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Abstract: Towel manipulation is a crucial step towards more general cloth ma-
nipulation. However, folding a towel from an arbitrarily crumpled state and recov-
ering from a failed folding step remain critical challenges in robotics. We propose
joint-probability action inference JA-TN, as a way to improve TransporterNet’s
operational efficiency; to our knowledge, this is the first single data-driven pol-
icy to achieve various types of folding from most crumpled states. We present
three benchmark domains with a set of shaping tasks and the corresponding or-
acle policies to facilitate the further development of the field. We also present a
simulation-to-reality transfer procedure for vision-based deep learning controllers
by processing and augmenting RGB and/or depth images. We also demonstrate
JA-TN’s ability to integrate with a real camera and a UR3e robot arm, showcasing
the method’s applicability to real-world tasks.

Keywords: Cloth Manipulation, Imitation Learning, Sim2Real Transfer

1 Introduction

Despite many recent efforts in the robotic community, cloth manipulation remains a key challenge
due to its complex deformation and severe self-occlusion [1, 2]. Towel shaping is a set of critical
subtasks of towel manipulation, including flattening and folding a rectangular fabric. Regarding
initial states, folding can be classified into folding-from-flattened and folding-from-crumpled tasks,
where the latter is a more complex problem [3] — a controller must flatten the towel first before
folding it into a goal state; in addition, a robust controller should recover from failure states.

Most data-driven approaches train on a square fabric for flattening [4, 5, 6, 7, 8], folding-from-
flattened [9, 10], or both [11, 12, 13, 14]. While some demonstrate their generalisability to other
rectangular fabrics [4, 9, 12, 13], only a few can achieve an intended shaping on various types
of fabrics from a large set of different initial states; they are based either on intermediate goal
instructions [12, 13, 14] or a hierarchical system using hybrid action primitives [1, 15]. Our method
JA-TN is the first to demonstrate various folding-from-crumpled tasks (see Figure 1b) using single-
gripper pick-and-place (P&P) controllers on various rectangular fabrics varying in sizes, length-to-
width ratios and colours. In a nutshell, we make the following contributions:

1. Our JA-TN towel-shaping controller extends the TransporterNet architecture [16] with our
joint-probability action inference and achieves state-of-the-art performance for flattening,
folding-from-flattened and folding-from-crumpled tasks in simulation.

2. We develop three standard benchmark domains — Mono Square Fabric, Rainbow Square
Fabrics, and Rainbow Rect Fabrics — based on SoftGym [3] with towel-shaping tasks and
corresponding oracle expert policies that are vital for the success of JA-TN.
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(a) Action Inference (b) Towel-shaping Task Variations

Figure 1: JA-TN. Pick action inference takes RGB-D as input and uses a cloth mask to filter pick
heatmap suggested by the transporter network (in blue), then it samples n best pick positions to
generate n related place heatmaps (in red). Our method can complete all presented shaping tasks.

Figure 2: Qualitative Trajectory of Simulation-to-Reality Transfer of JA-TN

3. We propose a Sim2Real transfer strategy and a robot setup for vision-based data-driven
controllers; our reality results demonstrate JA-TN’s shaping ability in physical trials after
training on masked-out RGB (and/or depth) images.

2 Related Work

Robotic Cloth Manipulation Classical cloth manipulation systems are restricted to a narrow
range of configurations, whereas data-driven approaches allow robust and general controls in open
environments with a broader range of contextual configurations [2]. A large amount of data-driven
research has tried to address cloth flattening and folding (including fabrics and garments) since 2018
[17, 18]. These methods mainly vary regarding their action space. (1) Gravity-based methods stretch
the article in the air using dual grippers by picking the two key points [19] then adopt fling action
[20] to flatten the article; finally, a folding heuristic method, such as g-fold [21], to achieve target
shape. (2) Pick-and-place (-drag) methods employ a single or dual gripper to pick the key points
on the article to transport them towards target locations for accomplishing the flattening and folding
[22, 23, 9, 7]. (3) Adopting hybrid and variations of the above two action primitives demonstrated
significant results in achieving many types of garment manipulation [1, 24, 18, 15].

Data-driven P&P Towel Shaping Many data-driven controllers in P&P towel shaping utilise key-
point detection [24, 25], template registrations [1], optical flow [26, 9], visual descriptors [27],
point clouds [18] and mesh reconstructions [4, 28] as intermediate representations. Some others
adopt end-to-end training [17], which produces a latent space that can be used for policy learning
[22, 13, 6] and planning [23, 12, 7].
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(a) Flattening, Normalised Improvement ↑ (b) Folding-From-Flattened, Mean Particle Distance ↓

Figure 3: Final-Step JA-TN (RGB-D w/o vision processing) Performance against Sate-of-The-Art
Controllers; we evaluate in the settings of Lin et al. [4] (flattening) and Mo et al. [10] (folding-from-
flattened); RSF and RRF denote that the method learns in our Rainbow Square/Rectangular Fabrics
setting; the results of VCD, VCD-GI, VSF, FabricFlowNet, Lee et al. [13], VSF and Foldsformer
are adopted from Lin et al. [4] and Mo et al. [10]. JA-TN achieves 100% success, 1.0 ± 0.0 of NC,
1.0 ± 0.01 of NI in flattening and matches SoTA performance in folding benchmarks, with mean
particle distance (mm) of 16.40 ± 0.11, 6 ± 3.03, and 14.08 ± 7.22 for corresponding tasks.

