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Abstract

Min-max optimization problems (i.e., zero-sum games) have been used to model

problems in a variety of fields in recent years, from machine learning to eco-

nomics. The literature to date has mostly focused on static zero-sum games,

assuming independent strategy sets. In this paper, we study a form of dynamic

zero-sum games, called stochastic games, with dependent strategy sets. Just as

zero-sum games with dependent strategy sets can be interpreted as zero-sum

Stackelberg games, stochastic zero-sum games with dependent strategy sets can

be interpreted as zero-sum stochastic Stackelberg games. We prove the existence

of an optimal solution in zero-sum stochastic Stackelberg games (i.e., a recursive

Stackelberg equilibrium), provide necessary and sufficient conditions for a so-

lution to be optimal, and show that a recursive Stackelberg equilibrium can be

computed in polynomial time via value iteration. Finally, we show that stochas-

tic Stackelberg games can model the problem of pricing and allocating goods

across agents and time; more specifically, we propose a stochastic Stackelberg

game whose solutions correspond to a recursive competitive equilibrium in a

stochastic Fisher market. We close with a series of experiments which confirm

our theoretical results and show how value iteration performs in practice.

Min-max optimization has paved the way for recent progress in a variety of fields, from machine

learning to economics. These applications require computing solutions to themin-max operator,
i.e., solving a constrained min-max optimization problem, also known as zero-sum games

(with independent strategy sets): i.e., minx∈X maxy∈Y f(x,y), where the objective function f :
X ×Y → R is continuous, and the strategy setsX ⊂ Rn

and Y ⊂ Rm
are nonempty and compact.

When f is convex-concave, the seminal minimax theorem (Neumann, 1928; Sion et al., 1958) holds,

and such a problem can be interpreted as a simultaneous-move zero-sum game between an outer

player x and an inner player y, with the solutions (x∗,y∗) ∈ X × Y of the min-max operator

corresponding to a Nash equilibrium. More generally, one can consider zero-sum stochastic
games (with independent strategy sets) X ⊂ Rn

and Y ⊂ Rm
, nonempty and compact, and

a state-dependent payoff function r(s,x,y), for all s ∈ S , where the players seek to optimize

their cumulative (discounted) payoffs, in expectation. When r(s,x,y) is bounded, continuous,
and concave-convex in (x,y), for all s ∈ S , these games are guaranteed to have a unique solution

(Shapley, 1953),
1
while the optimal policies, i.e., the per-state collection of solutions to the min-

max operator can be interpreted as a recursive Nash equilibrium of a zero-sum stochastic game,

and can be computed in polynomial time by iterative application of themin-max operator (Shapley,

1953). Zero-sum stochastic games generalize zero-sum games from a single state to multiple states,

and have found even more applications in a variety of fields (Jaśkiewicz & Nowak, 2018).

1

Although Shapley’s original results concern payoffs which are bilinear in the outer and inner players’

actions, they extend directly to payoffs which are convex-concave in the players’ actions.
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Recently, Goktas & Greenwald (2021) studied the computation of a generalized min-max
operator i.e., solving a constrained min-max game with dependent strategy sets: i.e.,

minx∈X maxy∈Y:h(x,y)≥0 r(x,y) where, in addition to the aforementioned assumptions, h :
X × Y → R is continuous. Goktas & Greenwald have shown that even more problems of in-

terest can be captured by solutions to the generalized min-max operator. However, a minimax

theorem is not guaranteed to hold in this setting; as a result, these problems are best interpreted

as zero-sum sequential, i.e., Stackelberg (Von Stackelberg, 1934), games, and their solutions, as

Stackelberg equilibria. One can likewise consider zero-sum stochastic games with dependent
feasible strategy sets X ⊂ Rn

and Y ⊂ Rm
, nonempty and compact and a state-dependent pay-

off function r(s,x,y), as well as a state dependent constraint function g(s,x,y) , for all s ∈ S ,
where the players seek to optimize their cumulative (discounted) payoffs, in expectation, while

satisfying the constraint g(s,x,y) ≥ 0 at each state s ∈ S . Such a problem is best interpreted

as a zero-sum stochastic Stackelberg game, for which the appropriate solution concept is the re-
cursive Stackelberg equilibrium (recSE). Although very little is known about the properties of

such problems, they generalize both min-max games with dependent strategy sets and zero-sum

stochastic games (with independent strategy sets), and, as we show, have novel applications.

In this paper, we prove the existence of recSE in zero-sum stochastic Stackelberg games, provide

necessary and sufficient conditions for a solution to be a recSE, and show that a recSE can be

computed in (weakly) polynomial time via value iteration. We further show that stochastic Stack-

elberg games can be used to solve problems of pricing and allocating goods across agents and time.

In particular, we introduce stochastic Fisher markets, a stochastic generalization of the Fisher

market (Brainard et al., 2000), and a special case of Friesen’s (1979) financial market model, which

itself is a stochastic generalization of the Arrow & Debreu model of a competitive economy (1954).

We then prove the existence of recursive competitive equilibrium (Mehra & Prescott, 1977) in this

model, under the assumption that consumers have continuous and homogeneous utility functions,

by characterizing the competitive equilibria of any stochastic Fisher market as the Stackelberg

equilibria of the corresponding stochastic Stackelberg game. Finally, we use value iteration to

solve various stochastic Fisher markets, highlighting the issues that value iteration might face as

a consequence of the smoothness properties of the utility functions.

Related Work Algorithms for min-max optimization problems (i.e., zero-sum games) with in-

dependent strategy sets have been extensively studied; for a summary see Goktas & Greenwald

(2021), Section G. Goktas & Greenwald (2021) and (2022) studied zero-sum games with dependent

strategy sets, proposing polynomial-time nested gradient descent ascent (GDA) and simultaneous

GDA algorithms for such problems.

The computation of Stackelberg equilibrium in dynamic Stackelberg games has been studied in sev-

eral interesting settings, but always with independent strategy sets. Bensoussan et al. (2015) study

continuous-time stochastic Stackelberg games with continuous action spaces, and prove existence

of a solution in their setting. Vasal (2020) and Vorobeychik & Singh (2012) study discrete-time

stochastic Stackelberg games with discrete action and state spaces, and provide algorithms to solve

such games. DeMiguel & Xu (2009) consider a stochastic Stackelberg game-like market model with

n leaders and m followers; they prove the existence of a Stackelberg equilibrium in their model,

and provide (without theoretical guarantees) algorithms that converge to such an equilibrium in

experiments. Dynamic Stackelberg games (Li & Sethi, 2017) have been applied to a wide range of

problems, including security (Vasal, 2020; Vorobeychik & Singh, 2012), insurance provision (Chen

& Shen, 2018; Yuan et al., 2021), advertising (He et al., 2008), robust agent design (Rismiller et al.,

2020), allocating goods across time intertemporal pricing (Oksendal et al., 2013).

The study of algorithms that compute competitive equilibria in Fisher markets was initiated by

Devanur et al. (2002), who provided a polynomial-time method for solving these markets assum-

ing linear utilities. More recently, there have been efforts to study markets in dynamic settings

(Cheung et al., 2019; Gao et al., 2021; Goktas & Greenwald, 2021), in which the goal is to either

track the changing equilibrium of a changing market, or minimize some regret-like quantity for

the market. The models considered in these earlier works differ from ours as they do not have

stochastic structure and do not invoke a dynamic solution concept.
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1 Preliminaries

Notation We use caligraphic uppercase letters to denote sets (e.g., X ), bold uppercase letters to

denote matrices (e.g.,X), bold lowercase letters to denote vectors (e.g., p), bold uppercase letters to
denote vector-valued random variables (e.g., Γ), lowercase letters to denote scalar quantities, (e.g.,
x), and uppercase letters to denote scalar-valued random variables (e.g.,X). We denote the ith row
vector of a matrix (e.g., X) by the corresponding bold lowercase letter with subscript i (e.g., xi).
Similarly, we denote the jth entry of a vector (e.g., p or xi) by the corresponding Roman lowercase

letter with subscript j (e.g., pj or xij ). We denote functions by a letter: e.g., f if the function is

scalar valued, and f if the function is vector valued. We denote the vector of ones of size n by

1n. We denote the set of integers {1, . . . , n} by [n], the set of natural numbers by N, the set of

real numbers by R. We denote the postive and strictly positive elements of a set by a + and ++
subscript respectively, e.g., R+ and R++. We denote the orthogonal projection operator onto a set

C by ΠC , i.e., ΠC(x) = argminy∈C ∥x− y∥2. We denote by ∆n = {x ∈ Rn
+ |

∑n
i=1 xi = 1},

and by ∆(A) the set of probability measures on the set A.

A stochastic Stackelberg game (S,X ,Y, µ(0), rx, ry, g, p, γ) is a dynamic two-player sequen-

tial, i.e., Stackelberg, game where one player we call the outer-player (resp. inner-player) moves

through a set of states S picking an action to play from their continuous set of actions X ⊂ Rn

(resp. Y ⊂ Rm
). Players start the game at an initial state determined by an initial state distribution

µ(0) : S → [0, 1] s.t. for all states s ∈ S , µ(0)(s) ≥ 0 denotes the probability of the game being

initialized at state s. At each state s ∈ S the action x ∈ X chosen by the outer player deter-

mines the set of feasible actions {y ∈ Y | g(s,x,y) ≥ 0} that the inner player can in turn play.

Once the outer and inner players make their moves, they receive payoffs rx : s × X × Y → R
and ry : S × X × Y → R, respectively, and the game either ends with probability 1 − γ, where
γ ∈ (0, 1) is called the discount factor, or transitions to a new state s′ ∈ S , according to a tran-
sition probability function p : S × S × X × Y → [0, 1] s.t. p(s′ | s,x,y) ∈ [0, 1] denotes the
probability of transitioning to state s′ ∈ S from state s ∈ S when a strategy profile (x,y) ∈ X×Y
is chosen by the players.

In this paper, we focus on stochastic Stackelberg zero-sum games G(0) =
(S,X ,Y, µ(0), r, g, p, γ), in which the outer player’s loss is the inner player’s gain, i.e.,

rx = −ry . We say that a zero-sum stochastic Stackelberg game is convex-concave if, for all

s ∈ S , r(s,x,y), g1(s,x,y), . . . , gd(s,x,y) are convex-concave in (x,y). A zero-sum stochastic

Stackelberg game reduces to zero-sum stochastic game (Shapley, 1953) if for all state-action tuples

(s,x,y) ∈ S × X × Y , g(s,x,y) ≥ 0. As we will show, it suffices to focus on deterministic

policies in which a policy for the outer (resp. inner) player is a mapping from states to actions

πx : S → X (resp. πy : S → Y). The outcome of a zero-sum stochastic Stackelberg game G(0)

is a policy profile (πx,πy) ∈ XS × YS
consisting of policies for the outer and inner players,

respectively. An outcome (πx,πy) ∈ XS × YS
is said to be feasible if, for all states s ∈ S ,

g(s,πx(s),πy(s)) ≥ 0. For simplicity, we introduce a function G : XS × YS → R|S|×d

such that G(πx,πy) = (g(s,πx(s),πy(s)))s∈S , and define feasible outcomes as those

(πx,πy) ∈ XS × YS
s.t. G(πx,πy) ≥ 0. For the rest of this paper, we assume:

Assumption 1.1. 1. For all states s ∈ S , the functions r(s, ·, ·), g1(s, ·, ·), . . . , gd(s, ·, ·) are contin-
uous in (x,y) ∈ X ×Y with payoffs r bounded, i.e., ∥r∥∞ ≤ α < ∞, for some α ∈ R+, and 2 X ,Y
are non-empty and compact.

Given a zero-sum stochastic Stackelberg game G(0)
, the state-value function, v : S×XS×YS →

R, and the action-value function, q : S × X × Y × XS × YS → R are respectively defined as:

v(s;πx,πy) = Eπx,πy
S(t+1)∼p(·|S(t),X(t),Y (t))

[∑∞
t=0(1− γ)γtr(S(t),X(t),Y (t)) | S(0) = s

]
;

q(s,x,y;πx,πy) = Eπx,πy
S(t+1)∼p(·|S(t),X(t),Y (t))

[∑∞
t=0(1− γ)γtr(S(t),X(t),Y (t)) | S(0) = s

X(0) = x,Y (0) = y
]
.

