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ABSTRACT

Subset training, where models are trained on a carefully chosen portion of data
rather than the entire dataset, has become a standard tool for scaling modern ma-
chine learning. From coreset selection in vision to large-scale filtering in language
models, these methods promise scalability without compromising utility. A com-
mon intuition is that training on fewer samples should also reduce privacy risks. In
this paper, we challenge this assumption. We show that subset training is not pri-
vacy free: the very choices of which data are included or excluded can introduce
new privacy surface and leak more sensitive information. Such information can be
captured by adversaries either through side-channel metadata from the subset se-
lection process or via the outputs of the target model. To systematically study this
phenomenon, we propose CoLa (Choice Leakage Attack), a unified framework
for analyzing privacy leakage in subset selection. In CoLa, depending on the
adversary’s knowledge of the side-channel information, we define two practical
attack scenarios: Subset-aware Side-channel Attacks and Black-box Attacks. Un-
der both scenarios, we investigate two privacy surfaces unique to subset training:
(1) Training-membership MIA (TM-MIA), which concerns only the privacy of
training data membership, and (2) Selection-participation MIA (SP-MIA), which
concerns the privacy of all samples that participated in the subset selection pro-
cess. Notably, SP-MIA enlarges the notion of membership from model training to
the entire data–model supply chain. Experiments on vision and language models
show that existing threat models underestimate the privacy risks of subset train-
ing: the enlarged privacy surface not only retains training membership leakage
but also exposing selection membership, extending risks from individual models
to the broader ML ecosystem.

1 INTRODUCTION

The scale of modern datasets has made training on the full corpus increasingly impractical. To ad-
dress this, practitioners routinely employ subset training, where only a carefully chosen ratio of data
is used. This paradigm is adopted not only for efficiency but also to improve data quality, since se-
lection can remove redundancy and noise while retaining informative samples. Subset training spans
diverse applications: coreset selection (Bachem et al., 2015; Munteanu et al., 2018; Mirzasoleiman
et al., 2020) in vision, dataset pruning (Sorscher et al., 2022; Yang et al., 2022; Qin et al., 2023),
active learning (Sener & Savarese, 2018; Ducoffe & Precioso, 2018; Agarwal et al., 2020) in general
ML, and large-scale deduplication (Lee et al., 2022), filtering (Rae et al., 2021), and sampling (Gu-
nasekar et al., 2023; Peng et al., 2025; Wettig et al., 2024) in language model pretraining.

While subset training is widely celebrated for these benefits, its privacy implications remain under-
explored (Zhao & Zhang, 2025). A common intuition suggests that fewer training samples should
imply less privacy leakage (Dong et al., 2022). Yet this reasoning overlooks an important fact: the
choices made during subset selection themselves encode signals about which data were included
and which were excluded. These signals can be inherited through shifts in the data distribution or
model behavior, making them exploitable by adversaries.

We ask the fundamental question: Does subset training actually reduce privacy leakage? Our an-
swer is no. We show that subset training introduces new attack surfaces: not only is the included data
that used for training compromised, but the excluded data discarded from training can also become

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

vulnerable due to correlations introduced by the selection mechanism. In other words, due to the
data-oriented nature of the subset selection process, beyond the training data leakage emphasized
by traditional MIA (Shokri et al., 2017; Hu et al., 2022), the choice signals further extend privacy
risks from individual models to the broader data–model supply chain. Accordingly, we define two
complementary privacy surfaces: Training-membership MIA (TM-MIA), which resembles traditional
MIA by focusing on the membership of training data, and Selection-participation MIA (SP-MIA), a
privacy surface tailored to subset training that focuses on membership at the data selection level.

To systematically study membership leakage under these privacy surfaces, we propose CoLa
(Choice Leakage Attack), a framework that leverages choice signals in a principled way to con-
duct attacks across different surfaces. CoLa captures risks under two complementary settings: (i)
a Subset-aware Side-channel setting, where the adversary has access to the target model’s outputs
and selection metadata (e.g., the selection algorithm and the inclusion ratio); and (ii) a Black-box
setting, where the adversary observes only model outputs and is aware that subsetting may have
been used, without knowing any selection metadata. Extensive results show that for both privacy
surfaces under these two attack settings, CoLa can substantially strengthen the attack performance.
In short, subset training does not guarantee privacy; it enlarges the attack surface of modern ML
pipelines and highlights the need to protect privacy across the entire data–model supply chain. We
summarize our contributions as follows:

• We provide the first systematic definition and exploration of the membership leakage prob-
lem under subset training. This novel attack scenario reveals a severe privacy risk in the
subset selection process: not only is the privacy of training data compromised, but the data
excluded during selection is also at risk.

• We propose CoLa (Choice Leakage Attack), a framework tailored to subset selection that
leverages choice signals in a principled way for more reliable membership inference, while
seamlessly unifying diverse attack settings and surfaces.

• Experiments across both vision and language models confirm the broad capability of CoLa.
For example, in the black-box setting, the AUC of CoLa on Pythia-160M surpasses 80%
under SP-MIA, where all baseline methods fail.

2 RELATED WORKS

Subset training and data-efficient learning. A large body of research has explored how to re-
duce the cost of large-scale training by operating on subsets of data. Coreset selection constructs
small but representative subsets that approximate training on the full data (Bachem et al., 2015;
Munteanu et al., 2018; Mirzasoleiman et al., 2020; Yang et al., 2024b). Dataset pruning removes re-
dundant or low-value samples to improve efficiency and generalization (Sorscher et al., 2022; Yang
et al., 2022; Qin et al., 2023; Maharana et al., 2023; Tan et al., 2024). Active learning queries the
most informative examples to reduce annotation cost (Sener & Savarese, 2018; Ducoffe & Precioso,
2018; Agarwal et al., 2020; Borsos et al., 2020; Margatina et al., 2021). In large-scale language
models, deduplication and filtering pipelines are routinely applied to eliminate noise and improve
training quality (Lee et al., 2022; Rae et al., 2021; Raffel et al., 2023; Gao et al., 2020a). These
techniques have been extensively studied for efficiency and utility, but their privacy consequences
remain largely underexplored.