Single-purpose deep reinforcement learning (RL) can flatten a crumpled towel [17, 7, 22, 4, 29] and
perform specific folding-from-flattened tasks [29] with specifically engineered states and rewards
biased towards the domain. Mesh-based planning methods [28], such as VCD and VCD-GI [4], and
latent planning methods, such as PlaNet-ClothPick [7], achieve state-of-the-art (SoTA) performance
on flattening a fabric. Goal-conditioned RL has struggled with general towel-shaping tasks due to
the difficulty of engineering proper dense reward functions and learning from sparse ones [23, 12,
6]. Similar to our approach, Wu et al. [8] also utilise a TransporterNet to train a pick-and-place
visual affordance map to flatten a square fabric without demonstration. Their method depends on
pixel-wise reward function using domain-specific heuristics for self-supervised learning, and it only
reaches 76% coverage in simulation and 68% coverage in real trials; it is not clear how it can be
applied to various shapes of fabrics and folding tasks.

In contrast, successful approaches for folding adopt certain variations of imitation learning. Gana-
pathi et al. [11] use learned visual correspondences [30] across different fabric configurations to
account for the spatial relationship between the current and the goal image; their system can per-
form a diverse range of fabric manipulation tasks, including various types of folding using a single
demonstration trajectory as guidance. FabricFlowNet [9] achieves multi-step fabric folding from
canonical states (flattened at the camera centre) with one or two grippers using goal-directed im-
ages; its underlying goal-condition policy learns to generate a pick heatmap conditioned on optical
flows produced by a pre-trained flow network, then it selects the place action based on the optical
flow and the chosen pick position, but it does not support folding from crumpled or arbitrary flat-
tened states. Foldsformer [10] achieves multi-step folding-from-flattened by utilising a space-time
attention mechanism [31] to capture the instruction information of demonstrations, but it cannot
flatten. TransporterNet (TN) [16] is a vision-based end-to-end method that preserves the spatial
structure of the RGB-D input to infer pick and place positions on images; Seita et al. [6] extend the
approach to goal-conditioned control domains and apply it to cloth-shaping and bag manipulation
tasks in simulation.

3 Method

TransporterNet (TN) is a vision-based end-to-end behaviour-cloning approach for P&P object
manipulation [16]. It comprises of pick qpick(·|x) and place qplace(·|x,apick) networks where the
latter is composed of convolutional key fkey and query fquery networks. TN learns to infer the pick-

3



action heatmap and selects the most probable action apick = argmaxx,y qpick((x, y)|x), then uses
the query-map of the region-of-interest of the pick action to cross-correlate to the key-map of the
observation x for estimating its place action, i.e., aplace = argmaxx,y fquery(x[apick]) ∗ fkey(x).
Place network samples rotational instances of the region of interest (before feeding into the query
network) to produce heatmap channels that signal the rotational degrees of the end-effector when
placing. It adopts random-pivot rotation as an augmentation technique on RGB-D input images
during training. The action maps use one-hot encoding with a value of 1 at the target pick position
and 0 elsewhere. In inference, it selects the best combination of pick and place positions based on
a selected pick position to act on the environment. Vanilla TN fails on fabric flattening tasks in
Pybullet Raven Benchmarks [6, 16] and the simulation is far from realistic. However, TN shows
promising results in other P&P domains so we assess and extend it in our towel-shaping tasks.

Joint-Probability Action Inference To ensure an efficient selection of P&P positions during test
time, we first mask the pick-heatmap with an object mask to filter out the pick positions that are not
on the object, and we select the best joint probability of P&P, i.e.,

a∗ = argmax
apick,aplace

pmask(apick)× q(apick|x)× q(aplace|apick,x). (1)

We sample 10 of the best picks to perform inference in practice and select the most probable one that
differs from the last pick action. We utilise centre-pivot random rotation instead of random-pivot
for data augmentation and update the network with a batch size of 10 (instead of the original 1). In
the rest of the paper, we refer to this method as JA-TN. The success of JA-TN highly depends on
high-quality expert trajectories, which we generate by manually designed oracle policies.

Oracle Towel Smoothing (OTS) One-gripper P&P flattening, or smoothing, is a complex problem
even if the true state of the article is known, and a controller should address different crumpled states
of the towel. Table 1 presents the heuristics of our oracle algorithms in various scenarios.

