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Abstract

The Tensor Nuclear Norm (TNN), derived from the tensor Singular Value Decom-
position, is a central low-rank modeling tool that enforces element-wise sparsity
on frequency-domain singular values and has been widely used in multi-way data
recovery for machine learning and computer vision. However, as a direct extension
of the matrix nuclear norm, it inherits the assumption of single-level spectral spar-
sity, which strictly limits its ability to capture the multi-level spectral structures
inherent in real-world data—particularly the coexistence of low-rankness within
and sparsity across frequency components. To address this, we propose the tensor
£p-Schatten-¢ quasi-norm (p, ¢ € (0, 1]), a new metric that enables dual spectral
sparsity control by jointly regularizing both types of structure. While this formula-
tion generalizes TNN and unifies existing methods such as the tensor Schatten-p
norm and tensor average rank, it differs fundamentally in modeling principle by
coupling global frequency sparsity with local spectral low-rankness. This coupling
introduces significant theoretical and algorithmic challenges. To tackle these chal-
lenges, we provide a theoretical characterization by establishing the first minimax
error bounds under dual spectral sparsity, and an algorithmic solution by designing
an efficient reweighted optimization scheme tailored to the resulting nonconvex
structure. Numerical experiments demonstrate the effectiveness of our method in
modeling complex multi-way data.

1 Introduction

Modeling latent structural patterns in high-dimensional signals is a fundamental challenge across
domains such as machine learning and signal processing [17, 38, 19]. Real-world datasets are often
inherently multi-modal and high-dimensional (tensor-form), containing intricate dependencies that
cannot be adequately captured by naive modeling or vector/matrix-based representations [4]. A
common strategy to uncover these relationships is to impose a low-rank prior, which isolates essential
information and reduces the degrees of freedom, focusing on the principal components of the signal
[21, 1]. Traditional tensor decomposition methods, such as CANDECOMP/PARAFAC (CP) [3],
Tucker [27], and Tensor Train [23], have been widely used to model tensor signals [4, 16, 8, 34].
While effective in certain scenarios, these methods rely on the assumption of intrinsic low-rankness
in the original domain, which may fail to hold in complex, real-world applications. This limitation
has led to the development of transformed-domain modeling, where linear transformations like
the Discrete Fourier Transform (DFT) are applied to reveal more pronounced low-rank patterns.
Within this paradigm, the tensor Singular Value Decomposition (t-SVD) has emerged as a powerful
framework with notable success in applications such as image and video analysis [17, 38, 32, 30].

Building on the t-SVD framework, the Tensor Nuclear Norm (TNN) has become an extensively
adopted regularizer for low-rank tensor modeling [20, 38, 25, 6, 36, 18, 39]. By extending the matrix
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Figure 1: Empirical illustration of dual spectral sparsity patterns in the transformed (DCT) domain
via t-SVD. (A) The t-SVD framework decomposes a tensor into frequency-domain singular structures.
(B)-Left: Singular value heatmap of the Salinas A dataset under t-SVD—each column represents
one frequency slice. Vertical decay reveals intra-frequency low-rankness, while horizontal variation
indicates sparsity across frequencies. (B)-Right, (C), (D): Cumulative energy curves for Salinas A,
Brain MRI, and Incisix datasets show that over 80% of total spectral energy is concentrated in the top
15%-30% frequency components, confirming frequency-wise sparsity. These observations support
the presence of a dual-level spectral structure and motivate regularization schemes that go beyond
uniform norms like TNN [38, 19] to jointly model frequency sparsity and low-rankness.

nuclear norm to the tensor setting, TNN promotes low-rankness by enforcing element-wise sparsity
on singular values in the transformed domain [13, 38]. This formulation effectively captures low-rank
dependencies within individual frequency components.

However, a long-overlooked limitation of TNN lies in its assumption of uniform spectral regulariza-
tion, which treats all frequency components equally regardless of their relative importance. From a
signal processing perspective, this single-level sparsity design fails to account for the dual-level struc-
ture often observed in transformed tensor data. In particular, real-world tensors may exhibit strong
low-rankness within each frequency component along with sparsity across the frequency domain.
As illustrated in Fig.1 and further discussed in §3, empirical analyses of several datasets, including
hyperspectral images and medical imaging volumes, indicate that a small subset of frequency slices
contributes the majority of spectral energy. In addition, these dominant components often exhibit
pronounced low-rank structures within each frequency slice. These observations suggest the need
for a more flexible regularization framework that can separately characterize both intra-frequency
low-rankness and inter-frequency sparsity, instead of relying on a uniform scheme like TNN.

These limitations necessitate a new method capable of modeling both levels of sparsity. This raises
three interconnected questions:

RQ1 (Modeling): how to effectively model both intra-frequency and inter-frequency dependencies in
tensor data?

RQ2 (Theory): can we establish rigorous theoretical guarantees to validate such a framework, given
the challenges of analyzing coupled sparsity?

RQ3 (Algorithm): can efficient algorithms be designed to tackle the optimization challenges
introduced by the coupled sparsity structure?

