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Abstract

Large language models (LLMs) have demon-
strated impressive mathematical reasoning capa-
bilities when trained with reinforcement learn-
ing with verifiable rewards (RLVR), particu-
larly through Group Relative Policy Optimiza-
tion (GRPO). However, extending these methods
to scientific domains such as molecular optimiza-
tion is challenging, as LLMs often lack the nec-
essary domain-specific reasoning skills. Molec-
ular optimization involves optimizing molecular
properties while preserving structural similarity,
leading to a complex combinatorial search. Exist-
ing models struggle due to conflicting objectives,
limited chemical reasoning, and the scarcity of
datasets with intermediate reasoning steps, which
hinders learning effective strategies. To address
these issues, we introduce Demonstration-guided
Policy Optimization (DePO). This framework
leverages reference molecules as demonstrations
to guide model exploration toward promising re-
gions of chemical space. Specifically, DePO in-
corporates demonstrations as supervised signals
for each reasoning chain, to regularize the search
direction while preserving the model’s reasoning
capabilities. Experiments show that DePO signif-
icantly outperforms both supervised fine-tuning
and GRPO approaches across key molecular op-
timization metrics, and excels in balancing the
competitive optimization objectives. DePO also
shows generalization capabilities and inference-
scaling properties.
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1. Introduction
Large language models (LLMs) have revolutionized
problem-solving by leveraging sophisticated reasoning ca-
pabilities and their vast knowledge repositories (Sun et al.,
2023; Yu et al., 2024; Zhong et al., 2024; Chen et al.,
2025a;b; Zhou et al., 2025). Conventional approaches em-
ploy manually designed prompts to enhance reasoning abil-
ities, ranging from in-context learning (Tang et al., 2023)
to chain-of-thought prompting (Wei et al., 2022) and its
variants (Yao et al., 2023). In contrast, post-training meth-
ods such as supervised fine-tuning (SFT) further augment
the reasoning capabilities of LLMs. By training with high-
quality chain-of-thought demonstrations, LLMs acquire the
capacity to perform deliberative reasoning before generating
answers, a crucial ability to solve tasks requiring multiple
reasoning steps, as evidenced by their effectiveness in tack-
ling mathematical problems (Zelikman et al., 2022).

However, the curation of high-quality chain-of-thought
demonstrations is resource-intensive and necessitates spe-
cialized domain expertise, rendering it impractical for scal-
ing to domains beyond mathematics. Recent advances, no-
tably DeepSeek-R1 (Guo et al., 2025), propose enhancing
LLMs’ generalizable reasoning capabilities through rein-
forcement learning with verifiable rewards (RLVR), requir-
ing only question-answer pairs and a rule-based reward func-
tion. Specifically, DeepSeek-R1 employs Group Relative
Policy Optimization (GRPO) (Shao et al., 2024) to optimize
models using reward signals derived from response accu-
racy and format adherence. This approach yields substan-
tial improvements in generalizable reasoning capabilities,
encouraging models to reason strategically by incorporat-
ing self-reflection and self-correction mechanisms when
encountering complex tasks.

Besides mathematical reasoning, LLMs have achieved no-
table progress in scientific domains such as interdisciplinary
literature analysis and scientific data interpretation (Zhang
et al., 2023; AI4Science & Quantum, 2023; Gottweis et al.,
2025). However, despite their broad domain knowledge and
ability to process complex research articles, LLMs continue
to face challenges with multi-step reasoning in specialized
scientific tasks (Wang et al., 2023; Mirza et al., 2024). A per-
tinent example is molecular optimization (Figure 1), which
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Figure 1. Molecular optimization aims to optimize the given molecule by modifying its components while maintaining the structural
similarity of the original molecule after the modification. The molecule is represented as SMILES (Weininger, 1988), a sequence of
symbols that represent atoms and bonds.

necessitates iterative analysis of molecular structures, the
proposal and implementation of modifications, and evalu-
ation of resultant properties (Talanquer, 2022; Guo et al.,
2023; Liao et al., 2024). This task is crucial in drug discov-
ery, where the goal is to enhance pharmacological properties
while maintaining structural similarity to ensure biological
activity (López-Pérez et al., 2024).

Despite the success of RLVR in mathematical domains, it of-
ten fails to transfer to scientific tasks such as molecular opti-
mization, which require both specialized domain knowledge
and sophisticated multi-step reasoning (Yue et al., 2025).
Notably, the effectiveness of RLVR is inherently constrained
by the model’s pre-existing knowledge and reasoning ca-
pacity (Yue et al., 2025; Gandhi et al., 2025). Furthermore,
molecular optimization datasets typically only contain final
answers (demonstration molecules) without intermediate
reasoning steps, and directly applying SFT on these demon-
stration molecules before RLVR can undermine the model’s
reasoning ability. This approach tends to encourage shortcut
learning and deterministic outputs, rather than supporting
the step-by-step reasoning process necessary for complex
domain-specific tasks. This limitation raises a critical re-
search question:

How can we leverage demonstrations to extend RLVR’s
knowledge frontier, enabling the robust multi-step

reasoning required to handle complex challenges like
molecular optimization?

In this paper, we propose Demonstration-guided Policy Op-
timization (DePO), a novel framework to boost the LLMs’
chemical reasoning for molecular optimization tasks. DePO
alleviates the limitations of conventional RLVR, which of-
ten suffers from unguided and inefficient exploration, by

explicitly integrating reference molecules as demonstra-
tions into the policy optimization process. Specifically,
DePO augments the policy optimization objective with a
demonstration-guided term that encourages the model to
generate solutions consistent with demonstrations. During
training, the model is supervised to match the demonstrated
molecules, while being allowed to explore intermediate
reasoning steps. DePO constrains the search space to chem-
ically valid and promising regions, enabling the model to
acquire domain knowledge and reasoning capabilities.

Empirically, we evaluate our method on instruction-based
molecular optimization benchmarks, including TOMG-
Bench (Li et al., 2024a) and MuMOInstruct (Dey et al.,
2025). DePO achieves up to 13% improvement compared
to SFT and other baseline approaches. Beyond instructions
seen during training, we demonstrate the effectiveness of
DePO on unseen instruction styles, highlighting its capacity
to generalize to novel scenarios. Additionally, our approach
exhibits strong inference-scaling capabilities, where opti-
mization success rates proportionally increase with addi-
tional attempts, further substantiating the efficacy of DePO
in extending RLVR beyond mathematical reasoning to com-
plex scientific domains.

We summarize our contributions as follows:

• We identify the insufficiency of RLVR in scientific do-
mains, which is limited by the model’s capability in rea-
soning under domain-specific constraints (Section 3).

• We introduce DePO, a novel framework that synergisti-
cally combines reinforcement learning with expert demon-
strations to address the challenges inherent in scientific
reasoning tasks (Section 4).
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• We empirically evaluate DePO on molecular optimization
tasks, demonstrating its effectiveness in enhancing the
generalizability of LLMs’ reasoning abilities in scientific
domains (Section 5).

2. Preliminary
In this section, we first introduce the basic idea of molecular
optimization, followed by the existing approaches and the
advantage of using LLMs for molecular optimization.

2.1. Molecular Optimization

Shown in Figure 1, molecular optimization involves mod-
ifying molecular structures to enhance desired properties,
such as drug-likeness measured by QED (Bickerton et al.,
2012), while preserving structural similarity to the original
molecule to retain its biological activity (López-Pérez et al.,
2024; Lipinski & Hopkins, 2004). Molecular optimization
can be formulated as a constrained optimization problem:

m∗ = arg max
m∈M

F (m0) s.t. Similarity(m∗,m0) ≥ δ, (1)

where m is an original molecular structure, M represents
the set of valid molecules spanning the chemical space,
F : M → R is a scalar-valued function evaluating the de-
sired molecular property, such as drug-likeness or solubility.
Similarity(·, ·) : M×M → R quantifies structural similar-
ity of two molecules, and δ ∈ [0, 1] is the threshold ensuring
sufficient similarity. Notably, multiple valid solutions m∗

may exist, as any molecule satisfying the objective function
is considered optimal.