Membership inference attacks. Membership inference attacks (MIAs) are among the most widely
studied privacy threats in machine learning. Early work by Shokri et al. (2017) proposed shadow
models to train attack classifiers distinguishing members from nonmembers. Subsequent methods
exploited confidence scores, loss values, or gradients (Yeom et al., 2018; Sablayrolles et al., 2019;
Carlini et al., 2022b). MIAs have been demonstrated in supervised learning, federated learning, and
large language models (Nasr et al., 2018; Hu et al., 2022; Li et al., 2025), motivating defenses such as
differential privacy (Abadi et al., 2016) and adversarial regularization (Nasr et al., 2018). This body
of work reveals how models trained on fixed datasets can memorize and leak sensitive information.
However, they primarily focus on constructing membership signals in a one-shot manner, with these
signals being tightly coupled to a specific model. We find such model-oriented signal less effective in
the context of subset training. Leveraging the unique characteristics of the subset selection process,
we instead construct membership signals in a data-oriented manner.
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Synthetic data and privacy. Synthetic data generation has been studied as a way to train models
without exposing raw datasets, with the promise of stronger privacy (Hu et al., 2024; Tan et al.,
2025). However, subsequent research has shown that synthetic datasets can still leak sensitive in-
formation about the original data, including membership and attributes (Stadler et al., 2022; van
Breugel et al., 2023; Zhao & Zhang, 2025). Rather than analyzing risks inherent in synthetic data
generation pipelines, we turn to subset training with real data, where high-fidelity samples remain
but the selection process itself exposes a distinct and overlooked channel of privacy leakage.

3 PROBLEM SETTING

3.1 MEMBERSHIP INFERENCE UNDER SUBSET TRAINING

Let D0 ⊆ X ×Y denote the original dataset that undergoes a subset selection procedure. A selector
Sel(·; r) with a given selection ratio r partitions D0 into two disjoint sets: the included data I used
for training, and the excluded data E that are discarded:

(I, E) = Sel(D0; r),with I ∩ E = ∅, I ∪ E = D0, |I|/|D0| = r. (1)

Following the standard MIA pipeline (Shokri et al., 2017), we further denote by O the outside data
that never enter the selection process. A model fθ is trained solely on I . This partition naturally
induces two types of membership inference task:

Training-membership MIA (TM-MIA). This attack takes the model itself as the attack surface and
membership is defined solely by the training data. A sample x is a member if x ∈ I and nonmember
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Figure 1: Privacy surfaces under subset training.

if x ∈ E ∪ O. This forms a natural and widely
adopted threat model, as the model is the most
direct output of the ML system. This setting is
consistent with conventional MIAs (Shokri et al.,
2017; Carlini et al., 2022b).

Selection-participation MIA (SP-MIA). How-
ever, when the attack surface is enlarged to the
entire data–model pipeline, membership expands
from only the training data to a much larger por-
tion of all collected data. As shown in Figure 1, we refer to the collected data as selection members,
where a sample x is a member if x ∈ I ∪ E and a non-member if x ∈ O. Its membership cannot
be explained by direct model memorization, but instead reveals choice leakage, a side-channel sig-
nal from the subset selection process of the data-model supply chain. Such choice leakage risk is
severe as it exposes a system’s selection preferences. Once the data–model supply chain is exposed
to privacy risks, the entire pipeline, from raw data to model outputs, becomes vulnerable to mali-
cious manipulation. To our knowledge, this is the first work to systematically investigate this
perspective.

Both tasks can be framed as binary hypothesis tests over a scoring function s : D0 → R, which
measures the likelihood of a sample x belonging to the respective member set. Given D0 = I∪E∪O,
the member–nonmember partitions are:

MTM = I, NTM = E ∪O, (2)
MSP = I ∪ E, NSP = O. (3)

The goal is to design a scoring function s(x) that distinguishes M from N under both definitions.

3.2 ADVERSARY KNOWLEDGE

Subset training changes not only the definition of membership but also the adversary’s potential
knowledge and capabilities. We consider two complementary scenarios:

Subset-aware side-channel attacks. In line with the common assumption in prior MIAs, the adver-
sary can query the deployed model fθ and observe its outputs (e.g., prediction labels or confidence
scores). In addition, it has access to side information about the selection process, such as the strategy
used (e.g., coreset selection, pruning, filtering) or the approximate inclusion ratio. Such an assump-
tion is realistic: pruning papers routinely report retained percentages to justify efficiency–utility

3
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trade-offs, active learning and coreset methods describe selection strategies for reproducibility, and
large-scale LLM pipelines release dataset cards documenting filtering heuristics, inclusion ratios, or
deduplication statistics (Cohen-Addad et al., 2021; Biderman et al., 2023a; Dubey et al., 2024; Yang
et al., 2024a). Crucially, this information reflects only high-level rules, not the exact membership
of individual samples. Our attack targets precisely this gap: even when only the selection algorithm
or ratio is public, an adversary can exploit this side-channel to infer which specific samples were
included or excluded, thereby exposing choice leakage in subset training.

Black-box attacks. Here the adversary can only query the deployed model fθ and observe its out-
puts. The entire subset selection stage is hidden, so the adversary must rely solely on the observable
behavior of the trained model or the intrinsic data-specific information. This setting captures the
most restrictive and widely assumed threat model in prior MIA research (Hu et al., 2022).