For clarity, we write expectations conditional on X(t) = πx(S
(t)) and Y (t) = πy(S

(t)) as

Eπx,πy
, and denote the state- and action-value functions by vπxπy (s), and qπxπy (s,x,y), re-

spectively. Additionally, we let V = [−α, α]S be the space of all state-value functions of the

form v : S → [−α, α], and we let Q = [−α, α]S×X×Y
be the space of all action-value func-

tions of the form q : S × X × Y → [−α, α]. Note that by Assumption 1.1 the range of
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the state- and action-value functions is [−α, α]. The cumulative payoff function of the game

u : XS × YS → R is the total expected loss (resp. gain) of the outer (resp. inner) player is then

given by u(πx,πy) = Es∼µ(0)(s) [v
πxπy (s)].

Definition 1.2. A feasible policy profile (π∗
x,π

∗
y) ∈ XS × YS is said to be

a recursive Stackelberg equilibrium (recSE) of a zero-sum stochastic Stack-
elberg game G(0) iff maxπy∈YS :G(π∗

x,πy)≥0 u (π∗
x,πy) ≤ u

(
π∗
x,π

∗
y

)
≤

minπx∈XS maxπy∈YS :G(πx,πy)≥0 u (πx,πy).

Remark 1.3. This is a strong definition of a recSE, since we require the constraints g(s,πx,πy) ≥ 0
to be satisfied at all states s ∈ S , not only states which are reached with strictly positive probability.

Mathematical Preliminaries A probability measure q1 ∈ ∆(S) convex stochastically dom-
inates (CSD) q2 ∈ ∆(S) if

∫
S v(s)q1(s)ds ≥

∫
S v(s)q2(s)ds for all continuous, bounded, and

convex functions v on S. A transition function p is termed CSD convex in x if for all λ ∈ (0, 1),
y ∈ Y and any (s′,x′), (s†,x†) ∈ S × X , with (s,x) = λ(s′,x′) + (1 − λ)(s†,x†), we have

λp(· | s′,x′,y) + (1 − λ)p(· | s†,x†,y) CSD p(· | s,x,y). A transition function p is termed

CSD concave in y if for all λ ∈ (0, 1) and any (s′,y′), (s†,y†) ∈ S × X × Y , with (s,y) =
λ(s′,y′) + (1 − λ)(s†,y†), we have p(· | s,x,y) CSD λp(· | s′,x,y′) + (1 − λ)p(· | s†,x,y†).
A mapping L : A → B is said to be a contraction mapping (resp. non-expansion) w.r.t. norm
∥·∥ iff for all x,y ∈ A, and for k ∈ [0, 1) (resp. k = 1) such that ∥L(x)− L(y)∥ ≤ k ∥x− y∥.

2 Properties of Recursive Stackelberg eqilibrium

We first state a necessary condition that the state-value function induced by a policy profile needs

to satisfy in order for that policy profile to be a recSE. It is not directly clear if there exists a policy

for any zero-sum stochastic Stackelberg game which satisfies this necessary condition since there

is no way to guarantee that such an inequality will hold at all states.
2

Lemma 2.1. Consider a zero-sum stochastic Stackelberg game G(0). A policy profile (π∗
x,π

∗
y) ∈

SX × SY is a recSE if, for all s ∈ S , we have that: maxy∈Y:g(s,π∗
x(s),y)≥0 qπ

∗
xπ

∗
y (s,π∗

x(s),y) ≤
qπ

∗
xπ

∗
y (s,π∗

x(x),π
∗
y(y)) ≤ minx∈X maxy∈Y:g(s,x,y)≥0 qπ

∗
xπ

∗
y (s,x,y). Equivalently, a policy

profile (π∗
x,π

∗
y) is a recSE if (π∗

x(s),π
∗
y(s)) is a Stackelberg equilibrium: i.e., a solution to

minx∈X maxy∈Y:g(s,x,y)≥0 qπ
∗
xπ

∗
y (s,x,y) at each s ∈ S .

We define an operator C : V → V associated with a zero-sum stochastic Stackelberg game

G(0)
whose fixed points satisfy the condition given in Lemma 2.1, and hence correspond to

the value function associated with a recSE of G(0)
. We then show that this operator is a con-

traction mapping, thereby establishing the existence of such a fixed point. This result gen-

eralizes a result first shown by Shapley (1953) for zero-sum stochastic games, i.e., zero-sum

stochastic Stackelberg games in which G(πx,πy) ≥ 0, for all (πx,πy) ∈ XS × YS
.

Define C : V → V for a stochastic Stackelberg game G(0)
as the operator (Cv) (s) =

minx∈X maxy∈Y:g(s,x,y)≥0 ES′∼p(·|s,x,y) [r(s,x,y) + γv(S′)].

Theorem 2.2. (π∗
x,π

∗
y) is a recSE of G(0) of vπxπy iff it induces a value function which is a fixed

point of C : i.e., (π∗
x,π

∗
y) is a Stackelberg equilbrium iff, for all s ∈ S,

(
Cvπ

∗
xπ

∗
y

)
(s) = vπ

∗
xπ

∗
y (s).

The following technical lemma is crucial to proving that C is a contraction mapping. It tells us

that the generalized min-max operator is non-expansive; in other words, the generalized min-max

operator is 1-Lipschitz w.r.t. the sup-norm.

Lemma 2.3. Suppose that f, h : X × Y → R, g : X × Y →
Rd are continuous functions, and X ,Y are compact sets, we then have:∣∣minx∈X maxy∈Y:g(x,y)≥0 f(x,y)−minx∈X maxy∈Y:g(x,y)≥0 h(x,y)

∣∣ ≤
max(x,y)∈X×Y |f(x,y)− h(x,y)|.

With the above lemma in hand, we can now prove that C is a contraction mapping.

2

All omitted results and proofs can be found in the appendix.
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Theorem 2.4. Consider the operator C associated with a stochastic Stackelberg game G(0). If As-
sumption 1.1 holds, then C is a contraction mapping w.r.t. to the sup norm ∥.∥∞ with constant γ.

Given some initial state-value function v(0) ∈ V , we define the value iteration process as v(t+1) =
Cv(t), for all t ∈ N+ (Algorithm 1). One way to interpret v(t) is as the function that returns the

value v(t)(s) of each state s ∈ S in the t stage zero-sum Stackelberg game starting at the last stage

t and continuing until stage 0, with terminal payoffs given by v(0). The following theorem, which

is a consequence of Theorems 2.2 and 2.4, not only states the existence of a recSE but also provides

us with a means of computing a recSE via value iteration.

Theorem 2.5. Consider a zero-sum stochastic Stackelberg game G(0). If Assumption 1.1 holds, then
G(0) has at least one recSE (π∗

x,π
∗
y) with unique value function vπ

∗
xπ

∗
y . Further, vπ

∗
xπ

∗
y can be com-

puted by iteratively applying C to any initial state-value function v(0) ∈ V : limt→∞ v(t) = vπ
∗
xπ

∗
y .

Remark 2.6. Unlike Shapley’s existence theorem for recursive Nash equilibria in zero-sum stochastic
games, the above theorem does not require that the payoff function be convex-concave. The only
conditions needed are continuity of the payoffs and constraints, and bounded payoffs. This makes the
recSE a potentially useful solution concept, even for non-convex-non-concave stochastic games.

Note that the proof of Theorem 2.5 shows that there exists a policy profile which satisfies the

conditions of Lemma 2.1. Since this recSE definition is independent of the initial state distribution,

we can infer that the recSE of any zero-sum Stackelberg game G(0) = (S,X ,Y, µ(0), r, g, p, γ)
is independent of the initial state distribution µ(0)

. Hence, from now on, we denote a zero-sum

Stackelberg game by G.
It seems that a stronger equilibrium concept for zero-sum stochastic Stackelberg games would

be one that requires the strategy profile be a recSE of each subgame, aptly called subgame
perfect Stackelberg equilibrium. A feasible policy profile (π∗

x,π
∗
y) ∈ SX × SY

is a sub-

game perfect Stackelberg equilibrium of a zero-sum stochastic Stackelberg game G if, for all

s ∈ S, t ∈ N, µ(t+1)(s) =
∑

s′∈S p(s | s′,π∗
x(s

′),π∗
y(s

′))µ(t)(s′), (π∗
x,π

∗
y) is a recSE of

(S,X ,Y, µ(t), r, g, p, γ). By definition, the set of subgame perfect Stackelberg equilibria of a zero-

sum stochastic Stackelberg game is a subset of the set of recSE of the game. Since the set of recSE

is independent of the initial state distribution µ(0)
, the reverse inclusion also holds. We thus have

the following corollary:

Corollary 2.7. The set of recSE and subgame perfect Stackelberg equilibria coincide in zero-sum
stochastic Stackelberg games.

Theorem 2.5 tells us that value iteration converges to the value function associated with a recSE.

Additionally, under Assumption 1.1, recSE is computable in (weakly) polynomial time.
3

Theorem 2.8. [Convergence of Value Iteration] Suppose value iteration is run on input G. If Assump-
tion 1.1 holds, and if we initialize v(0)(s) = 0, for all s ∈ S , then for k ≥ 1

1−γ log 2α
ϵ(1−γ) , we have

v(k)(s)− vπ
∗
xπ

∗
y (s) ≤ ϵ.

3 Subdifferential Envelope Theorems and Optimality Conditions for

Recursive Stackelberg Eqilibrium

In this section, we derive optimality conditions for recursive Stackelberg equilibria. In particular,

we provide necessary conditions for a policy profile to be a recSE of any zero-sum stochastic Stack-

elberg game, and we provide sufficient conditions for a policy profile to be a recursive Stackelberg

equilibrium of a zero-sum convex-concave stochastic Stackelberg game. Using these results, we

prove in the next section that recursive market equilibrium (Mehra & Prescott, 1977) is an instance

of recSE in a large class of stochastic markets.

3

This convergence is only weakly polynomial time, since the computation of the generalized min-max

operator applied to an arbitrary continuous function is an NP-hard problem; it is at least as hard as non-

convex optimization. If, however, one restricts themselves to convex-concave stochastic Stackelberg games,

Stackelberg equilibrium is computable in polynomial time, making the problem much more tractable.

5
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The Benveniste-Scheinkman theorem characterizes the derivative of the optimal value function

associated with a recursive optimization problem w.r.t. its parameters, when it is differentiable

(Benveniste & Scheinkman, 1979). Our proofs of the necessary and sufficient optimality condi-

tions rely on a novel subdifferential generalization (Theorem C.3, Appendix C) of this theorem,

which applies even when the optimal value function is not differentiable. A consequence of our

subdifferential version of the Benveniste-Scheinkman theorem is that we can easily derive the first-

order necessary conditions for a policy profile to be a recSE of any stochastic Stackelberg game G
satisfying Assumption 1.1, under standard regularity conditions.