Flattening case-policy picks and places the visible corner furthest from its target flattening position,
which is calculated by scanning the whole pixel space to find the minimum total distance towards the
targets from all cloth corners – considering symmetry including both sides and the vertical as well
as horizontal displacements of the towel. Revealing-Corner policy picks the particle on the cloth-
border and closest to a hidden corner and its target flattening position, then the policy drags the towel
to the opposite of the hidden corner. Revealing-Edge policy targets the hidden edge-point furthest
from its closest cloth border, then picks the cloth-border point and places it on the opposite side of
the hidden point. Untwisting grabs the corner whose one cloth edge is above the other edge that
excludes the corner and drags the grabbed point towards the perpendicular direction of the distance
between existing twisting corners. Dragging-to-Opposite picks the cloth-border point furthest from
the camera centre and drags it to the opposite side of the centre. Note that the OTS needs to use
a more significant dragging distance for adjustment while addressing larger fabrics due to larger
friction. The proposed algorithm is relatively robust regarding the fabric’s initial crumpled states,
size, and length-to-width ratio. Still, it may fail to address higher-order twisting and cases where
a corner is wrapped inside the towel. Table 2 shows the policy can generate expert trajectories for
behaviour cloning algorithms.

Table 1: Oracle Towel Smoothing (OTS). The oracle detects one of the 10 conditions in order and
applies a particular scripted policy for each case.

Case Condition Policy

I Succeeds to flatten No Operation
II Fails to reveal a corner Revealing-Corner
III Fails to reveal a corner twice Follow the cases below
IV Successfully reveals a corner Flattening on the corner
V At the boundary of the view or

small coverage
Dragging-to-Opposite

Case Condition Policy

VI There is a level-1 twist Untwisting
VII There is an effective flattening Flattening
VIII There is a hidden corner Revealing-Corner
IX Almost flattened, but with hid-

den edge-points
Revealing-Edge

X Otherwise Flattening
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Table 2: Quantitative Results of Flattening Controllers. Our JA-TN shows superior performance and
efficiency in both MSF and RRF domains compared to vanilla TN. Shown are Normalised Coverage
(NC), Normalised Improvement (NI), steps-to-finish (#2F), and Success Rate (SR).

Method NC ↑ NI ↑ #2F ↓ SR ↑

OTS 1.0 ± 0.0 1.0 ± 0.0 12.49 ± 6.01 100.0

TN 0.84 ± 0.2 0.72 ± 0.35 20.92 ± 10.12 52.31
JA-TN 1.0 ± 0.02 0.99 ± 0.06 11.05 ± 6.09 98.46

(a) Mono Square Fabric

NC ↑ NI ↑ #2F ↓ SR ↑

0.98 ± 0.06 0.99 ± 0.05 13.45 ± 9.53 96.43

0.5 ± 0.16 0.12 ± 0.2 27.41 ± 8.27 8.93
0.96 ± 0.11 0.93 ± 0.22 12.61 ± 9.44 91.07

(b) Rainbow Rectangular Fabrics

Oracle Towel Folding (OTF) Oracle policy for folding assumes a flattened article and maps its
surface to a 2-dimensional plane ranging from 0 to 1 — (0, 0) represents the top-left particle of the
towel whilst (1,1) denotes the bottom-right. OTF regards a specific folding as a sequence of P&P
positions on the article map.

Training Details of JA-TN and TN We train JA-TN and TN using 2000 OTS demonstrations for
flattening, 1000 OTF demonstrations for corresponding folding-from-flattened tasks and the com-
bination of both for folding-from-crumpled tasks. We train JA-TN with 80,000 update steps and
vanilla TN with 40,000 update steps as it starts to overfit beyond this (see Figure 9b and 9c). We
also make the following modifications to adapt the vanilla TN to our shaping tasks. We remove
rotation-variant sampling because it is not helpful in our domain. We use image resolution 128×128
instead of the original 320×160. Rather than synthesising the top view from 3 separate cameras as
in the original paper, we use a single camera to capture the top view of the towel. Moreover, we clip
the depth image between 1.47 and 1.51 (as the camera is 1.5m above the surface in simulation) and
normalise both RGB and depth images to range from -0.5 to 0.5.

4 Experiments

We implement our methods in SoftGym [3], which is a particle-based cloth simulator, and we de-
velop three domains: (1) Mono Square Fabric (MSF) contains a 40cm × 40cm square fabric that has
the same back and front colours across the trials; (2) Rainbow Square Fabrics (RSF) contains a set
of square fabrics whose side-lengths are uniformly sampled from 20cm to 70cm, and the colours of
this fabric are also uniformly sampled from all possible colours; (3) Rainbow Rectangular Fabrics
(RRF) is a similar setting to RSF but the length and the width of a fabric can be different. All three
domains include a top-down camera that looks down at the centre of the world surface from a height
of 1.5m. Cloth stretch, bend, and shear stiffness are set to (0.8, 1, 0.9) with a particle radius of
6.25mm and a particle mass of 0.5.

Towel Flattening We employ bounded (clipped between 0 and 1) normalised coverage (NC) and
normalised improvement (NI) to evaluate the step-wise performance of flattening controllers [4].
We additionally use success rate (SR) and steps-to-finish (#2F), on success or end of the trial, to
assess the robustness and efficiency of the methods; a flattening trial succeeds when the controller
can achieve above 0.99 of NC within 30 steps. We evaluate the controllers on 65 trials of MSF and
56 trials of RRF. Figure 3a shows the final step performance of JA-TN against SoTA controllers
in the evaluation setting of Lin et al. [4]. Table 2 shows improvement of our JA-TN compared to
vanilla TN in terms of performance and efficiency in both MSF and RRF domains.