4 METHOD

4.1 CHALLENGES OF MEMBERSHIP INFERENCE UNDER SUBSET TRAINING

In conventional MIA, success comes from exploiting overfitting: models tend to assign systemati-
cally higher confidence to their training data than to non-members. Under subset training, however,
this signal becomes entangled. Figure 2 illustrates this using the LiRA attack signal from (Carlini
et al., 2022b) on a model trained on I selected from D0 by Glister (Killamsetty et al., 2021b). The
dataset used here is CIFAR10 and the model is ResNet18. Since the selector is designed to make
training on I approximate the effect of training on I ∪ E, the confidence distributions of included,
excluded, and outside samples exhibit more complex overlaps: (i) I concentrates at high confidence,
E shifts lower, while outside data often show a bimodal distribution; (ii) in TM-MIA, I and E ∪O
remain partly separated but overlap substantially at high confidence; (iii) in SP-MIA, the distribution
of I ∪ E largely overlaps with that of outside data, making the groups difficult to distinguish. This
overlap complexity shows that model-oriented signals are no longer sufficient under subset training,
highlighting the need for data-oriented alternatives.

4.2 CHOICE LEAKAGE ATTACK

Excluded

Outside

Included

Confidence

Frequency

Figure 2: Signal distributions of
three groups of data under subset
training.

Motivation. Just as models can overfit to their training data,
subset selectors can overfit at the selection level: by design
they preferentially reselect examples that match their implicit
criteria (e.g., high informativeness, low noise, or strong repre-
sentativeness). This persistent re-selection introduces a stable
bias in the choice process that itself serves as a reliable mem-
bership signal. We exploit this inclusion stability, the tendency
of a sample to be repeatedly chosen across multiple trials, as
the core signal for our attack.

Specifically, we approximate many different candidate combi-
nations by constructing a series of overlapping subsets (“win-
dows”) {Wi ⊆ D0}mi=1, where m is the number of windows,
to capture inclusion-stable samples. Each Wi represents one
plausible candidate set the selector might face; by examining
the selector’s decisions on a sample across these windows, we
reveal whether it is consistently favored.

Subset-aware side-channel attack. In the side-channel setting, the adversary knows both the se-
lector Sel(·; r) and the selection ratio r ∈ (0, 1]. For each window Wi, we run Sel(·; r) and record
whether x ∈ Wi is selected by the selector, and get its evidence e(x,Wi) in the current window:

e(x,Wi) = 1[x ∈ Sel(Wi; r)]. (4)

Suppose in the window construction, x appears in n out of m windows; by aggregating the selection
evidence across these windows, we obtain its inclusion count:

t(x) =

n∑
i=1

e(x,Wi), (5)

4
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Table 1: Results for vision models under the subset-aware side-channel attack setting. Results are
averaged over 9 coreset selection methods. Intensity denotes the selection ratio r (Light: r = 0.2,
Medium: r = 0.4, Heavy: r = 0.6, Extensive: r = 0.8). Best results per row are in bold.

Intensity Setting NN NN top3 NN cls LiRA CoLa

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

Light
SP-MIA 51.23

±2.56
5.83
±1.34

51.77
±3.02

3.34
±4.45

51.59
±2.66

6.37
±2.22

51.26
±4.85

6.43
±3.70

61.39
±2.48

14.24
±2.02

TM-MIA 64.00
±12.15

12.13
±5.96

61.57
±15.05

8.93
±13.52

67.24
±16.18

19.30
±17.14

69.86
±22.08

15.74
±18.19

83.77
±2.44

42.19
±4.51

Medium
SP-MIA 52.33

±3.56
6.31
±1.48

53.59
±4.30

3.56
±2.28

54.51
±4.51

6.64
±1.58

54.99
±4.69

5.31
±0.42

81.93
±3.50

42.66
±5.81

TM-MIA 59.84
±12.84

10.80
±4.97

60.37
±10.53

2.91
±3.32

66.84
±11.79

12.51
±5.85

62.96
±13.69

4.61
±2.52

88.53
±2.55

60.10
±7.62

Heavy
SP-MIA 52.21

±3.83
12.20
±15.48

53.20
±4.85

2.80
±2.43

53.53
±5.94

12.37
±15.44

53.69
±5.68

4.26
±1.77

96.86
±2.60

88.60
±5.51

TM-MIA 55.00
±9.59

19.31
±26.18

52.40
±10.78

1.67
±2.04

57.44
±11.06

19.63
±26.72

52.61
±11.77

2.81
±2.32

89.06
±1.90

60.36
±5.87

Extensive
SP-MIA 55.64

±5.31
7.59
±1.68

59.56
±6.39

4.00
±2.92

56.66
±5.90

7.60
±1.87

61.54
±8.36

5.09
±2.68

92.20
±6.94

91.86
±7.23

TM-MIA 61.41
±6.63

10.99
±2.61

60.13
±12.20

4.21
±4.15

62.80
±7.52

11.27
±2.73

59.66
±12.03

4.63
±3.77

80.74
±8.23

49.76
±6.98

where t(x) is the number of times x is selected, For fair comparison, the windows are constructed
as sliding windows with fixed intervals and cyclic wrapping (details are provided in Section 5), thus
each data appears in exactly the same number of windows. Hence, the exposure count n is constant
across all x and serves only as a scaling factor in our score function. This also highlights the
motivation behind our multi-shot membership signal: rather than relying on a single output, choice
leakage signal is derived from how consistently a sample is selected across different selections. The
membership score sSide(x) is obtained by aggregating evidence across windows:

sside(x, n, r) = w
(
t(x); n, r

)
, (6)

where w is a monotone weighting function. From a statistical perspective, if each inclusion is a
Bernoulli trial, then t(x) ∼ Binomial(n(x), p(x)) where p(x) is the probability of a data to be
included. Given the selection ratio r, the expected inclusion count under random choice is r · n(x).
We can therefore design w as a smooth monotone mapping centered around r · n(x):

w
(
t(x); n(x), r

)
=

σ
(
κ(t(x)− r · n(x))

)
Z(n(x), r)

, σ(u) =
1

1 + e−u
, κ > 0, (7)

where κ controls the slope and Z is a normalization constant (depending only on n(x), r) that does
not affect relative ranking. Since the ratio r ∈ (0, 1] and each sample has the same exposure count
n. Without loss of generality, we therefore adopt the following simplified scoring function:

w(t(x);n) = σ
(
t(x)− n

2

)
=

1

1 + e−(t(x)−n
2 )
. (8)

This formulation monotonically amplifies scores of samples with high inclusion counts and con-
strains the range by n, which makes scores comparable across windows. Finally, under both TM-
MIA and SP-MIA, the decision is made by thresholding:

ŷ(x) = 1[sside(x) ≥ τ ], (9)

where τ is a decision threshold. Samples that are more stably selected as included data across
windows will receive higher scores and are thus more likely to be classified as training members.