Theorem 3.1. Consider a zero-sum stochastic Stackelberg game G, where X = {x ∈ Rn |
q1(x) ≤ 0, . . . , qp(x) ≤ 0} and Y = {y ∈ Rm | r1(y) ≥ 0, . . . , rl(y) ≥
0}. Let Ls,x(y,λ) = r(s,x,y) + γ ES′∼p(·|s,x,y) [v(S

′,x)] +
∑d

k=1 λkgk(s,x,y). Sup-
pose that Assumption 1.1 holds, and that 1. for all s ∈ S,y ∈ Y , r(s,x,y),
g1(s,x,y), . . . , gd(s,x,y) are concave in x, 2. ∇xr(s,x,y),∇xg1(s,x,y), . . . ,∇xgd(s,x,y),
∇yr(s,x,y),∇yg1(s,x,y), . . . ,∇ygd(s,x,y) exist, for all s ∈ S,x ∈ X ,y ∈ Y , 4. p(s′ |
s,x,y) is continuous CSD convex and differentiable in (x,y), and 5. Slater’s condition holds, i.e.,
∀s ∈ S,x ∈ X ,∃ŷ ∈ Y s.t. gk(s,x, ŷ) > 0, for all k = 1, . . . , d and rj(ŷ) > 0, for all j = 1, . . . , l,
and ∃x ∈ Rn s.t. qk(x) < 0 for all k = 1 . . . , p. Then, there existsµ∗ : S → Rp

+, λ
∗ : S×X → Rd

+,
and ν∗ : S × X → Rl

+ s.t. a policy profile (π∗
x,π

∗
y) ∈ XS × YS is a recSE of G only if it satisfies

the following conditions, for all s ∈ S :

∇xLs,π∗
x(s)

(π∗
y(s),λ

∗(s,π∗
x(s))) +

p∑
k=1

µ∗
k(s)∇xqk(π

∗
x(s)) = 0 (1)

∇yLs,π∗
x(s)

(π∗
y(s),λ

∗(s,π∗
x(s))) +

l∑
k=1

ν∗k(s,π
∗
x(s))∇xrk(π

∗
y(s)) = 0 (2)

µ∗
k(s)qk(π

∗
x(s)) = 0 qk(π

∗
x(s)) ≤ 0 ∀k ∈ [p] (3)

gk(s,π
∗
x(s),π

∗
y(s)) ≥ 0 λ∗

k(s,π
∗
x(s))gk(s,π

∗
x(s),π

∗
y(s)) = 0 ∀k ∈ [d] (4)

ν∗k(s,π
∗
x(s))∇xrk(π

∗
y(s)) = 0 rk(π

∗
x(s)) ≥ 0 ∀k ∈ [l] (5)

Note, that in Theorem 3.1, when one additionally assumes concavity of

maxy∈Y:g(s,x,y)≥0

{
r(s,x,y) + γ ES′∼p(·|s,x,y) [v(S

′)]
}

in x, Equations (74) to (78) be-

come necessary and sufficient optimality conditions. For completeness, the reader can find the

necessary and sufficient optimality conditions for convex-concave stochastic Stackelberg games

under standard regularity conditions in Theorem C.4 (Appendix C). The proof follows exactly as

that of Theorem 2.2.

4 Recursive Market Eqilibrium

We now introduce an application of zero-sum stochastic Stackelberg games, which generalizes a

well known market model, the Fisher market (Brainard et al., 2000), to a dynamic setting in which

buyers not only participate in markets across time, but their wealth persists. A (static) Fisher
market consists of n buyers and m divisible goods (Brainard et al., 2000). Each buyer i ∈ [n]
is endowed with a budget bi ∈ Bi ⊂ R+ and a utility function ui : Rm

+ × Ti → R, which is

parameterized by a type ti ∈ Ti that defines a preference relation over the consumption space

Rm
+ . Each good is characterized by a supply qj ∈ Qj ⊂ R+. A stochastic Fisher market

is a dynamic market in which each state corresponds to a static Fisher market: i.e., each state

s ∈ S is characterized by a tuple (t, b, q). In each state, the buyers choose their allocations X =

(x1, . . . ,xn)
T ∈ Rn×m

+ and the market determines prices, after which the market comes to an end

with probability (1− γ), or it moves into a new state with probability p(s′ | s,X).4 A stochastic
Fisher market with savings is a stochastic Fisher market in which, at each state, each buyer i, in
addition to choosing their allocation, can set aside some savings βi ∈ R+ to spend at some future

state, and transitions depend on their savings choices as well: i.e., p(s′ | s,X,β).

4

Note that, as is standard in the literature, we assume that prices do not determine the next state since

market prices are set by a “fictional auctioneer.” There is no market participant who determined prices!

6
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A stochastic Fisher market with savings is denoted by (S,U , b(0), p, γ). Given such a market, a

recursive competitive equilibrium (recCE) (Mehra & Prescott, 1977) is a tuple (X∗,β∗,p∗) ∈
Rn×m×S

+ × Rn×S
+ × Rm×S

+ , which consists of an allocation, savings, and price system s.t. 1) the

buyers are expected utility maximizing, constrained by their savings and spending constraints,

i.e., for all buyers i ∈ [n], (x∗
i , β

∗
i ) is the optimal policy that, for all states (t, b, q) ∈ S , solves the

Bellman equation νi(t, b, q) =

max
(xi,βi)∈Rm+1

+ :xi·p∗(t,b,q)+βi≤bi

{
ui (xi, ti) + γ E

(t′,b′,q′)∼p(·|t,b,q,(xi,X∗
−i(s),(βi,β∗

−i(s)))
[νi(t

′, b′ + βi, q
′)]

}
,

where X∗
−i, β

∗
−i denote the allocation and saving systems excluding buyer i, and 2) the market

clears in each state so that unallocated goods in each state are priced at 0, i.e., for all j ∈ [m] and s ∈
S , p∗j (t, b, q) > 0 =⇒

∑
i∈[n] x

∗
ij(t, b, q) = 1 and p∗j (t, b, q) ≥ 0 =⇒

∑
i∈[n] x

∗
ij(t, b, q) ≤ 1.

The following theorem shows that the recSE of a stochastic Fisher market with savings are in fact

recursive competitive equilibria. We note that if one ignores the savings terms, then the recSE are

recursive competitive equilibria of the same market without savings.

Theorem 4.1. A stochastic Fisher market with savings (S,U , b(0), p, γ) in whichU is a vector of con-
tinuous and homogeneous utility functions has at least one recCE. Additionally, the recSE (p∗,X∗,β∗)
that solves the following Bellman equation corresponds to the recCE of (S,U , b(0), p, γ):

v(t, b, q) = min
p∈Rm

+

max
(X,β)∈Rn×(m+1)

+ :Xp+β≤b

∑
j∈[m]

qjpj +
∑
i∈[n]

(bi − βi) log(ui(xi, ti))

+γ E
(t′,b′,q′)∼p(·|t,b,q,X,β)

[v(t′, b′ + β, q′)] (6)

Remark 4.2. This result could not be obtained by modifying the Lagrangian formulation, i.e., the
simultaneous-move game form, of the Eisenberg-Gale program, because the saving problem is a
convex-non-concave problem, and existence of recursive Nash equilibrium in deterministic policies
requires convex-concavity of payoffs (Jaśkiewicz & Nowak, 2018).

5 Experiments

In order to better understand the iteration complexity of value iteration, and to understand how it

performs in a continuous state space, we computed the recursive Stackelberg equilibria of various

stochastic Fisher market with savings. We created markets with three different classes of utility

functions, each of which endowed the state-value function with different smoothness properties.
5

Let θi ∈ Rm
be a vector of parameters that describes the utility function of buyer i ∈ [n]. We

considered the following (standard) utility function classes: 1. linear: ui(xi) =
∑

j∈[m] θijxij ;

2. Cobb-Douglas: ui(xi) =
∏

j∈[m] x
θij
ij ; and 3. Leontief: ui(xi) = minj∈[m]

{
xij

θij

}
.

Since the state space is continuous, the value function is also continuous in stochastic Fisher mar-

kets. As a result, we used fitted value iteration, finding a fit via linear regression (e.g., Boyan &

Moore (1994)). To solve the generalized min-max operator at each step of value iteration, we used

two methods: 1. nested gradient descent ascent (GDA) (Goktas & Greenwald (2021); Algo-

rithm 2), which is not guaranteed to converge to a global optimum since the zero-sum Stackelberg

game for stochastic Fisher markets is convex-non-concave; and 2.max-oracle gradient descent
(Goktas & Greenwald (2021); Algorithm 3), where we used simulated annealing (Bertsimas & Tsit-

siklis, 1993), a metaheuristic which aims to find a global optimum, as the max-oracle. Although

simulated annealing is not guaranteed to converge to a global optimum, we observed that it out-

performed nested GDA, more often finding a global maximum for the inner player.

To check whether the value function computed was optimal, we measured the exploitability of the

market, meaning the distance between the recursive competitive equilibrium computed and the

actual competitive equilibrium. To do so required that we check two conditions: 1) if each buyer’s

expected utility is maximized at the computed allocation and saving system at the price system

output by the algorithm, and 2) if the market always clears. For both settings, given the value

5

Our code can be found here, and details of our experimental setup can be found in Appendix E.

7
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function computed by value iteration, we extracted the greedy policy and unrolled it across time

to obtain the greedy actions (X(t),β(t),p(t)) at each state s(t). We then computed the cumula-

tive utility of the allocation and saving systems computed by the algorithms, i.e., for all i ∈ [n],∑T
t=0 γ

tui(x
(t)
i ), and compared this value to the expected maximum utility u∗

i , obtained by solv-

ing the consumption/saving problem for individual buyers given the price systems computed by

our algorithms. We report the normalized distance between these two values: e.g., in the case of

two buyers, we report
||(u1,u2)−(u⋆

1 ,u
⋆
2)||

||(u∗
1 ,u

∗
2)||

, Finally, we measured the excess demand, which we took

as the distance to market clearance, i.e.,
1
T

∑T
t=1||

∑
i∈[n] x

(t)
i − q(t)||.

The exploitability of the recursive competitive equilibrium computed by both nested GDA and

max-oracle gradient descent in all market types is shown in Figure 2, while Figure 1 depicts the

average value of the value function across all states as it varies with time. We observe that value

iteration converges for both nested GDA and max-oracle gradient descent in Cobb-Douglas mar-

kets. Max-oracle gradient descent achieves a higher value, because the oracle does a better job at

finding a global maximum for the inner player. In linear markets, only the max-oracle gradient

descent algorithm seems to converge. This is most likely due to the non-differentiability of the

payoffs in linear Fisher markets, making it difficult for nested GDA to find a global optimum. In

Leontief markets, neither algorithm seems to affect the value function verymuch, whichmight lead

one to conclude that value iteration converges. In terms of exploitability, both algorithms seem to

perform more or less as they do in the linear markets, which suggests that the initial value func-

tion is close to the optimal value function. Surprisingly, even though value iteration converges

in both settings for Cobb-Douglas markets, the allocation and savings computed seem to be far

from optimal. This is most likely due to the fact that we used linear regression to approximate

the value function at each state, even though the value function associated with each individual

buyer’s consumption/saving problem, and likewise the market’s value function, is strictly concave

in Cobb-Douglas markets. We note that the buyers’ value functions are linear in linear and Leontief

markets, and hence compatible with our fitted linear regression, which might explain the greater

exploitability of Cobb-Douglas markets even though value iteration seems to converge.

Figure 1: The

average value of

the value function

under Nested GDA

(left) and Max-

oracle gradient

descent with sim-

ulated annealing

(right).

Figure 2: Distance

to utility max-

imization (left)

and market clear-

ance (right) of the

computed recCE.