Conventional methods like Monte Carlo Tree Search (Yang
et al., 2017) and Genetic Algorithms (Nigam et al., 2022;
Fu et al., 2022) exhaustively search the chemical space for
molecules with desired properties, but their computational
inefficiency limits scalability (Stumpfe & Bajorath, 2012).
Generative models address this by learning the chemical
space distribution, enabling efficient exploration of valid
regions. VAE (Liu et al., 2018) generates novel compounds
via latent space navigation, GFlowNet (Bengio et al., 2021)
optimizes molecular generation as a flow-matching problem,
and diffusion models like EDMs (Hoogeboom et al., 2022)
produce molecules through iterative denoising.

2.2. LLMs for Chemical Tasks

Despite their merits, conventional approaches exhibit in-
herent limitations in synthesizing molecules with precise,
tailored properties (Li et al., 2024b). Furthermore, these
methods demonstrate insufficient generalization capabilities
when confronted with novel tasks, thereby impeding their
practical utility in addressing emerging therapeutic chal-
lenges and pharmaceutical requirements (Dey et al., 2025;
Li et al., 2024a). These limitations motivate us to explore the
potential of LLMs for molecular optimization, which excels

in generalizing to unseen tasks with limited demonstration
or ambiguous instructions (Chang et al., 2024). Notably,
LLMs have demonstrated remarkable capabilities in under-
standing molecular properties and their interactions (Guo
et al., 2023). These investigations demonstrate that LLMs
acquire sufficient chemical knowledge to understand the
molecules and conduct valid operations.

Nevertheless, LLMs are limited in transferring their general
reasoning capabilities to chemical domains. Comprehen-
sive empirical evaluations, including Scibench (Wang et al.,
2023) and ChemBench (Mirza et al., 2024), have system-
atically documented performance degradation when LLMs
confront tasks requiring reasoning under domain-specific
constraints, such as structural validity preservation or ad-
herence to molecular property preferences. This limitation
is particularly consequential for molecular optimization,
which necessitates sophisticated reasoning about molecular
structures and their associated physicochemical properties
within a highly constrained chemical space.

2.3. Enhancing LLM Reasoning via RLVR

Recent advances in LLM reasoning capabilities, exemplified
by DeepSeek-R1 (Guo et al., 2025), demonstrate that rein-
forcement learning (RL) through GRPO (Shao et al., 2024)
with rule-based rewards can substantially enhance LLMs’
reasoning faculties, particularly for complex mathematical
reasoning tasks (Shao et al., 2024; Team, 2025; Guo et al.,
2025). GRPO builds upon the Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) but eliminates the critic
model and Generalized Advantage Estimation (GAE), thus
improving computational efficiency.

Given the question-answer pair (q, a) that is i.i.d. sampled
from an underlying distribution D, where q denotes the
query and a represents the ground-truth answer. Let πθ(·|·)
be the current LLM policy parameterized by θ, {oi}Gj=1

denotes the G independent responses generated from the
old policy model πold(·|q), and r(·, ·) represents the reward
function that quantifies the correctness of oi with respect to
q and a, and ϵ is the hyper-parameter. Let πref(·|q) denotes
the reference policy model. Formally, GRPO optimizes the
policy model πθ by maximizing the following objective:

JGRPO(πθ) ≜ E (q,a)∼D,

{oi}Gi=1∼πθold
(·|q)[

1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

(
min

(
πθ(oi,k|q, oi,<k)

πθold(oi,k|q, oi,<k)
Âi,k,

clip

(
πθ(oi,k|q, oi,<k)

πθold(oi,k|q, oi,<k)
, 1− ε, 1 + ε

)
Âi,k

)

− β DKL (πθ ∥πref)

)]
,

(2)

where Âi,k ≜ r(oi,a)−mean({r(oi,a)}G
i=1)

std({r(oi,a)}G
i=1)

denotes the group
relative reward. GRPO also incorporates the K3 KL-
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Figure 2. Comparison of GRPO, GRPO with SFT initialization, and DePO across three key metrics: training reward distribution (left),
output sequence length (middle), and target property optimization performance (right). GRPO-based models, with or without SFT
initialization, fail to balance property optimization and structural constraints. SFT-trained models further exhibit diminished reasoning
ability, reflected by shorter completions. In contrast, DePO achieves a better trade-off between property and structure, and generates
molecules with more detailed reasoning and improved target property performance. Experimental details are provided in Appendix A.

divergence estimator (Schulman., 2020), which is formu-
lated as follows:

DKL (πθ||πref) =
πref(oi,k|q, oi,<k)

πθ(oi,k|q, oi,<k)

− log
πref(oi,k|q, oi,<k)

πθ(oi,k|q, oi,<k)
− 1.

(3)

3. Scare Reward Signal Limiting the
Exploration

Recall Equation (2), the RL objective aims to optimize the
policy model to obtain higher rewards, which heavily relies
on the quality of the model’s own generation results. How-
ever, LLMs struggle in generating effective optimization
results for positive feedback, as well as exploring the search
space efficiently. Without sufficiently informative feedback
to guide the search process, the model’s exploration trajec-
tory becomes stochastic, failing to converge toward optimal
solutions, which should satisfy the requirements of the target
property while maintaining the structural constraints.

To empirically substantiate the above claims, we examine
the training dynamics of models under various configura-
tions. Specifically, we conduct RLVR with Qwen-2.5-3B-
Instruct model and employ molecular property and structural
constraints as the reward function. Figure 2 presents the
results and we derive the following observations.

Observation 3.1 (GRPO cannot balance the competitive
molecular optimization constraints). Models trained with
GRPO exhibit a conservative bias, generating molecules
nearly identical to the input as Figure 2 (Left). While this
approach easily satisfies structural similarity constraints, it
prevents meaningful molecular modifications necessary for
property enhancement. This leads to suboptimal property
rewards and failure to meet the optimization objective. The
resulting molecular outputs lack diversity and fail to ade-
quately explore the space of improved structures, yielding

poor optimization performance as Figure 2 (Right).

Observation 3.2 (GRPO with SFT initialization cannot
balance the trade-off between property optimization and
structural constraints). While SFT effectively integrates
domain-specific knowledge into LLMs (Mecklenburg et al.,
2024), its application with simple question-answer pairs,
which are prevalent in text-based molecular generation, ap-
pears insufficient for balancing the competing constraints
inherent in molecular optimization tasks. As illustrated in
Figure 2 (Left), models initialized with SFT tend to gen-
erate molecules that significantly deviate from the input
structure, despite meeting the target property requirements.
These models fail to maintain structural similarity, produc-
ing chemically valid but irrelevant optimizations that violate
the constraints of molecular optimization tasks. Models
trained with SFT-based initialization are also unable to gen-
erate molecules with detailed reasoning.

Observation 3.3 (GRPO cannot recover the reasoning abil-
ity from SFT-initialized model). Crucially, applying GRPO
to an SFT-initialized model fails to restore step-by-step rea-
soning. As illustrated in Figure 2 (Middle), the model per-
sistently generates brief outputs during RL training, lacking
substantive multi-step reasoning. While the model remains
capable of generating chemically valid molecules, it fails
to regain the reasoning ability to effectively balance the
trade-offs required for successful optimization. Once SFT
has induced a preference for direct responses, subsequent
GRPO training is unable to restore the model’s ability to
engage in intermediate, deliberative reasoning.

These observations suggest fundamental limitations of cur-
rent approaches: they struggle with balancing the compet-
ing objectives in molecular optimization while maintaining
the model’s reasoning capabilities for better optimization.
These limitations of GRPO and SFT-initialized models mo-
tivate the need for a more principled solution. Ideally, such
an approach should guide exploration within the chemical
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Figure 3. Schematic of the DePO framework. The policy model generates multiple completions, each containing reasoning steps ("think")
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chemical validity, while being guided toward promising regions by the supervised loss applied to the processed responses.
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Figure 4. Illustration of token processing and gradient flow across
GRPO, SFT, and DePO.

space, while balancing structural constraints and property
optimization objectives. Moreover, it should navigate these
trade-offs without diminishing the model’s reasoning abili-
ties, thereby enabling effective molecular optimization.