Black-box attack. In this setting, the subset selection process remains a black box to the adversary,
and no direct selection metadata is available. Guided by our general motivation of inclusion stability
(samples that are repeatedly reselected across plausible candidate sets reveal membership), we infer
stable inclusion by identifying samples that consistently act as geometric representatives across
windows. Specifically, for each window we perform unsupervised embedding clustering to locate
representative samples. Formally, let f(·) be an embedding model. For each window Wi ⊆ D′, we
compute embeddings f(x), x ∈ Wi, and perform k-means clustering (Ahmed et al., 2020) in the
embedding space. Each sample x ∈ Wi is then assigned to a cluster c(x;Wi), and we measure its
distance to the corresponding cluster centroid d(x,Wi) = ∥f(x)− c(x;Wi)∥2. The distance is used
to serve as the evidence:

e(x,Wi) = 1
[
d(x,Wi) ≤ Q0.5

(
Wi

)]
, (10)

5
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where Q0.5(·) is the median distance among all samples in Wi. The formal definitions of the inclu-
sion count and exposure count follow the same formulation as in Eq. 5, with the only difference that
the evidence e(x,Wi) is redefined as Eq. 10 under the current black-box setting.

NN

NN_top3

NN_clsLiRA

CoLa
0.55

0.60
0.65
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0.75 SP-MIA

TM-MIA
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TM-MIA

(c) Uncertainty

Figure 3: The MIA performance on vision models under black-box setting.

Here, to capture multi-shot stability, since the evidence for each data now related the distance to
its centroid in each window Wi, we apply a weighted score function which reveals not only the
inclusion count but also the actual distance it receives:

sblack(x) = w(t(x);n)/d̄(x), (11)

where d̄(x) = 1
t(x)

∑
i: x∈Wi

d(x,Wi) denotes the average clustering distance of sample x across
the windows in which it is included. This design ensures that samples consistently close to cen-
troids across many windows receive higher scores. The weighting function w(t;n) follows the same
formulation as in Eq. 8. Finally, similar to the side-channel setting, membership is determined by
thresholding:

ŷ(x) = 1[sblack(x) ≥ τ ]. (12)
This unsupervised formulation enables membership inference even without any knowledge of the
underlying subset selection metadata. The inclusion stability-based pipeline of CoLa naturally uni-
fies different attack surfaces within a single framework, thereby facilitating coordinated attacks.

5 EXPERIMENTS

5.1 SETUPS

Models and Datasets. We conduct experiments on both vision and language models. For the vi-
sion side, without loss of generality, we use ResNet-18 trained on CIFAR-10. We evaluate the perfor-
mance on both subset-aware side-channel attacks and black-box attacks. For language models, since
training multiple LMs from scratch is computationally expensive, we restrict our study to black-box
attacks. Leveraging the rich open-source models in NLP and following the setup in (Meeus et al.,
2024), we use deduplicated models from the Pythia (Biderman et al., 2023b) and GPT-Neo (Black
et al., 2021) families, specifically pythia-70m, pythia-160m, and gpt-neo-125m, all trained on the
MIMIR dataset (Gao et al., 2020b; Duan et al., 2024). From the MIMIR dataset, we select two sub-
sets, arXiv and PubMed Central, and evaluate each under two split settings: ‘arxiv ngram 1 0.8’,
‘arxiv ngram 13 0.2’, ‘pubmed central ngram 13 0.8’, and ‘pubmed central ngram 13 0.2’, where
‘13 0.8’ denotes removing non-member examples that share > 80% 13-gram overlap with members.

In the black-box attacks for vision models, we derive embeddings from the activations just before the
final linear layer of a shadow model that shares the target model’s architecture. The shadow model
is trained using the GradMatch method (Killamsetty et al., 2021a) (distinct from the MIA methods
evaluated in our paper) with a selection rate of 0.5. For language models, due to the various lengths
of each sequence, we obtain fixed-dimensional embeddings using a dedicated embedding model; by
default we use ‘all-MiniLM-L6-v2’ (Reimers & Gurevych, 2019; Thakur et al., 2021).

For CoLa, the default interval is set to 500 for vision models and 100 for language models, with the
window size to be 20,000 and 1,000, respectively. In black-box attacks, the number of clusters is
fixed at 5. Ablation studies are provided in Section 5.4.
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Figure 4: The MIA performance on language models under black-box setting.

Subset Selection Methods. For vision models, we select nine representative dataset pruning
methods from different categories. Specifically, we include decision boundary based methods such
as DeepFool (Ducoffe & Precioso, 2018) and Contrastive Active Learning (Cal) (Margatina et al.,
2021); the bi-level optimization based method Glister (Killamsetty et al., 2021b); error based meth-
ods including Forgetting (Toneva et al., 2018) and GraNd (Paul et al., 2021); the uncertainty based
method Least Confidence (denoted as Uncertainty) (Coleman et al., 2020); the gradient matching
based method Craig (Mirzasoleiman et al., 2020); and geometry based methods such as Contextual
Diversity (Agarwal et al., 2020) and Herding (Welling, 2009). These methods cover a broad range
of perspectives on dataset pruning, from boundary sensitivity to optimization criteria, error contri-
bution, uncertainty, gradient alignment, and geometric diversity. The selection ratio is set to 0.2, 0.4,
0.6, and 0.8. For language models, as discussed in the previous subsection, we adopt a commonly
used data filtering strategy that has been systematically studied in (Meeus et al., 2024; Duan et al.,
2024), and consider two deduplication strengths, namely ‘13 0.8’ and ‘13 0.2’.