6 Conclusion

In this paper, we proved the existence of recursive Stackelberg equilibria in zero-sum stochas-

tic Stackelberg games, provided necessary and sufficient conditions for a policy profile to be a

recursive Stackelberg equilibrium, and showed that a Stackelberg equilibrium can be computed

8
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in (weakly) polynomial time via value iteration. Further, we provided a characterization of re-

cursive competitive equilibria in stochastic Fisher markets with savings via zero-sum stochastic

Stackelberg games. Finally, we used value iteration to solve for recursive competitive equilibria

in stochastic Fisher markets. Future work seeking to improve our solution methods for stochas-

tic Fisher markets should aim to replace the linear regression step in our fitted value iteration

method with concave regression, since the value function is guaranteed to be concave in budgets

for stochastic Fisher markets. Additionally, it is conceivable that policy-network-based deep rein-

forcement learning methods may be able to resolve the difficulties that our method has in solving

for global optima in stochastic Fisher markets.
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A Pseudo-Code for Algorithms

Algorithm 1 Value Iteration (with Min-Max Oracle)

Inputs: S,X ,Y, r, g, p, γ, T
Outputs: v(T )

1: Initialize v(0) arbitrarily, e.g. v(0) = 0
2: for t = 1, . . . , T do
3: for s ∈ S do
4: v(t+1)(s) = min

x∈X
max

y∈Y:g(s,x,y)≥0
E

S′∼p(·|s,x,y)

[
r(s,x,y) + γv(t)(S′)

]
5: end for
6: end for
7: return v(T )

Algorithm 2 Nested GDA on Action Value Function

Inputs: v, b, ηx, ηy, Tp, TX

Output: (p(t),X(t))Tt=1

1: for t = 1, . . . , Tp do
2:

3: for s = 1, . . . , TX do
4: For all i ∈ [n],

5: x
(s)
i = Π{(xi,βi)∈Rm

+ ×R+:xip(t−1)+βi≤bi}

x
(s−1)
i + ηX

bi − β
(s−1)
i

u
(t)
i

(
x
(t)
i

)∇xiu
(t)
i

(
x
(t)
i

)
6: β

(s)
i = Π{(xi,βi)∈Rm

+ ×R+:xip(t−1)+βi≤bi}

(
β
(s−1)
i + ηX

(
− log(ui(xi

(s−1))) + γ
∂v(b)

∂bi

))
7: end for
8: p(t) = ΠRm

+

(
p(t−1) − ηp(1 −

∑
i∈[n] xi)

)
9: end for
10: return (p(t),X(t))Tt=1

Algorithm 3 Max-Oracle GDA with Simulated Annealing on Action Value Function

Inputs: v, b, ηx, ηy, Tp, TX

Output: (p(t),X(t))Tt=1

1: for t = 1, . . . , Tp do
2: q(p,X,β) =

∑
j∈[m] qjpj +

∑
i∈[n] (bi − βi) log(ui(xi, ti)) +

γ E(t′,b′,q′)∼p(·|t,b,q,X,β) [v(t
′, b′ + β, q′)]

3: For all i ∈ [n], x
(t)
i , β

(t)
i = Simulated_Annealing(q)

4: x
(t)
i , β

(t)
i = Π{(xi,βi)∈Rm

+ ×R+:xip(t−1)+βi≤bi}

[(
x
(t)
i , β

(t)
i

)]
5: end for
6: p(t) = ΠRm

+

(
p(t−1) + ηp(1 −

∑
i∈[n] xi)

)
7: return (p(t),X(t))Tt=1
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Algorithm 4 Value Iteration on Stochastic Fisher Market

1: Initialize v(0) arbitrarily, e.g. v(0) = 0
2: for k = 1, . . . , Tv do
3: for s ∈ S do
4: v(k+1)(s) = (1 − γ) min

p∈Rm
+

max
(X,β)∈Rn×m

+ ×Rn
+:Xp+β≤b

∑
j∈[m]

qjpj +∑
i∈[n]

(bi − βi) log(ui(xi)) + γv∗(β)

5: end for
6: end for

B Omitted Results and Proofs Section 2

We first note the following fundamental relationship between the state-value and action-value

functions which is an analog of Bellman’s Theorem (Bellman, 1952) and which follows from their

definitions:

Theorem B.1. Given a stochastic min-max Stackelberg game (S,X ,Y, µ(0), r, g, p, γ), for all v ∈
V , q ∈ Q, πx ∈ XS , and πy ∈ YS , v = vπxπy and q = qπxπy iff:

v(s) = q(s,πx(s),πy(s)) (7)

q(s,x,y) = E
S′∼p(·|s,x,y)

[r(s,x,y) + γv(S′)] (8)

Proof of Theorem B.1. By the definition of the state value function we have v
πxπy

i =
qi(s,πx(s),πy(s)), hence by Equation (7) we must have that vi = v

πxπy

i . Additionally, by

Equation (8) and the definition of the action-value functions this also implies that qi(s,x,y) =
q
πxπy

i (s,x,y)

Lemma B.2. Suppose that there exists (π∗
x,π

∗
y) ∈ SX × SY such that for all states s ∈ S :

max
πy∈SY :G(π∗

x,πy)≥0
vπ

∗
xπy (s) ≤ vπ

∗
xπ

∗
y (s) ≤ min

πx∈SX
max

πy∈SY :G(πx,πy)≥0
vπxπy (s) . (9)

Then, (π∗
x,π

∗
y) is a recSE.

Lemma B.2. Suppose that there exists (π∗
x,π

∗
y) ∈ SX × SY such that for all states s ∈ S :

max
πy∈SY :G(π∗

x,πy)≥0
vπ

∗
xπy (s) ≤ vπ

∗
xπ

∗
y (s) ≤ min

πx∈SX
max

πy∈SY :G(πx,πy)≥0
vπxπy (s) . (9)

Then, (π∗
x,π

∗
y) is a recSE.

Proof of Lemma B.2. We prove the right hand side inequality first:

vπ
∗
xπ

∗
y (s) ≤ min

πx∈SX
max

πy∈SY :G(πx,πy)≥0
vπxπy (s) (10)∑

s∈S
µ(0)(s)vπ

∗
xπ

∗
y (s) ≤

∑
s∈S

µ(0)(s) min
πx∈SX

max
πy∈SY :G(πx,πy)≥0

vπxπy (s) (11)

u
(
π∗
x,π

∗
y

)
≤

∑
s∈S

µ(0)(s) min
πx∈SX

max
πy∈SY :G(πx,πy)≥0

vπxπy (s) (12)

Since (π∗
x,π

∗
y) is well-defined, it must mean that the same policy minimizes (resp. maximizes) the

value of each state for the x player (y-player), hence the min-max operator can be pulled out of

the sum, giving us:

u
(
π∗
x,π

∗
y

)
≤ min

πx∈SX
max

πy∈SY :G(πx,πy)≥0

∑
s∈S

µ(0)(s)vπxπy (s) (13)

u
(
π∗
x,π

∗
y

)
≤ min

πx∈SX
max

πy∈SY :G(πx,πy)≥0
u (πx,πy) (14)

13
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Similarly, manipulating the the left hand side inequality , we obtain:

min
πx∈SX

max
πy∈SY :G(πx,πy)≥0

u (πx,πy) ≤ u
(
π∗
x,π

∗
y

)
(15)

We will show, there always exists a policy profile which satisfies the conditions of Lemma B.2. To

show the existence of such a policy profile, we first re-state the condition given in Lemma B.2, in

terms of action value functions.

Lemma 2.1. Consider a zero-sum stochastic Stackelberg game G(0). A policy profile (π∗
x,π

∗
y) ∈

SX × SY is a recSE if, for all s ∈ S , we have that: maxy∈Y:g(s,π∗
x(s),y)≥0 qπ

∗
xπ

∗
y (s,π∗

x(s),y) ≤
qπ

∗
xπ

∗
y (s,π∗

x(x),π
∗
y(y)) ≤ minx∈X maxy∈Y:g(s,x,y)≥0 qπ

∗
xπ

∗
y (s,x,y). Equivalently, a policy

profile (π∗
x,π

∗
y) is a recSE if (π∗

x(s),π
∗
y(s)) is a Stackelberg equilibrium: i.e., a solution to

minx∈X maxy∈Y:g(s,x,y)≥0 qπ
∗
xπ

∗
y (s,x,y) at each s ∈ S .

Proof of Lemma 2.1.

max
y∈Y:g(s,π∗

x(s),y)≥0
qπ

∗
xπ

∗
y (s,π∗

x(s),y) ≤ qπ
∗
xπ

∗
y (s,π∗

x(s),π
∗
y(s)) ≤ min

x∈X
max

y∈Y:g(s,x,y)≥0
qπ

∗
xπ

∗
y (s,x,y)

(16)

max
πy∈SY :G(π∗

x,πy)≥0
qπ

∗
xπ

∗
y (s,π∗

x(s),πy(s)) ≤ qπ
∗
xπ

∗
y (s,π∗

x(s),π
∗
y(s)) ≤ min

πx∈SX
max

πy∈SY :G(πx,πy)≥0
qπ

∗
xπ

∗
y (s,πx(s),πy(s))

(17)

max
πy∈SY :G(π∗

x,πy)≥0
qπ

∗
xπy (s,π∗

x(s),πy(s)) ≤ qπ
∗
xπ

∗
y (s,π∗

x(s),π
∗
y(s)) ≤ min

πx∈SX
max

πy∈SY :G(πx,πy)≥0
qπxπy (s,πx(s),πy(s))

(18)

max
πy∈SY :G(π∗

x,πy)≥0
vπ

∗
xπy (s) ≤ vπ

∗
xπ

∗
y (s) ≤ min

πx∈SX
max

πy∈SY :G(πx,πy)≥0
vπxπy (s) (19)

By Lemma B.2, we must then have that (π∗
x,π

∗
y) is a recursive Stackelberg equilibrium of

(S,X ,Y, µ(0), r, g, p, γ).

Theorem 2.2. (π∗
x,π

∗
y) is a recSE of G(0) of vπxπy iff it induces a value function which is a fixed

point of C : i.e., (π∗
x,π

∗
y) is a Stackelberg equilbrium iff, for all s ∈ S,

(
Cvπ

∗
xπ

∗
y

)
(s) = vπ

∗
xπ

∗
y (s).

Proof of Theorem 2.2. (recursive Stackelberg equilibrium =⇒ Fixed Point):

Suppose that (π∗
x,π

∗
y) is a recursive Stackelberg equilibrium of (S,X ,Y, µ(0), r, g, p, γ), then:(

Cvπ
∗
xπ

∗
y

)
(s) = min

x∈X
max

y∈Y:g(s,x,y)≥0
E

S′∼p(·|s,x,y)

[
r(s,x,y) + γvπ

∗
xπ

∗
y (S′)

]
(20)

= min
x∈X

max
y∈Y:g(s,x,y)≥0

qπ
∗
xπ

∗
y (s,x,y) (21)

= vπ
∗
xπ

∗
y (Lemma 2.1)

(22)

(Fixed Point =⇒ recursive Stackelberg equilibrium) Suppose that a value function vπ
∗
xπ

∗
y which

is induced by a policy profile (π∗
x,π

∗
y) is a fixed point of C , we then have for all states s ∈ S :

vπ
∗
xπ

∗
y =

(
Cvπ

∗
xπ

∗
y

)
(s) (23)

= min
x∈X

max
y∈Y:g(s,x,y)≥0

E
S′∼p(·|s,x,y)

[
r(s,x,y) + γvπ

∗
xπ

∗
y (S′)

]
(24)

= min
x∈X

max
y∈Y:g(s,x,y)≥0

qπ
∗
xπ

∗
y (s,x,y) (25)

14
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Hence, by Lemma 2.1, (π∗
x,π

∗
y) is recursive Stackelberg equilibrium.

Lemma 2.3. Suppose that f, h : X × Y → R, g : X × Y →
Rd are continuous functions, and X ,Y are compact sets, we then have:∣∣minx∈X maxy∈Y:g(x,y)≥0 f(x,y)−minx∈X maxy∈Y:g(x,y)≥0 h(x,y)

∣∣ ≤
max(x,y)∈X×Y |f(x,y)− h(x,y)|.

Proof of Lemma 2.3. Let (x∗,y∗) be a Stackelberg equilibrium of

minx∈X maxy∈Y:g(x,y)≥0 f(x,y), and (x′,y′) be a Stackelberg equilibrium of

minx∈X maxy∈Y:g(x,y)≥0 h(x,y). Additionally, let ȳ ∈ argmaxy∈Y:g(x′,y)≥0 f(x
′,y), then by

the the definition of a Stackelberg equilibrium, we have f(x∗,y∗) = miny∈Y maxx∈X :g(x,y)≥0 ≤
maxy∈Y:g(x′,y)≥0 f(x

′,y) = f(x′, ȳ), and h(x′,y′) = maxy∈Y:g(x′,y)≥0 h(x
′,y) ≥ h(x′, ȳ).

