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Abstract

The Tensor Nuclear Norm (TNN), derived from the tensor Singular Value Decom-1

position, is a central low-rank modeling tool that enforces element-wise sparsity2

on frequency-domain singular values and has been widely used in multi-way data3

recovery for machine learning and computer vision. However, as a direct extension4

of the matrix nuclear norm, it inherits the assumption of single-level spectral spar-5

sity, which strictly limits its ability to capture the multi-level spectral structures6

inherent in real-world data—particularly the coexistence of low-rankness within7

and sparsity across frequency components. To address this, we propose the tensor8

ℓp-Schatten-q quasi-norm (p, q ∈ (0, 1]), a new metric that enables dual spectral9

sparsity control by jointly regularizing both types of structure. While this formula-10

tion generalizes TNN and unifies existing methods such as the tensor Schatten-p11

norm and tensor average rank, it differs fundamentally in modeling principle by12

coupling global frequency sparsity with local spectral low-rankness. This coupling13

introduces significant theoretical and algorithmic challenges. To tackle these chal-14

lenges, we provide a theoretical characterization by establishing the first minimax15

error bounds under dual spectral sparsity, and an algorithmic solution by designing16

an efficient reweighted optimization scheme tailored to the resulting nonconvex17

structure. Numerical experiments demonstrate the effectiveness of our method in18

modeling complex multi-way data.19

1 Introduction20

Modeling latent structural patterns in high-dimensional signals is a fundamental challenge across21

domains such as machine learning and signal processing [17, 38, 19]. Real-world datasets are often22

inherently multi-modal and high-dimensional (tensor-form), containing intricate dependencies that23

cannot be adequately captured by naïve modeling or vector/matrix-based representations [4]. A24

common strategy to uncover these relationships is to impose a low-rank prior, which isolates essential25

information and reduces the degrees of freedom, focusing on the principal components of the signal26

[21, 1]. Traditional tensor decomposition methods, such as CANDECOMP/PARAFAC (CP) [3],27

Tucker [27], and Tensor Train [23], have been widely used to model tensor signals [4, 16, 8, 34].28

While effective in certain scenarios, these methods rely on the assumption of intrinsic low-rankness29

in the original domain, which may fail to hold in complex, real-world applications. This limitation30

has led to the development of transformed-domain modeling, where linear transformations like31

the Discrete Fourier Transform (DFT) are applied to reveal more pronounced low-rank patterns.32

Within this paradigm, the tensor Singular Value Decomposition (t-SVD) has emerged as a powerful33

framework with notable success in applications such as image and video analysis [17, 38, 32, 30].34

Building on the t-SVD framework, the Tensor Nuclear Norm (TNN) has become an extensively35

adopted regularizer for low-rank tensor modeling [20, 38, 25, 6, 36, 18, 39]. By extending the matrix36
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Figure 1: Empirical illustration of dual spectral sparsity patterns in the transformed (DCT) domain
via t-SVD. (A) The t-SVD framework decomposes a tensor into frequency-domain singular structures.
(B)-Left: Singular value heatmap of the Salinas A dataset under t-SVD—each column represents
one frequency slice. Vertical decay reveals intra-frequency low-rankness, while horizontal variation
indicates sparsity across frequencies. (B)-Right, (C), (D): Cumulative energy curves for Salinas A,
Brain MRI, and Incisix datasets show that over 80% of total spectral energy is concentrated in the top
15%–30% frequency components, confirming frequency-wise sparsity. These observations support
the presence of a dual-level spectral structure and motivate regularization schemes that go beyond
uniform norms like TNN [38, 19] to jointly model frequency sparsity and low-rankness.

nuclear norm to the tensor setting, TNN promotes low-rankness by enforcing element-wise sparsity37

on singular values in the transformed domain [13, 38]. This formulation effectively captures low-rank38

dependencies within individual frequency components.39

However, a long-overlooked limitation of TNN lies in its assumption of uniform spectral regulariza-40

tion, which treats all frequency components equally regardless of their relative importance. From a41

signal processing perspective, this single-level sparsity design fails to account for the dual-level struc-42

ture often observed in transformed tensor data. In particular, real-world tensors may exhibit strong43

low-rankness within each frequency component along with sparsity across the frequency domain.44

As illustrated in Fig.1 and further discussed in §3, empirical analyses of several datasets, including45

hyperspectral images and medical imaging volumes, indicate that a small subset of frequency slices46

contributes the majority of spectral energy. In addition, these dominant components often exhibit47

pronounced low-rank structures within each frequency slice. These observations suggest the need48

for a more flexible regularization framework that can separately characterize both intra-frequency49

low-rankness and inter-frequency sparsity, instead of relying on a uniform scheme like TNN.50

These limitations necessitate a new method capable of modeling both levels of sparsity. This raises51

three interconnected questions:52

RQ1 (Modeling): how to effectively model both intra-frequency and inter-frequency dependencies in53

tensor data?54

RQ2 (Theory): can we establish rigorous theoretical guarantees to validate such a framework, given55

the challenges of analyzing coupled sparsity?56

RQ3 (Algorithm): can efficient algorithms be designed to tackle the optimization challenges57

introduced by the coupled sparsity structure?58

To address these questions, we propose the tensor ℓp-Schatten-q quasi-norm, a novel framework59

introducing dual spectral sparsity control to simultaneously model both within-frequency and across-60

frequency dependencies. Specifically, parameter p governs sparsity among different frequency61

components (RQ1), while parameter q controls low-rankness within each frequency component. This62

framework generalizes and extends TNN, unifying existing methods such as the tensor Schatten-p63

quasi-norm [12] and tensor average rank [31] into a single, versatile framework.64
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While our framework offers promising modeling capabilities, the coupled nature of this dual spectral65

sparsity introduces significant theoretical and computational challenges. Our main contributions in66

developing and validating this framework are as follows:67

• Structural Modeling (RQ1): To the best of our knowledge, this work is the first to rigorously68

formalize and explicitly model a coupled spectral structure within the t-SVD framework, where69

inter-frequency sparsity coexists with intra-frequency low-rankness (Section 3). The proposed70

ℓp-Schatten-q quasi-norm jointly models both inter-frequency sparsity and intra-frequency low-71

rankness, while allowing separate control over each via parameters p and q. This formulation72

captures hierarchical spectral structure beyond uniform regularizers such as TNN.73

• Theoretical Guarantees (RQ2): We establish sharp minimax lower and upper bounds for tensor74

estimation under dual spectral sparsity, covering both hard and soft regimes (Section 4). The75

analysis introduces new techniques to characterize the complexity of coupled parameter spaces,76

extending classical tools such as covering numbers and metric entropy to the tensor spectral setting.77

• Optimization and Empirical Validation (RQ3): We develop a scalable proximal algorithm78

tailored to the proposed quasi-norm (Section 5). It employs a reweighted ℓ1/2 approximation79

and frequency-wise singular value updates in the transform domain, effectively handling the80

nonconvexity and structural coupling induced by dual spectral sparsity. Experiments on real-world81

tensor recovery tasks demonstrate the potential applicability of our method (Section 6).82