To address these questions, we propose the tensor {,-Schatten-q quasi-norm, a novel framework
introducing dual spectral sparsity control to simultaneously model both within-frequency and across-
frequency dependencies. Specifically, parameter p governs sparsity among different frequency
components (RQ1), while parameter ¢ controls low-rankness within each frequency component. This
framework generalizes and extends TNN, unifying existing methods such as the tensor Schatten-p
quasi-norm [12] and tensor average rank [31] into a single, versatile framework.
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While our framework offers promising modeling capabilities, the coupled nature of this dual spectral
sparsity introduces significant theoretical and computational challenges. Our main contributions in
developing and validating this framework are as follows:

* Structural Modeling (RQ1): To the best of our knowledge, this work is the first to rigorously
formalize and explicitly model a coupled spectral structure within the t-SVD framework, where
inter-frequency sparsity coexists with intra-frequency low-rankness (Section 3). The proposed
£,-Schatten-g quasi-norm jointly models both inter-frequency sparsity and intra-frequency low-
rankness, while allowing separate control over each via parameters p and g. This formulation
captures hierarchical spectral structure beyond uniform regularizers such as TNN.

* Theoretical Guarantees (RQ2): We establish sharp minimax lower and upper bounds for tensor
estimation under dual spectral sparsity, covering both hard and soft regimes (Section 4). The
analysis introduces new techniques to characterize the complexity of coupled parameter spaces,
extending classical tools such as covering numbers and metric entropy to the tensor spectral setting.

» Optimization and Empirical Validation (RQ3): We develop a scalable proximal algorithm
tailored to the proposed quasi-norm (Section 5). It employs a reweighted ¢, /o approximation
and frequency-wise singular value updates in the transform domain, effectively handling the
nonconvexity and structural coupling induced by dual spectral sparsity. Experiments on real-world
tensor recovery tasks demonstrate the potential applicability of our method (Section 6).

The remainder of the paper is organized as follows. Section 2 reviews basic preliminaries. Section 3
introduces the proposed quasi-norm. Sections 4 and 5 present the theoretical analysis and optimization
algorithm, respectively. Experimental results are reported in Section 6, followed by the conclusion in
Section 7. Details on related work, proofs, algorithms, and experiments are provided in the appendix.

2 Notations and Preliminaries

Notations. For any positive integer d, let [d] := {1,...,d}. We denote vectors by lowercase
bold letters (e.g., a), matrices by uppercase bold letters (e.g., A), and 3-way tensors by underlined
uppercase letters (e.g., A). Constants, represented as ¢ and its variants (e.g., ¢, C), may vary in
value across contexts. For a 3-way tensor of size d; X da X m, we assume d; > do without loss of
generality.

For a matrix A € R% 92 we define o(A) as the vector of its singular values, arranged in descending
order. The spectral norm ||A|[spec and nuclear norm ||A||. of A are defined as the largest and the sum of
its singular values, respectively. For any tensor A, we define its £,,-norm as ||A||, := || vec(A)]|,, and
its Frobenius norm as ||A||r := || vec(A)||2, where vec(-) denotes the vectorization operation [11].
The inner product of two tensors A and B is given by (A, B) := vec(A) vec(B). For a tensor
A € REx%2Xm we denote its i-th frontal slice as A, , ; or simply A; when clear from context.

The t-SVD Framework. The t-SVD framework is based on the t-product operation, a generalization
of matrix multiplication to tensors, which operates under an invertible linear transform M [9]. By
enhancing low-rank properties through specific linear transformations, this approach effectively
exploits intrinsic correlations within the data [36, 29]. This paper adopts the convention of using
orthogonal matrices for M due to their stability and computational advantages [18, 28]. Specifically,
for an orthogonal matrix M € R™*™_ we define the M -linear transform and its inverse on a tensor
T c Rdl Xda Xm as:

M(T):=Tx3M, and M YT):=TxsM*, )
where X3 denotes the mode-3 tensor-matrix product [9]. Using this transform, we introduce the basic
notions in the t-SVD framework.

Definition 2.1 (t-product [9]). The t-product of two tensors A € R%1*d2xm and B ¢ R2xdsxm
under the transform M in (1) is denoted by A #); B = C € R41*%xm where M(C) = M(A) ®
M (B) in the transformed domain, and ® denotes the frontal-slice-wise product of the tensors.
Definition 2.2 (M -block-diagonal matrix [28]). For a tensor T € R4 *2x™ jts M -block-diagonal
matrix T € R4™xd2m g defined as

T := bdiag(M(T)) = diag (M (T)...1,- .., M(T):.m) ,

where M (T) is the mode-3 transform of T, and the operator bdiag(-) stacks the frontal slices as
diagonal blocks.
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We now formally introduce the t-SVD, as illustrated in Fig. 1-(A).

Definition 2.3 (t-SVD and tensor tubal rank [9]). The tensor Singular Value Decomposition (t-SVD)
of atensor T € R *d2Xm ypder the invertible linear transform M in (1) is:

T=UxyS*yV', 2)

where U € R4 X4xm and V € R%X92X™ are t-orthogonal tensors, and S € R%1X92X™ jg an
f-diagonal tensor. The tubal rank of T is defined as the number of non-zero tubes in S in the t-SVD,
i.e., T[b(I) = #{Z | Si,i,: 7& 0,’6 < min{dl,dg}}.

To further model the low-rank structure of tensors in the transformed domain, the tensor nuclear norm
(TNN) is proposed as a key regularizer in low-rank tensor learning:

Definition 2.4 (Tensor nuclear norm [20]). The tensor nuclear norm (TNN) of a tensor T €
R % d2Xm ynder the transform M are defined as ||T||. := ||T||« = [|o(T)|/;.

In this definition, TNN captures the element-wise sparsity of the transformed spectrum o(T) €
Rmmin{di,d2} allowing it to promote low-rank characteristics in the spectral domain. This property
has made TNN a foundational tool in tensor analysis, particularly for low-rank tensor recovery in
various applications such as image inpainting [19].