Baseline MIA Methods. For vision models, we consider four baselines: NN, NN top3, and
NN Cls (Shokri et al., 2017; Salem et al., 2018), which use the model’s output logits, the top-3
logits, and the combination of logits with class labels as membership signals, respectively, as well as
LiRA (Carlini et al., 2022b), which fits Gaussian distributions and leverages the likelihood to infer
membership. The shadow model used in each baseline method is set to 8. For language models,
we consider six baselines, including the loss (Yeom et al., 2018), Lower (lowercase) (Carlini et al.,
2021), Min-K% (minkprob) (Shi et al., 2023), Min-K%++ (minkplusplus) (Zhang et al., 2024), Pac
(pac 10) (Ye et al., 2024), and the Golden baseline Bag of Words (bow) (Meeus et al., 2024). Here,
bow serves as a performance reference: methods performing below it are regarded as ineffective.

Evaluation Metrics. In most MIA studies (Hisamoto et al., 2020; Carlini et al., 2022a; Li et al.,
2025), attack performance is typically evaluated by aggregating over all possible thresholds using
the AUC score. We adopt the same practical evaluation metric in our experiments. We also report
True Positive Rate at low False Positive Rate (TPR@Low FPR) (Carlini et al., 2022b), which is an
important metric in MIAs and measures the detection rate at a meaningful threshold.

5.2 RESULTS UNDER SUBSET-AWARE SIDE-CHANNEL ATTACKS

A subset-aware side-channel attack is a type of attack specific to the subset selection process. Its
success indicates that current practices of disclosing meta information about subset selection are
unsafe and can lead to privacy leakage.

Table 1 reports the average MIA results across different coreset selection methods we consider for
vision models (detailed results for each method are provided in Appendix A.2). As shown, in the
relatively simple TM-MIA setting, baseline methods can still perform reasonably well, which is
expected since this setting closely resembles traditional MIAs (Shokri et al., 2017; Hu et al., 2022)
for which these baselines were originally designed.
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Figure 5: The influence of the window
size on the MIA performance.

However, in the SP-MIA setting that is unique to sub-
set training, baseline methods largely fail (AUC close
to 50%), indicating their inability to effectively distin-
guish between included and excluded data. Fundamen-
tally, this stems from the fact that baseline methods rely
heavily on model outputs; as illustrated in Figure 2, in-
cluded and excluded data exhibit output distributions that
are highly similar to other data, resulting in poor separa-
bility. However, this does not mean that privacy cannot be
compromised under SP-MIA. In contrast, CoLa achieves
strong performance in both TM-MIA and SP-MIA set-
tings, thanks to its multi-shot, data-centric membership
signal that tightly aligns with the subset selection process
and captures fine-grained data interactions, thereby en-
abling better separability. Moreover, we observe that as
the selection ratio (Intensity) increases, the risk of privacy leakage becomes more severe, highlight-
ing the significant vulnerability of the subset selection process as a potential side channel.

5.3 RESULTS UNDER BLACK-BOX ATTACKS
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Figure 6: The influence of the embedding
model on the MIA performance.

In the black-box attack setting, we study both vision
and language models. Language model subset selec-
tion often relies on heuristic semantic filtering or dedu-
plication, rather than the formally defined selection al-
gorithms and ratios common in vision, which makes it
naturally suited to black-box analysis. In this scenario,
the adversary has no access to any meta information
about the selection procedure. Consequently, a success-
ful membership inference attack under these conditions
indicates that the subset selection process itself—much
like model training—can implicitly reveal private infor-
mation about the data. This implies that privacy risks
arising from subset selection must be addressed proac-
tively: mitigating them requires careful design choices
and safeguards before the selection process is executed.

The results for vision models and language models are shown in Figure 3 and Figure 4, respectively.
For vision models, we adopt three representative selection methods: Cal (Margatina et al., 2021),
Craig (Mirzasoleiman et al., 2020), and Uncertainty (Coleman et al., 2020). As illustrated in Fig-
ure 3, under the black-box setting, SP-MIA remains more challenging than TM-MIA. Moreover,
CoLa consistently outperforms the baselines by about 5% in AUC across all experiments, demon-
strating strong attack capability. For language models, this contrast is even more pronounced. As
shown in Figure 4, all baseline methods except CoLa perform worse than the bow baseline, indicat-
ing that they essentially fail in the context of subset selection MIA. Furthermore, while SP-MIA and
TM-MIA results are relatively close for CoLa, the baselines exhibit a sharp gap, with SP-MIA close
to random guessing (AUC around 50%), and TM-MIA reaches only about 60%.

5.4 ABLATION STUDIES.

Influence of Window Construction. In Figure 5, we present an ablation study on the influence
of window interval, conducted with Pythia-160m on the arxiv ngram 13 0.8 dataset. Several obser-
vations can be made: first, regardless of the window interval size, the performance under SP-MIA is
consistently lower than that under TM-MIA, highlighting its greater challenge. Second, the choice
of window interval size does not substantially affect the performance of CoLa. In SP-MIA, increas-
ing the size reduces the exposure count n of each data sample, which makes the inclusion signal
coarser and leads to a slight performance drop. However, this drop remains marginal.