Suppose that minx∈X maxy∈Y:g(x,y)≥0 f(x,y) ≥ minx∈X maxy∈Y:g(x,y)≥0 , h(x,y) this gives
us: ∣∣∣∣min

x∈X
max

y∈Y:g(x,y)≥0
f(x,y)− min

x∈X
max

y∈Y:g(x,y)≥0
h(x,y)

∣∣∣∣ (26)

= |f(x∗,y∗)− h(x′,y′)| (27)

≤ |f(x′, ȳ)− h(x′,y′)| (28)

≤ |f(x′, ȳ)− h(x′, ȳ)| (29)

≤ max
(x,y)∈X×Y

|f(x,y)− h(x,y)| (30)

The opposite case follows similarly by symmetry.

Theorem 2.4. Consider the operator C associated with a stochastic Stackelberg game G(0). If As-
sumption 1.1 holds, then C is a contraction mapping w.r.t. to the sup norm ∥.∥∞ with constant γ.

Proof of Theorem 2.4. We will show that C is a contraction mapping, which then by Banach fixed

point theorem establish the result. Let v, v ′ ∈ V be any two state value functions and q, q ′ ∈ Q
be the respective associated action-value functions. We then have:

∥Cv − Cv ′∥∞ (31)

≤ max
s∈S

∣∣∣∣min
x∈X

max
y∈Y:g(s,x,y)≥0

q(s,x,y)− min
x∈X

max
y∈Y:g(s,x,y)≥0

q ′(s,x,y)

∣∣∣∣ (32)

≤ max
s∈S

max
(x,y)∈X×Y

|q(s,x,y)− q ′(s,x,y)| (Lemma 2.3)

(33)

≤ max
s∈S

max
(x,y)∈X×Y

∣∣∣∣ E
S′∼p(·|s,x,y)

[r(s,x,y) + γv(S′)]− E
S′∼p(·|s,x,y)

[r(s,x,y) + γv ′(S′)]

∣∣∣∣
(34)

≤ max
s∈S

max
(x,y)∈X×Y

∣∣∣∣ E
S′∼p(·|s,x,y)

[γv(S′)− γv ′(S′)]

∣∣∣∣ (35)

≤ γmax
s∈S

max
(x,y)∈X×Y

∣∣∣∣ E
S′∼p(·|s,x,y)

[v(S′)− v ′(S′)]

∣∣∣∣ (36)

≤ γmax
s∈S

max
(x,y)∈X×Y

|v(s)− v ′(s)| (37)

= γ ∥v − v ′∥∞ (38)

Since γ ∈ (0, 1), C is a contraction mapping.

Theorem 2.5. Consider a zero-sum stochastic Stackelberg game G(0). If Assumption 1.1 holds, then
G(0) has at least one recSE (π∗

x,π
∗
y) with unique value function vπ

∗
xπ

∗
y . Further, vπ

∗
xπ

∗
y can be com-

puted by iteratively applying C to any initial state-value function v(0) ∈ V : limt→∞ v(t) = vπ
∗
xπ

∗
y .

15
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Proof of Theorem 2.5. By combining Theorem 2.4 and the Banach fixed point theorem Banach

(1922), we obtain that a fixed point of C exists. Hence, by Theorem 2.2, a recursive Stackel-

berg equilibrium of (S,X ,Y, µ(0), r, g, p, γ) exists and the value function induced by all recursive

Stackelberg equilibria is the same, i.e., the optimal value function is unique. Additionally, by the

second part of the Banach fixed point theorem, we must then also have limt→∞ v(t) → vπ
∗
xπ

∗
y .

For any q ∈ Q, we define a greedy policy profile with respect to q as a pol-

icy profile (π
q
x,π

q
y) such that π

q
x ∈ argminx∈X maxy∈Y:g(s,x,y)≥0 q(s,x,y) and π

q
y ∈

argmaxy∈Y:g(s,π
q
x(x),y)≥0 q(s,π

q
x(x),y). The following lemma provides a progress bound for

each iteration of value iteration which is expressed in terms of the value function associated with

the greedy policy profile.

Lemma B.3. Let (π∗
x,π

∗
y) be the recSEof a zero-sum Stochastic Stackelberg game

(S,X ,Y, µ(0), r, g, p, γ). For any q ∈ Q, let πq
x, π

q
y denote the greedy policy with respect to

q of x-player and y-player respectively. Then, the following bound holds:

vπ
q
xπ

q
y (s)− vπ

∗
xπ

∗
y (s) ≤ 2∥q − q∗∥∞

(1− γ)
(39)

Using the above progress bound, we can then obtain a convergence rate for value iteration under

Assumption 1.1.

Proof of Lemma B.3. For any state s, we have:

vπ
∗
xπ

∗
y (s)− vπ

q
xπ

q
y (s) (40)

= qπ
∗
xπ

∗
y (s,π∗

x(s),π
∗
y(s))− qπ

q
xπ

q
y (s,π

q
x(s),π

q
y(s)) (41)

= qπ
∗
xπ

∗
y (s,π∗

x(s),π
∗
y(s))− qπ

∗
xπ

∗
y (s,π

q
x(s),π

q
y(s)) + qπ

∗
xπ

∗
y (s,π

q
x(s),π

q
y(s))− qπ

q
xπ

q
y (s,π

q
x(s),π

q
y(s))

(42)

= qπ
∗
xπ

∗
y (s,π∗

x(s),π
∗
y(s))− qπ

∗
xπ

∗
y (s,π

q
x(s),π

q
y(s)) + γ E

s′∼p(·|s,πq
x(s),π

q
y(s))

[vπ
∗
xπ

∗
y (s′)− vπ

q
xπ

q
y (s′)]

(43)

≥ qπ
∗
xπ

∗
y (s,π∗

x(s),π
∗
y(s)) +

[
q(s,π

q
x(s),π

q
y(s))− max

y∈Y:g(s,π∗
x(s),y)≥0

q(s,π∗
x(s),y)

]
− qπ

∗
xπ

∗
y (s,π

q
x(s),π

q
y(s))

+ γ E
s′∼p(s,π

q
x(s),π

q
y(s))

[vπ
∗
xπ

∗
y (s′)− vπ

q
xπ

q
y (s′)] (44)

(45)

where the last line was obtained by the definition of a recursive Stackelberg equilibrium which

ensures that q(s,π
q
x(s),π

q
y(s)) ≤ maxy∈Y:g(s,π∗

x(s),y)≥0 q(s,π∗
x(s),y).

Re-organizing terms, we have:

vπ
∗
xπ

∗
y (s)− vπ

q
xπ

q
y (s) (46)

≥
[
qπ

∗
xπ

∗
y (s,π∗

x(s),π
∗
y(s))− max

y∈Y:g(s,π∗
x(s),y)≥0

q(s,π∗
x(s),y)

]
+

[
q(s,π

q
x(s),π

q
y(s))− qπ

∗
xπ

∗
y (s,π

q
x(s),π

q
y(s))

]
+ γ E

s′∼p(s,π
q
x(s),π

q
y(s))

[vπ
∗
xπ

∗
y (s′)− vπ

q
xπ

q
y (s′)] (47)

=

[
max

y∈Y:g(s,π∗
x(s),y)≥0

qπ
∗
xπ

∗
y (s,π∗

x(s),y)− max
y∈Y:g(s,π∗

x(s),y)≥0
q(s,π∗

x(s),y)

]
+
[
q(s,π

q
x(s),π

q
y(s))− qπ

∗
xπ

∗
y (s,π

q
x(s),π

q
y(s))

]
+ γ E

s′∼p(s,π
q
x(s),π

q
y(s))

[vπ
∗
xπ

∗
y (s′)− vπ

q
xπ

q
y (s′)]

(48)
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Taking the minimum of both sides over states, and re-collecting terms, we obtain:

min
s∈S

(
vπ

∗
xπ

∗
y (s)− vπ

q
xπ

q
y (s)

)
≥ −2∥q − q∗∥∞+γmin

s∈s

[
vπ

∗
xπ

∗
y (s)− vπ

q
xπ

q
y (s)

]
(49)

(1− γ)min
s∈S

(
vπ

∗
xπ

∗
y (s)− vπ

q
xπ

q
y (s)

)
≥ −2∥q − q∗∥∞ (50)

min
s∈S

(
vπ

∗
xπ

∗
y (s)− vπ

q
xπ

q
y (s)

)
≥ −2∥q − q∗∥∞

(1− γ)
(51)

vπ
∗
xπ

∗
y (s)− vπ

q
xπ

q
y (s) ≥ −2∥q − q∗∥∞

(1− γ)
∀s ∈ S

(52)

Theorem 2.8. [Convergence of Value Iteration] Suppose value iteration is run on input G. If Assump-
tion 1.1 holds, and if we initialize v(0)(s) = 0, for all s ∈ S , then for k ≥ 1

1−γ log 2α
ϵ(1−γ) , we have

v(k)(s)− vπ
∗
xπ

∗
y (s) ≤ ϵ.

Proof of Theorem 2.8. First note that by Assumption 1.1, we have that

∥∥∥vπ∗
xπ

∗
y

∥∥∥
∞

≤ α. Applying

the operator C repeatedly and using the fact that vπ
∗
xπ

∗
y = Cvπ

∗
xπ

∗
y from Theorem 2.2, we obtain

∥v(k) − vπ
∗
xπ

∗
y∥∞

= ∥(C)kv(0) − (C)kv∗∥∞
≤ γk∥v(0) − vπ

∗
xπ

∗
y∥∞

= ∥(C)kq(0) − (C)kq∗∥∞
≤ γk∥v(0) − vπ

∗
xπ

∗
y∥∞

= γk max
s∈S

∣∣∣∣min
x∈X

max
y∈Y:g(s,x,y)≥0

q(0)(s,x,y)− min
x∈X

max
y∈Y:g(s,x,y)≥0

qπ
∗
xπ

∗
y (s,x,y)

∣∣∣∣
= γk max

s∈S
max

(x,y)∈X×Y

∣∣∣q(0)(s,x,y)− qπ
∗
xπ

∗
y (s,x,y)

∣∣∣ (Lemma 2.3)

= γk∥q∗∥∞
≤ γkα

Since 1− x ≤ e−x
for any x ∈ R, we have

γk = (1− (1− γ))k ≤ (e−(1−γ))k ≤ e−(1−γ)k

Combining this bound with Equation (39) for all q ∈ Q:

v(k)(s)− vπ
∗
xπ

∗
y (s) ≤ 2∥q − q∗∥∞

1− γ

≤ 2γkα

(1− γ)

≤ 2α

(1− γ)
e−(1−γ)k

Thus it suffices to solve for k such that

2α

(1− γ)
e−(1−γ)k ≤ ε .

which concludes the proof.
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C Omitted Results and Proofs Section 3

Our characterization of the subdifferential of the value function associated with a Stackelberg equi-

librium w.r.t. its parameters relies on a slightly generalized version of the subdifferential envelope

theorem (Theorem C.1, Appendix C) of Goktas & Greenwald (2021), which characterizes the set

of subdifferentials of parametrized constrained optimization problems, i.e., the set of subgradients

w.r.t. x of f∗(x) = maxy∈Y:h(x,y)≥0 f(x,y). In particular, we note that Goktas & Greenwald’s

proof goes through even without assuming the concavity of f(x,y), h1(x,y), . . . , hd(x,y) in y,
for all x ∈ X .

Theorem C.1 (Subdifferential Envelope Theorem). Consider the function f∗(x) =
maxy∈Y:h(x,y)≥0 f(x,y) where f : X × Y → R, and h : X × Y → Rd. Let
Y∗(x) = argmaxy∈Y:h(x,y)≥0 f(x,y). Suppose that 1. f(x,y), h1(x,y), . . . , hd(x,y) are
continuous in (x,y) and convex in x; 2. ∇xf,∇xh1, . . . ,∇xhd exist for all x ∈ X ,y ∈ Y ; 3. Y
is non-empty and compact, and 4. (Slater’s condition) ∀x ∈ X ,∃ŷ ∈ Y s.t. gk(x, ŷ) > 0, for all
k = 1, . . . , d. Then, f∗ is subdifferentiable and at any point x̂ ∈ X , ∂xf∗(x̂) =

conv

 ⋃
y∗(x̂)∈Y∗(x̂)

⋃
λ∗
k(x̂,y

∗(x̂))∈Λ∗(x̂,y∗(x̂))

{
∇xf (x̂,y∗(x̂)) +

d∑
k=1

λ∗
k(x̂,y

∗(x̂))∇xgk (x̂,y
∗(x̂))

} ,

(53)

where conv is the convex hull operator and λ∗(x̂,y∗(x̂)) = (λ∗
1(x̂,y

∗(x̂)), . . . , λ∗
d(x̂,y

∗(x̂)))
T ∈

Λ∗(x̂,y∗(x̂)) are the optimal KKT multipliers associated with y∗(x̂) ∈ Y∗(x̂).