4. DePO: Demonstration-Guided Policy
Optimization

Motivated by these findings, we propose a novel frame-
work that leverages demonstrations to better direct the pol-
icy model’s search process, namely Demonstration-guided
Policy Optimization (DePO), and detail how it addresses
the challenges identified above. Rather than depending
exclusively on the model’s knowledge, our approach con-
strains the exploration space by demonstrating the reference
molecules. In the realm of molecular optimization, we can
leverage the existing question-answer pairs to guide the
model’s exploration. This approach is especially useful for
molecular optimization because the chemical space is enor-
mous, and evaluating molecules often requires specialized
knowledge that LLMs may lack from their pretraining (Kim
et al., 2023; Jiang et al., 2023).

Conceptually, we incorporate demonstrations to the pol-
icy model by maximizing the log-likelihood of the refer-
ence response by argmaxπθ

E(q,a)∼D [log πθ(a|q)], where

D={(qi, ai)} is the dataset of reference molecules without
intermediate reasoning steps. However, naively maximiz-
ing the log-likelihood of reference molecules risks inducing
deterministic behavior, wherein the model bypasses interme-
diate reasoning processes in favor of direct answer genera-
tion. To address this limitation, we introduce the exploration
guidance term to the objective function that replaces each
generation’s final answer âi with the demonstrated solution
ai.

As illustrated in Figure 4, DePO resembles the standard
RLVR procedure, with an additional supervised guidance
term where the model-generated answer (âi) is substituted
with the demonstrated solution (ai). In our approach, we
decompose the model’s output oi into two components: the
intermediate reasoning tokens ti and the final answer âi,
such that oi = [ti; âi]. This decomposition allows us to
selectively replace only the final answer while preserving
the model’s reasoning process. We formally represent this
process as πθ(ai|q, ti), where ti denotes the sequence of in-
termediate reasoning tokens. Furthermore, we employ gradi-
ent masking for the intermediate reasoning steps, effectively
excluding these tokens from parameter updates during opti-
mization. This approach prevents the model from learning
potentially erroneous reasoning patterns while preserving
its capacity for exploratory thinking.

The resulting framework, shown in Figure 3, preserves the
model’s capacity for deliberative reasoning while simulta-
neously constraining its exploration to chemically valid and
promising regions of the solution space.

The DePO objective with exploration guidance is given as
Equation (4). It offers a balanced approach to molecular op-
timization by allowing the policy model to learn from both
its own exploration (via Âi,k) and from expert demonstra-
tions. Notably, the external guidance is essentially imposing
supervision on the πθ’s final predictions, which guides the
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πθ to generate more likely molecules.

JDePO(πθ) ≜ E (q,a)∼D,

{oi}Gi=1∼πθold
(·|q)[

1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

min

(
πθ(oi,k|q, oi,<k)

πθold(oi,k|q, oi,<k)
Âi,k,

clip(
πθ(oi,k|q, oi,<k)

πθold(oi,k|q, oi,<k)
, 1− ε, 1 + ε)Âi,k

)
+ γ · log πθ(ai|q, ti)︸ ︷︷ ︸

Guiding Exploration

− β · (πref(oi,k|q, oi,<k)

πθ(oi,k|q, oi,<k)
− log

πref(oi,k|q, oi,<k)

πθ(oi,k|q, oi,<k)
− 1)

]
.

(4)

4.1. Reward Design

The reward function serves as the primary feedback sig-
nal for the effectiveness of the reasoning process of the
model. Recall Equation (1), molecular optimization requires
maintaining the structural similarity between the generated
molecule and the original ones, along with the target prop-
erty. We define the reward function as follows:

• Structural similarity rstruct: We employ the Tanimoto
similarity (Bajusz et al., 2015) to measure the similarity
between the generated molecule and the original ones.

rstruct(m
∗,m0) =

|FP (m∗) ∩ FP (m0)|
|FP (m∗) ∪ FP (m0)|

∈ [0, 1], (5)

where FP (m) represents the molecular fingerprint of
molecule m. This similarity metric quantifies the struc-
tural overlap between two molecular fingerprints, with
values ranging from 0 (completely distinct structures) to
1 (structurally identical molecules).

• Target property rprop: We define a binary reward function
with respect to the target property value function F (e.g.,
logP, QED). The reward is assigned a value of 1 if the
generated molecule m∗ achieves a favorable change in
the target property relative to the original molecule m0, as
specified by the optimization objective (e.g., minimizing
LogP). Otherwise, the reward is 0.

rprop(m
∗,m0) =

{
1, if F (m∗) ⪰ F (m0),

0, otherwise.
(6)

5. Experiments
In this section, we evaluate the performance of DePO.
We first outline the experimental setup (Section 5.1), fol-
lowed by a detailed discussion of the results (Section 5.2).
Lastly, we provide case studies and investigate the DePO’s
inference-scaling property (Section 5.3).

5.1. Experiment Settings

In what follows, we describe the setting of the experiments,
including the dataset, baselines, and evaluation metrics. De-
tailed settings are provided in Appendix A.

Datasets. We employ two instruction-based molecular opti-
mization benchmarks, TOMG-Bench (Li et al., 2024a) and
MuMOInstruct (Dey et al., 2025), to evaluate the knowledge
of LLM on molecular structure and properties.

• TOMG-Bench is a single-objective molecular optimiza-
tion benchmark encompassing two primary task types:
structure-based and property optimization. Structure-
based tasks require the model to modify designated func-
tional groups within molecules, whereas property tasks
involve adjusting molecular structures to improve spe-
cific chemical properties. We covers three structure-based
tasks (AddComponent, DelComponent, SubComponent)
and three property tasks (QED, LogP, MR).

• MuMOInstruct is a multi-objective molecular optimiza-
tion benchmark. Each task involves optimizing several
pharmaceutical properties at once, increasing the chal-
lenge for the model. To systematically evaluate general-
ization, MuMOInstruct includes both seen and unseen in-
struction styles to assess the model’s robustness to instruc-
tion variation. Four pharmaceutical properties are consid-
ered: plogP (lipophilicity), QED (drug-likeness), BBBP
(blood-brain barrier permeability), and DRD2 (dopamine
receptor D2 binding affinity). Notably, we evaluate three
tasks with seen and unseen instruction styles with differ-
ent combinations of optimization tasks, including BDP
(BBBP+DRD2+plogP), BDQ (BBBP+DRD2+QED), and
BPQ (BBBP+DRD2+plogP).

Baselines. We use Qwen-2.5-3B-Instruct as our
backbone and primary baseline model. For comparison,
we evaluate the following approaches: Distill-SFT, which
performs SFT on the s1.1K dataset (Muennighoff et al.,
2025) to impart extended reasoning abilities by leveraging
distilled responses from DeepSeek-R1 on predominantly
mathematical tasks; SFT, which refers to training the back-
bone model on the training split of the target molecular op-
timization dataset in an supervised manner; GRPO, which
applies RLVR to the backbone model, following the objec-
tive in Equation (2) and the reward function described in
Section 4.1; and GRPO (SFT init), which is identical to
GRPO except that it is trained starting from the SFT model.
We conduct experiments on 3 Nvidia A100s.

Evaluation Metrics. We evaluate model performance us-
ing three complementary metrics. Success Rate quan-
tifies the proportion of molecular optimization tasks in
which the model successfully achieves the specified prop-
erty objectives. Similarity is measured by the Tan-
imoto coefficient (Bajusz et al., 2015), which assesses

6



ICML 2025 GenBio Workshop

Task type Objective (↑) Baseline Distill-SFT SFT GRPO GRPO (SFT init) DePO

Structure-
based

optimization

AddComponent 0.065 0.060 0.147 0.005 0.156 0.239
DelComponent 0.092 0.128 0.154 0.008 0.176 0.140
SubComponent 0.047 0.050 0.264 0.052 0.300 0.344

Property
optimization

QED 0.130 0.123 0.207 0.123 0.193 0.236
LogP 0.168 0.135 0.206 0.305 0.183 0.297

MR 0.173 0.132 0.238 0.188 0.225 0.293

Table 1. Comparison of different methods on TOMG-Bench target on structural and property optimization. The best results for each task
are bolded, and the second-best is underlined.