The remainder of the paper is organized as follows. Section 2 reviews basic preliminaries. Section 383

introduces the proposed quasi-norm. Sections 4 and 5 present the theoretical analysis and optimization84

algorithm, respectively. Experimental results are reported in Section 6, followed by the conclusion in85

Section 7. Details on related work, proofs, algorithms, and experiments are provided in the appendix.86

2 Notations and Preliminaries87

Notations. For any positive integer d, let [d] := {1, . . . , d}. We denote vectors by lowercase88

bold letters (e.g., a), matrices by uppercase bold letters (e.g., A), and 3-way tensors by underlined89

uppercase letters (e.g., A). Constants, represented as c and its variants (e.g., c1, C), may vary in90

value across contexts. For a 3-way tensor of size d1 × d2 ×m, we assume d1 ≥ d2 without loss of91

generality.92

For a matrix A ∈ Rd1×d2 , we define σ(A) as the vector of its singular values, arranged in descending93

order. The spectral norm ∥A∥spec and nuclear norm ∥A∥∗ of A are defined as the largest and the sum of94

its singular values, respectively. For any tensor A, we define its ℓp-norm as ∥A∥p := ∥ vec(A)∥p and95

its Frobenius norm as ∥A∥F := ∥ vec(A)∥2, where vec(·) denotes the vectorization operation [11].96

The inner product of two tensors A and B is given by ⟨A,B⟩ := vec(A)⊤ vec(B). For a tensor97

A ∈ Rd1×d2×m, we denote its i-th frontal slice as A:,:,i or simply Ai when clear from context.98

The t-SVD Framework. The t-SVD framework is based on the t-product operation, a generalization99

of matrix multiplication to tensors, which operates under an invertible linear transform M [9]. By100

enhancing low-rank properties through specific linear transformations, this approach effectively101

exploits intrinsic correlations within the data [36, 29]. This paper adopts the convention of using102

orthogonal matrices for M due to their stability and computational advantages [18, 28]. Specifically,103

for an orthogonal matrix M ∈ Rm×m, we define the M -linear transform and its inverse on a tensor104

T ∈ Rd1×d2×m as:105

M(T) := T ×3 M, and M−1(T) := T ×3 M−1, (1)
where ×3 denotes the mode-3 tensor-matrix product [9]. Using this transform, we introduce the basic106

notions in the t-SVD framework.107

Definition 2.1 (t-product [9]). The t-product of two tensors A ∈ Rd1×d2×m and B ∈ Rd2×d3×m108

under the transform M in (1) is denoted by A ∗M B = C ∈ Rd1×d3×m, where M(C) = M(A) ⊙109

M(B) in the transformed domain, and ⊙ denotes the frontal-slice-wise product of the tensors.110

Definition 2.2 (M -block-diagonal matrix [28]). For a tensor T ∈ Rd1×d2×m, its M -block-diagonal111

matrix T̄ ∈ Rd1m×d2m is defined as112

T̄ := bdiag(M(T)) = diag (M(T):,:,1, . . . ,M(T):,:,m) ,

where M(T) is the mode-3 transform of T, and the operator bdiag(·) stacks the frontal slices as113

diagonal blocks.114
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We now formally introduce the t-SVD, as illustrated in Fig. 1-(A).115

Definition 2.3 (t-SVD and tensor tubal rank [9]). The tensor Singular Value Decomposition (t-SVD)116

of a tensor T ∈ Rd1×d2×m under the invertible linear transform M in (1) is:117

T = U ∗M S ∗M V⊤, (2)

where U ∈ Rd1×d1×m and V ∈ Rd2×d2×m are t-orthogonal tensors, and S ∈ Rd1×d2×m is an118

f-diagonal tensor. The tubal rank of T is defined as the number of non-zero tubes in S in the t-SVD,119

i.e., rtb(T) := #{i | Si,i,: ̸= 0, i ≤ min{d1, d2}}.120

To further model the low-rank structure of tensors in the transformed domain, the tensor nuclear norm121

(TNN) is proposed as a key regularizer in low-rank tensor learning:122

Definition 2.4 (Tensor nuclear norm [20]). The tensor nuclear norm (TNN) of a tensor T ∈123

Rd1×d2×m under the transform M are defined as ∥T∥∗ := ∥T̄∥∗ = ∥σ(T̄)∥1.124

In this definition, TNN captures the element-wise sparsity of the transformed spectrum σ(T̄) ∈125

Rm·min{d1,d2}, allowing it to promote low-rank characteristics in the spectral domain. This property126

has made TNN a foundational tool in tensor analysis, particularly for low-rank tensor recovery in127

various applications such as image inpainting [19].128

3 Dual Spectral Sparsity in the t-SVD Framework129

Effectively capturing both intra-frequency low-rankness and inter-frequency sparsity (RQ1) is es-130

sential for modeling structured tensor data. While methods like TNN emphasize within-frequency131

low-rankness, they overlook sparsity across frequencies, limiting their ability to represent hierar-132

chical dependencies. To overcome this, we introduce the ℓp-Schatten-q quasi-norm, a dual-sparsity133

regularization framework designed to capture both levels of structure in a unified way.134

Limitations of TNN from a Group Sparsity Perspective. According to Definition 2.4, the tensor135

nuclear norm (TNN) promotes low-rankness by enforcing element-wise sparsity on singular values in136

the transformed domain, effectively capturing intra-frequency low-rank structures. However, it applies137

uniform regularization across all frequency components, regardless of their spectral importance. This138

design fails to exploit the potential sparsity across frequency slices that is often present in real-world139

tensors. Fig. 1 presents empirical evidence from three representative datasets—Salinas A1, Brain MRI140

[33], and Incisix [5]—demonstrating that only a small portion of frequency components accounts141

for the majority of spectral energy. Specifically, more than 80% of the energy is concentrated in the142

top 15%–30% of frequency bands. Meanwhile, the singular value heatmap (Fig. 1(B)-Left) reveals143

pronounced horizontal sparsity, indicating that many frequency slices contribute minimally. Within144

each active frequency slice, singular values decay rapidly, confirming low-rankness.145

These observations suggest a dual-level structure comprising inter-frequency sparsity and intra-146

frequency low-rankness. From a group sparsity perspective, the spectrum σ(T̄) can be partitioned147

into groups, where each group corresponds to the singular values σ(M(T):,:,i) of a specific frequency148

slice. TNN enforces uniform regularization across these groups, overlooking their heterogeneous149

importance. As a result, it may underperform when modeling data with hierarchical spectral structures.150