Towel Folding from a Flattened State For folding-from-flattened tasks, we use standard mean
particle distance (MPD) between the particle pairs in possible corresponding folding groups [9] as
well as additional largest particle distance (LPD) to evaluate the step-wise performance. A folding
succeeds when LPD goes below a predefined threshold value (7cm for diagonal-cross folding and
4.5cm for others) within 25 steps. All folding-from-flattened tasks in the 3 domains share 30 test
trials where the article is randomly rotated and placed within the camera view. We train JA-TN
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Table 3: Quantitative Results of Folding-from-Flattened Controllers compared to vanilla TN. LPD
and MPD are shown in mm for the average over all suitable foldings. JA-TN shows consistent
superior performance in all domains. Although the oracle has access to a full simulation state, JA-
TN outperforms it in some cases based on RGBD input alone.

Method LPD ↓ MPD ↓ SR ↑

OTF 20.79 ± 6.87 10.36 ± 3.48 98.89

TN 34.15 ± 23.15 15.11 ± 9.94 89.17
JA-TN 30.19 ± 19.73 12.43 ± 6.55 93.67

(a) Mono Square Fabric

LPD ↓ MPD ↓ SR ↑

40.2 ± 20.47 17.78 ± 7.99 90.0

77.34 ± 41.64 25.55 ± 11.45 61.11
40.83 ± 23.29 17.43 ± 7.55 88.33

(b) Rainbow Square Fabrics

LPD ↓ MPD ↓ SR ↑

58.26 ± 80.16 29.26 ± 41.01 87.78

130.32 ± 100.15 55.08 ± 39.2 31.11
44.32 ± 41.48 22.24 ± 17.63 90.0

(c) Rainbow Rectangular Fabrics

Table 4: Quantitative Results of Folding-from-Crumpled Controllers
Method LPD ↓ MPD ↓ #2F ↓ SR ↑

Oracle 31.12 ± 20.28 12.88 ± 6.87 19.59 ± 10.02 95.69

JA-TN 37.37 ± 29.31 15.05 ± 10.4 24.13 ± 12.07 94.46

(a) Mono Square Fabric

LPD ↓ MPD ↓ #2F ↓ SR ↑

55.57 ± 64.62 24.12 ± 26.86 32.13 ± 15.79 73.21

114.76 ± 107.64 49.11 ± 45.69 42.01 ± 15.66 50.89

(b) Rainbow Square Fabrics

and TN on 1,000 demonstrations for each folding and examine (1) all types of folding illustrated
in Figure 1b on MSF, (2) diagonal-cross, all-corner inward, corners-edge inward and rectangular
folding in RSF, and (3) side, double-side and rectangular foldings in RRF. We did not examine
double-straight folding [10] as it is challenging even for the oracle to achieve with a single gripper.
Table 3 and Figure 3b show that JA-TN performs robustly on these folding tasks in all 3 domains,
and it matches the SoTA performance of Foldsformer [10], a method that cannot fold from crumpled.

Towel Folding from Crumpled Folding-from-crumpled tasks share the same initial states as the
ones for flattening and the same success criteria as folding-from-flattened tasks, but they must finish
within 55 steps. We train JA-TN on 2,000 flattening + 1,000 folding-from-flattened demonstrations.
We examine (1) all-corner inward, diagonal cross, corners-edge inward, double-side and rectangular
foldings in MSF and (2) the latter in RRF. Table 4 shows JA-TN’s high performance in the MSF
setting and its potential in the more complex RRF setting.

Ablation Study We conduct ablation tests of JA-TN on flattening and double-side folding tasks
in RRF. Table 5 shows that mask filtering is essential for the success of flattening agent as No Mask

ablation tends to choose the pick position of No-Op policy, whilst the joint-action inference is crucial
for the success of folding agent as it reduces ineffective folding steps. Training with a larger batch
size and using centre-pivot rotation in data augmentation are critical for the system’s success in both
tasks, as the former reduces overfitting and improves the learning (see Figure 9b and 9c), and the
latter avoids feeding the networks with undesirable actions.

Sim2Real Transfer Many data-driven P&P towel-shaping methods developed in SoftGym
demonstrate the ability to transfer to real trials mostly using depth-only images [4, 10, 9, 8]. We re-
train JA-TN with masked RGB (and/or depth) images in simulation and adopt a segment-anything
model [32] with heuristic mask selection in physical inference – the largest average colour differ-
ence between the masked and background regions. We employ a top-down RealSense D435i camera
positioned 0.72 metres above the table surface and rely on human judgment to assess the success
of a trial. We choose one square (sky-blue, 14cm) and one rectangular (white, 15cm×7cm) fabric
for physical evaluations. During the physical experiment, we feed RGB(-D) camera input to JA-
TN and ask it to generate pick-and-place action primitives (see Figure 4b). To isolate the effect of
grasping errors common in this domain such as misgrasping and grasping multiple layers, we then
manually perform each action on the real cloth (human in the loop) before repeating the process.
This eliminates grasping errors and allows us to focus on the quality of the learned policy operating
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Table 5: JA-TN’s Ablation study on RSF task. Batch Size 1 - network trains with one
observation-action pair per update, similar to the original TN; Random Pivot - rotational aug-
mentation using a randomly sampled pixel on the image, as in the original TN; No MJ - without
mask-filtered joint-probability action inference; No Mask Filter - without filtering pick heatmap
with cloth-mask; No Joint - no joint-probability action inference. All additional components of
the JA-TN are crucial for the system’s success in folding and flattening.