Task type Objective (↑) Baseline Distill-SFT SFT GRPO DePO

Seen Instruction
BDP 0.008 0.016 0.101 0.118 0.117
BDQ 0.004 0.002 0.089 0.039 0.058
BPQ 0.010 0.011 0.115 0.120 0.139

Unseen Instruction
BDP 0.007 0.002 0.081 0.108 0.113
BDQ 0.004 0.002 0.088 0.036 0.054
BPQ 0.006 0.007 0.104 0.107 0.144

Table 2. Overall Performance in MuMOInstruct benchmark with seen and unseen instructions. The best results for each task are bolded,
and the second-best is underlined.

the structural similarity between the input and optimized
molecules. To jointly capture both optimization effec-
tiveness and structural preservation, we report the prod-
uct Success Rate × Similarity, which reflects the
model’s ability to balance property improvement with main-
tenance of molecular integrity.

5.2. Quantitative Results

We summarize the empirical observations w.r.t. the experi-
mental results in Tables 1 and 2.

DePO elicits the model’s chemical reasoning on single-
objective optimization tasks. Table 1 summarizes the
results for single-objective molecular optimization. For
structure-based tasks, DePO achieves the best performance
on AddComponent and SubComponent, correspond-
ing to improvements of 8.3% and 4% over the next best
method, respectively. For property-based optimization,
DePO achieves superior or competitive performance com-
pared to all baselines, highlighting its effectiveness and
robustness across evaluation settings, achieving up to 13.0%
absolute improvement over the base model. Notably, GRPO
without SFT initialization performs markedly worse, partic-
ularly on structure-based tasks, underscoring the challenges
of unconstrained exploration in the vast chemical space. In
contrast, DePO, which integrates demonstration guidance,
consistently outperforms SFT and GRPO, yielding more
effective molecular optimization.

DePO helps the model to balance multi-objective opti-

mization problems. Table 2 presents the results for multi-
objective molecular optimization. Notably, DePO outper-
forms baseline methods on BDP and BPQ tasks, achieving
up to 4% improvements over baseline methods, highlighting
its ability to effectively balance multiple competing objec-
tives simultaneously.

DePO elicit model’s generalization ability on unseen
instruction styles. Shown in Table 2, the performance
advantage of DePO is maintained for unseen instructions,
achieving superior results despite the model encountering
novel instruction formats. The most significant gains are
observed in the BDP task, where DePO’s approach to guided
exploration proves particularly effective at navigating the
complex optimization landscape involving multiple con-
straints. These results collectively validate that DePO’s
demonstration-guided approach constrains the exploration
space while maintaining the model’s reasoning capabilities
across scenarios of multi-objective optimization.

5.3. Case Studies

In this section, we present case studies to demonstrate the
effectiveness of DePO. We begin by showcasing molecular
optimization outcomes on optimizing molecular MR value
from TOMG-Bench, followed by an analysis of DePO’s
inference-time scaling behavior.

Chemically-validated reasoning. Figure 5 illustrates the
qualitative differences in reasoning approaches between
DePO and GRPO on a molecular optimization task. The
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Modify the molecule 
Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1Br 
to have a lower MR value

MR
87.10

We need to understand the impact of different chemical 
modifications on the MR value, including steric hindrance, 
electronegativity, and polarizability.

The bromine group can introduce steric hindrance …, which 
could impact the MR value… modify the bromine atom to a 
more flexible or less electronegative substituent.

carbonyl group
First, we need to consider the structure of the molecule:

benzene ring

bromine atom

nitrogen atom

Modify bromine (Br) à chlorine (Cl), reducing the steric 
hindrance and potentially lowering the MR 

Br à ClAnswer: 
Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1Cl

MR: 84.41
Similarity: 0.75

Analysing the 
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The MR or Magic Angle Spinning value is 
determined by the molecular structure and the 
presence of functional groups in the molecule. 

To lower the MR value, we can remove the nitrogen 
atom (N) from the heterocyclic ring…

The modified structure can be represented as:
  |
  |
  CC[red]/\/\/\/\/\/CC

The removal of the nitrogen atom can lead to a 
significant decrease in the MR value Wrong answer

Invalidate Expression

Incorrect analysis

Incorrect optimization

Invalidate Expression

Figure 5. Comparative analysis of molecular optimization strategies employed by DePO (left) and GRPO (right). DePO applies chemically
principled reasoning, accurately identifying key structural motifs and recommending a validated and effective substitution. In contrast,
GRPO generates chemically unsound reasoning and suggests invalid structural changes.
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Figure 6. Inference-scaling effect of DePO.

left panel demonstrates DePO’s chemically sound reasoning
process: it correctly identifies structural elements (bromine,
carbonyl groups, nitrogen atoms), articulates the relation-
ship between steric hindrance and MR values, and proposes
a valid transformation (substituting Br with Cl) that suc-
cessfully reduces the MR value while maintaining molec-
ular similarity. In contrast, the right panel reveals GRPO’s
flawed approach, which exhibits invalid chemical expres-
sions, incorrect structural analysis, and proposes chemically
implausible modifications (removing nitrogen from a hetero-
cyclic ring). This comparison underscores DePO’s capacity
to generate not only structurally valid molecules, but also
to produce coherent reasoning that captures the underlying
chemical principles governing validated and robust molecu-
lar property optimization.

Inference-scaling properties. Figure 6 details DePO’s
inference-scaling characteristics. We experiment by sam-
pling multiple times from the same task, namely optimiz-
ing the molecular MR value. The plot reveals that as the

number of sampling trials (k) increases, DePO’s best-of-k
success rate (red curve) and the similarity of the trials (blue
curve) both demonstrate marked improvements. These re-
sults underscore DePO’s proficiency in leveraging increased
computational budgets at inference.

6. Conclusion and Further Discussion
Conclusion. In this work, we identified key challenges in
applying LLMs to molecular optimization tasks, particularly
the difficulty in balancing competing objectives while main-
taining reasoning capabilities. Conventional reinforcement
learning approaches like GRPO struggle with sparse reward
signals, leading to suboptimal exploration of the chemi-
cal space. We introduced DePO, a novel framework that
effectively guides LLM exploration through expert demon-
strations while preserving the model’s reasoning abilities.
Our empirical evaluations on TOMG-Bench and MuMOIn-
struct benchmarks demonstrate that DePO consistently out-
performs existing methods across various tasks, achieving
superior performance in both structure-based and property-
based optimization scenarios. These results highlight the
importance of guided exploration in complex domains and
establish DePO as an effective approach for enhancing LLM
reasoning for scientific tasks.

Limitations. Despite DePO’s promising results, limitations
remain. First, the framework relies on the availability of
demonstrations, which may be scarce for novel or com-
plex molecular optimization tasks. In addition, while our
approach improves LLM reasoning for molecular optimiza-
tion, the black-box nature of LLM still presents challenges
for domain experts seeking to understand the precise reason-
ing behind specific structural modifications.
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Impact Statement
This paper introduces DePO, a novel framework for enhanc-
ing large language model (LLM) reasoning in molecular
optimization. By leveraging demonstration-guided policy
optimization, our work aims to accelerate the discovery and
design of new molecules, which could have significant pos-
itive impacts in fields such as medicine, materials science,
and sustainable chemistry.
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A. Experiment Settings
In this section, we provide the detailed experimental settings for all the experiments.

Pharmacological metrics. We employ the following pharmacological metrics for the molecular optimization tasks:

• QED (Quantitative Estimation of Drug-likeness) (Bickerton et al., 2012): QED provides a composite score that quantifies
the drug-likeness of a molecule by integrating multiple molecular properties, such as molecular weight, logP, topological
polar surface area, counts of hydrogen bond donors and acceptors, aromatic rings, rotatable bonds, and the presence of
undesirable chemical functionalities.