We note the following known lemma which provides the necessary conditions for the Bellman

equation associated with a recursive optimization problem to be continuous and convex in its

parameters.
6

Lemma C.2. Consider the Bellman equation associated with a parametric recursive stochastic op-
timization problem, where r : S × X × Y → R, with state space S and parameter set X , and
γ ∈ (0, 1):

v(s,x) = max
y∈Y:g(s,x,y)≥0

{
r(s,x,y) + γ E

S′∼p(·|s,x,y)
[v(S′,x)]

}
(54)

Suppose that Assumption 1.1 holds, and that 1. for all s ∈ S,y ∈ Y , r(s,x,y),
g1(s,x,y), . . . , gd(s,x,y) are concave in x, 2. p(s′ | s,x,y) is continuous (Feller property) and
CSD convex in x. Then, v is continuous and convex in x.

Theorem C.3. [Subdifferential Benveniste-Scheinkman Theorem] Consider the Bellman equation
associated with a recursive stochastic optimization problem where r : S × X × Y → R, with state
space S and parameter set X , and γ ∈ (0, 1):

v(s,x) = max
y∈Y:g(s,x,y)≥0

{
r(s,x,y) + γ E

S′∼p(·|s,x,y)
[v(S′,x)]

}
(55)

Suppose that Assumption 1.1 holds, and that 1. for all s ∈
S,y ∈ Y , r(s,x,y), g1(s,x,y), . . . , gd(s,x,y) are concave in x,
2. ∇xr(s,x,y),∇xg1(s,x,y), . . . ,∇xgd(s,x,y),∇xp(s

′ | s,x,y) exist for all
s, s′ ∈ S,x ∈ X ,y ∈ Y , 3. p(s′ | s,x,y) is continuous CSD convex, and differentiable in
x, and 4. Slater’s condition holds for the optimization problem, i.e., ∀x ∈ X , s ∈ S,∃ŷ ∈ Y s.t.
gk(s,x, ŷ) > 0, for all k = 1, . . . , d.
Let Y∗(s,x) = maxy∈Y:g(s,x,y)≥0

{
r(s,x,y) + γ Es′∼p(·|s,x,y) [v(s

′,x)]
}
, then v is subdiffer-

entiable and ∂xv(s, x̂) =

conv

 ⋃
y∗(s,x̂)∈Y∗(s,x̂)

⋃
λ∗
k(s,x̂,y

∗(s,x̂))∈Λ∗(s,x̂,y∗(x̂))

{
∇xr (s, x̂,y

∗(s, x̂)) + γ∇x E
S′∼p(·|s,x̂,y∗(s,x̂))

[v(S′, x̂)]

+

d∑
k=1

λ∗
k(s, x̂,y

∗(s, x̂))∇xgk (s, x̂,y
∗(s, x̂))

})
.

(56)

6

The interested reader can infer a proof from the proof of Theorem 2 of Atakan (2003)
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Suppose additionally, that for all s, s′ ∈ S,x ∈ X , y∗(s,x) ∈ Y∗(s,x)∇xp(s
′ | s,x,y∗(s,x)) >

0, then ∂xv(s, x̂) =

conv

 ⋃
y∗(s,x̂)∈Y∗(s,x̂)

⋃
λ∗
k(s,x̂,y

∗(s,x̂))∈Λ∗(s,x̂,y∗(x̂))

{
∇xr (s, x̂,y

∗(s, x̂)) + γ E
S′∼p(·|s,x̂,y∗(s,x̂))

[∇xv(S
′, x̂)]

+γ E
S′∼p(·|s,x̂,y∗(s,x̂))

[v(S′, x̂)∇x log (p(S′ | s, x̂,y∗(s, x̂))] +

d∑
k=1

λ∗
k(s, x̂,y

∗(s, x̂))∇xgk (s, x̂,y
∗(s, x̂))

})
.

(57)

where conv is the convex hull operator and λ∗(s, x̂,y∗(s, , x̂)) =

(λ∗
1(s, x̂,y

∗(s, x̂)), . . . , λ∗
d(s, x̂,y

∗(s, x̂)))
T ∈ Λ∗(s, x̂,y∗(s, x̂)) are the optimal KKTmultipliers

associated with y∗(s, x̂) ∈ Y∗(s, x̂).

Proof of Theorem C.3. First, note that by Lemma C.2, v is continuous and convex in x, hence it is
subdifferentiable. From Theorem C.1, we then obtain the first part of the theorem:

∂xv(s, x̂) = conv

 ⋃
y∗(s,x̂)∈Y∗(s,x̂)

⋃
λ∗
k(s,x̂,y

∗(s,x̂))∈Λ∗(s,x̂,y∗(s,x̂))

{
∇xr (s, x̂,y

∗(s, x̂)) + γ∇x E
s′∼p(·|s,x,y∗(s,x̂))

[v(S′,x)]

+

d∑
k=1

λ∗
k(s, x̂,y

∗(s, x̂))∇xgk (s, x̂,y
∗(s, x̂))

})
.

(58)

By the Leibniz integral rule Flanders (1973), the gradient of the expectation can instead be ex-

pressed as an expectation of the gradient under continuity of the function whose expectation

is taken, in this case v . In particular, if for all s, s′ ∈ S,x ∈ X , y∗(s,x) ∈ Y∗(s,x)
∇xp(s

′ | s,x,y∗(s,x)) > 0 we have:

∇x E
S′∼p(·|s,x,y)

[v(S′,x)] (59)

= ∇x

∫
z∈S

p(z | s,x,y)v(z,x)dz (60)

=

∫
z∈S

∇x[p(z | s,x,y)v(z,x)]dz (Leibniz Integral Rule)

(61)

=

∫
z∈S

[p(z | s,x,y)∇xv(z,x) + v(z,x)∇xp(z | s,x,y)] dz (Product Rule)

(62)

=

∫
z∈S

[
p(z | s,x,y)∇xv(z,x) + v(z,x)p(z | s,x,y)∇xp(z | s,x,y)

p(z | s,x,y)

]
dz (p(z | s,x,y) > 0)

(63)

=

∫
z∈S

[p(z | s,x,y)∇xv(z,x) + v(z,x)p(z | s,x,y)∇x log p(z | s,x,y)] dz (64)

=

∫
z∈S

[p(z | s,x,y)∇xv(z,x)] dz +

∫
z∈S

[v(z,x)p(z | s,x,y)∇x log p(z | s,x,y)] dz

(65)

= E
S′∼p(·|s,x,y)

[∇xv(S
′,x)] + E

S′∼p(·|s,x,y)
[v(S′,x)∇x log p(S′ | s,x,y)] (66)
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This gives us ∂xv(s, x̂) =

conv

 ⋃
y∗(s,x̂)∈Y∗(s,x̂)

⋃
λ∗
k(s,x̂,y

∗(s,x̂))∈Λ∗(s,x̂,y∗(x̂))

{
∇xr (s, x̂,y

∗(s, x̂)) + γ E
S′∼p(·|s,x̂,y∗(s,x̂))

[∇xv(S
′, x̂)]

+γ E
S′∼p(·|s,x̂,y∗(s,x̂))

[v(S′, x̂)∇x log (p(S′ | s, x̂,y∗(s, x̂))] +

d∑
k=1

λ∗
k(s, x̂,y

∗(s, x̂))∇xgk (s, x̂,y
∗(s, x̂))

})
.

(67)

Note that in the special case that the probability transition function is repre-

senting a deterministic recursive parametrized optimization problem, v(s,x) =
maxy∈Y:g(s,x,y)≥0 {r(s,x,y) + γ [v(τ(s,x,y),x)]} i.e., p(s′ | s,x,y) ∈ {0, 1} for all

s, s′ ∈ S,x ∈ X ,y ∈ Y , and τ : S × X × Y → S is such that τ(s,x,y) = s′ iff
p(s′ | s,x,y) = 1, the CSD convexity assumption reduces to the linearity of the deterministic

state transition function τ (Proposition 1 of Atakan (2003)). In this case, the subdifferential of the

Bellman equation reduces to

∂xv(s, x̂) = conv

 ⋃
y∗(s,x̂)∈Y∗(s,x̂)

⋃
λ∗
k(s,x̂,y

∗(s,x̂))∈Λ∗(s,x̂,y∗(s,x̂))

{∇xr (s, x̂,y
∗(s, x̂)) + γ∇xτ(s, x̂,y)∇sv(τ(s, x̂,y), x̂)

(68)

+∇xv(τ(s, x̂), x̂) +

d∑
k=1

λ∗
k(s, x̂,y

∗(s, x̂))∇xgk (s, x̂,y
∗(s, x̂))

})
(69)

Theorem 3.1. Consider a zero-sum stochastic Stackelberg game G, where X = {x ∈ Rn |
q1(x) ≤ 0, . . . , qp(x) ≤ 0} and Y = {y ∈ Rm | r1(y) ≥ 0, . . . , rl(y) ≥
0}. Let Ls,x(y,λ) = r(s,x,y) + γ ES′∼p(·|s,x,y) [v(S

′,x)] +
∑d

k=1 λkgk(s,x,y). Sup-
pose that Assumption 1.1 holds, and that 1. for all s ∈ S,y ∈ Y , r(s,x,y),
g1(s,x,y), . . . , gd(s,x,y) are concave in x, 2. ∇xr(s,x,y),∇xg1(s,x,y), . . . ,∇xgd(s,x,y),
∇yr(s,x,y),∇yg1(s,x,y), . . . ,∇ygd(s,x,y) exist, for all s ∈ S,x ∈ X ,y ∈ Y , 4. p(s′ |
s,x,y) is continuous CSD convex and differentiable in (x,y), and 5. Slater’s condition holds, i.e.,
∀s ∈ S,x ∈ X ,∃ŷ ∈ Y s.t. gk(s,x, ŷ) > 0, for all k = 1, . . . , d and rj(ŷ) > 0, for all j = 1, . . . , l,
and ∃x ∈ Rn s.t. qk(x) < 0 for all k = 1 . . . , p. Then, there existsµ∗ : S → Rp

+, λ
∗ : S×X → Rd

+,
and ν∗ : S × X → Rl

+ s.t. a policy profile (π∗
x,π

∗
y) ∈ XS × YS is a recSE of G only if it satisfies

the following conditions, for all s ∈ S :

∇xLs,π∗
x(s)

(π∗
y(s),λ

∗(s,π∗
x(s))) +

p∑
k=1

µ∗
k(s)∇xqk(π

∗
x(s)) = 0 (1)

∇yLs,π∗
x(s)

(π∗
y(s),λ

∗(s,π∗
x(s))) +

l∑
k=1

ν∗k(s,π
∗
x(s))∇xrk(π

∗
y(s)) = 0 (2)

µ∗
k(s)qk(π

∗
x(s)) = 0 qk(π

∗
x(s)) ≤ 0 ∀k ∈ [p] (3)

gk(s,π
∗
x(s),π

∗
y(s)) ≥ 0 λ∗

k(s,π
∗
x(s))gk(s,π

∗
x(s),π

∗
y(s)) = 0 ∀k ∈ [d] (4)

ν∗k(s,π
∗
x(s))∇xrk(π

∗
y(s)) = 0 rk(π

∗
x(s)) ≥ 0 ∀k ∈ [l] (5)