Ablation NC ↑ NI ↑ #2F ↓ SR ↑

Batch Size 1 0.73 ± 0.19 0.48 ± 0.37 22.52 ± 11.87 30.36
Random Pivot 0.79 ± 0.22 0.63 ± 0.4 20.79 ± 11.39 48.21
No MJ 0.5 ± 0.21 0.24 ± 0.32 29.0 ± 5.29 3.45
No Mask Filter 0.61 ± 0.25 0.13 ± 0.3 27.41 ± 8.27 8.93
No Joint 0.92 ± 0.17 0.85 ± 0.32 13.64 ± 10.99 78.57

JA-TN 0.96 ± 0.11 0.93 ± 0.22 12.61 ± 9.44 91.07

(a) Flattening

LPD ↓ MPD ↓ SR ↑

95.15 ± 90.18 33.97 ± 30.86 46.67
67.76 ± 76.05 26.88 ± 26.71 70.0
59.83 ± 71.8 21.83 ± 20.14 83.33

62.11 ± 76.74 23.23 ± 24.76 80.0
86.8 ± 94.37 29.65 ± 28.64 66.67

45.12 ± 43.92 20.01 ± 15.09 90.0

(b) Double-Side Folding from Flattened

Table 6: Success Rate of Masked-RGB JA-TN planning on Real Fabrics. (sqr) denotes square fabric,
and (rect) denotes rectangular fabric.

initial
states

flattening
(sqr)

diagonal-
cross (sqr)

corners-edge
inward (sqr)

all-corner
inward (sqr)

double-
side (sqr)

rectangular
(sqr)

flattening
(rect)

double-
side (rect)

rectangular
(rect)

flattened N/A 5/5 5/5 5/5 3/5 1/5 N/A 4/5 2/5

crumpled 7/10 4/5 3/5 4/5 2/5 0/5 10/10 2/5 1/5

on live RGB-D images. This demonstrates that our simulation-trained system can create effective
policies on real towels based on real camera input (see Figure 2). Whilst flattening and folding-
from-flattened systems transfer nicely, flattening-from-crumpled agents cannot directly transfer; we
must stitch the flattening and folding controllers with a predefined mask area. Table 6 shows our
method’s plausibility in physical trials on most tasks using RGB images, but note that it struggles
to perform double-side and rectangular folding. We have also conducted experiments using a UR3e
robot arm and an Active Parallel Gripper with a printed stick-like extension, which have managed
to successfully flatten real fabrics in a completely autonomous fashion (see Figure 4c).

5 Discussion

JA-TN can effectively flatten various fabrics from highly crumpled states in both simulation and
physical applications, regardless of their colour, size, length-to-width ratio, or background. It can
also perform different folding types from flattened and crumpled states. To our knowledge, this is
the first learning algorithm capable of excelling in all three tasks. It has potential applications in
other P&P domains and object shapes, as we did not introduce inductive biases into the learning
process apart from the Oracle policies — Figure 10 in the Appendix demonstrates that JA-TN can
be applied to other complex shapes of cloth-like deformable objects, such as T-shirts.

Behaviour cloning methods like JA-TN, trained with around 20,000 transitional steps, are much
more data-efficient compared to reinforcement learning (RL) methods, such as PlaNet-ClothPick
(around 1 million steps) [2] and VCD (around 100,000 steps) [4] for fabric flattening. For folding,
it is hard to engineer reward functions for each type; Lee et al. [13] (using Hindsight Replay Buffer
[33]) and VSF [12] (using visual MPC planning [34]) adopt a goal-condition strategy to bypass
the problem, but these systems do not outperform other supervised learning and imitation learning
methods such as FabricFlowNet [15], Foldsformer [10] and our JA-TN. To our knowledge, no RL
algorithm has demonstrated the ability to fold directly from a crumpled state.