• LogP (lipophilicity) (Lipinski et al., 1997): LogP quantifies the lipophilicity of a compound, reflecting its tendency to
partition into non-polar (lipid-like) versus polar (aqueous) environments. Higher LogP values indicate greater solubility in
non-polar solvents, which is relevant for drug absorption.

• plogP (penalized logP) denotes the logP penalized by the ring size and synthetic accessibility.

• MR (molar refractivity) (Le Fevre, 1965): MR is a physicochemical descriptor that quantifies molecular size and polariz-
ability, both of which are critical for modeling molecular interactions with biological targets and membranes.

• BBBP (blood-brain barrier permeability) (Wu et al., 2023): BBBP quantifies a molecule’s ability to permeate the blood-
brain barrier (BBB), a selective interface that regulates molecular exchange between the systemic circulation and the
central nervous system. The BBB is formed by specialized endothelial cells with tight junctions, minimal vesicular
transport, and absence of fenestrations, collectively restricting passive diffusion of most compounds.

This barrier protects neural tissue from toxins and maintains brain homeostasis, but also limits drug delivery to the brain.
BBB permeability is modulated by interactions among endothelial cells, astrocytes, pericytes, and the extracellular matrix,
which together constitute the neurovascular unit.

• Mutag (mutagenicity) (Sundar et al., 2018): Mutag refers to the induction of permanent transmissible changes in the
amount or structure of the genetic material of cells or organisms.

• DRD2 (dopamine receptor D2 binding affinity) (Fan et al., 2020): DRD2 measures the binding affinity of a molecule to
the D2 subtype of dopamine receptors, which are G-protein-coupled receptors primarily located in brain regions such
as the striatum, nucleus accumbens, and prefrontal cortex. These receptors are central to regulating reward, motivation,
and motor control. Higher DRD2 affinity indicates stronger ligand-receptor binding, which can modulate dopaminergic
signaling and is relevant for the treatment of neurological disorders such as Parkinson’s disease.
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A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think>
<answer> answer here </answer>. User: task. Assistant:

Table 3. System prompt adopted for training. task will be replaced with the specific molecular optimization task.

Models AddComponent DelComponent SubComponent
SR Similarity SR Similarity SR Similarity

Baseline 0.086 0.763 0.107 0.864 0.057 0.815
Distill-SFT 0.100 0.604 0.188 0.682 0.078 0.633

SFT 0.238 0.619 0.203 0.755 0.366 0.721

GRPO 0.005 0.992 0.008 0.994 0.053 0.972
GRPO (SFT init) 0.246 0.635 0.232 0.759 0.420 0.713

DePO 0.307 0.778 0.158 0.887 0.429 0.802

Table 4. Performance comparison of various methods on structure-based optimization tasks from TOMG-Bench. For each task, the best
result is bolded and the second best is underlined. We report Success Rate (SR) and Similarity; higher values indicate better performance.

Datasets. We detailed the dataset used in the experiments, including the construction of the dataset, the training splits.

• TOMG-Bench is derived from Zinc-250K (Sterling & Irwin, 2015) and PubChem (Kim et al., 2019), comprising two task
categories: structure-based and single-property optimization. In structure-based tasks, the LLM is instructed to operate on
specific functional groups within molecules. Single-property optimization tasks require the LLM to modify molecules to
enhance target properties such as QED (Bickerton et al., 2012) (drug-likeness), LogP (Lipinski et al., 1997) (lipophilicity),
and MR (Le Fevre, 1965) (molecular size and polarizability).

• MuMOInstruct is a multi-objective molecular optimization benchmark designed to reflect the complexity of real-world
drug discovery. Derived from Zinc-250K, it requires models to optimize multiple molecular properties concurrently,
thereby increasing task difficulty. It incorporates both seen and unseen instruction styles to evaluate the model’s
instruction-following robustness. The benchmark covers five critical pharmaceutical properties: plogP (lipophilicity,
balancing permeability, solubility, and metabolic stability; higher is better), QED (drug-likeness), BBBP (blood-brain
barrier permeability, relevant for central nervous system drugs), Mutag (mutagenicity, where lower values indicate
reduced toxicity), and DRD2 (dopamine receptor D2 binding affinity, with higher values indicating greater specificity).

For TOMG-Bench, we utilize the light training split, comprising 1,500 samples (500 per subtask for both structure-based
and property-based optimization). The full TOMG-Bench test set is used for evaluation. To ensure comparability in training
data volume, we randomly select 500 samples from MuMOInstruct for training, which resulting 1500 samples for training.
All the training samples only contain the instruction and the target molecule, without any intermediate reasoning process.

Supervised Fine-Tuning. We configure the training process as follows. We employ the Llama-Factory (Zheng et al., 2024)
to SFT the model. All the SFT models are trained using two A100 GPU. Each device processes a batch size of 2, and
gradients are accumulated over 2 steps before an update. The learning rate is set to 1.0× 10−5 and optimized using a cosine
scheduler, with a warmup ratio of 0.05 to stabilize early training. The model is trained for 5 epochs using BF16 precision on
the training split of TOMG-Bench and 1 epoch on the training split of MuMOInstruct.

Reinforcement Learning. We utilize the Transformer Reinforcement Learning (TRL) library (von Werra et al., 2020) for
model training. All reinforcement learning approaches, including GRPO, GRPO (SFT init), and DePO, are trained using
a unified system prompt (see Table A), consistent with the DeepSeek-R1 protocol (Guo et al., 2025). Unless otherwise
specified, we adopt the default TRL hyperparameters, with the following exceptions: the learning rate is set to 5.0× 10−6,
and the maximum prompt length is limited to 256 tokens. We use a group size of 4 per input and a maximum completion
length of 1024 tokens. Training is conducted for 1 epoch with a per-device batch size of 2 for training and 1 for evaluation.
To ensure reproducibility, we fix the random seed to 42 and apply a warmup ratio of 0.1. Model generation is performed on
a single GPU, hosted by vLLM (Kwon et al., 2023), while two additional GPUs are allocated for training.

Evaluation. We employ vLLM to host the model to accelerate the generation process. For all generation tasks, we set the
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Models QED LogP MR
SR Similarity SR Similarity SR Similarity

Baseline 0.188 0.693 0.268 0.627 0.252 0.685
Distill-SFT 0.208 0.594 0.234 0.579 0.214 0.619

SFT 0.297 0.697 0.298 0.692 0.359 0.663

GRPO 0.138 0.889 0.379 0.806 0.214 0.880
GRPO (SFT init) 0.223 0.863 0.212 0.863 0.265 0.850

DePO 0.312 0.756 0.415 0.715 0.399 0.736

Table 5. Performance comparison of various methods on property-based optimization tasks from TOMG-Bench. For each task, the best
result is bolded and the second best is underlined. We report Success Rate (SR) and Similarity; higher values indicate better performance.

Models BDP BDQ BPQ
SR Similarity SR Similarity SR Similarity

Baseline 0.052 0.149 0.034 0.117 0.052 0.194
Distill-SFT 0.078 0.207 0.022 0.106 0.064 0.165

SFT 0.456 0.390 0.344 0.321 0.484 0.327

GRPO 0.156 0.759 0.082 0.479 0.212 0.567
GRPO (SFT init) 0.088 0.141 0.022 0.045 0.056 0.085

DePO 0.206 0.569 0.16 0.365 0.274 0.509

Table 6. Performance on seen instruction on MuMOInstruct benchmark. The best result is bolded, and the second best is underlined. We
report Success Rate (SR) and Similarity; higher values indicate better performance.

temperature to 0.75 and top_p to 0.85 to balance diversity and relevance in the generated outputs. We use a single beam
(num_beams = 1) and limit the maximum number of new tokens to 512. These hyper-parameters are chosen to ensure
consistent and controlled generation quality across experiments.