Proof of Theorem 3.1. By Theorem 2.2 and Theorem 2.4 we know that (π∗
x,π

∗
y) is a recursive Stack-

elberg equilibrium iff

vπyπ
∗
y (s) =

(
Cvπyπ

∗
y

)
(s) . (70)
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Note that for any policy profile (π∗
x,π

∗
y) that satisfies v

πyπ
∗
y (s) =

(
Cvπyπ

∗
y

)
(s) by definition of

C we have that (π∗
x(s),π

∗
y(s)) is a Stackelberg equilibrium of

min
x∈X

max
y∈Y:g(s,x,y)≥0

{
r(s,x,y) + γ E

S′∼p(·|s,x,y)
[v(S′)]

}
for all s ∈ S .
Fix a state s ∈ S , under the assumptions of the theorem, the conditions of Theorem C.3 are

satisfied and u∗(s,x) = maxy∈Y:g(s,x,y)≥0

{
r(s,x,y) + γ ES′∼p(·|s,x,y) [v(S

′)]
}
is subdiffer-

entiable in x. Since u∗(s,x) is convex in x, and Slater’s condition are satisfied by the as-

sumptions of the theorem, the necesssary and sufficient conditions for π∗
x(s) to be an opti-

mal solution to minx∈X u∗(s,x) are given by the KKT conditions Kuhn & Tucker (1951) for

minx∈X u∗(s,x). Note that we can state the first order KKT conditions explicitly thanks to the

subdifferential Benveniste-Scheinkman theorem (Theorem C.3). That is, π∗
x(s) is an optimal solu-

tion to minx∈X u∗(s,x) if there exists µ∗(s) ∈ Rp
+ such that:

∇xLs,π∗
x(s)

(y∗(s,π∗
x(s)),λ

∗(s,π∗
x(s),y

∗(s,π∗
x(s))) +

p∑
k=1

µ∗
k(s)∇xqk(π

∗
x(s)) = 0 (71)

µ∗
k(s)qk(π

∗
x(s)) = 0 ∀k ∈ [p]

(72)

qk(π
∗
x(s)) ≤ 0 ∀k ∈ [p]

(73)

wherey∗(s,π∗
x(s)) ∈ argmaxy∈Y:g(s,π∗

x(s),y)≥0

{
r(s,π∗

x(s),y) + γ ES′∼p(·|s,π∗
x(s),y)

[v(S′)]
}

and

λ∗(s,π∗
x(s),y

∗(s,π∗
x(s))) = (λ∗

1(s,π
∗
x(s),y

∗(s,π∗
x(s))), . . . , λ

∗
d(s,π

∗
x(s),y

∗(s,π∗
x(s))))

T ∈
Λ∗(s,π∗

x(s),y
∗(s,π∗

x(s))) are the optimal KKT multipliers associated with y∗(s,π∗
x(s)) ∈

Y∗(s,π∗
x(s)) which are guaranteed to exist since Slater’s condition is satisfied for

maxy∈Y:g(s,x,y)≥0

{
r(s,x,y) + γ ES′∼p(·|s,x,y) [v(S

′)]
}
.

Similarly, fix a state s ∈ S and action for the outer player x ∈ X , since Slater’s condition is

satisfied for maxy∈Y:g(s,x,y)≥0

{
r(s,x,y) + γ ES′∼p(·|s,x,y) [v(S

′)]
}
, the necessary conditions

for π∗
y(s) to be a Stackelberg equilibrium strategy for the inner player at state s are given by

the KKT conditions for maxy∈Y:g(s,x,y)≥0

{
r(s,x,y) + γ ES′∼p(·|s,x,y) [v(S

′)]
}
. That is, there

exists λ∗(s,x) ∈ Rd
+ and ν∗(s,x) ∈ Rl

+ such that:

∇yLs,x(π
∗
y(s),λ

∗(s,x)) +

l∑
k=1

ν∗k(s)∇xrk(π
∗
y(s)) = 0 (74)

gk(s,x,π
∗
y(s)) ≥ 0 ∀k ∈ [d] (75)

λ∗
k(s,x)gk(s,x,π

∗
y(s)) = 0 ∀k ∈ [d] (76)

ν∗k(s,x)∇xrk(π
∗
y(s)) = 0 ∀k ∈ [l] (77)

rk(x) ≥ 0 ∀k ∈ [l] (78)

Combining the necessary and sufficient conditions in Equations (71) to (73) with the necessary con-
ditions in Equations (74) to (78), we obtain the necessary conditions for (π∗

x,π
∗
y) to be a recursive

Stackelberg equilibrium.

Theorem C.4 (Recursive Stackelberg Equilibrium Necessary and Sufficient Optimality

Conditions). Consider a zero-sum Stochastic Stackelberg game (S,X ,Y, r, g, p, γ), where
X = {x ∈ Rn | q1(x) ≤ 0, . . . , qp(x) ≤ 0} and Y = {y ∈ Rm | r1(y) ≥ 0, . . . , rl(y) ≥ 0}.
Let Ls,x(y,λ) = r(s,x,y) + γ ES′∼p(·|s,x,y) [v(S

′,x)] +
∑d

k=1 λkgk(s,x,y). Suppose that As-
sumption 1.1 holds, and that 1. for all s ∈ S,y ∈ Y , r(s,x,y), g1(s,x,y), . . . , gd(s,x,y)
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are convex-concave in (x,y), 2. ∇xr(s,x,y),∇xg1(s,x,y), . . . ,∇xgd(s,x,y),
∇yr(s,x,y),∇yg1(s,x,y), . . . ,∇ygd(s,x,y) exist for all s ∈ S,x ∈ X ,y ∈ Y ,
4. p(s′ | s,x,y) is continuous, CSD convex in x, CSD concave in y, and differentiable in
(x,y), and 5. Slater’s condition holds, i.e., ∀s ∈ S,x ∈ X ,∃ŷ ∈ Y s.t. gk(s,x, ŷ) > 0, for all
k = 1, . . . , d and rj(ŷ) > 0 for all j = 1, . . . , l, and ∃x ∈ Rn s.t. qk(x) < 0 for all k = 1 . . . , p
. Then, there exists µ∗ : S → Rp

+, λ
∗ : S × X → Rd

+, and ν∗ : S × X → Rl
+ such that a policy

profile (π∗
x,π

∗
y) ∈ XS × YS is a recursive Stackelberg equilibrium of (S,X ,Y, r, g, p, γ) only if it

satisfies the following conditions for all s ∈ S :

vπ
∗
yπ

∗
y (s) =

(
Cvπ

∗
yπ

∗
y

)
(s) (79)

∇xLs,π∗
x(s)

(π∗
y(s),λ

∗(s,π∗
x(s))) +

p∑
k=1

µ∗
k(s)∇xqk(π

∗
x(s)) = 0 (80)

∇yLs,π∗
x(s)

(π∗
y(s),λ

∗(s,π∗
x(s))) +

l∑
k=1

ν∗k(s,π
∗
x(s))∇xrk(π

∗
y(s)) = 0 (81)

µ∗
k(s)qk(π

∗
x(s)) = 0 ∀k ∈ [p] (82)

qk(π
∗
x(s)) ≤ 0 ∀k ∈ [p] (83)

gk(s,π
∗
x(s),π

∗
y(s)) ≥ 0 ∀k ∈ [d] (84)

λ∗
k(s,π

∗
x(s))gk(s,π

∗
x(s),π

∗
y(s)) = 0 ∀k ∈ [d] (85)

ν∗k(s,π
∗
x(s))∇xrk(π

∗
y(s)) = 0 ∀k ∈ [l] (86)

rk(π
∗
x(s)) ≥ 0 ∀k ∈ [l] (87)

D Omitted Results and Proofs Section 4

Before, we introduce the stochastic Stackelberg game whose recursive Stackelberg equilibria cor-

respond to recursive competitive equilibria of an associate stochastic Fisher market, we introduce

the following technical lemma, which provides the necessary and sufficient conditions for an allo-

cation and saving system of a buyer to be expected utility maximizing.

Lemma D.1. For any price system p ∈ RS×m
+ , a tuple (x∗

i , β
∗
i ) ∈ RS×n×m

+ × Rn×m
+ consisting of

an allocation system and saving system for a buyer i, given by a continuous, and homogeneous utility
function ui : Rm

+ × T → R representing a locally non-satiated preference is expected utility max-
imizing constrained by the saving and spending constrained, i.e., the first condition of a competitive
equilibrium is satisfied only we have for all states s ∈ S , x∗

i (t, b, q) · p(t, b, q) + β∗
i (t, b, q) ≤ bi,

and,

x∗
ij(s) > 0 =⇒

∂ui

∂xij
(x∗

i (s); ti)

pj
=

ui(x
∗
i (s); ti)

bi − β∗
i (s)

∀j ∈ [m] (88)

β∗
i (s) > 0 =⇒ ∂νi

∂bi
(s) = γ

∂

∂βi
E

(t′,b′,q′)
[νi(t

′, b′ + β∗
i (s), q

′)] (89)

If additionally, ui is concave, then the above condition become also sufficient.

Proof of Lemma D.1. Let L(xi, βi, λ,µ;p) = ui (xi; ti) +
γ E(t′,b′,q′)∼p(·|t,b,q,(xi,X∗

−i(s),(βi,β∗
−i(s)))

[νi(t
′, b′ + βi, q

′)] + λ(bi − xip) +
∑

j∈[m] µjxij +

µm+1βi be the Lagrangian associated with

νi(t, b, q) = max
(xi,βi)∈Rm+1

+ :xi·p∗(b)+βi≤bi

ui(xi, ti) + γ E
(t′,b′,q′)

[νi(t
′, b′ + βi, q

′)] .

Then, for any bi > 0, Slater’s condition holds and as the objective is concave (by the Weierstass

M-test and the uniform limit theorem), the KKT first order necessary and sufficient optimality

conditions for an allocation x∗
i ∈ Rm

+ , saving β∗
i ∈ R+ and associated Lagrangian multipliers

λ∗ ∈ R+, µ
∗ ∈ Rm+1

to be optimal for any prices p ∈ Rm
+ are given by the following pair of
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equations:

∂ui

∂xij
(x∗

i (s); ti)− λ∗(s)pj(s) + µ∗
j
.
= 0 (90)

γ
∂

∂βi
E

(t′,b′,q′)
[νi(t

′, b′ + β∗
i , q

′)]− λ∗
i (s) + µ∗

m+1
.
= 0 (91)

Additionally, by the KKT complimentarity conditions, we have for all j ∈ j, µ∗
jx

∗
ij = 0 and

µ∗
m+1β

∗
i = 0, which gives us:

x∗
ij(s) > 0 =⇒ λ∗ =

∂ui

∂xij
(x∗

i (s); ti)

pj
∀i ∈ [n], j ∈ [m] (92)

β∗
i (s) > 0 =⇒ γ

∂

∂βi
E

(t′,b′,q′)
[νi(t

′, b′ + β∗
i , q

′)]− λ∗(s) = 0 ∀i ∈ [n], j ∈ [m] (93)

Re-organizing expressions, yields:

x∗
ij(s) > 0 =⇒ λ∗ =

∂ui

∂xij
(x∗

i (s); ti)

pj
∀i ∈ [n], j ∈ [m] (94)

β∗
i (s) > 0 =⇒ λ∗(s) = γ

∂

∂βi
E

(t′,b′,q′)
[νi(t

′, b′ + β∗
i , q

′)] ∀i ∈ [n] (95)

Using the envelope theorem, we can also compute
∂νi

∂βi
(s) as follows:

∂νi
∂bi

(s) = λ∗(bi) (96)

Hence, combining the above with Equation (94) and Equation (95), we get:

x∗
ij(s) > 0 =⇒ λ∗ =

∂ui

∂xij
(x∗

i (s); ti)

pj
∀i ∈ [n], j ∈ [m] (97)

β∗
i (s) > 0 =⇒ ∂νi

∂bi
(s) = γ

∂

∂βi
E

(t′,b′,q′)
[νi(t

′, b′ + β∗
i , q

′)] ∀i ∈ [n] (98)