Limitations JA-TN struggles with highly wrapped and severely twisted states in simulations and
folded states (both outside and inside) in reality due to its inability to distinguish folds when both
sides are the same colour. While it reliably performs most folding-from-flattened tasks, we see room
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(a) Robot Setup (b) Real Vision Preprocessing & Action Generation

(c) A Qualitative Demonstration of Robot Fabric Flattening

Figure 4: Sim2Real Vision Processing Procedure. Real-depth images often suffer from noise, blur-
riness, and holes, even after calibration and filtering. To address this, we apply a cloth mask, heuris-
tically selected from a segmentation network (green line), and set the depth image background to
the camera height (purple line). Since fabrics vary in thickness, we standardise the cloth-top and
cloth-bottom to 0 and 1 for robustness, then invert these values so 0 represents the background and
deepest view, while 1 represents the cloth top (red line). We also normalise RGB images and apply
mask segmentation to RGB images, ensuring the policy remains background-agnostic (purple line).

for improvement by addressing rectangular folding in simulations and reality as key picking points
are often wrapped inside during the process; the system cannot distinguish when one side of the
fabric overlaps at the bottom but still needs completion, so it may require a goal configuration to
improve its recognition capabilities. Lastly, JA-TN only transitions from flattening to folding when
it perceives the fabric as perfectly flattened, making physical trials difficult.

Future work We aim to address the identified limitations of the shaping controller and enhance the
transferability of JA-TN in folding from a crumpled state. Additionally, we plan to extend JA-TN’s
capabilities in two-gripper cloth manipulation to achieve more effective rectangular and double-
straight foldings. We also intend to evaluate our method’s effectiveness in other garment-shaping
tasks. Furthermore, we seek to use goal-conditioned methods to unify various folding techniques,
eliminating the need for training specialised systems for each folding type.

6 Conclusion

We propose a Joint Probability TransporterNet (JA-TN) that achieves state-of-the-art performance
for flattening and folding-from-flattened tasks. We believe JA-TN can be applied to other pick-and-
place domains as we do not introduce inductive biases towards our domain apart from the Oracle
expert scripts. Our experiments on real towels and real camera images show our method’s promise in
real-world towel-shaping trials, and we plan to improve the performance of folding-from-crumpled
controllers and their transferability.
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7 Appendix

7.1 Initialisation Script for Crumpled States in Simulation

We run 1000 trials for Mono Square Fabric (MSF), 2000 for Rainbow Square Fabrics (RSF), and
5000 for Rainbow Rectangular Fabrics (RRF), where the trial’s configuration ID seeds the random
state. Crumpled states are initialised as follows: (1) the script selects a particle on the fabric and
lifts it to a random height between 0 and 40cm; (2) after it stabilises in the air, the cloth is dropped;
then (3) the script relocates the fabric (without changing the crumpled state) to a random position
within a 30cm circle centred around the camera; (4) then, 70% of the time, it again selects a random
particle and drags the cloth towards a random position in a circle with a radius of 30cm and a height
of 10cm; it drops the cloth and re-centres it randomly again; finally, (5) the cloth’s re-centring and
random rotation continue until all particles are within the camera view. This results in a wide range
of complex initial states.

(a) Mono Square Fabric (b) Rainbow Square Fabrics (c) Rainbow Rectangular Fabrics

Figure 5: Crumpled Initial States for flattening and folding-from-flattened tasks

7.2 More Details on Oracle Policies

Heuristics for OTF Rectangular, side, and double-side foldings are more challenging to achieve
with one-picker operations, as they tend to conceal key pick-points inside the article, leading to
failure; hence, OTF carefully produces the folding sequence based on fabric properties, which avoids
such scenarios and the overlapping of the two sides in double-side folding.

Limitations of Oracles As shown in Figure 6, the flattening Oracle struggles with highly twisted
and wrapped states, but this only occurs once in all 56 tested trials in simulation. Figure 7 demon-
strates that the folding Oracle cannot detect failing states until reaching designated folding steps, and
rectangular and double-side foldings are particularly challenging due to the concealed key points.

Figure 6: A Flattening Failure of Oracle Towel Smoothing

7.3 More Details on Sim2Real Experiments

Preprocessing of Real Images As shown in Figure 4b, the real depth image can be noisy and
blurry, and it can also contain holes even after calibration and being applied depth pre-processing
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Figure 7: A Rectangular-Folding Failure of Oracle Towel Folding

filters provided by Realsense SDK. To address this, we apply a cloth mask and make the back-
ground of the depth images the same as the camera height. However, different fabrics have different
thicknesses, so we map the cloth-top and cloth-bottom consistently to 0 and 1 to make our system ro-
bust to cloth thickness. Then, we flip the values so that 0 represents the background and the deepest
part of the view, and 1 represents the cloth top. We also map the values to 0 and 1 for RGB images
by dividing 255 from the original RGB image. Then, we applied mask segmentation on depth and
RGB images so that the policy can be agnostic to the view background, a common practice in this
domain [9, 10].

(a) Flattening Performance of Sim2Real Policies in RRF (b) Vision Processing for Training

Figure 8: Sim2Real Learning Policies

Training details of Sim2Real Policies To transfer the learned policy into the real world, apart
from remapping, value flipping and masking as in preprocessing real-depth images, we also add
Gaussian noise of 0.01 and Gaussian blurring with a kernel of 11, during training, to the simulated
depth to emulate the real depth images (see Figure 8b). We also add a Gaussian noise of 0.02 to the
simulated RGB images. Figure 8a shows how these augmentations influence JA-TN performance
on flattening.