3 Dual Spectral Sparsity in the t-SVD Framework

Effectively capturing both intra-frequency low-rankness and inter-frequency sparsity (RQ1) is es-
sential for modeling structured tensor data. While methods like TNN emphasize within-frequency
low-rankness, they overlook sparsity across frequencies, limiting their ability to represent hierar-
chical dependencies. To overcome this, we introduce the £,-Schatten-g quasi-norm, a dual-sparsity
regularization framework designed to capture both levels of structure in a unified way.

Limitations of TNN from a Group Sparsity Perspective. According to Definition 2.4, the tensor
nuclear norm (TNN) promotes low-rankness by enforcing element-wise sparsity on singular values in
the transformed domain, effectively capturing intra-frequency low-rank structures. However, it applies
uniform regularization across all frequency components, regardless of their spectral importance. This
design fails to exploit the potential sparsity across frequency slices that is often present in real-world
tensors. Fig. 1 presents empirical evidence from three representative datasets—Salinas A', Brain MRI
[33], and Incisix [5]—demonstrating that only a small portion of frequency components accounts
for the majority of spectral energy. Specifically, more than 80% of the energy is concentrated in the
top 15%—-30% of frequency bands. Meanwhile, the singular value heatmap (Fig. 1(B)-Left) reveals
pronounced horizontal sparsity, indicating that many frequency slices contribute minimally. Within
each active frequency slice, singular values decay rapidly, confirming low-rankness.

These observations suggest a dual-level structure comprising inter-frequency sparsity and intra-
frequency low-rankness. From a group sparsity perspective, the spectrum o (T) can be partitioned
into groups, where each group corresponds to the singular values o (M (T). . ;) of a specific frequency
slice. TNN enforces uniform regularization across these groups, overlooking their heterogeneous
importance. As a result, it may underperform when modeling data with hierarchical spectral structures.
These limitations motivate a more expressive framework that separately accounts for both levels of
structure.

Hard Dual Spectral Sparsity. To address the limitations of TNN, we first define a hard dual spectral
sparsity structure, where the tensor is assumed to satisfy exact sparsity constraints across and within
frequency components. This serves as an idealized formulation that captures the extreme case of dual
spectral sparsity and provides a clean theoretical foundation for later analysis.

Definition 3.1 (Hard Dual Spectral Sparsity). A tensor T € R%1*92X™ jg said to exhibit (s, 7)-dual
sparsity under a linear transform M if it satisfies two constraints:

L. Inter-frequency sparsity: The number of active frequency components is limited to at most s.
Specifically, only s out of the m frequency components can have non-zero singular value vectors:
St I(o(M(T)..;) #0) < s, where (M (T). . ;) denotes the singular value vector of the i-th
frontal slice in the transformed domain.

1https ://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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I1. Intra-frequency low-rankness: Within each active frequency component, the number of non-zero
singular values is constrained to at most r. This condition ensures a low-rank structure for

each frequency slice (Vi € [m)): Z;.n:iri{dl"b} I(o;(M(T)..;) #0) < r, where o;(M(T)..;)
denotes the j-th singular value of the i-th frontal slice of M (T).

This definition captures a strict form of dual-level structure by simultaneously enforcing sparsity
across frequencies and low-rankness within each active frequency slice. While such hard constraints
may be too restrictive in practical scenarios, especially where spectral contributions decay grad-
ually, they provide a clear conceptual framework to motivate and analyze the more flexible soft
regularization.

Soft Dual Spectral Sparsity. While the hard dual spectral sparsity model provides a clean conceptual
foundation, its strict assumption of exact sparsity and fixed-rank constraints is often impractical in
real-world scenarios. In many cases, singular values decay gradually rather than drop abruptly to
zero, and the true number of active frequency components may be ambiguous or noise-sensitive. To
overcome these limitations, we introduce a soft relaxation that allows for approximate sparsity and
low-rankness in a continuous manner. Specifically, we propose the £,,-Schatten-g quasi-norm, which
relaxes the hard dual-sparsity constraints into a soft dual spectral sparsity framework.

Definition 3.2 (Tensor £,,-Schatten-q quasi-norm). For a tensor T € R4 xd2Xm e define its tensor
¢,-Schatten-q quasi-norm (abbreviated as £,(.S,)-norm) as:

Qfs
S

m dy Ado
ITlle,cs,) = | D | D oy (M(T)...)" : 3)
i=1 \ j=1

where the exponents (p, q) € (0, 1]°.

In this quasi-norm, p governs the inter-frequency sparsity by promoting a group-wise regularization
across frequency components, effectively highlighting significant groups while suppressing others.
Simultaneously, ¢ controls the intra-frequency low-rankness by encouraging sparsity in the singular
values within each frequency slice, thereby modeling the intrinsic low-rank structure of the data.
This soft dual spectral sparsity framework provides a unified yet versatile approach to address the
hierarchical complexity of tensor data.

The /,,-Schatten-g quasi-norm encompasses several existing regularization methods: it recovers TNN
when (p, ¢) = (1,1)[20], approximates the average rank as (p,q) — (1,0)[31], and reduces to the
tensor Schatten-q¢ norm when p = ¢ [12], thereby offering greater modeling flexibility. Despite
generalizing these regularizers, it fundamentally differs by jointly enforcing global frequency sparsity
and local spectral low-rankness.

While TNN applies uniform regularization across all singular values, the £,-Schatten-q quasi-norm
introduces dual spectral sparsity control, modeling both inter-frequency sparsity through the £,-quasi-
norm and intra-frequency low-rankness via the Schatten-g quasi-norm. This dual-level flexibility
makes the proposed framework particularly well-suited for hierarchical and multi-scale data, where
dependencies and sparsity exhibit layered structures. By bridging the gap between element-wise
sparsity (as in TNN) and structured group sparsity, the ¢,-Schatten-g quasi-norm offers a more
expressive and adaptable approach, enabling precise control over structural patterns in modern
tensor-based analysis and recovery tasks.