Influence of Embedding Model. As a data-centric MIA method, CoLa achieves a clear decou-
pling from the target model. As discussed earlier, it derives the membership signal by reallocat-
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Figure 7: The MIA performance on language models under the black-box setting.

ing data combinations based on overfitting at the selection level. For language data, the inherent
inconsistency in format and length requires the use of a dedicated embedding model in this reallo-
cation process. To examine the effect of embedding model choice, we conduct an ablation study

Table 2: Subset-aware Side-channel attacks under different
vision models and datasets.

Setting ResNet18-CIFAR100 VGG19-CIFAR10 VGG19-CIFAR100

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

SP-MIA 67.28
±1.36

19.05
±1.17

64.98
±2.03

17.15
±2.12

70.31
±1.64

21.23
±1.81

TM-MIA 85.53
±2.07

38.46
±1.43

81.43
±1.43

40.35
±1.65

86.67
±2.36

42.10
±1.39

beyond the default all-MiniLM-
L6-v2, considering three alter-
natives: paraphrase-MiniLM-
L6-v2 (paraphrase-MiniLM),
distilbert-base-nli-stsb-mean-tokens
(distilbert-base), and all-roberta-
large-v1. The results are shown
in Figure 6, where the circle size
indicates the parameter scale of each
embedding model. We observe that
different embedding models have a noticeable impact on inference performance, particularly on
TPR at low FPR. Moreover, larger model size does not necessarily translate into better performance,
highlighting the importance of choosing an appropriate embedding model. Nevertheless, the results
remain generally acceptable across all choices (with AUC consistently above 70% and TPR@10%
FPR above 25%). How to customize embedding models for MIA under subset selection is a
meaningful question, which we leave for future work.

Results under Different Vision Models and Datasets. In Table 2, we further conduct subset-
aware side-channel attack on the CIFAR-100 dataset with the VGG19 model to verify whether CoLa
remains reliable across different vision datasets and models. The selection ratio here is set to 0.2. As
can be observed, CoLa consistently works well across various vision model–dataset combinations,
revealing its general applicability. Specifically, attacks on VGG19 are more pronounced than on
ResNet18 under the same setting, and CIFAR-100 is more vulnerable than CIFAR-10. Moreover,
the observation that SP-MIA is more challenging than TM-MIA is consistent with previous findings.

Influence of Clustering. In Figure 7, we study the effect of varying the number of clusters
used for embedding clustering in the black-box setting. Beyond the default choice of 5, we further
consider values between 2 and 10 and report the corresponding AUC curves and TPR@5% FPR.
The results show that, for both SP-MIA and TM-MIA, the clustering number has only a marginal
effect on performance.

6 CONCLUSION

In this work, we take the first step toward systematically understanding the privacy risks of subset
training. Contrary to the common intuition that training on fewer samples should reduce privacy
leakage, we demonstrate that the very choices made during subset selection can themselves become
exploitable signals, exposing both included and excluded data to membership inference. To capture
this phenomenon, we introduced CoLa, a unified framework that leverages choice patterns to con-
struct robust membership signals. Across both vision and language models, under both subset-aware
side-channel and black-box settings, CoLa consistently outperforms existing baselines, revealing
that subset training does not mitigate but instead amplifies privacy leakage. Our findings highlight
that privacy risks extend beyond model outputs to the data–model supply chain itself. We hope this
work motivates future efforts toward designing selection mechanisms and training pipelines that are
not only efficient and scalable but also privacy-preserving.
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ETHICS STATEMENT

This work focuses on understanding privacy risks in subset training through systematic analysis
of membership inference attacks (MIAs). Our study is purely methodological and does not in-
volve human subjects or personally identifiable information. All datasets used are publicly available
benchmark datasets (e.g., CIFAR, GSM8K, CodeAlpaca), and we complied with their intended use
and licensing terms. We emphasize that the proposed Choice Leakage Attack (CoLa) is presented
as a research contribution to highlight potential vulnerabilities in modern training pipelines, not to
enable misuse. Our findings are intended to inform the community about inherent privacy risks
and to guide the development of stronger defenses. No proprietary or sensitive data was used, and
no deployed models were targeted in this study. In line with research integrity, we also note that
Large Language Models (LLMs) were only employed for literature review support and polishing of
textual presentation (e.g., improving fluency and figure/table captions). LLMs were not involved in
technical design, experimental implementation, or data analysis.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. All datasets used in this paper
are publicly available, and their sources are clearly cited in the main manuscript. The implementa-
tion details of our methods, including models used, attack configurations, and evaluation protocols,
are described in Section 5.1. We also provide ablation studies and additional experiments in Sec-
tion 5.4 to validate the generality of our findings. Upon acceptance, we will release the full source
code, configuration files, and scripts for evaluation to facilitate verification and future research.

LLM DISCLAIMER

LLMs were used only occasionally for language polishing, aiming to improve fluency and readabil-
ity. All technical ideas, experimental designs, analyses, conclusions, writing were developed and
carried out entirely by the authors. The authors have full responsibility for the final text.
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A APPENDIX

A.1 THE PRIVACY THREATS BEHIND DATA-MODEL SUPPLY CHAIN
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Figure 8: Choice Leakage Attack (CoLa) across
the data–model supply chain. CoLa augments
conventional MIA by exploiting subset selec-
tion metadata leaked along the data–model sup-
ply chain. By identifying which samples are
more likely to pass selection, it not only strength-
ens membership inference but also enables adver-
saries to craft tailored threats.

As shown in Figure 8, the data–model sup-
ply chain describes the pipeline from raw data
collection, through subset selection and model
training, to the deployment of a target model.
In this process, subset selection plays a central
role: only a fraction of the raw dataset is in-
cluded for training, while others are excluded
or remain outside. The metadata of this se-
lection process (e.g., filtering strategies, coreset
algorithms, or filter ratios) introduces new pri-
vacy surfaces. Such information can inadver-
tently leak “choice signals” that reveal which
samples are more likely to be included in train-
ing, thereby extending the privacy risk beyond
conventional training data exposure.

