SQuAD v1.1 MI-a 0.9 Skip CE 130000 71.9
SQuAD v1.1 MI-a 0.9 Skip CE 130000 71.7

18

	Introduction
	Related Work
	Methodology
	AutoDistiller

	Experiments
	Importance of Components
	Performance of AutoDistiller

	Discussion
	Distiller
	Data Augmentation Policy
	Prediction Layer Distillation
	Intermediate Representation Distillation
	Layer Mapping Strategy

	Proof of Theorem 1
	Additional Experiment/Computation Details
	Distiller Search Space
	Relationship to Other Distillation Methods
	Architecture of Teacher and Student Networks
	Experimental Setup & Computing Details
	Additional Experimental Results

	Top Configurations in Distiller