4 Theory of Dual Spectral Sparse Tensor Estimation

This section develops the theoretical foundations of tensor estimation with dual spectral sparsity
structures (RQ2).

Challenges. Dual spectral sparsity, combining inter-frequency sparsity with intra-frequency low-
rankness, leads to a globally coupled structure that fundamentally differs from classical decoupled
models like TNN. The £,,-Schatten-g quasi-norm imposes interdependent constraints across frequency
slices, resulting in a highly non-convex parameter space with nested sparsity patterns. This coupling
prohibits slice-wise decomposition and complicates the use of standard tools. Accurately characteriz-
ing the estimation complexity demands novel extensions of covering numbers and metric entropy
that jointly capture discrete sparsity and continuous low-rank structure.
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To understand the statistical limits of learning under dual spectral sparsity, we analyze a simplified
but representative model: the Gaussian location model, where the observed tensor is corrupted by
additive noise. This setting preserves the core structural properties—inter-frequency sparsity and
intra-frequency low-rankness—while avoiding complications unrelated to sparsity itself. Within this
framework, we define structured parameter spaces that capture hard and soft variants of dual spectral
sparsity, and establish sharp minimax lower and upper bounds under each. These results reveal how
the joint effects of frequency selection and within-slice spectral decay determine the fundamental
estimation limits, and provide theoretical justification for our proposed regularization.

4.1 Gaussian Location Model

Consider the Gaussian location model (GLM) [14], where n independent noisy realizations of the
target tensor L* € R% > 42X are observed as:

Y, = L* +E;, i€ [TL], 4
where Y, € Rd1xd2xm js the observed tensor, L* represents the ground truth tensor of interest, and
E, € R4*4Xm denotes the noise tensor with entries independently drawn from N'(0, 0%). The
parameter o characterizes the noise level. To simplify the analysis, we consider the sample mean of
observations Y =n~' 3" | Y, =L"+E,where E=n"'3Y"" | E, is the aggregated noise tensor
with entries independently distributed as A/'(0, 02 /n). The goal is to estimate the ground truth tensor
L based on the noisy observations {Y;}?_,. In particular, we aim to recover L under dual spectral
sparsity assumptions.

Remark 4.1. We adopt the Gaussian location model to isolate the core effects of dual spectral
sparsity and the £,-Schatten-q regularization, avoiding additional complications from design tensors
or sampling operators in tensor regression [35, 29, 24]. This simplified setting enables cleaner

analysis and yields insights that extend naturally to regression problems under standard conditions
such as RIP [35] or RSC [29, 24, 22].

Dual Spectral Sparsity Assumptions. We consider three distinct sparsity models for L*:

Al. Hard dual spectral sparsity: Let L™ belong to the parameter space
To,0(s,r) = {L : at most s active frequency slices, each of rank at most r} . ®)
This model enforces exact inter-frequency sparsity and intra-frequency low-rankness.

A2. Hard frequency sparsity and soft rank constraint (hard—soft sparsity): Let L™ lie in
Toq(s, R) = {L: |{i: M(L)..i #0} <5, [M(L)..a%, <R Viem]}.  ©

This space imposes hard inter-frequency sparsity and soft Schatten-q constraints within each active
slice.

A3. Soft dual spectral sparsity: Let L* belong to the parameter space
Toa(R) = {L+ LI s,) < B} ™

Here, p promotes inter-frequency sparsity and g controls intra-frequency low-rankness via spectral
decay; R specifies the quasi-norm ball radius.

These parameter spaces offer different views on structured tensor estimation: the hard sparsity model
enforces strict thresholds, the hard—soft model balances structure with adaptability, and the fully soft
model captures gradual spectral decay. Our goal is to estimate L* and derive minimax bounds under
these assumptions.

4.2 Minimax Risk over Dual-level Sparse Structures

A key theoretical question in high-dimensional tensor estimation is: What are the fundamental limits
for recovering a tensor with dual spectral sparsity from noisy observations? To address this, we
establish minimax lower and upper bounds that characterize the best possible estimation accuracy
achievable by any estimator under dual spectral sparsity assumptions.

M(T) = inf sup B [JIL— L7 . ®)
L L*eT

where T is the parameter space. Following [18, 19], we consider d; = ds = d for simplicity.
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Theorem 4.2 (Minimax Bounds). The minimax risk under dual spectral sparsity satisfies the following
bounds under certain conditions®:

I. Hard constraints on both frequency sparsity and per-slice low-rankness:
2
M(To,0(s,7)) < T (s log oy srd) .
n s

II. Hard frequency sparsity with soft intra-slice Schatten-q constraints:

2 2 \1-3
M(Toq(s, R)) < U—slog MR <Jd> .
n s n
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p=2 p=2
R(22) " +R(Zm) " p>q
M(T,q(R)) << R> (UzTn)TJrR(lg;?n)T, p<q, m>d?,
q=2
R%("%")z : p<q,m<d

Theorem 4.2 establishes the fundamental limits of estimation accuracy under different dual spectral
sparsity structures. The minimax risk quantifies the worst-case squared Frobenius norm error that any
estimator must incur when recovering a structured tensor from noisy observations. The results reveal
the intricate balance between inter-frequency sparsity and intra-frequency low-rankness, showing
how these factors jointly govern estimation complexity:

L In the hard sparsity case, the estimation error consists of two terms: (i) slog(em/s), which
reflects the difficulty of selecting s active frequency components, and (ii) srd, which characterizes
the challenge of estimating rank-r matrices within each component.