Licenses. The MuMOInstruct dataset is released under the MIT License. Qwen-2.5-3B-Instruct is distributed under the
Qwen Research License Agreement. vLLM, TRL, and Llama-Factory are all licensed under Apache 2.0.

B. Full Experiment Results and Further Analysis
In this section, we provide the full results of all the experiments. Notably, for TOMG-Bench, we provide the full results for
the structure-based optimization tasks in Table 4 and the property-based optimization tasks in Table 5. For MuMOInstruct,
we provide the full results for the seen instruction in Table 6 and the unseen instruction in Table 7. We also provide a
discussion on the infeasibility of GRPO with SFT initialization on the multi-objective tasks in Appendix B.2. Finally, we
conduct the empirical analysis on the performance of domain-specific LMs in Appendix B.3.

B.1. Molecular Optimization Performance

Single-objective optimization tasks. Tables 4 and 5 present the performance of each model on the structure-based and
property-based tasks of TOMG-Bench. Performance is measured using Success Rate (SR) and molecular Similarity. Several
key patterns are observed:

• DePO consistently achieves a strong trade-off between SR and molecular similarity across tasks. In the AddCompo-
nent task (Table 4), DePO attains an SR of 0.307 and a similarity of 0.778. In QED optimization (Table 5), it leads with
an SR of 0.312 and a similarity of 0.756. These results underscore DePO’s capacity to generate molecules that are both
successful in meeting task objectives and structurally faithful to the input.

• SFT improves SR but sacrifices similarity. Supervised Fine-Tuning (SFT) markedly increases SR relative to the baseline
(e.g., from 0.057 to 0.366 for SubComponent in Table 4), but this improvement often comes at the expense of molecular
similarity, which remains lower than that of DePO (e.g., SFT similarity of 0.721 vs. DePO’s 0.802 for SubComponent).

GRPO with SFT initialization can achieve competitive SRs in certain cases (e.g., 0.420 for SubComponent), but its
similarity is less consistent (0.713 for SubComponent). Distill-SFT generally underperforms SFT in both SR and similarity.
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Models BDP BDQ BPQ
SR Similarity SR Similarity SR Similarity

Baseline 0.052 0.143 0.042 0.104 0.050 0.130
Distill-SFT 0.016 0.099 0.020 0.077 0.050 0.143

SFT 0.400 0.409 0.356 0.299 0.376 0.277

GRPO 0.148 0.727 0.078 0.457 0.186 0.573
GRPO (SFT init) 0.092 0.147 0.026 0.058 0.042 0.063

DePO 0.198 0.572 0.170 0.322 0.242 0.596

Table 7. Performance on unseen instruction on MuMOInstruct benchmark. The best result is bolded, and the second best is underlined.
We report Success Rate (SR) and Similarity; higher values indicate better performance.

Task type Objective (↑) Baseline Distill-SFT SFT GRPO GRPO (SFT init) DePO

Seen Instruction
BDP 0.008 0.016 0.101 0.118 0.012 0.117
BDQ 0.004 0.002 0.089 0.039 0.001 0.058
BPQ 0.010 0.011 0.115 0.120 0.005 0.139

Unseen Instruction
BDP 0.007 0.002 0.081 0.108 0.014 0.113
BDQ 0.004 0.002 0.088 0.036 0.002 0.054
BPQ 0.006 0.007 0.104 0.107 0.003 0.144

Table 8. Overall Performance in MuMOInstruct benchmark with seen and unseen instructions. The best results for each task are bolded,
and the second-best is underlined.

Task type Objective (↑) BioT5-base MolT5-large Baseline SFT GRPO GRPO (SFT init) DePO

Structure-
based

optimization

AddComponent 0.054 0.031 0.065 0.147 0.005 0.156 0.239
DelComponent 0.027 0.027 0.092 0.154 0.008 0.176 0.140
SubComponent 0.011 0.016 0.047 0.264 0.052 0.300 0.344

Property
optimization

QED 0.080 0.055 0.130 0.207 0.123 0.193 0.236
LogP 0.079 0.043 0.168 0.206 0.305 0.183 0.297

MR 0.081 0.048 0.173 0.238 0.188 0.225 0.293

Table 9. Comparison of different methods on TOMG-Bench target on structural and property optimization. The best results for each task
are bolded, and the second-best is underlined.

• GRPO without SFT init preserves similarity but has low SR. GRPO without SFT initialization adopts a conservative
modification strategy, frequently yielding the highest similarity scores across tasks (e.g., >0.97 in structure-based tasks in
Table 4).

However, this preservation of structural integrity results in very low SRs for most structure-based tasks (e.g., 0.005 for
AddComponent). GRPO does exhibit task-specific strengths, such as a high SR of 0.379 for LogP optimization.

Multi-objective optimization tasks. Tables 6 and 7 present the performance of each model on the MuMOInstruct
benchmark, evaluating both instructions encountered during training and those not seen previously. Performance is measured
using Success Rate (SR) and molecular Similarity. The results reveal several key patterns:

• Clear trade-off exhibit between SR and Similarity is apparent across methods. Notably, SFT often yields high SR,
particularly on seen instructions (e.g., SR of 0.456 for BDP in Table 6), but typically results in lower molecular similarity
(e.g., SFT Similarity scores in Table 6 are 0.390, 0.321, 0.327, while DePO’s are 0.569, 0.365, 0.509). This suggests
that SFT can aggressively modify molecules to meet property targets, sometimes at the expense of significant structural
deviation.

• DePO consistently demonstrates a more balanced performance profile. While its standalone SR might occasionally
be surpassed by SFT (e.g., the SR for SFT on BDQ with seen instruction is 0.344 vs DePO’s 0.160 in Table 6), DePO
generally maintains higher similarity scores than SFT (compare DePO and SFT in Table 6 and Table 7). This ability to
achieve competitive SR while preserving structural similarity contributes to its strong performance in the combined metric
(SR × Similarity) reported in Table 2.
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• The GRPO variants exhibit distinct behaviors. GRPO without SFT initialization tends to preserve molecular structure
effectively, achieving high similarity scores (e.g., GRPO Similarity for BDP seen is 0.759 in Table 6). However, its SR
can be variable (e.g., SR of 0.156 for BDP with seen instruction vs 0.082 for BDQ with seen instruction in Table 6).
Conversely, GRPO initialized with SFT performs poorly on the MuMOInstruct benchmark, with notably low SR and
often low similarity, leading to very low scores (e.g., 0.012 for BDP with seen instruction).

B.2. GRPO with SFT Initialization cannot Generate Readable Outputs

While GRPO with SFT initialization demonstrates noteworthy performance on single-objective tasks (as detailed in Table 1),
its efficacy significantly diminishes on the more complex multi-objective tasks within the MuMOInstruct benchmark.
The combined SR × Similarity scores presented in Table 8 for GRPO (SFT init) are markedly low across all evaluated
multi-objective settings.

This quantitative underperformance aligns with qualitative observations of problematic generation behavior, such as those
illustrated in Section C.2, where the model may produce multiple, unreasoned molecular outputs or invalid SMILES strings.
These issues suggest that while SFT initialization can be beneficial for simpler tasks, it may hinder the model’s reasoning
ability to effectively navigate the chemical space of multi-objective molecular optimization, leading to a failure to generate
both valid and high-quality solutions.

B.3. Comparison with Domain-Specific LMs

We report the SR × Similarity scores for BioT5-base (Pei et al., 2023) and MolT5-large (Edwards et al., 2022) as provided
in (Li et al., 2024a). BioT5 leverages biochemical text to enhance both molecular understanding and generation, while
MolT5-large utilizes large-scale pretraining to improve SMILES generation from textual descriptions. We report the results
in Table 9.

Notably, the results demonstrate that fine-tuned generalist language models can perform competitively, and often surpass,
domain-specific models in molecular optimization tasks. Notably, DePO consistently outperforms both BioT5-base
and MolT5-large across all evaluated objectives. For example, in QED optimization, DePO achieves a score of 0.236,
substantially higher than BioT5-base (0.080) and MolT5-large (0.055). Moreover, the baseline generalist LLM, without
additional task-specific fine-tuning, often matches or exceeds the performance of domain-specific models (e.g., Baseline
LogP score of 0.168 vs. 0.079 for BioT5-base and 0.043 for MolT5-large).