These limitations motivate a more expressive framework that separately accounts for both levels of151

structure.152

Hard Dual Spectral Sparsity. To address the limitations of TNN, we first define a hard dual spectral153

sparsity structure, where the tensor is assumed to satisfy exact sparsity constraints across and within154

frequency components. This serves as an idealized formulation that captures the extreme case of dual155

spectral sparsity and provides a clean theoretical foundation for later analysis.156

Definition 3.1 (Hard Dual Spectral Sparsity). A tensor T ∈ Rd1×d2×m is said to exhibit (s, r)-dual157

sparsity under a linear transform M if it satisfies two constraints:158

I. Inter-frequency sparsity: The number of active frequency components is limited to at most s.159

Specifically, only s out of the m frequency components can have non-zero singular value vectors:160 ∑m
i=1 I (σ(M(T):,:,i) ̸= 0) ≤ s, where σ(M(T):,:,i) denotes the singular value vector of the i-th161

frontal slice in the transformed domain.162

1https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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II. Intra-frequency low-rankness: Within each active frequency component, the number of non-zero163

singular values is constrained to at most r. This condition ensures a low-rank structure for164

each frequency slice (∀i ∈ [m]):
∑min{d1,d2}

j=1 I (σj(M(T):,:,i) ̸= 0) ≤ r, where σj(M(T):,:,i)165

denotes the j-th singular value of the i-th frontal slice of M(T).166

This definition captures a strict form of dual-level structure by simultaneously enforcing sparsity167

across frequencies and low-rankness within each active frequency slice. While such hard constraints168

may be too restrictive in practical scenarios, especially where spectral contributions decay grad-169

ually, they provide a clear conceptual framework to motivate and analyze the more flexible soft170

regularization.171

Soft Dual Spectral Sparsity. While the hard dual spectral sparsity model provides a clean conceptual172

foundation, its strict assumption of exact sparsity and fixed-rank constraints is often impractical in173

real-world scenarios. In many cases, singular values decay gradually rather than drop abruptly to174

zero, and the true number of active frequency components may be ambiguous or noise-sensitive. To175

overcome these limitations, we introduce a soft relaxation that allows for approximate sparsity and176

low-rankness in a continuous manner. Specifically, we propose the ℓp-Schatten-q quasi-norm, which177

relaxes the hard dual-sparsity constraints into a soft dual spectral sparsity framework.178

Definition 3.2 (Tensor ℓp-Schatten-q quasi-norm). For a tensor T ∈ Rd1×d2×m, we define its tensor179

ℓp-Schatten-q quasi-norm (abbreviated as ℓp(Sq)-norm) as:180

∥T∥ℓp(Sq) :=

 m∑
i=1

d1∧d2∑
j=1

σj(M(T):,:,i)q


p
q


1
p

, (3)

where the exponents (p, q) ∈ (0, 1]2.181

In this quasi-norm, p governs the inter-frequency sparsity by promoting a group-wise regularization182

across frequency components, effectively highlighting significant groups while suppressing others.183

Simultaneously, q controls the intra-frequency low-rankness by encouraging sparsity in the singular184

values within each frequency slice, thereby modeling the intrinsic low-rank structure of the data.185

This soft dual spectral sparsity framework provides a unified yet versatile approach to address the186

hierarchical complexity of tensor data.187

The ℓp-Schatten-q quasi-norm encompasses several existing regularization methods: it recovers TNN188

when (p, q) = (1, 1)[20], approximates the average rank as (p, q) → (1, 0)[31], and reduces to the189

tensor Schatten-q norm when p = q [12], thereby offering greater modeling flexibility. Despite190

generalizing these regularizers, it fundamentally differs by jointly enforcing global frequency sparsity191

and local spectral low-rankness.192

While TNN applies uniform regularization across all singular values, the ℓp-Schatten-q quasi-norm193

introduces dual spectral sparsity control, modeling both inter-frequency sparsity through the ℓp-quasi-194

norm and intra-frequency low-rankness via the Schatten-q quasi-norm. This dual-level flexibility195

makes the proposed framework particularly well-suited for hierarchical and multi-scale data, where196

dependencies and sparsity exhibit layered structures. By bridging the gap between element-wise197

sparsity (as in TNN) and structured group sparsity, the ℓp-Schatten-q quasi-norm offers a more198

expressive and adaptable approach, enabling precise control over structural patterns in modern199

tensor-based analysis and recovery tasks.200

4 Theory of Dual Spectral Sparse Tensor Estimation201

This section develops the theoretical foundations of tensor estimation with dual spectral sparsity202

structures (RQ2).203

Challenges. Dual spectral sparsity, combining inter-frequency sparsity with intra-frequency low-204

rankness, leads to a globally coupled structure that fundamentally differs from classical decoupled205

models like TNN. The ℓp-Schatten-q quasi-norm imposes interdependent constraints across frequency206

slices, resulting in a highly non-convex parameter space with nested sparsity patterns. This coupling207

prohibits slice-wise decomposition and complicates the use of standard tools. Accurately characteriz-208

ing the estimation complexity demands novel extensions of covering numbers and metric entropy209

that jointly capture discrete sparsity and continuous low-rank structure.210
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To understand the statistical limits of learning under dual spectral sparsity, we analyze a simplified211

but representative model: the Gaussian location model, where the observed tensor is corrupted by212

additive noise. This setting preserves the core structural properties—inter-frequency sparsity and213

intra-frequency low-rankness—while avoiding complications unrelated to sparsity itself. Within this214

framework, we define structured parameter spaces that capture hard and soft variants of dual spectral215

sparsity, and establish sharp minimax lower and upper bounds under each. These results reveal how216

the joint effects of frequency selection and within-slice spectral decay determine the fundamental217

estimation limits, and provide theoretical justification for our proposed regularization.218

4.1 Gaussian Location Model219

Consider the Gaussian location model (GLM) [14], where n independent noisy realizations of the220

target tensor L∗ ∈ Rd1×d2×m are observed as:221

Yi = L∗ + Ei, i ∈ [n], (4)

where Yi ∈ Rd1×d2×m is the observed tensor, L∗ represents the ground truth tensor of interest, and222

Ei ∈ Rd1×d2×m denotes the noise tensor with entries independently drawn from N (0, σ2). The223

parameter σ characterizes the noise level. To simplify the analysis, we consider the sample mean of224

observations Ȳ = n−1
∑n

i=1 Yi = L∗ + Ē, where Ē = n−1
∑n

i=1 Ei is the aggregated noise tensor225

with entries independently distributed as N (0, σ2/n). The goal is to estimate the ground truth tensor226

L∗ based on the noisy observations {Yi}ni=1. In particular, we aim to recover L∗ under dual spectral227

sparsity assumptions.228

Remark 4.1. We adopt the Gaussian location model to isolate the core effects of dual spectral229

sparsity and the ℓp-Schatten-q regularization, avoiding additional complications from design tensors230

or sampling operators in tensor regression [35, 29, 24]. This simplified setting enables cleaner231

analysis and yields insights that extend naturally to regression problems under standard conditions232

such as RIP [35] or RSC [29, 24, 22].233

Dual Spectral Sparsity Assumptions. We consider three distinct sparsity models for L∗:234