IL In the hard-soft sparsity setting, the second term adapts to sR(n~'d)'~%/2, incorporating a
smoother spectral decay controlled by q. Smaller ¢ values impose stronger low-rank constraints,
effectively reducing estimation complexity by promoting more aggressive rank sparsity.

IIL. In the fully soft sparsity scenario, where both inter-frequency sparsity and intra-frequency rank
constraints are relaxed, the minimax risk follows distinct scaling behaviors across regimes. When
p > g, the error rate is dominated by ¢, sparsity, with .S; low-rankness playing a minor role. For
p < qgand m > d?, both the ¢p-ball and S,-ball influence the estimation error, demonstrating an
interplay between structured sparsity and low-rank regularization. When m < d?, the error rate is
dictated by S,, making it independent of m, emphasizing the fundamental role of rank constraints in
this regime.

5 Optimization for Dual Spectral Sparse Tensor Estimation

Efficiently solving tensor estimation problems with dual spectral sparsity (RQ3) is key to leveraging
the proposed ¢,,-Schatten-q quasi-norm in practice. However, this task presents substantial challenges
due to the non-convexity and coupled structure of this regularization.

Challenges. Even in the vector setting, optimizing dual-level sparse structures is notoriously difficult
due to the combination of non-convexity and structural coupling [7, 15]. In our tensor case, these
challenges are further compounded by the need to simultaneously enforce inter-frequency sparsity
and intra-frequency low-rankness. Most existing tensor optimization methods either treat frequency
components independently or impose low-rank constraints without spectral sparsity considerations,
making them ill-suited for the proposed dual-spectral regularization. The ¢,-Schatten-¢q quasi-norm
is non-convex whenever p,q € (0,1], ruling out standard convex optimization techniques and
necessitating a structure-aware, non-convex optimization strategy.

To address these difficulties, our approach is naturally motivated by the structural properties of
the problem. We adopt a proximal update scheme that takes advantage of the separability of the

2The conditions in each setting are provided in the appendix.
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transform-domain representation M (L), allowing frequency-wise updates, along with an iterative
reweighting strategy that facilitates optimization in the presence of non-convex regularization.

Proximal Operator Formulation. To handle the non-convex £,,-Schatten-q regularization, we adopt
a proximal update scheme that enforces dual spectral sparsity while remaining computationally
efficient. Specifically, at iteration ¢, the update is given by solving:

1 m

t+1 ; 2 p/q

L e angmin SIL—ZIF+ A" ML) ©)
where Z denotes the intermediate variable aggregating previous updates and gradient information.

Since the transform M (-) allows slice-wise decomposition [10], Problem (9) reduces to m subprob-
lems over frequency components k € [m]:

1
min o [[A — M(Z)..ill7 + AR (10)
k

is difficult due to the non-convexity and lack of smoothness of the Schatten-g quasi-norm, which
admits no closed-form or standard proximal solution in general.

where Ay, := M(L). . , denotes the k-th frontal slice of the transformed tensor M (L). Problem (10)

To efficiently approximate Problem (10), we adopt a reweighted £; /,-surrogate for || Ay, Hg{l ? based on
singular values:

d
>, wikoi(An)', (11)
. . o d q p/q—1 1/2 2q—1 . .
with weights defined as w; , = ( > i=1S), k+e) . (§1 & —|—e) , Where € is a small regularization

constant and g , := o;(M(L"). . ;) are the singular values from the previous iterate. The update for
each singular value then becomes a soft-thresholding step:

oI (M(L).or) = SV (0:(M(Z).,.1). (12)

- )\wiyk
where S%1/2 is the proximal operator for the £, s2-norm (see Appendix for closed-form expression).

After singular value shrinkage, we reconstruct each slice M (L'™). ., = Uy, - diag(e V) - V],

)

where Uy, and V, are from the SVD of M (Z). . .. Finally, applying the inverse transform yields the
updated tensor L' in the original domain.

6 Experiments

Having established the theoretical foundations and algorithmic framework, we now evaluate the
empirical performance of the proposed ¢,,-Schatten-¢q quasi-norm in tensor estimation tasks. We
conduct extensive experiments on three types of remote sensing data to demonstrate its effectiveness
in noisy tensor completion tasks.

Experimental Setup. We consider the noisy tensor completion which involves reconstructing a
tensor from noisy incomplete observations. Given a clean tensor L of size dy X da X d3, we introduce
i.i.d. Gaussian noise with standard deviation o = cog, where ¢ = 0.05 and oy = ||L|| /v d1dads.
A uniform sampling strategy is applied with sampling ratios p € {0.05,0.1,0.15}, meaning that
95%, 90%, and 85% of the entries are missing, respectively. Each setting is tested over 10 trials, and
the averaged PSNR (dB) and SSIM values are reported. To benchmark our method, we compare
the proposed £,,(S;)-quasi-norm against several low-rank regularizers, including matrix nuclear
norm (NN) [2], Tucker-based tensor nuclear norm (SNN) [16], TNN-DFT [37], TNN-DCT [20],
tensor k-Support norm (k-Supp) (k = 2) [29], tensor ¢1_o-norm (¢1_2) [26], tensor Schatten-p-norm
(p = 1/2) [12]. In our implementation, we set the sparsity parameters® to (p, q) = (0.8961,0.8966)
and employ the Discrete Cosine Transform (DCT) as the transform operator M (-). Details of the
experiments are given in the appendix.