CoLa (Choice Leakage Attack) directly ex-
ploits this vulnerability by leveraging selection
metadata to strengthen membership inference.
Unlike traditional MIAs that focus solely on the
trained model’s outputs, CoLa targets the en-
tire supply chain, identifying which samples are
predisposed to pass the selection process. Such

choice leakage risk is severe as it not only amplifies the risk of inferring membership but also ex-
poses a system’s selection preferences. Once the data–model supply chain is exposed to privacy
risks, the entire pipeline, from raw data to model outputs, becomes vulnerable to malicious manipu-
lation. For example, adversaries may learn proxies of the selection rule and craft targeted poisoning
or backdoor examples that are more likely to bypass filtering and enter training.

Table 3: The results of vision models under Subset-aware Side-channel attacks and the subset selec-
tion method used here is Cal (Margatina et al., 2021).

Intensity Setting NN NN top3 NN cls LiRA CoLa

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

Light SP-MIA 0.499 0.050 0.501 0.055 0.508 0.053 0.512 0.054 0.602 0.122
TM-MIA 0.759 0.207 0.676 0.166 0.784 0.257 0.737 0.182 0.855 0.442

Medium SP-MIA 0.553 0.072 0.573 0.056 0.582 0.074 0.587 0.058 0.789 0.372
TM-MIA 0.763 0.165 0.759 0.097 0.812 0.227 0.784 0.092 0.878 0.620

Heavy SP-MIA 0.589 0.077 0.603 0.000 0.630 0.087 0.624 0.054 0.963 0.856
TM-MIA 0.729 0.123 0.721 0.000 0.772 0.172 0.736 0.058 0.895 0.642

Extensive SP-MIA 0.634 0.091 0.637 0.000 0.647 0.092 0.651 0.036 0.957 0.954
TM-MIA 0.717 0.116 0.707 0.061 0.736 0.128 0.690 0.026 0.849 0.573

Table 4: The results of vision models under Subset-aware Side-channel attacks and the subset selec-
tion method used here is Contextual Diverstiy (Agarwal et al., 2020).

Intensity Setting NN NN top3 NN cls LiRA CoLa

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

Light SP-MIA 0.540 0.067 0.539 0.053 0.548 0.073 0.544 0.052 0.633 0.118
TM-MIA 0.706 0.125 0.716 0.070 0.755 0.161 0.756 0.072 0.798 0.347

Medium SP-MIA 0.598 0.094 0.594 0.000 0.614 0.088 0.610 0.056 0.846 0.465
TM-MIA 0.751 0.158 0.708 0.000 0.792 0.160 0.729 0.049 0.908 0.656

Heavy SP-MIA 0.507 0.051 0.502 0.000 0.506 0.500 0.500 0.000 0.982 0.904
TM-MIA 0.502 0.074 0.482 0.000 0.516 0.048 0.477 0.000 0.898 0.631

Extensive SP-MIA 0.494 0.056 0.494 0.027 0.497 0.052 0.497 0.042 0.967 0.966
TM-MIA 0.500 0.053 0.490 0.000 0.502 0.052 0.490 0.041 0.843 0.386
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A.2 RESULTS OF VISION MODELS UNDER DIFFERENT SUBSET SELECTION METHODS

In Table 1, we report the average results of vision models across nine subset selection methods. For
clarity, Tables 3–11 present the results for each method separately, providing a more straightforward
view of the attack performance.

Table 5: The results of vision models under Subset-aware Side-channel attacks and the subset selec-
tion method used here is Craig (Mirzasoleiman et al., 2020).

Intensity Setting NN NN top3 NN cls LiRA CoLa

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

Light SP-MIA 0.495 0.046 0.500 0.000 0.497 0.048 0.441 0.039 0.637 0.172
TM-MIA 0.567 0.087 0.500 0.000 0.573 0.102 0.602 0.064 0.825 0.411

Medium SP-MIA 0.513 0.066 0.588 0.054 0.580 0.086 0.598 0.055 0.819 0.367
TM-MIA 0.595 0.137 0.693 0.043 0.717 0.134 0.716 0.045 0.858 0.518

Heavy SP-MIA 0.575 0.076 0.614 0.052 0.628 0.082 0.629 0.051 0.969 0.876
TM-MIA 0.624 0.114 0.628 0.030 0.701 0.122 0.647 0.034 0.888 0.562

Extensive SP-MIA 0.624 0.092 0.655 0.000 0.653 0.096 0.664 0.000 0.960 0.959
TM-MIA 0.674 0.110 0.666 0.000 0.700 0.119 0.623 0.000 0.842 0.545

Table 6: The results of vision models under Subset-aware Side-channel attacks and the subset selec-
tion method used here is DeepFool (Ducoffe & Precioso, 2018).

Intensity Setting NN NN top3 NN cls LiRA CoLa

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

Light SP-MIA 0.494 0.057 0.500 0.000 0.489 0.054 0.441 0.039 0.637 0.172
TM-MIA 0.556 0.092 0.500 0.000 0.530 0.084 0.221 0.000 0.825 0.411

Medium SP-MIA 0.494 0.051 0.501 0.048 0.492 0.050 0.500 0.050 0.845 0.480
TM-MIA 0.649 0.088 0.550 0.000 0.642 0.088 0.397 0.011 0.926 0.700

Heavy SP-MIA 0.496 0.053 0.507 0.000 0.496 0.052 0.509 0.042 0.979 0.900
TM-MIA 0.494 0.053 0.429 0.016 0.484 0.054 0.424 0.000 0.902 0.643

Extensive SP-MIA 0.526 0.096 0.643 0.062 0.545 0.097 0.645 0.067 0.956 0.954
TM-MIA 0.592 0.142 0.571 0.037 0.602 0.140 0.574 0.038 0.858 0.572

Table 7: The results of vision models under Subset-aware Side-channel attacks and the subset selec-
tion method used here is Forgetting (Toneva et al., 2018).