A1. Hard dual spectral sparsity: Let L∗ belong to the parameter space235

T0,0(s, r) = {L : at most s active frequency slices, each of rank at most r} . (5)
This model enforces exact inter-frequency sparsity and intra-frequency low-rankness.236

A2. Hard frequency sparsity and soft rank constraint (hard–soft sparsity): Let L∗ lie in237

T0,q(s,R) =
{

L : |{i : M(L):,:,i ̸= 0}| ≤ s, ∥M(L):,:,i∥qSq
≤ R, ∀i ∈ [m]

}
. (6)

This space imposes hard inter-frequency sparsity and soft Schatten-q constraints within each active238

slice.239

A3. Soft dual spectral sparsity: Let L∗ belong to the parameter space240

Tp,q(R) =
{

L : ∥L∥pℓp(Sq)
≤ R

}
. (7)

Here, p promotes inter-frequency sparsity and q controls intra-frequency low-rankness via spectral241

decay; R specifies the quasi-norm ball radius.242

These parameter spaces offer different views on structured tensor estimation: the hard sparsity model243

enforces strict thresholds, the hard–soft model balances structure with adaptability, and the fully soft244

model captures gradual spectral decay. Our goal is to estimate L∗ and derive minimax bounds under245

these assumptions.246

4.2 Minimax Risk over Dual-level Sparse Structures247

A key theoretical question in high-dimensional tensor estimation is: What are the fundamental limits248

for recovering a tensor with dual spectral sparsity from noisy observations? To address this, we249

establish minimax lower and upper bounds that characterize the best possible estimation accuracy250

achievable by any estimator under dual spectral sparsity assumptions.251

M(T) = inf
L̂

sup
L∗∈T

E
[
∥L̂ − L∗∥2F

]
, (8)

where T is the parameter space. Following [18, 19], we consider d1 = d2 = d for simplicity.252
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Theorem 4.2 (Minimax Bounds). The minimax risk under dual spectral sparsity satisfies the following253

bounds under certain conditions2:254

I. Hard constraints on both frequency sparsity and per-slice low-rankness:255

M(T0,0(s, r)) ≍
σ2

n

(
s log

em

s
+ srd

)
.

II. Hard frequency sparsity with soft intra-slice Schatten-q constraints:256

M(T0,q(s,R)) ≍ σ2

n
s log

em

s
+ sR

(
σ2

n
d

)1− q
2

.

III. Soft ℓp(Sq) constraints over both frequency and rank dimensions:257

M(Tp,q(R)) ≍


R
(

σ2n
d

) p−2
2

+R
(

σ2n
logm

) p−2
2

, p > q,

R
q
p

(
σ2n
d

) q−2
2

+R
(

σ2n
logm

) p−2
2

, p ≤ q, m > d2,

R
q
p

(
σ2n
d

) q−2
2

, p ≤ q, m ≤ d2.

Theorem 4.2 establishes the fundamental limits of estimation accuracy under different dual spectral258

sparsity structures. The minimax risk quantifies the worst-case squared Frobenius norm error that any259

estimator must incur when recovering a structured tensor from noisy observations. The results reveal260

the intricate balance between inter-frequency sparsity and intra-frequency low-rankness, showing261

how these factors jointly govern estimation complexity:262

I. In the hard sparsity case, the estimation error consists of two terms: (i) s log(em/s), which263

reflects the difficulty of selecting s active frequency components, and (ii) srd, which characterizes264

the challenge of estimating rank-r matrices within each component.265

II. In the hard-soft sparsity setting, the second term adapts to sR(n−1d)1−q/2, incorporating a266

smoother spectral decay controlled by q. Smaller q values impose stronger low-rank constraints,267

effectively reducing estimation complexity by promoting more aggressive rank sparsity.268

III. In the fully soft sparsity scenario, where both inter-frequency sparsity and intra-frequency rank269

constraints are relaxed, the minimax risk follows distinct scaling behaviors across regimes. When270

p > q, the error rate is dominated by ℓp sparsity, with Sq low-rankness playing a minor role. For271

p ≤ q and m ≥ d2, both the ℓp-ball and Sq-ball influence the estimation error, demonstrating an272

interplay between structured sparsity and low-rank regularization. When m ≤ d2, the error rate is273

dictated by Sq , making it independent of m, emphasizing the fundamental role of rank constraints in274

this regime.275

5 Optimization for Dual Spectral Sparse Tensor Estimation276

Efficiently solving tensor estimation problems with dual spectral sparsity (RQ3) is key to leveraging277

the proposed ℓp-Schatten-q quasi-norm in practice. However, this task presents substantial challenges278

due to the non-convexity and coupled structure of this regularization.279

Challenges. Even in the vector setting, optimizing dual-level sparse structures is notoriously difficult280

due to the combination of non-convexity and structural coupling [7, 15]. In our tensor case, these281

challenges are further compounded by the need to simultaneously enforce inter-frequency sparsity282

and intra-frequency low-rankness. Most existing tensor optimization methods either treat frequency283

components independently or impose low-rank constraints without spectral sparsity considerations,284

making them ill-suited for the proposed dual-spectral regularization. The ℓp-Schatten-q quasi-norm285

is non-convex whenever p, q ∈ (0, 1], ruling out standard convex optimization techniques and286

necessitating a structure-aware, non-convex optimization strategy.287

To address these difficulties, our approach is naturally motivated by the structural properties of288

the problem. We adopt a proximal update scheme that takes advantage of the separability of the289

2The conditions in each setting are provided in the appendix.
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transform-domain representation M(L), allowing frequency-wise updates, along with an iterative290

reweighting strategy that facilitates optimization in the presence of non-convex regularization.291

Proximal Operator Formulation. To handle the non-convex ℓp-Schatten-q regularization, we adopt292

a proximal update scheme that enforces dual spectral sparsity while remaining computationally293

efficient. Specifically, at iteration t, the update is given by solving:294

Lt+1 ∈ argmin
L

1

2
∥L − Z∥2F + λ

∑m

k=1
∥M(L):,:,k∥p/qSq

, (9)

where Z denotes the intermediate variable aggregating previous updates and gradient information.295

Since the transform M(·) allows slice-wise decomposition [10], Problem (9) reduces to m subprob-296

lems over frequency components k ∈ [m]:297

min
Ak

1

2
∥Ak −M(Z):,:,k∥2F + λ ∥Ak∥p/qSq

, (10)

where Ak := M(L):,:,k denotes the k-th frontal slice of the transformed tensor M(L). Problem (10)298

is difficult due to the non-convexity and lack of smoothness of the Schatten-q quasi-norm, which299

admits no closed-form or standard proximal solution in general.300

To efficiently approximate Problem (10), we adopt a reweighted ℓ1/2-surrogate for ∥Ak∥p/qSq
based on301

singular values:302 ∑d

i=1
wi,k · σi(Ak)