3We first performed a coarse grid search over p, ¢ € {0.1,0.2,...,1.0} and observed consistent performance
peaks near p = ¢ = 0.9. We then manually fine-tuned within [0.88,0.92] based on PSNR, selecting (p, q) =
(0.8961, 0.8966) as the best-performing pair.
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Table 1: Results for noisy tensor completion on remote sensing datasets are shown below. The best
result in each case is highlighted in bold, while the second-best is underlined.

Dataset SR Metric NN SNN  TNN-DFT TNN-DCT k-Supp {;_»  Schatten-1/2 £,(S,) (proposed)
s PSNR 1521 2079 2255 26.52 258 2221 22.45 28.43
SSIM 02594 0.7547  0.5667 07384 05680 05524 04474 0.7374
SalimasA 105 PSNR 2062 2556 2572 29,61 7580  26.14 35.86 31.81
SSIM 04775 08384  0.7027 08403 07231 07197 06058 0.8484
s, PSNR 2309 2799 2806 3132 28.09  28.13 26.98 3323
SSIM 05643 08622  0.7804 08798 07810 07795  0.6505 0.8830
s PSNR 2044 2201 25.68 26.26 2570 253 24.68 27.05
SSIM 03895 0.6359  0.6293 06727 06280 06316 05361 0.6740
IndianPines  10g, FSNR 2223 2494 2745 28.40 2748 27.52 2572 28.92
SSIM 04836 07171  0.7226 07744 07219 07249 05991 07617
15 PSNR 2352 2661 2854 29.52 28.53  28.63 26.24 29.89
3% SSIM 05438 07668  0.7713 08177 07709 07741  0.6258 0.7997
s PSNR 2010 2095 2500 26.09 2508 25.09 24.96 26.99
* SSIM 03762 05096  0.6773 07283 06792 06793  0.6305 0.7422
Cloth 0 PSNR 2114 2272 2800 29.24 2812 28.14 7.98 30.63
SSIM 04341 05983 08132 08540 08143 08163  0.7668 0.8658
15 PSNR 2205 3418 3003 31.36 3008 30.11 39.50 3271
SSIM 04889 06783  0.8722 09054 08727 08733 08153 0.9090
s PSNR 2533 3009 3316 35.31 3319 3327 3343 36.95
SSIM 07147 0.8631  0.8917 09248 08921 08919  0.8240 0.9196
Hair 0% PSNR 2952 3335 3622 38.18 3617 3630 35.60 39.91
SSIM  0.8008 09122  0.9292 09535 09286 09296  0.8640 0.9517
15 PSNR 3112 3524 3800 39.88 37.91  38.07 36.46 41.52
SSIM  0.8364 09336  0.9449 09650 09442 09448  0.8735 0.9641
s PSNR 1633 182l 2543 26.47 2538 25.62 2539 27.91
* SSIM 02397 04942 06726 07223 06714 06733 05504 07115
JellyBeans 107 PSNR 812 2211 28.50 30.14 2847  28.67 28.41 31.95
SSIM 03169 0.6629  0.7900 08518 07902 07932  0.6905 0.8486
15 PSNR 1002 3467 3051 32.33 3052 30.61 29.96 33.97
SSIM 04053 07592  0.8489 0.9030  0.8504 08499  0.7516 0.8980
s PSNR 1319 1583 2806 27.99 2801  28.19 28.11 30.06
SSIM  0.1848 04759  0.8584 08707 08579 08603 07928 0.8759
PSNR 1467 1975  31.30 3162 3128 31.60 30.51 .67
OSUThermal = 10%  qgiM 02509 0.6504 09151 09326 09147 09168  0.8358 0.9272
15 PSNR 1627 225 3302 33.51 33.05 3311 30.99 35.09
SSIM 03273 07621 09315 09509 09321 09318  0.8373 0.9404

Datasets. We validate our approach on three categories of remote sensing data. First, for hyperspectral
images, we employ the corrected Indian Pines and Salinas A datasets from the AVIRIS sensor,
containing 200 and 204 spectral bands respectively. Due to computational considerations, we utilize
the first 30 bands in our experiments. Second, we evaluate on multispectral images from the Columbia
MSI Database, including Cloth, Hair, and Jelly Beans, each with dimensions 512 x 512 x 31 and
normalized intensity values in [0,1]. Finally, for thermal imaging, we use sequences from the
OSU Thermal Database, specifically the first 30 frames of Sequence 1, forming a tensor of size
320 x 240 x 30.

Results and Analysis. Table 1 summarizes the PSNR and SSIM results across different missing
rates. The proposed ¢, (S;)-quasi-norm achieves the highest PSNR, demonstrating its effectiveness
in preserving spectral information. Its SSIM results rank among the top two, indicating that our
approach better retains structural integrity compared to competing methods. These experimental
results demonstrate the effectiveness of the proposed ¢,,-Schatten-g quasi-norm in robust tensor
recovery, showing how characterizing dual spectral sparsity structures in transformed domains
benefits tensor reconstruction performance.

7 Conclusion

This paper identifies and formalizes a coupled spectral structure within the t-SVD framework, where
inter-frequency sparsity coexists with intra-frequency low-rankness. To capture this structure, we
propose a unified modeling approach based on the £,,-Schatten-g quasi-norm, which enables separate
control over spectral sparsity at different levels and generalizes existing tensor norms. We provide
sharp minimax guarantees under both hard and soft sparsity regimes, and develop an efficient proximal
algorithm tailored to this setting. Experimental results demonstrate the practical potential of the
proposed approach for structured tensor recovery.