These findings suggest that general-purpose LLMs, when adapted with DePO, are highly effective for molecular optimization
and can match or outperform models pre-trained specifically on biomedical and chemical corpora.

C. Case Study
In this section, we provide case studies of different approaches to both single-objective and multi-objective optimization
tasks.

C.1. Case Studies on Single-Objective Optimization

In this part, we present the case studies of different approaches to single-objective optimization tasks. In general, for the
single-objective optimization task, the baseline model lacks detailed domain knowledge. SFT and GRPO (SFT init) offer
simple modifications without elucidating the underlying chemical rationale, potentially sacrificing optimization opportunities
for directness. GRPO, when unguided, is prone to errors in chemical understanding and reasoning.
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Case study of Baseline model (Qwen-2.5-3B-Instruct).
Prompt: Modify the molecule Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1Br to have a lower MR.
LLM Output:
I’m sorry, but it seems there might be some confusion in your request.
"MR" can refer to different things depending on the context (e.g., molecular formula, molar ratio, mass-to-charge ratio, etc.).
To modify a chemical structure, such as the given propane sulfonate derivative, we typically perform chemical modifications that
aim to modify the functionality, functional groups, or introduce new ones.
However, without more specific instructions or the chemical context, it’s challenging to propose a clear and direct modification
that would result in a lower MR (assuming it refers to the Molecular Formula or molar mass of the compound).
If you could provide more details or specify what "lower MR" means in your case, I would be better able to assist you with a
specific modification.
Alternatively, if you meant to work on the structural formula of the compound, I can help you customize it or identify potential
modifications.

Case study of SFT.
Prompt: Modify the molecule Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1Br to have a lower MR.
LLM Output:
Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1

Case study of GRPO (SFT init).
Prompt: Modify the molecule Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1Br to have a lower MR.
LLM Output:
Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1O

Case study of GRPO.
Prompt: Modify the molecule Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1Br to have a lower MR.
LLM Output:
To modify the molecule Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1Br to have a lower MR value, we need to consider the
structure of the molecule and the impact of the structural changes on the molecular properties.
The original molecule has a heterocyclic ring with a nitrogen atom (N) and a carbonyl group (C=O). The structure can be
represented as follows: “‘ | | CC[N+]/CC “‘
The MR or Magic Angle Spinning value is determined by the molecular structure and the presence of functional groups in the
molecule. To lower the MR value, we can remove the nitrogen atom (N) from the heterocyclic ring, as the absence of the nitrogen
atom can lead to a lower MR value.
The modified structure with the nitrogen atom removed can be represented as follows: “‘ | | CC[red]/CC “‘
The removal of the nitrogen atom can lead to a significant decrease in the MR value, making the modified molecule more suitable
for certain applications.
In summary, to lower the MR value of the molecule, we can remove the nitrogen atom from the heterocyclic ring.
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Case study of DePO.
Prompt: Modify the molecule Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1Br to have a lower MR.
LLM Output:
To determine how to modify the molecule Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1Br to achieve a lower Magnetization
Transfer Ratio (MTR) value, we need to understand the impact of different chemical modifications on the MR value.
MTR is responsible for the transfer of magnetization between molecules, and such transfer can be influenced by several aspects
of the molecule’s structure, including steric hindrance, electronegativity, and polarizability.
First, we need to consider the structure of the molecule:
<think> Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1Br can be broken down into a carbonyl group attached to a benzene ring,
which is then attached to a nitrogen atom, and connected to a bromine atom.
The presence of the bromine group can introduce steric hindrance and create a polarizable environment, which could impact
the MR value. To decrease the MR value, we might consider removing any bulky or electronegative substituents, which would
reduce the steric hindrance and permit more efficient interactions or resonance structures contributing to higher MR.</think>
One straightforward approach to do this is to modify the bromine atom to a more flexible or less electronegative substituent, such
as hydrogen (H) or another non-polar atom or a less electronegative halogen like chlorine (Cl).
However, since chlorine is known to be more electronegative and might increase MR, we might want to opt for a less electronega-
tive and flexible substituent.
<answer> Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1Cl </answer>
Here, chlorine is substituted for the bromine, reducing the steric hindrance and potentially lowering the MR value by changing
the electronegativity and flexibility of the molecule.
However, for more definitive optimization, computational methods (like molecular dynamics simulations, quantum chemical
calculations, or a more extensive computational search) would be necessary.
This modification shows a reasonable effect based on the goal of lowering MR value.

DePO, in contrast, successfully combines guided exploration with preserved reasoning capabilities, leading to chemically
sound analysis and a reasoned modification. This highlights DePO’s ability to effectively navigate the complexities of
molecular optimization by leveraging demonstrations to inform its search process, resulting in more reliable and interpretable
outputs.

We summarize the key findings as follows:

The baseline model fails to understand the chemical context. The baseline model fails to understand the term "MR"
in the chemical context, requesting clarification. This highlights a lack of specialized knowledge required for targeted
molecular optimization, a common issue with general-purpose LLMs.

SFT provides a direct answer without intermediate reasoning. Model after SFT provides a direct answer by removing
the bromine atom: Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1. While this modification is chemically valid and
likely reduces MR (by removing a heavy atom), the output lacks any reasoning process. This aligns with Observation 3.2
from Section 3, which highlights that SFT can diminish reasoning ability, leading to shorter completions.

GRPO (SFT init) exhibits similar behavior as SFT. GRPO (SFT init) substitutes the bromine with an oxygen atom:
Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1O. Similar to SFT, this is a direct modification without explicit rea-
soning. While potentially effective, it underscores Observation 3.3, indicating that GRPO may not fully recover the detailed
reasoning capabilities when initialized from an SFT model that favors direct answers.

GRPO shows flawed chemical reasoning. GRPO misinterprets "MR" as "Magic Angle Spinning," incorrectly analyzes
the molecular structure (e.g., its depiction of the molecule and the claim about the heterocyclic ring), and proposes a
chemically implausible modification (removing a nitrogen atom from the heterocyclic ring). This behavior is consistent
with Observation 3.1, where GRPO, without proper guidance, struggles to navigate the chemical space and may generate
suboptimal or incorrect solutions. The output shown is directly referenced in Figure 5 (right) of Section 5.3.

DePO demonstrates a more robust and chemically sound approach. DePO demonstrates a more robust and chemically
sound approach. The model correctly interprets the task in the context of MTR (Magnetization Transfer Ratio), identifies
key structural features (bromine, carbonyl groups, nitrogen), and reasons about their impact on MR (steric hindrance,
electronegativity). The DePO output shown is related to Figure 5 (left) of Section 5.3.

It proposes substituting bromine with chlorine (Cc1ccc(NC(=O)C(C)(C)C(=O)N2CCCC2)cc1Cl), a chemically
plausible modification aimed at reducing steric hindrance and altering electronegativity to lower MR. This case study aligns
with the principles of DePO outlined in Section 4, where demonstration guidance helps constrain exploration to chemically
valid and promising regions.
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C.2. Case Study on Multi-Objective Optimization

In this part, we present the case studies of different approaches to multi-objective optimization tasks.

We summarize the key findings as follows:

Case study of Baseline model (Qwen-2.5-3B-Instruct).
Prompt: Your task is to modify the given molecule to adjust specific molecular properties while keeping structural changes as
minimal as possible. Your response should only contain a valid SMILES representation of the modified molecule enclosed with
<SMILES> </SMILES> tag.
Input : <SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc
(OC)c(C)c1 </SMILES>
Adjust: increase BBB permeability, increase DRD2 inhibition and increase Penalized octanol-water partition coefficient (penalized
logP)
LLM Output:
without large structural modifications.
<SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)Nc1ccc(C)nc1 </SMILES>

The baseline model struggles with complex instructions and multiple objectives. The
baseline model generates a molecule by modifying the end part of the SMILES string:
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)Nc1ccc(C)nc1. While it produces a
valid SMILES string, the output lacks explicit reasoning regarding how the modification addresses the three specified
objectives (increasing BBB permeability, DRD2, and penalized logP). The effectiveness of the modification is unclear
without analysis. This indicates a potential difficulty in handling multi-faceted optimization goals simultaneously and
providing transparent reasoning.