1/2, (11)

with weights defined as wi,k =
(∑d

j=1 ς
q
j,k+ϵ

)p/q−1·
(
ς
1/2
i,k +ϵ

)2q−1
, where ϵ is a small regularization303

constant and ςj,k := σj(M(Lt):,:,k) are the singular values from the previous iterate. The update for304

each singular value then becomes a soft-thresholding step:305

σ
(t+1)
i (M(L):,:,k) = Sℓ1/2

λwi,k
(σi(M(Z):,:,k)) , (12)

where Sℓ1/2 is the proximal operator for the ℓ1/2-norm (see Appendix for closed-form expression).306

After singular value shrinkage, we reconstruct each slice M(Lt+1):,:,k = Uk · diag(σ(t+1)) · V⊤
k ,307

where Uk and Vk are from the SVD of M(Z):,:,k. Finally, applying the inverse transform yields the308

updated tensor Lt+1 in the original domain.309

6 Experiments310

Having established the theoretical foundations and algorithmic framework, we now evaluate the311

empirical performance of the proposed ℓp-Schatten-q quasi-norm in tensor estimation tasks. We312

conduct extensive experiments on three types of remote sensing data to demonstrate its effectiveness313

in noisy tensor completion tasks.314

Experimental Setup. We consider the noisy tensor completion which involves reconstructing a315

tensor from noisy incomplete observations. Given a clean tensor L of size d1× d2× d3, we introduce316

i.i.d. Gaussian noise with standard deviation σ = cσ0, where c = 0.05 and σ0 = ∥L∥F /
√
d1d2d3.317

A uniform sampling strategy is applied with sampling ratios p ∈ {0.05, 0.1, 0.15}, meaning that318

95%, 90%, and 85% of the entries are missing, respectively. Each setting is tested over 10 trials, and319

the averaged PSNR (dB) and SSIM values are reported. To benchmark our method, we compare320

the proposed ℓp(Sq)-quasi-norm against several low-rank regularizers, including matrix nuclear321

norm (NN) [2], Tucker-based tensor nuclear norm (SNN) [16], TNN-DFT [37], TNN-DCT [20],322

tensor k-Support norm (k-Supp) (k = 2) [29], tensor ℓ1−2-norm (ℓ1−2) [26], tensor Schatten-p-norm323

(p = 1/2) [12]. In our implementation, we set the sparsity parameters3 to (p, q) = (0.8961, 0.8966)324

and employ the Discrete Cosine Transform (DCT) as the transform operator M(·). Details of the325

experiments are given in the appendix.326

3We first performed a coarse grid search over p, q ∈ {0.1, 0.2, . . . , 1.0} and observed consistent performance
peaks near p = q = 0.9. We then manually fine-tuned within [0.88, 0.92] based on PSNR, selecting (p, q) =
(0.8961, 0.8966) as the best-performing pair.
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Table 1: Results for noisy tensor completion on remote sensing datasets are shown below. The best
result in each case is highlighted in bold, while the second-best is underlined.

Dataset SR Metric NN SNN TNN-DFT TNN-DCT k-Supp ℓ1−2 Schatten-1/2 ℓp(Sq) (proposed)

SalinasA

5% PSNR 15.21 20.79 22.55 26.52 22.58 22.21 22.45 28.43
SSIM 0.2594 0.7547 0.5667 0.7384 0.5689 0.5524 0.4474 0.7374

10% PSNR 20.62 25.56 25.72 29.61 25.89 26.14 25.86 31.81
SSIM 0.4775 0.8284 0.7027 0.8403 0.7231 0.7197 0.6058 0.8484

15% PSNR 23.09 27.99 28.06 31.32 28.09 28.13 26.98 33.23
SSIM 0.5643 0.8622 0.7804 0.8798 0.7810 0.7795 0.6505 0.8830

IndianPines

5% PSNR 20.44 22.01 25.68 26.26 25.70 25.73 24.68 27.05
SSIM 0.3895 0.6359 0.6293 0.6727 0.6289 0.6316 0.5361 0.6740

10% PSNR 22.23 24.94 27.45 28.40 27.48 27.52 25.72 28.92
SSIM 0.4836 0.7171 0.7226 0.7744 0.7219 0.7249 0.5991 0.7617

15% PSNR 23.52 26.61 28.54 29.52 28.53 28.63 26.24 29.89
SSIM 0.5438 0.7668 0.7713 0.8177 0.7709 0.7741 0.6258 0.7997

Cloth

5% PSNR 20.10 20.95 25.00 26.09 25.08 25.09 24.96 26.99
SSIM 0.3762 0.5096 0.6773 0.7283 0.6792 0.6793 0.6305 0.7422

10% PSNR 21.14 22.72 28.00 29.24 28.12 28.14 27.98 30.63
SSIM 0.4341 0.5983 0.8132 0.8540 0.8143 0.8163 0.7668 0.8658

15% PSNR 22.05 24.18 30.03 31.36 30.08 30.11 29.50 32.71
SSIM 0.4889 0.6783 0.8722 0.9054 0.8727 0.8733 0.8153 0.9090

Hair

5% PSNR 25.33 30.09 33.16 35.31 33.19 33.27 33.43 36.95
SSIM 0.7147 0.8631 0.8917 0.9248 0.8921 0.8919 0.8240 0.9196

10% PSNR 29.52 33.35 36.22 38.18 36.17 36.30 35.69 39.91
SSIM 0.8008 0.9122 0.9292 0.9535 0.9286 0.9296 0.8640 0.9517

15% PSNR 31.12 35.24 38.00 39.88 37.91 38.07 36.46 41.52
SSIM 0.8364 0.9336 0.9449 0.9650 0.9442 0.9448 0.8735 0.9641

JellyBeans

5% PSNR 16.33 18.21 25.43 26.47 25.38 25.62 25.39 27.91
SSIM 0.2397 0.4942 0.6726 0.7223 0.6714 0.6733 0.5504 0.7115

10% PSNR 18.12 22.11 28.50 30.14 28.47 28.67 28.41 31.95
SSIM 0.3169 0.6629 0.7900 0.8518 0.7902 0.7932 0.6905 0.8486

15% PSNR 19.92 24.67 30.51 32.33 30.52 30.61 29.96 33.97
SSIM 0.4053 0.7592 0.8489 0.9030 0.8504 0.8499 0.7516 0.8980

OSU Thermal

5% PSNR 13.19 15.83 28.06 27.99 28.01 28.19 28.11 30.06
SSIM 0.1848 0.4759 0.8584 0.8707 0.8579 0.8603 0.7928 0.8759

10% PSNR 14.67 19.75 31.30 31.62 31.28 31.60 30.51 33.67
SSIM 0.2509 0.6594 0.9151 0.9326 0.9147 0.9168 0.8358 0.9272

15% PSNR 16.27 22.52 33.02 33.51 33.05 33.11 30.99 35.09
SSIM 0.3273 0.7621 0.9315 0.9509 0.9321 0.9318 0.8373 0.9404

Datasets. We validate our approach on three categories of remote sensing data. First, for hyperspectral327

images, we employ the corrected Indian Pines and Salinas A datasets from the AVIRIS sensor,328

containing 200 and 204 spectral bands respectively. Due to computational considerations, we utilize329

the first 30 bands in our experiments. Second, we evaluate on multispectral images from the Columbia330