Limitation. To highlight the fundamental properties of the proposed ¢,,-Schatten-g quasi-norm, our
analysis employs several simplifications, including Gaussian location model and idealized sparsity
patterns. While our optimization algorithm shows promising empirical performance, its theoretical
convergence properties remain to be established. These theoretical and algorithmic limitations suggest
important directions for future research.



355

356
357

358
359

360
361

363
364

365
366

367
368

369
370

371
372

373
374

375
376

377
378

379
380

381
382
383

384
385

386
387

388
389

390
391

392

393

395

396

398

399

400
401

References

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]

(11]

(12]

[13]

[14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

G. Bergqvist and E. G. Larsson. The higher-order singular value decomposition: Theory and an application
[lecture notes]. IEEE signal processing magazine, 27(3):151-154, 2010.

E. J. Candés and T. Tao. The power of convex relaxation: Near-optimal matrix completion. IEEE
Transactions on Information Theory, 56(5):2053-2080, 2010.

J. D. Carroll and J. Chang. Analysis of individual differences in multidimensional scaling via an n-way
generalization of “Eckart-Young” decomposition. Psychometrika, 35(3):283-319, 1970.

A. Cichocki, N. Lee, I. Oseledets, A. H. Phan, Q. Zhao, and D. P. Mandic. Tensor networks for dimen-
sionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions. Foundations &
Trends ® in Machine Learning, 9(4-5):249-429, 2016.

S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery via convex
optimization. Inverse Problems, 27(2):025010, 2011.

J. Hou, F. Zhang, H. Qiu, J. Wang, Y. Wang, and D. Meng. Robust low-tubal-rank tensor recovery from
binary measurements. /EEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Y. Hu, C. Li, K. Meng, J. Qin, and X. Yang. Group sparse optimization via ¢, , regularization. Journal of
Machine Learning Research, 18(30):1-52, 2017.

M. Imaizumi, T. Maehara, and K. Hayashi. On tensor train rank minimization: Statistical efficiency and
scalable algorithm. In Advances in Neural Information Processing Systems, pages 3930-3939, 2017.

E. Kernfeld, M. Kilmer, and S. Aeron. Tensor—tensor products with invertible linear transforms. Linear
Algebra and its Applications, 485:545-570, 2015.

M. E. Kilmer, K. Braman, et al. Third-order tensors as operators on matrices: A theoretical and computa-
tional framework with applications in imaging. SIAM J MATRIX ANAL A, 34(1):148-172, 2013.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455-500,
2009.

H. Kong, X. Xie, and Z. Lin. t-Schatten-p norm for low-rank tensor recovery. IEEE Journal of Selected
Topics in Signal Processing, 12(6):1405-1419, 2018.

C. Li, W. He, L. Yuan, Z. Sun, and Q. Zhao. Guaranteed matrix completion under multiple linear
transformations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11136-11145, 2019.

Z.Li, Y. Zhang, and J. Yin. Estimating double sparse structures over ¢, (¢4)-balls: Minimax rates and
phase transition. IEEE Transactions on Information Theory, 2024.

R. Lin, S. Chen, H. Feng, and Y. Liu. Computing the proximal operator of the ¢, ;-norm for group sparsity.
arXiv preprint arXiv:2409.14156, 2024.

J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values in visual data.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):208-220, 2013.

X. Liu, S. Aeron, V. Aggarwal, and X. Wang. Low-tubal-rank tensor completion using alternating
minimization. /[EEE Transactions on Information Theory, 66(3):1714-1737, 2020.

C. Lu. Transforms based tensor robust PCA: Corrupted low-rank tensors recovery via convex optimization.
In ICCV, pages 1145-1152, 2021.

C.Lu, J. Feng, W. Liu, Z. Lin, S. Yan, et al. Tensor robust principal component analysis with a new tensor
nuclear norm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.

C. Lu, X. Peng, and Y. Wei. Low-rank tensor completion with a new tensor nuclear norm induced by
invertible linear transforms. In CVPR, pages 5996-6004, 2019.

C. D. Martin, R. Shafer, and B. Larue. An order-p tensor factorization with applications in imaging. STAM
Journal on Scientific Computing, 35(1), 2013.

S. Negahban and M. J. Wainwright. Restricted strong convexity and weighted matrix completion: Optimal
bounds with noise. The Journal of Machine Learning Research, 13:1665-1697, 2012.

10



402

404
405

406
407

408
409

410
411

412
413

414
415

416
417

418
419

420
421
422

423
424

425
426

427
428

429
430

431
432

433
434

435
436

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295-2317,
2011.

Y. Qiu, G. Zhou, A. Wang, Q. Zhao, and S. Xie. Balanced unfolding induced tensor nuclear norms for
high-order tensor completion. IEEE Transactions on Neural Networks and Learning Systems, 2024.

G. Song, M. K. Ng, and X. Zhang. Robust tensor completion using transformed tensor singular value
decomposition. NUMER LINEAR ALGEBR, 27(3):e2299, 2020.

Z. Tan, L. Huang, H. Cai, and Y. Lou. Non-convex approaches for low-rank tensor completion under tubal
sampling. In ICASSP, pages 1-5. IEEE, 2023.

L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279-311,
1966.

A. Wang, C. Li, M. Bai, Z. Jin, G. Zhou, and Q. Zhao. Transformed low-rank parameterization can help
robust generalization for tensor neural networks. NeurlIPS, 36, 2023.

A. Wang, G. Zhou, Z. Jin, and Q. Zhao. Tensor recovery via *;-spectral k-support norm. /IEEE Journal of
Selected Topics in Signal Processing, 15(3):522-534, 2021.