Robot Setup As shown in Figure 4a, we use a 6-degree-of-freedom UR3e robot arm, an Active
Parallel gripper and a Realsense D435i camera to conduct our robotic experiments. The camera is
0.72 meters above the table surface; we manually adjust the camera pose so that the depth images
give an even depth reading across the view, and the camera is parallel to the robot base axes. We also
3D-printed a stick-like thin gripper extension to grasp the target cloth point with higher precision;
whilst open, the tip-to-tip distance is 2.4cm. The robot working space is a 28cm × 28cm square
region on table syrface. We adopt MoveIt 2’s Python API under ROS 2 Humble [35] with OMPL’s
RRTConnect [36] motion planner to achieve quasi-static pick-and-place robot control as well as
establishing the communication between the robot and GPU program.

The transformation between the normalised pixel space (see the raw RGB image in Figure 4b) and
the world space (same as robot base space) is calculated using the cropping offset and scale of work
space, the intrinsic of the camera and the extrinsic transformation matrix between the camera frame
and the robot’s base frame. The calibration of the extrinsic parameters can be carried by eye-to-hand
calibration, but it does not necessary gives a precise solution; hence a further fine-tuning is required.
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For each pick-and-place action, the end-effector goes as deep as it can on the table to grasp the cloth
(i.e., the tip of the end-effector is at the same height as the robot’s baseline). Then, it picks the cloth
up 5cm above the surface to go to the place point that is 3cm above the surface to release the cloth.
While taking each picture, the robot gets to a home position that makes it completely absent from
the camera view.

Limitation of the Robotic System The gripper can misgrasp the cloth, grasp multiple layers of
the cloth, and the cloth can attached to the gripper after release; the solutions for tackling these
challenges are out of the scope of this paper. Also, we encounter edge (and/or corner) alignment
issues during folding tasks. Currently, planning each motion trajectory takes 2 seconds, and we
plan to explore other motion planners to improve efficiency. Additionally, the robot’s workspace is
limited because the planned trajectory fails to produce smooth joint movements when it approaches
its base. Besides, the current robotic system cannot automatically detect the success states, and it
only stops when it reaches defined maximum steps. Lastly, we must manually run the associated
configuration for an intended task.

7.4 Supplementary Results

(a) Success Rate (%) (b) Validation Pick Loss (c) Validation Place Loss

Figure 9: Comparison JA-TN’s Ablations on Flattening in RSF

Figure 10: Qualitative JA-TN’s Performance on Tshirt Flattening in Simulation. With only 20
human demonstrations, it can reach 70% normalised coverage across 30 test trials.
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Table 7: Task-wise Quantitative Results of Folding-from-Flattened Controllers
Method LPD ↓ MPD ↓ SR ↑

OTF 8.25 ± 3.3 6.61 ± 2.75 100.0
TN 10.34 ± 5.54 8.55 ± 5.57 100.0
JA-TN 15.55 ± 8.65 12.93 ± 7.98 90.0

(a) Diagonal Folding in MSF

LPD ↓ MPD ↓ SR ↑

8.6 ± 3.5 6.44 ± 2.7 100.0
9.9 ± 5.33 6.58 ± 4.02 100.0
10.41 ± 5.16 8.0 ± 4.65 100.0

(b) One-Corner Inward in MSF

LPD ↓ MPD ↓ SR ↑

4.86 ± 5.83 10.51 ± 5.17 100.0
14.87 ± 7.25 8.15 ± 3.87 93.33
16.79 ± 7.14 9.19 ± 3.76 100.0

(c) Double-Corner in MSF

Method LPD ↓ MPD ↓ SR ↑

OTF 39.98 ± 7.39 18.48 ± 3.36 100.0
TN 48.37 ± 12.32 20.39 ± 4.78 100.0
JA-TN 47.43 ± 9.14 16.92 ± 3.4 100.0

(d) Diagonal-Cross in MSF

LPD ↓ MPD ↓ SR ↑

56.9 ± 17.8 22.11 ± 6.87 90.0
66.22 ± 23.18 28.08 ± 10.58 80.0
62.18 ± 23.17 24.07 ± 9.98 83.33

(e) Diagonal-Cross in RSF

Method LPD ↓ MPD ↓ SR ↑

OTF 16.86 ± 4.04 8.71 ± 2.22 100.0
TN 15.74 ± 4.01 7.37 ± 2.45 100.0
JA-TN 19.22 ± 6.49 8.18 ± 2.88 93.33

(f) All-Corner Inward in MSF

LPD ↓ MPD ↓ SR ↑

21.8 ± 7.84 9.54 ± 3.0 100.0
29.95 ± 30.24 10.05 ± 6.81 90.0
27.7 ± 35.07 9.88 ± 4.84 96.67

(g) All-Corner Inward in RSF

Method LPD ↓ MPD ↓ SR ↑

OTF 25.97 ± 8.8 9.61 ± 3.77 96.67
TN 38.0 ± 15.92 13.35 ± 4.92 83.33
JA-TN 48.17 ± 42.53 13.6 ± 6.88 81.67

(h) Corners-Edge Inward in MSF

LPD ↓ MPD ↓ SR ↑

32.26 ± 15.26 11.33 ± 4.53 93.33
135.86 ± 71.5 38.52 ± 16.97 13.33
36.26 ± 19.56 14.25 ± 6.76 86.67