MSI Database, including Cloth, Hair, and Jelly Beans, each with dimensions 512× 512× 31 and331

normalized intensity values in [0,1]. Finally, for thermal imaging, we use sequences from the332

OSU Thermal Database, specifically the first 30 frames of Sequence 1, forming a tensor of size333

320× 240× 30.334

Results and Analysis. Table 1 summarizes the PSNR and SSIM results across different missing335

rates. The proposed ℓp(Sq)-quasi-norm achieves the highest PSNR, demonstrating its effectiveness336

in preserving spectral information. Its SSIM results rank among the top two, indicating that our337

approach better retains structural integrity compared to competing methods. These experimental338

results demonstrate the effectiveness of the proposed ℓp-Schatten-q quasi-norm in robust tensor339

recovery, showing how characterizing dual spectral sparsity structures in transformed domains340

benefits tensor reconstruction performance.341

7 Conclusion342

This paper identifies and formalizes a coupled spectral structure within the t-SVD framework, where343

inter-frequency sparsity coexists with intra-frequency low-rankness. To capture this structure, we344

propose a unified modeling approach based on the ℓp-Schatten-q quasi-norm, which enables separate345

control over spectral sparsity at different levels and generalizes existing tensor norms. We provide346

sharp minimax guarantees under both hard and soft sparsity regimes, and develop an efficient proximal347

algorithm tailored to this setting. Experimental results demonstrate the practical potential of the348

proposed approach for structured tensor recovery.349

Limitation. To highlight the fundamental properties of the proposed ℓp-Schatten-q quasi-norm, our350

analysis employs several simplifications, including Gaussian location model and idealized sparsity351

patterns. While our optimization algorithm shows promising empirical performance, its theoretical352

convergence properties remain to be established. These theoretical and algorithmic limitations suggest353

important directions for future research.354
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NeurIPS Paper Checklist437

The checklist is designed to encourage best practices for responsible machine learning research,438

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove439

the checklist: The papers not including the checklist will be desk rejected. The checklist should440

follow the references and follow the (optional) supplemental material. The checklist does NOT count441

towards the page limit.442

Please read the checklist guidelines carefully for information on how to answer these questions. For443

each question in the checklist:444

• You should answer [Yes] , [No] , or [NA] .445

• [NA] means either that the question is Not Applicable for that particular paper or the446

relevant information is Not Available.447

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).448

The checklist answers are an integral part of your paper submission. They are visible to the449

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it450

(after eventual revisions) with the final version of your paper, and its final version will be published451

with the paper.452

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.453

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a454

proper justification is given (e.g., "error bars are not reported because it would be too computationally455

expensive" or "we were unable to find the license for the dataset we used"). In general, answering456

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we457

acknowledge that the true answer is often more nuanced, so please just use your best judgment and458

write a justification to elaborate. All supporting evidence can appear either in the main paper or the459

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification460

please point to the section(s) where related material for the question can be found.461

IMPORTANT, please:462

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",463

• Keep the checklist subsection headings, questions/answers and guidelines below.464

• Do not modify the questions and only use the provided macros for your answers.465

1. Claims466

Question: Do the main claims made in the abstract and introduction accurately reflect the467

paper’s contributions and scope?468

Answer: [Yes]469

Justification: The abstract and introduction clearly state the central focus of the paper—the470

modeling, theoretical analysis, and algorithmic solution for dual spectral sparsity in ten-471

sors—which directly correspond to the three core contributions developed in the main472

body.473

Guidelines:474

• The answer NA means that the abstract and introduction do not include the claims475

made in the paper.476

• The abstract and/or introduction should clearly state the claims made, including the477

contributions made in the paper and important assumptions and limitations. A No or478

NA answer to this question will not be perceived well by the reviewers.479

• The claims made should match theoretical and experimental results, and reflect how480

much the results can be expected to generalize to other settings.481

• It is fine to include aspirational goals as motivation as long as it is clear that these goals482

are not attained by the paper.483

2. Limitations484

Question: Does the paper discuss the limitations of the work performed by the authors?485
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Answer: [Yes]486

Justification: The paper includes a dedicated discussion on limitations in the conclusion487

section, noting simplifications such as the use of the Gaussian location model and the lack488

of theoretical convergence guarantees for the proposed non-convex optimization algorithm.489

Guidelines:490

• The answer NA means that the paper has no limitation while the answer No means that491

the paper has limitations, but those are not discussed in the paper.492

• The authors are encouraged to create a separate "Limitations" section in their paper.493

• The paper should point out any strong assumptions and how robust the results are to494

violations of these assumptions (e.g., independence assumptions, noiseless settings,495

model well-specification, asymptotic approximations only holding locally). The authors496

should reflect on how these assumptions might be violated in practice and what the497

implications would be.498

• The authors should reflect on the scope of the claims made, e.g., if the approach was499

only tested on a few datasets or with a few runs. In general, empirical results often500

depend on implicit assumptions, which should be articulated.501

• The authors should reflect on the factors that influence the performance of the approach.502

For example, a facial recognition algorithm may perform poorly when image resolution503

is low or images are taken in low lighting. Or a speech-to-text system might not be504

used reliably to provide closed captions for online lectures because it fails to handle505

technical jargon.506

• The authors should discuss the computational efficiency of the proposed algorithms507

and how they scale with dataset size.508

• If applicable, the authors should discuss possible limitations of their approach to509

address problems of privacy and fairness.510

• While the authors might fear that complete honesty about limitations might be used by511

reviewers as grounds for rejection, a worse outcome might be that reviewers discover512

limitations that aren’t acknowledged in the paper. The authors should use their best513

judgment and recognize that individual actions in favor of transparency play an impor-514

tant role in developing norms that preserve the integrity of the community. Reviewers515

will be specifically instructed to not penalize honesty concerning limitations.516

3. Theory assumptions and proofs517

Question: For each theoretical result, does the paper provide the full set of assumptions and518

a complete (and correct) proof?519

Answer: [Yes]520

Justification: For each theoretical result, the paper states all necessary assumptions explicitly521

and provides complete proofs in the appendix. The analysis includes both lower and upper522

minimax bounds under different dual-sparsity regimes, supported by standard and extended523

techniques such as entropy numbers and packing arguments.524

Guidelines:525

• The answer NA means that the paper does not include theoretical results.526

• All the theorems, formulas, and proofs in the paper should be numbered and cross-527

referenced.528

• All assumptions should be clearly stated or referenced in the statement of any theorems.529