Intensity Setting NN NN top3 NN cls LiRA CoLa

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

Light SP-MIA 0.500 0.053 0.500 0.000 0.514 0.059 0.530 0.051 0.618 0.141
TM-MIA 0.572 0.099 0.500 0.000 0.706 0.176 0.741 0.071 0.854 0.475

Medium SP-MIA 0.503 0.056 0.500 0.000 0.548 0.068 0.559 0.056 0.818 0.464
TM-MIA 0.529 0.098 0.500 0.000 0.695 0.139 0.724 0.064 0.851 0.517

Heavy SP-MIA 0.501 0.500 0.499 0.045 0.499 0.050 0.498 0.050 0.986 0.943
TM-MIA 0.540 0.830 0.480 0.000 0.546 0.840 0.460 0.034 0.921 0.661

Extensive SP-MIA 0.585 0.080 0.640 0.071 0.585 0.081 0.748 0.084 0.791 0.787
TM-MIA 0.646 0.107 0.640 0.074 0.649 0.107 0.648 0.080 0.653 0.407
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Table 8: The results of vision models under Subset-aware Side-channel attacks and the subset selec-
tion method used here is Glister (Killamsetty et al., 2021b).

Intensity Setting NN NN top3 NN cls LiRA CoLa

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

Light SP-MIA 0.495 0.048 0.500 0.000 0.492 0.045 0.545 0.062 0.608 0.135
TM-MIA 0.477 0.033 0.500 0.000 0.422 0.000 0.883 0.129 0.829 0.384

Medium SP-MIA 0.504 0.055 0.497 0.044 0.503 0.049 0.496 0.045 0.864 0.494
TM-MIA 0.367 0.007 0.545 0.045 0.448 0.024 0.586 0.044 0.874 0.516

Heavy SP-MIA 0.494 0.050 0.499 0.048 0.495 0.048 0.497 0.051 0.992 0.949
TM-MIA 0.404 0.039 0.541 0.060 0.440 0.020 0.555 0.059 0.871 0.480

Extensive SP-MIA 0.527 0.062 0.598 0.073 0.533 0.060 0.600 0.079 0.984 0.984
TM-MIA 0.598 0.131 0.757 0.118 0.651 0.134 0.771 0.120 0.895 0.502

Table 9: The results of vision models under Subset-aware Side-channel attacks and the subset selec-
tion method used here is GraNd (Paul et al., 2021).

Intensity Setting NN NN top3 NN cls LiRA CoLa

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

Light SP-MIA 0.563 0.087 0.584 0.126 0.563 0.114 0.575 0.153 0.562 0.137
TM-MIA 0.843 0.206 0.918 0.389 0.937 0.571 0.950 0.584 0.878 0.483

Medium SP-MIA 0.498 0.048 0.498 0.047 0.497 0.050 0.499 0.052 0.754 0.344
TM-MIA 0.535 0.103 0.471 0.019 0.573 0.104 0.471 0.018 0.902 0.680

Heavy SP-MIA 0.493 0.047 0.500 0.051 0.493 0.047 0.501 0.050 0.909 0.774
TM-MIA 0.557 0.119 0.387 0.011 0.562 0.118 0.384 0.012 0.859 0.606

Extensive SP-MIA 0.505 0.054 0.502 0.047 0.506 0.054 0.503 0.048 0.839 0.826
TM-MIA 0.572 0.110 0.378 0.005 0.556 0.109 0.380 0.019 0.712 0.498

Table 10: The results of vision models under Subset-aware Side-channel attacks and the subset
selection method used here is Herding (Welling, 2009).

Intensity Setting NN NN top3 NN cls LiRA CoLa

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

Light SP-MIA 0.516 0.053 0.521 0.052 0.512 0.054 0.510 0.053 0.574 0.171
TM-MIA 0.853 0.407 0.912 0.373 0.932 0.452 0.927 0.389 0.963 0.771

Medium SP-MIA 0.498 0.050 0.498 0.051 0.498 0.049 0.499 0.051 0.753 0.460
TM-MIA 0.857 0.244 0.749 0.092 0.861 0.246 0.757 0.088 0.976 0.880

Heavy SP-MIA 0.543 0.061 0.601 0.059 0.545 0.078 0.600 0.067 0.966 0.846
TM-MIA 0.782 0.210 0.740 0.029 0.792 0.206 0.741 0.028 0.931 0.729

Extensive SP-MIA 0.491 0.047 0.498 0.000 0.492 0.049 0.497 0.043 0.964 0.963
TM-MIA 0.687 0.127 0.542 0.046 0.688 0.126 0.542 0.049 0.862 0.571

Table 11: The results of vision models under Subset-aware Side-channel attacks and the subset
selection method used here is Uncertainty (Coleman et al., 2020).

Intensity Setting NN NN top3 NN cls LiRA CoLa

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

Light SP-MIA 0.499 0.051 0.499 0.054 0.499 0.049 0.498 0.050 0.603 0.138
TM-MIA 0.549 0.065 0.458 0.021 0.528 0.063 0.437 0.019 0.827 0.376

Medium SP-MIA 0.494 0.050 0.498 0.050 0.494 0.05 0.496 0.050 0.811 0.454
TM-MIA 0.614 0.073 0.444 0.020 0.610 0.072 0.433 0.019 0.914 0.703

Heavy SP-MIA 0.554 0.089 0.625 0.054 0.560 0.089 0.627 0.051 0.959 0.850
TM-MIA 0.709 0.13 0.644 0.025 0.713 0.130 0.644 0.025 0.899 0.644

Extensive SP-MIA 0.501 0.050 0.506 0.044 0.502 0.051 0.502 0.050 0.929 0.924
TM-MIA 0.614 0.117 0.424 0.000 0.607 0.118 0.425 0.03 0.823 0.575
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