H. Wang, J. Yang, X. Yu, Y. Zhang, J. Qian, and J. Wang. Tensor-flamingo unravels the complexity of
single-cell spatial architectures of genomes at high-resolution. Nature Communications, 16(1):3435, 2025.

Z. Wang, J. Dong, X. Liu, and X. Zeng. Low-rank tensor completion by approximating the tensor average
rank. In /CCV, pages 4612-4620, 2021.

Y. Xie, D. Tao, W. Zhang, Y. Liu, L. Zhang, and Y. Qu. On unifying multi-view self-representations for
clustering by tensor multi-rank minimization. International Journal of Computer Vision, 126(11):1157—
1179, 2018.

Y. Xu, R. Hao, W. Yin, and Z. Su. Parallel matrix factorization for low-rank tensor completion. Inverse
Problems and Imaging, 9(2):601-624, 2015.

M. Yuan and C. H. Zhang. On tensor completion via nuclear norm minimization. Foundations of
Computational Mathematics, 16(4):1-38, 2016.

F. Zhang, W. Wang, J. Huang, J. Wang, and Y. Wang. RIP-based performance guarantee for low-tubal-rank
tensor recovery. Journal of Computational and Applied Mathematics, 374:112767, 2020.

X. Zhang and M. K.-P. Ng. Low rank tensor completion with poisson observations. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021.

Z.Zhang and S. Aeron. Exact tensor completion using t-svd. /IEEE Transactions on Signal Processing,
65(6):1511-1526, 2017.

Z.Zhang, G. Ely, S. Aeron, et al. Novel methods for multilinear data completion and de-noising based on
tensor-SVD. In CVPR, pages 3842-3849, 2014.

P. Zhou and J. Feng. Outlier-robust tensor PCA. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

11



437

439
440
441
442

443
444

445

446
447

448

449
450
451
452

453
454
455
456
457
458
459

461

462

463

464

465

467
468

469

470
471
472
473

474
475
476

477
478
479

480
481

482
483

484

485

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the central focus of the paper—the
modeling, theoretical analysis, and algorithmic solution for dual spectral sparsity in ten-
sors—which directly correspond to the three core contributions developed in the main
body.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: The paper includes a dedicated discussion on limitations in the conclusion
section, noting simplifications such as the use of the Gaussian location model and the lack
of theoretical convergence guarantees for the proposed non-convex optimization algorithm.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For each theoretical result, the paper states all necessary assumptions explicitly
and provides complete proofs in the appendix. The analysis includes both lower and upper
minimax bounds under different dual-sparsity regimes, supported by standard and extended
techniques such as entropy numbers and packing arguments.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]

Justification: The paper provides sufficient information to reproduce the main experimental
results, including dataset descriptions, sampling settings, noise levels, baseline configura-
tions, and implementation details of the proposed algorithm. Additional algorithmic and
parameter details are included in the appendix to support reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The authors have uploaded the code as part of the supplementary material,
along with sufficient implementation details and instructions to reproduce the main experi-
mental results. All datasets used are publicly available and clearly specified.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all necessary details, including sampling ratios, noise
levels, hyperparameter settings, evaluation metrics (PSNR and SSIM), and implementation
choices. Additional settings such as initialization and convergence criteria are provided in
the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports averaged performance over multiple random trials for each
experimental setting. While explicit error bars are not shown in tables, standard practice
is followed by reporting stable metrics (PSNR and SSIM) under fixed noise and sampling
ratios, ensuring reliable comparative evaluation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The appendix provides information on the computational environment used
for the experiments, including hardware specifications such as CPU type and memory.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research does not involve human subjects, personally identifiable informa-
tion, sensitive data, or potentially harmful applications. It focuses on theoretical modeling
and algorithmic development for tensor estimation, aligning fully with the NeurIPS Code of
Ethics.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses solely on the theoretical modeling and optimization of the
tensor recovery algorithm, without involving any societal issues, and therefore does not
require discussion of societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not involve the release of high-risk models or datasets. It
focuses on a general-purpose tensor estimation framework using publicly available data, and
does not include pretrained models or components with significant misuse potential.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external datasets and baseline implementations used in the paper are
publicly available and properly cited. Their licenses and terms of use have been respected,
and relevant references are provided in the main text and appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17


paperswithcode.com/datasets

750
751

752

753
754

755

756
757
758
759

760

761

762
763
764

765
766

767
768
769

770
771
772

773

774

775

776
777

778
779
780

781
782
783

784
785

786
787

789

790

791
792

793

794
795

797
798

800
801

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new optimization algorithm and associated code,
which are included in the supplementary material. The code is well documented with
clear instructions, comments, and reproducibility guidelines to support independent use and
verification.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve any human subjects or crowdsourcing experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study does not involve human participants and therefore does not require
IRB approval or risk disclosure.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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802 * For initial submissions, do not include any information that would break anonymity (if

803 applicable), such as the institution conducting the review.

804 16. Declaration of LLM usage

805 Question: Does the paper describe the usage of LLMs if it is an important, original, or
806 non-standard component of the core methods in this research? Note that if the LLM is used
807 only for writing, editing, or formatting purposes and does not impact the core methodology,
808 scientific rigorousness, or originality of the research, declaration is not required.

809 Answer: [NA]

810 Justification: This work does not use large language models (LLMs) as part of its core
811 methodology or experimental pipeline.

812 Guidelines:

813 * The answer NA means that the core method development in this research does not
814 involve LLMs as any important, original, or non-standard components.

815 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
816 for what should or should not be described.
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