• The proofs can either appear in the main paper or the supplemental material, but if530

they appear in the supplemental material, the authors are encouraged to provide a short531

proof sketch to provide intuition.532

• Inversely, any informal proof provided in the core of the paper should be complemented533

by formal proofs provided in appendix or supplemental material.534

• Theorems and Lemmas that the proof relies upon should be properly referenced.535

4. Experimental result reproducibility536

Question: Does the paper fully disclose all the information needed to reproduce the main ex-537

perimental results of the paper to the extent that it affects the main claims and/or conclusions538

of the paper (regardless of whether the code and data are provided or not)?539
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Answer: [Yes]540

Justification: The paper provides sufficient information to reproduce the main experimental541

results, including dataset descriptions, sampling settings, noise levels, baseline configura-542

tions, and implementation details of the proposed algorithm. Additional algorithmic and543

parameter details are included in the appendix to support reproducibility.544

Guidelines:545

• The answer NA means that the paper does not include experiments.546

• If the paper includes experiments, a No answer to this question will not be perceived547

well by the reviewers: Making the paper reproducible is important, regardless of548

whether the code and data are provided or not.549

• If the contribution is a dataset and/or model, the authors should describe the steps taken550

to make their results reproducible or verifiable.551

• Depending on the contribution, reproducibility can be accomplished in various ways.552

For example, if the contribution is a novel architecture, describing the architecture fully553

might suffice, or if the contribution is a specific model and empirical evaluation, it may554

be necessary to either make it possible for others to replicate the model with the same555

dataset, or provide access to the model. In general. releasing code and data is often556

one good way to accomplish this, but reproducibility can also be provided via detailed557

instructions for how to replicate the results, access to a hosted model (e.g., in the case558

of a large language model), releasing of a model checkpoint, or other means that are559

appropriate to the research performed.560

• While NeurIPS does not require releasing code, the conference does require all submis-561

sions to provide some reasonable avenue for reproducibility, which may depend on the562

nature of the contribution. For example563

(a) If the contribution is primarily a new algorithm, the paper should make it clear how564

to reproduce that algorithm.565

(b) If the contribution is primarily a new model architecture, the paper should describe566

the architecture clearly and fully.567

(c) If the contribution is a new model (e.g., a large language model), then there should568

either be a way to access this model for reproducing the results or a way to reproduce569

the model (e.g., with an open-source dataset or instructions for how to construct570

the dataset).571

(d) We recognize that reproducibility may be tricky in some cases, in which case572

authors are welcome to describe the particular way they provide for reproducibility.573

In the case of closed-source models, it may be that access to the model is limited in574

some way (e.g., to registered users), but it should be possible for other researchers575

to have some path to reproducing or verifying the results.576

5. Open access to data and code577

Question: Does the paper provide open access to the data and code, with sufficient instruc-578

tions to faithfully reproduce the main experimental results, as described in supplemental579

material?580

Answer: [Yes]581

Justification: The authors have uploaded the code as part of the supplementary material,582

along with sufficient implementation details and instructions to reproduce the main experi-583

mental results. All datasets used are publicly available and clearly specified.584

Guidelines:585

• The answer NA means that paper does not include experiments requiring code.586

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/587

public/guides/CodeSubmissionPolicy) for more details.588

• While we encourage the release of code and data, we understand that this might not be589

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not590

including code, unless this is central to the contribution (e.g., for a new open-source591

benchmark).592
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• The instructions should contain the exact command and environment needed to run to593

reproduce the results. See the NeurIPS code and data submission guidelines (https:594

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.595

• The authors should provide instructions on data access and preparation, including how596

to access the raw data, preprocessed data, intermediate data, and generated data, etc.597

• The authors should provide scripts to reproduce all experimental results for the new598

proposed method and baselines. If only a subset of experiments are reproducible, they599

should state which ones are omitted from the script and why.600

• At submission time, to preserve anonymity, the authors should release anonymized601

versions (if applicable).602

• Providing as much information as possible in supplemental material (appended to the603

paper) is recommended, but including URLs to data and code is permitted.604

6. Experimental setting/details605

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-606

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the607

results?608

Answer: [Yes]609

Justification: The paper specifies all necessary details, including sampling ratios, noise610

levels, hyperparameter settings, evaluation metrics (PSNR and SSIM), and implementation611

choices. Additional settings such as initialization and convergence criteria are provided in612

the appendix.613

Guidelines:614

• The answer NA means that the paper does not include experiments.615

• The experimental setting should be presented in the core of the paper to a level of detail616

that is necessary to appreciate the results and make sense of them.617

• The full details can be provided either with the code, in appendix, or as supplemental618

material.619

7. Experiment statistical significance620

Question: Does the paper report error bars suitably and correctly defined or other appropriate621

information about the statistical significance of the experiments?622

Answer: [Yes]623

Justification: The paper reports averaged performance over multiple random trials for each624

experimental setting. While explicit error bars are not shown in tables, standard practice625

is followed by reporting stable metrics (PSNR and SSIM) under fixed noise and sampling626

ratios, ensuring reliable comparative evaluation.627

Guidelines:628

• The answer NA means that the paper does not include experiments.629

• The authors should answer "Yes" if the results are accompanied by error bars, confi-630

dence intervals, or statistical significance tests, at least for the experiments that support631

the main claims of the paper.632

• The factors of variability that the error bars are capturing should be clearly stated (for633

example, train/test split, initialization, random drawing of some parameter, or overall634

run with given experimental conditions).635

• The method for calculating the error bars should be explained (closed form formula,636

call to a library function, bootstrap, etc.)637

• The assumptions made should be given (e.g., Normally distributed errors).638

• It should be clear whether the error bar is the standard deviation or the standard error639

of the mean.640

• It is OK to report 1-sigma error bars, but one should state it. The authors should641

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis642

of Normality of errors is not verified.643

• For asymmetric distributions, the authors should be careful not to show in tables or644

figures symmetric error bars that would yield results that are out of range (e.g. negative645

error rates).646
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• If error bars are reported in tables or plots, The authors should explain in the text how647

they were calculated and reference the corresponding figures or tables in the text.648

8. Experiments compute resources649

Question: For each experiment, does the paper provide sufficient information on the com-650

puter resources (type of compute workers, memory, time of execution) needed to reproduce651

the experiments?652

Answer: [Yes]653

Justification: The appendix provides information on the computational environment used654

for the experiments, including hardware specifications such as CPU type and memory.655

Guidelines:656

• The answer NA means that the paper does not include experiments.657

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,658

or cloud provider, including relevant memory and storage.659

• The paper should provide the amount of compute required for each of the individual660

experimental runs as well as estimate the total compute.661

• The paper should disclose whether the full research project required more compute662

than the experiments reported in the paper (e.g., preliminary or failed experiments that663

didn’t make it into the paper).664

9. Code of ethics665

Question: Does the research conducted in the paper conform, in every respect, with the666