(i) Corners-Edge Inward in RSF

Method LPD ↓ MPD ↓ SR ↑

OTF 22.91 ± 5.63 8.35 ± 2.08 100.0
TN 67.01 ± 56.19 24.2 ± 17.47 66.67
JA-TN 35.7 ± 25.99 11.88 ± 6.45 96.67

(j) Double-Side in MSF

LPD ↓ MPD ↓ SR ↑

43.31 ± 57.32 17.78 ± 23.37 93.33
173.49 ± 104.72 63.03 ± 31.64 10.0
45.12 ± 43.92 20.01 ± 15.09 90.0

(k) Double-Side in RRF

Method LPD ↓ MPD ↓ SR ↑

OTF 22.68 ± 9.34 8.46 ± 3.45 100.0
TN 27.79 ± 11.08 12.59 ± 5.9 100.0
JA-TN 26.95 ± 9.54 12.57 ± 4.83 100.0

(l) Side in MSF

LPD ↓ MPD ↓ SR ↑

42.36 ± 41.16 23.04 ± 20.22 93.33
97.01 ± 78.89 45.44 ± 29.28 36.67
34.17 ± 19.99 18.01 ± 7.92 96.67

(m) Side in RRF

Method LPD ↓ MPD ↓ SR ↑

OTF 26.98 ± 14.04 16.06 ± 5.86 93.33
TN 68.93 ± 78.66 32.31 ± 36.4 70.0
JA-TN 33.54 ± 40.19 17.47 ± 17.81 93.33

(n) Rectangular in MSF

LPD ↓ MPD ↓ SR ↑

49.84 ± 40.96 28.14 ± 17.57 76.67
97.01 ± 78.89 45.44 ± 29.28 36.67
37.16 ± 15.37 21.53 ± 8.6 86.67

(o) Rectangular in RSF

LPD ↓ MPD ↓ SR ↑

89.12 ± 142.01 46.96 ± 79.43 76.67
137.53 ± 118.61 60.17 ± 50.37 33.33
53.68 ± 60.51 28.7 ± 29.88 83.33

(p) Rectangular in RRF

Figure 11: Qualitative Trajectory of Double-Side Folding from Crumpled of JA-TN
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Table 8: Task-wise Quantitative Results of Folding-from-Crumpled Controllers
Method LPD ↓ MPD ↓ #2F ↓ SR ↑

Oracle 30.56 ± 33.82 10.83 ± 11.29 25.22 ± 11.47 93.85
JA-TN 36.48 ± 28.52 14.13 ± 10.85 28.06 ± 12.47 93.85

(a) Double-Side in MSF

LPD ↓ MPD ↓ #2F ↓ SR ↑

54.53 ± 73.66 19.96 ± 26.21 31.23 ± 16.17 71.43
105.13 ± 94.99 39.4 ± 33.73 41.41 ± 16.12 51.79

(b) Double-Side in RSF

Method LPD ↓ MPD ↓ #2F ↓ SR ↑

Oracle 30.26 ± 20.81 16.32 ± 7.56 23.14 ± 12.61 89.23
JA-TN 45.81 ± 45.27 21.75 ± 20.97 30.35 ± 14.23 86.15

(c) Rectangular in MSF

LPD ↓ MPD ↓ #2F ↓ SR ↑

56.61 ± 55.58 28.28 ± 27.51 33.04 ± 15.4 75.0
124.4 ± 120.28 58.82 ± 57.65 42.61 ± 15.2 50.0

(d) Rectangular in RSF

Method LPD ↓ MPD ↓ #2F ↓ SR ↑

Oracle 48.34 ± 25.41 20.45 ± 8.0 14.66 ± 9.45 98.46
JA-TN 43.33 ± 8.9 16.86 ± 3.86 16.78 ± 10.61 100.0

(e) Diagonal-Cross in MSF

LPD ↓ MPD ↓ #2F ↓ SR ↑

16.9 ± 7.63 7.71 ± 2.61 17.34 ± 8.29 98.46
26.27 ± 37.26 9.96 ± 7.93 21.35 ± 11.59 95.38

(f) All-Corner Inward in MSF

Method LPD ↓ MPD ↓ #2F ↓ SR ↑

Oracle 29.55 ± 13.74 9.09 ± 4.86 17.62 ± 8.27 98.46
JA-TN 34.98 ± 26.61 12.56 ± 8.39 24.11 ± 11.45 96.92

(g) Corners-Edge Inward in MSF

Figure 12: Qualitative Result of Double-side Folding in Reality

Figure 13: Qualitative Corners-Edge Inward Folding Results in Simulation
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Figure 14: Qualitative Result of Corners-Edge Inward Folding in Reality

Figure 15: Qualitative Result of Diagonal Cross Folding in Reality

17


	Introduction
	Related Work
	Method
	Experiments
	Discussion
	Conclusion
	Appendix
	Initialisation Script for Crumpled States in Simulation
	More Details on Oracle Policies
	More Details on Sim2Real Experiments
	Supplementary Results