Case study of SFT.
Prompt: Your task is to modify the given molecule to adjust specific molecular properties while keeping structural changes as
minimal as possible. Your response should only contain a valid SMILES representation of the modified molecule enclosed with
<SMILES> </SMILES> tag.
Input : <SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc
(OC)c(C)c1 </SMILES>
Adjust: increase BBB permeability, increase DRD2 inhibition and increase Penalized octanol-water partition coefficient (penalized
logP)
LLM Output:
without increasing liver toxicity.
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/C1CCN(C)CC1
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N1CCN(C)CC1
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N1CCN(Cc2ccccc2)CC1
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N1CCN(Cc2ccccc2Cl)CC1
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N1CCN(Cc2ccc(Cl)c(Cl)c2)CC1
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N1CCN(Cc2ccccc2F)CC1
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N1CCN(Cc2ccc(Cl)c(Cl)c2)CC1
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N1CCN(Cc2ccc(Cl)c(Cl)c2)CC1
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N1CCN(Cc2ccc(Cl)c(Cl)c2)CC1
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N1CCN(Cc
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Case study of GRPO (SFT init).
Prompt: Your task is to modify the given molecule to adjust specific molecular properties while keeping structural changes as
minimal as possible. Your response should only contain a valid SMILES representation of the modified molecule enclosed with
<SMILES> </SMILES> tag.
Input : <SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc
(OC)c(C)c1 </SMILES>
Adjust: increase BBB permeability, increase DRD2 inhibition and increase Penalized octanol-water partition coefficient (penalized
logP)
LLM Output:
without increasing hydrophobicity.
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc(Br)cc1
</CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc(Br)cc1
</CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc(Br)cc1
</CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc(Br)cc1
</CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc(Br)cc1
</CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc(Br)cc1
</CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc(Br)cc1
</CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc(Br)cc1
</CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc(Br)cc1
</CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc(Br)cc1

SFT generates multiple candidates without clear selection criteria or reasoning for multi-
objective tasks. The SFT model outputs a list of different SMILES strings, such as
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/C1CCN(C)CC1 and others involving
substitutions like N1CCN(Cc2ccccc2)CC1. It prefaces its output with "without increasing liver toxicity," which was not
part of the original prompt, suggesting potential misalignment or hallucination of constraints. Notably, the SFT model does
not provide any reasoning for the modifications or how they address the multiple objectives of increasing BBB permeability,
DRD2 inhibition, and penalized logP. This behavior aligns with Observation 3.2, where SFT models tend to provide direct
answers, often at the cost of detailed reasoning, making it difficult to assess their strategy for balancing multiple objectives.

GRPO (SFT init) provides a single modification but lacks a detailed rationale for multi-objective trade-offs. The
GRPO (SFT init) model suggests substituting a part of the molecule to ...N/N=C/c1ccc(Br)cc1. While it offers a
single, concrete modification, the output is repetitive and lacks the step-by-step reasoning required to understand how this
change is intended to concurrently satisfy the three diverse optimization goals. This is consistent with Observation 3.3,
indicating that GRPO, when starting from an SFT model, may not fully restore the capacity for elaborate reasoning,
especially when dealing with the complexities of multi-objective optimization.
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Case study of GRPO.
Prompt: Your task is to modify the given molecule to adjust specific molecular properties while keeping structural changes as
minimal as possible. Your response should only contain a valid SMILES representation of the modified molecule enclosed with
<SMILES> </SMILES> tag.
Input : <SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc
(OC)c(C)c1 </SMILES>
Adjust: increase BBB permeability, increase DRD2 inhibition and increase Penalized octanol-water partition coefficient (penalized
logP)
LLM Output:
without changing the molecular structure significantly.
<SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H]
(O)N/N=C/c1ccc(OC)c(C)c1</SMILES> </SMILES>
<SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H]
(O)N/N=C/c1ccc(OC)c(C)c1</SMILES> </SMILES>
<SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H]
(O)N/N=C/c1ccc(OC)c(C)c1</SMILES> </SMILES>
<SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H]
(O)N/N=C/c1ccc(OC)c(C)c1</SMILES> </SMILES> </SMILES>
Note: For the given properties and constraints, no SMILES alteration will change the molecule significantly without altering its
structure. Thus, the SMILES structure remains the same. However, for illustration, 4 SMILES structures have been presented.
<SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H]
(O)N/N=C/c1ccc(OC)c(C)c1</SMILES>
</SMILES>
<SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H]
(O)N/N=C/c1ccc(OC)c(C)c1</SMILES>
</SMILES>
<SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H]
(O)N/N=C/c1ccc(OC)c(C)c1</SMILES>
</SMILES>
<SMILES>
CCOc1cc([C@H]2NC(=O)NC(C)=C2"

Case study of DePO.
Prompt: Your task is to modify the given molecule to adjust specific molecular properties while keeping structural changes as
minimal as possible. Your response should only contain a valid SMILES representation of the modified molecule enclosed with
<SMILES> </SMILES> tag.
Input : <SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc
(OC)c(C)c1 </SMILES>
Adjust: increase BBB permeability, increase DRD2 inhibition and increase Penalized octanol-water partition coefficient
(penalized logP)
LLM Output:
without increasing lipophilicity (logP)
Adjusted SMILES:
<SMILES> CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc(Cl)c(Cl)c1 </SMILES>
Explanation:
- Penalized LogP Increase: The removal of the hydroxyl (-O-) group from one of the amide nitrogens (from CCCO to CCCN)
increases the octanol-water partition coefficient, which is beneficial for BBB permeability and penalized logP. The change to an
alkyl side chain (CCCNC1CCOc2ccc(Cl)c(Cl)c2) can also contribute to this effect.
- DRD2 Inhibition: No specific alterations are made to the scaffold that directly affect DRD2 inhibition.
- Lipophilicity (logP) Stability: The removal of the hydroxyl group does not increase logP significantly, which maintains
lipophilicity while improving the desired properties.

GRPO fails to generate meaningful modifications in the multi-objective setting. When presented with this task, GRPO
repeatedly outputs the original molecule, stating: "For the given properties and constraints, no SMILES alteration will
change the molecule significantly without altering its structure. Thus, the SMILES structure remains the same." This
behavior indicates that GRPO is unable to effectively engage with the optimization objective, likely due to limitations in its
reward structure or an excessive preference for minimal structural changes. As highlighted in Observation 3.1, GRPO can
struggle to explore chemical space without explicit guidance, often resulting in conservative outputs, particularly in complex
multi-objective scenarios.
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DePO exhibits systematic reasoning and targeted molecular modification for
multi-objective optimization. In contrast, DePO proposes a modified molecule,
CCOc1cc([C@H]2NC(=O)NC(C)=C2C(=O)OC)ccc1OC[C@H](O)N/N=C/c1ccc(Cl)c(Cl)c1, and pro-
vides a clear rationale for its design. The model explains its chemical modifications in complete sentences. For example, it
states that the dichlorination of the terminal phenyl ring is intended to influence the desired properties. It also notes that the
removal of the hydroxyl group from the molecule increases the octanol-water partition coefficient. This change is beneficial
for both blood-brain barrier permeability and penalized logP.

Although DePO acknowledges that it did not make direct changes to improve DRD2 inhibition, it demonstrates an
understanding of the multiple objectives and justifies its design choices accordingly. This structured and interpretable
approach aligns with DePO’s use of demonstration-based guidance, as described in Section 4. The effectiveness of this
method is also evident in DePO’s superior performance on multi-objective tasks, as shown in Table 2. In summary, DePO is
better able to balance competing objectives and provide transparent and actionable outputs.
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