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?667

Answer: [Yes]668

Justification: The research does not involve human subjects, personally identifiable informa-669

tion, sensitive data, or potentially harmful applications. It focuses on theoretical modeling670

and algorithmic development for tensor estimation, aligning fully with the NeurIPS Code of671

Ethics.672

Guidelines:673

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.674

• If the authors answer No, they should explain the special circumstances that require a675

deviation from the Code of Ethics.676

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-677

eration due to laws or regulations in their jurisdiction).678

10. Broader impacts679

Question: Does the paper discuss both potential positive societal impacts and negative680

societal impacts of the work performed?681

Answer: [NA]682

Justification: The paper focuses solely on the theoretical modeling and optimization of the683

tensor recovery algorithm, without involving any societal issues, and therefore does not684

require discussion of societal impacts.685

Guidelines:686

• The answer NA means that there is no societal impact of the work performed.687

• If the authors answer NA or No, they should explain why their work has no societal688

impact or why the paper does not address societal impact.689

• Examples of negative societal impacts include potential malicious or unintended uses690

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations691

(e.g., deployment of technologies that could make decisions that unfairly impact specific692

groups), privacy considerations, and security considerations.693

• The conference expects that many papers will be foundational research and not tied694

to particular applications, let alone deployments. However, if there is a direct path to695

any negative applications, the authors should point it out. For example, it is legitimate696

to point out that an improvement in the quality of generative models could be used to697
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generate deepfakes for disinformation. On the other hand, it is not needed to point out698

that a generic algorithm for optimizing neural networks could enable people to train699

models that generate Deepfakes faster.700

• The authors should consider possible harms that could arise when the technology is701

being used as intended and functioning correctly, harms that could arise when the702

technology is being used as intended but gives incorrect results, and harms following703

from (intentional or unintentional) misuse of the technology.704

• If there are negative societal impacts, the authors could also discuss possible mitigation705

strategies (e.g., gated release of models, providing defenses in addition to attacks,706

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from707

feedback over time, improving the efficiency and accessibility of ML).708

11. Safeguards709

Question: Does the paper describe safeguards that have been put in place for responsible710

release of data or models that have a high risk for misuse (e.g., pretrained language models,711

image generators, or scraped datasets)?712

Answer: [NA]713

Justification: This work does not involve the release of high-risk models or datasets. It714

focuses on a general-purpose tensor estimation framework using publicly available data, and715

does not include pretrained models or components with significant misuse potential.716

Guidelines:717

• The answer NA means that the paper poses no such risks.718

• Released models that have a high risk for misuse or dual-use should be released with719

necessary safeguards to allow for controlled use of the model, for example by requiring720

that users adhere to usage guidelines or restrictions to access the model or implementing721

safety filters.722

• Datasets that have been scraped from the Internet could pose safety risks. The authors723

should describe how they avoided releasing unsafe images.724

• We recognize that providing effective safeguards is challenging, and many papers do725

not require this, but we encourage authors to take this into account and make a best726

faith effort.727

12. Licenses for existing assets728

Question: Are the creators or original owners of assets (e.g., code, data, models), used in729

the paper, properly credited and are the license and terms of use explicitly mentioned and730

properly respected?731

Answer: [Yes]732

Justification: All external datasets and baseline implementations used in the paper are733

publicly available and properly cited. Their licenses and terms of use have been respected,734

and relevant references are provided in the main text and appendix.735

Guidelines:736

• The answer NA means that the paper does not use existing assets.737

• The authors should cite the original paper that produced the code package or dataset.738

• The authors should state which version of the asset is used and, if possible, include a739

URL.740

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.741

• For scraped data from a particular source (e.g., website), the copyright and terms of742

service of that source should be provided.743

• If assets are released, the license, copyright information, and terms of use in the744

package should be provided. For popular datasets, paperswithcode.com/datasets745

has curated licenses for some datasets. Their licensing guide can help determine the746

license of a dataset.747

• For existing datasets that are re-packaged, both the original license and the license of748

the derived asset (if it has changed) should be provided.749
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• If this information is not available online, the authors are encouraged to reach out to750

the asset’s creators.751

13. New assets752

Question: Are new assets introduced in the paper well documented and is the documentation753

provided alongside the assets?754

Answer: [Yes]755

Justification: The paper introduces a new optimization algorithm and associated code,756

which are included in the supplementary material. The code is well documented with757

clear instructions, comments, and reproducibility guidelines to support independent use and758

verification.759

Guidelines:760

• The answer NA means that the paper does not release new assets.761

• Researchers should communicate the details of the dataset/code/model as part of their762

submissions via structured templates. This includes details about training, license,763

limitations, etc.764

• The paper should discuss whether and how consent was obtained from people whose765

asset is used.766

• At submission time, remember to anonymize your assets (if applicable). You can either767

create an anonymized URL or include an anonymized zip file.768

14. Crowdsourcing and research with human subjects769

Question: For crowdsourcing experiments and research with human subjects, does the paper770

include the full text of instructions given to participants and screenshots, if applicable, as771

well as details about compensation (if any)?772

Answer: [NA]773

Justification: This work does not involve any human subjects or crowdsourcing experiments.774

Guidelines:775

• The answer NA means that the paper does not involve crowdsourcing nor research with776

human subjects.777

• Including this information in the supplemental material is fine, but if the main contribu-778

tion of the paper involves human subjects, then as much detail as possible should be779

included in the main paper.780

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,781

or other labor should be paid at least the minimum wage in the country of the data782

collector.783

15. Institutional review board (IRB) approvals or equivalent for research with human784

subjects785

Question: Does the paper describe potential risks incurred by study participants, whether786

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)787

approvals (or an equivalent approval/review based on the requirements of your country or788

institution) were obtained?789

Answer: [NA]790

Justification: This study does not involve human participants and therefore does not require791

IRB approval or risk disclosure.792

Guidelines:793

• The answer NA means that the paper does not involve crowdsourcing nor research with794

human subjects.795

• Depending on the country in which research is conducted, IRB approval (or equivalent)796

may be required for any human subjects research. If you obtained IRB approval, you797

should clearly state this in the paper.798

• We recognize that the procedures for this may vary significantly between institutions799

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the800

guidelines for their institution.801
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• For initial submissions, do not include any information that would break anonymity (if802

applicable), such as the institution conducting the review.803

16. Declaration of LLM usage804

Question: Does the paper describe the usage of LLMs if it is an important, original, or805

non-standard component of the core methods in this research? Note that if the LLM is used806

only for writing, editing, or formatting purposes and does not impact the core methodology,807

scientific rigorousness, or originality of the research, declaration is not required.808

Answer: [NA]809

Justification: This work does not use large language models (LLMs) as part of its core810

methodology or experimental pipeline.811

Guidelines:812

• The answer NA means that the core method development in this research does not813

involve LLMs as any important, original, or non-standard components.814

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)815

for what should or should not be described.816
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