Finally, going back to Equation (90), multiplying by x∗
ij(s) and summing up across all j ∈ [m], we

obtain:∑
j∈[m]

x∗
ij(s)

∂ui

∂xij
(x∗

i (s); ti)− λ∗(s)pj(s)x
∗
ij(s) + µ∗

jx
∗
ij(s) = 0 (99)

ui(x
∗
i (s); ti)− λ∗(s)

∑
j∈[m]

pj(s)x
∗
ij(s) + µ∗

jx
∗
ij(s) = 0 (Euler’s Theorem for Homogeneous Functions)

(100)

ui(x
∗
i (s); ti)− λ∗(s)(bi − β∗

i (s)) = 0 (Slack Complementarity)

(101)

λ∗(s) =
ui(x

∗
i (s); ti)

bi − β∗
i (s)

(102)

Combining the above conditions, with Equation (112), and adding to it Equation (98), and ensuring

that the KKT primal feasibility conditions hold as well, we obtain the following necessary and

sufficient conditions that need to hold for all states s ∈ S :

x∗
i (t, b, q) · p(t, b, q) + β∗

i (t, b, q) ≤ bi (103)

x∗
ij(s) > 0 =⇒

∂ui

∂xij
(x∗

i (s); ti)

pj
=

ui(x
∗
i (s); ti)

bi − β∗
i (s)

∀j ∈ [m] (104)

β∗
i (s) > 0 =⇒ ∂νi

∂bi
(s) = γ

∂

∂βi
E

(t′,b′,q′)
[νi(t

′, b′ + β∗
i (s), q

′)] (105)
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Theorem 4.1. A stochastic Fisher market with savings (S,U , b(0), p, γ) in whichU is a vector of con-
tinuous and homogeneous utility functions has at least one recCE. Additionally, the recSE (p∗,X∗,β∗)
that solves the following Bellman equation corresponds to the recCE of (S,U , b(0), p, γ):

v(t, b, q) = min
p∈Rm

+

max
(X,β)∈Rn×(m+1)

+ :Xp+β≤b

∑
j∈[m]

qjpj +
∑
i∈[n]

(bi − βi) log(ui(xi, ti))

+γ E
(t′,b′,q′)∼p(·|t,b,q,X,β)

[v(t′, b′ + β, q′)] (6)

Proof of Theorem 4.1. Define L(p,X,β,λ) =
∑

j∈[m] qjpj +
∑

i∈[n] (bi − βi) log(ui(xi, ti)) +

γ E(t′,b′,q′)∼p(·|t,b,q,X,β) [v(t
′, b′ + β, q′)] +

∑
j∈[m] λi (bi − xi · p+ βi). By Theorem 3.1, the

necessary optimality conditions for the stochastic Stackelberg game

max
(X,β)∈Rn×m

+ ×Rn
+:Xp+β≤b

∑
j∈[m]

qjpj+
∑
i∈[n]

(bi − βi) log(ui(xi, ti))+γ E
(t′,b′,q′)∼p(·|t,b,q,X,β)

[v(t′, b′ + β, q′)]

are that for all states s ∈ S there exists µ∗(s) ∈ Rn×(m+1)
, and ν∗(s) ∈ Rn×(m+1)

+ associated

with the non-negativity constraints for (X,β), and p respectively, and λ∗(s) ∈ Rm
+ such that:

qj −
∑
i∈[n]

λ∗
i (s)x

∗
ij(s)− ν∗j (s)

.
= 0 (106)

bi − β∗
i (s)

ui(x∗
i (s))

∂ui

∂xij
(x∗

i (s); ti)− λ∗
i (s)pj(s) + µ∗

ij(s)
.
= 0 ∀i ∈ [n], j ∈ [m]

(107)

− log (ui(x
∗
i (s))) + γ

∂

∂βi
E

(t′,b′,q′)
[v(t′, b′ + β∗(s), q′)]− λ∗

i (s) + µ∗
i(m+1)(s)

.
= 0 ∀i ∈ [n]

(108)

Note that by Theorem 3.1, we also have µ∗
i(m+1)(s)β

∗
i (s)) = µ∗

i+1)(s)x
∗
ij(s) = 0 which gives us:

pj(s) > 0 =⇒ qj −
∑
i∈[n]

λ∗
i (s)x

∗
ij(s) = 0 ∀[m] ∈ [m]

(109)

x∗
ij(s) > 0 =⇒ bi − β∗

i (s)

ui(x∗
i (s))

∂ui

∂xij
(x∗

i (s))− λ∗
i (s)pj(s) = 0 ∀i ∈ [n], j ∈ [m]

(110)

β∗
i (s) > 0 =⇒ − log (ui(x

∗
i (s); ti)) + γ

∂

∂βi
E

(t′,b′,q′)
[v(t′, b′ + β∗(s), q′)]− λ∗

i (s) + µ∗
i(m+1)(s) = 0 ∀i ∈ [n]

(111)

Re-organizing expressions, we obtain:

pj(s) > 0 =⇒ qj =
∑
i∈[n]

λ∗
i (s)x

∗
ij(s) ∀j ∈ [m]

(112)

x∗
ij(s) > 0 =⇒ ui(x

∗
i (s))

bi − β∗
i (s)

λ∗
i (s) =

∂ui

∂xij
(x∗

i (s); ti)

pj(s)
∀i ∈ [n], j ∈ [m]

(113)

β∗
i (s) > 0 =⇒ − log (ui(x

∗
i (s))) + γ

∂

∂βi
E

(t′,b′,q′)
[v(t′, b′ + β∗(s), q′)]− λ∗

i (s) = 0 ∀i ∈ [n]

(114)
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Using the envelope theorem, we can compute
∂v
∂bi

as follows:

∂v∗

∂bi
(s) = log (ui(x

∗
i (s); ti)) + λ∗

i (s) (115)

Re-organizing expressions, we get:

λ∗
i (s) =

∂v

∂bi
(s)− log (ui(x

∗
i (s); ti)) (116)

Combining Equation (116) and Equation (114), we obtain:

β∗
i (s) > 0 =⇒ − log (ui(x

∗
i (s); ti)) + γ

∂

∂βi
E

(t′,b′,q′)
[v(t′, b′ + β∗(s), q′)]− ∂v

∂bi
(b) + log (ui(x

∗
i (b); ti)) = 0 ∀i ∈ [n]

(117)

β∗
i (s) > 0 =⇒ γ

∂

∂βi
E

(t′,b′,q′)
[v(t′, b′ + β∗(s), q′)]− ∂v

∂bi
(b) = 0 ∀i ∈ [n]

(118)

β∗
i (s) > 0 =⇒ ∂v

∂bi
(b) = γ

∂

∂βi
E

(t′,b′,q′)
[v(t′, b′ + β∗(s), q′)] ∀i ∈ [n]

(119)

Going back to Equation (107), multiplying both sides by x∗
ij(s) and summing up across all j ∈ [m],

we get:∑
j∈j

bi − β∗
i (s)

ui(x∗
i (s); ti)

∑
j∈[m]

xij(s)
∗ ∂ui

∂xij
(x∗

i (s))− λ∗
i (s)

∑
j∈[m]

pj(s)x
∗
ij(s) = 0 (120)

bi − β∗
i (s)

ui(x∗
i (s); ti)

ui(x
∗
i (s); ti)− λ∗

i (s)
∑
j∈[m]

pj(s)x
∗
ij(s) = 0 (Euler’s Theorem)

(121)

bi − β∗
i (s)− λ∗

i (s)
∑
j∈[m]

pj(s)x
∗
ij(s) = 0 (122)

By Theorem 3.1, we have that λ∗
i (s)

(
bi −

∑
j∈[m] pj(s)x

∗
ij(s)− β∗

i (s)
)
= 0, which gives us:

bi − β∗
i (s)− λ∗

i (s)(bi − β∗
i (s)) = 0 (123)

λ∗
i (s) = 1 (124)

Combining the above with Equations (112) to (114) we obtain:

pj(s) > 0 =⇒ qj =
∑
i∈[n]

x∗
ij(s) ∀j ∈ [m] (125)

x∗
ij(s) > 0 =⇒ ui(x

∗
i (s))

bi − β∗
i (s)

=

∂ui

∂xij
(x∗

i (s); ti)

pj(s)
∀i ∈ [n], j ∈ [m] (126)

β∗
i (s) > 0 =⇒ ∂v

∂bi
(b) = γ

∂

∂βi
E

(t′,b′,q′)
[v(t′, b′ + β∗(s), q′)] ∀i ∈ [n] (127)

Since the utility functions are non-satiated, and by the second equation, the buyers are util-

ity maximizing at state s over all allocations, we must also have that Walras’ law holds, i.e.,

p ·
(
q −

∑
i∈[n] xi

)
−
∑

i∈[n] βi. Walras’ law combined with the first equation above then imply

the second condition of a recursive competitive equilibrium. Finally, by Lemma D.1, the last two

equations imply the first condition of recursive competitive equilibrium.
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E Experiment Details

We initialized a stochastic Fisher market with n = 2 buyers and m = 5 goods. To simplify the

analysis, we assumed deterministic transitions such that the buyers do not get new budgets at

each time period, and their types/valuations as well as the supply of goods does not change at each

state, i.e., the type/valuation space and supply space has cardinality 1. This reduced the market

to a deterministic repeated market setting in which the amount of budget saved by the buyers

differentiates different states of the market. To initialize the state space of the market, we first

fixed a range of [10, 50]m for the buyers’ valuations and drew for all buyers i ∈ [n] valuations θi
from that range uniformly at random at the beginning of the experiment. We have assumed the

supply of goods is 1m and that the budget space was [0, 1]n. This means that our state space for

our experiments was S = {(θ1,θ2)} × {1m} × [0, 1]n. We note that although the assumption

that buyers valuations/type space has cardinality one does simplify the problem, the supply of

the goods being 1 at each state is wlog because goods are divisible and the allocation of goods to

buyers at each state can then be interpreted as the percentage of a particular good allocated to a

buyer. We assumed initial budgets of b(0) = 1n for both buyers.

Since the state space is continuous, the value function is also continuous in the stochastic Fisher

market setting. As a result, we had to use fitted variant of value iteration. In particular, we assumed

that the value function had a linear form at each state such that v(t, b, q;a, c) = aT b+c for some

parameters a ∈ Rn, c ∈ R, and we tried to approximate the value function at the next step of value

iteration by using linear regression. That is, at each value iteration step, we uniformly sampled 25

budget vectors from the range [0, 1]n. Next, for each sampled budget b, we solved the min-max

step given that budget as a state. This process gave us (budget, value) pairs on which we ran linear

regression to approximate the value function at the next iterate.

To solve the generalized min-max operator at each step of value iteration, we used two different

methods for comparison: nested gradient descent ascent (GDA)Goktas &Greenwald (2021) (Al-

gorithm 2), which is not guaranteed to converge to a global optimum since themin-max Stackelberg

game for stochastic Fisher markets is convex-non-concave and max-oracle gradient descent
Goktas & Greenwald (2021) where the max-oracle is the simulated annealing algorithm Bertsimas

& Tsitsiklis (1993), a metaheuristic which probabiliticly aims to find a global maximum. Although,

simulated annealing annealing is not guaranteed to converge to a global maximum, we observed

that it often performed better than nested GDA at finding a global optimum for the inner player’s

strategy. For both methods, we have run value iteration for 30 iterations. We ran nested GDAwith

learning rates ηX = 0.5, ηp = 0.02 for linear, ηX = 0.5, ηp = 0.01 for leontief, and ηX = 0.5,
ηp = 0.0005 for Cobb-Douglas. We also ran max-oracle gradient descent with a learning rate of

ηp = 0.5. The outer loop of nested GDA was run for Tp = 30 iterations, while its inner loop was

run for TX = 100 iterations, and the max-oracle gradient descent algorithm was run for Tp = 30
iterations. We depict the trajectory of the average value of the value function at each iteration of

value iteration, under nested GDA in Section 5, and under max-oracle gradient descent in Section 5.

Figure 3: Exploitability of the computed recursive competitive equilbirium by both methods.
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