
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACCELERATED OVER-RELAXATION HEAVY-BALL
METHOD: ACHIEVING GLOBAL ACCELERATED CON-
VERGENCE WITH BROAD GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The heavy-ball momentum method accelerates gradient descent with a momentum
term but lacks accelerated convergence for general smooth strongly convex prob-
lems. This work introduces the Accelerated Over-Relaxation Heavy-Ball (AOR-
HB) method, the first variant with provable global and accelerated convergence for
such problems. AOR-HB closes a long-standing theoretical gap, extends to com-
posite convex optimization and min-max problems, and achieves optimal com-
plexity bounds. It offers three key advantages: (1) broad generalization ability,
(2) potential to reshape acceleration techniques, and (3) conceptual clarity and
elegance compared to existing methods.

1 INTRODUCTION

We first consider the convex optimization problem:

min
x∈Rd

f(x), (1)

where the objective function f is µ-strongly convex and L-smooth. Later on we consider extension
to composite convex optimization minx f(x) + g(x) with a non-smooth function g, and a class of
min-max problems minu∈Rm maxp∈Rn f(u)− g(p) + 〈Bu, p〉 with bilinear coupling.

Notation. Rd is d-dimensional Euclidean space with standard `2-inner product 〈·, ·〉 and the in-
duced norm ‖ · ‖. f : Rd → R is a differentiable function. We say f is µ-strongly convex function
when there exists µ > 0 such that

f(y)− f(x)− 〈∇f(x), y − x〉 ≥ µ

2
‖x− y‖2, ∀ x, y ∈ Rd.

We say f is L-smooth with L > 0 if its gradient is Lipschitz continuous:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Rd.
The condition number κ is defined as κ = L/µ.

When f is µ-strongly convex and L-smooth, the optimization problem (1) has a unique global
minimizer x∗. We focus on iterative methods to find x∗. A useful measure of convergence is the
Bregman divergence of f , defined as Df (y, x) := f(y) − f(x) − 〈∇f(x), y − x〉. In particular,
Df (x, x∗) = f(x) − f(x∗), since ∇f(x∗) = 0. Various bounds and identities on the Bregman
divergence can be found in Appendix A.

Heavy-ball methods and flow. Over the past two decades, first-order methods, which rely solely
on gradient information rather than the Hessian as required by Newton’s method, have gained sig-
nificant interest due to their efficiency and adaptability to large-scale data-driven applications and
machine learning tasks (Bottou et al., 2018). Among these methods, the gradient descent method
is the most straightforward and well-established algorithms. However, for ill-conditioned problems,
where the condition number κ� 1, the gradient descent method suffers from slow convergence.

In order to accelerate the gradient descent methods, a momentum term was introduced, encouraging
the method to move along search directions that utilize not only current but also previously seen
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information. The heavy-ball (HB) method (also known as the momentum method (Polyak, 1964)
was in the form of:

xk+1 = xk − γ∇f(xk) + β(xk − xk−1), (2)
where (β, γ) are constant parameters. Polyak motivated the method by an analogy to a “heavy
ball” moving in a potential well defined by the objective function f . The corresponding ordinary
differential equation (ODE) model is commonly referred to as the heavy-ball flow (Polyak, 1964):

x′′ + θx′ + η∇f(x) = 0, (3)

where x = x(t), x′ is taking the derivative of t, and (θ, η) are positive constant parameters.

Non-convergence and non-acceleration of the HB method. Polyak (1964) showed that for (2)

with β =
(√

L−√µ√
L+
√
µ

)2
, γ = 4

(
√
L+
√
µ)2

, and when xk is sufficiently close to the optimal solution x∗,

‖xk−x∗‖ converges at rate 1−√ρ
1+
√
ρ , where ρ = 1/κ. Polyak’s choice relies on the spectral analysis of

the linear system and thus the accelerated rate is only limited to the convex and quadratic objectives
and is local for iterates near x∗. Indeed Lessard et al. (2016) designed a non-convergent example to
show that the Polyak’s choice of parameters does not guarantee the global convergence for general
strongly convex optimization. By changing the parameters (β, γ), in Ghadimi et al. (2015); Sun
et al. (2019); Saab Jr et al. (2022); Shi et al. (2022), the global linear convergence of the HB method
has been established. However, the best rate is 1−O(ρ) given by Shi et al. (2022), which coincides
with that of the gradient descent and not the accelerated rate 1−O(

√
ρ).

The absence of acceleration is not due to a technical difficulty in the convergence analysis. Re-
cently, Goujaud et al. (2023) have demonstrated that the HB method provably fails to achieve an
accelerated convergence rate for smooth and strongly convex problems. Specifically, for any pos-
itive parameters (β, γ) in (2), either there exists an L-smooth, µ-strongly convex function, and an
initialization such that HB fails to converge; or even in the class of smooth and strongly convex
quadratic function f , the convergence rate is not accelerated: 1−O(ρ). For more related works on
HB methods, see Appendix B.1.

Accelerated first-order methods. To accelerate the HB method, one can introduce either an ad-
ditional gradient step or a line search step with adequate decay into the algorithm; see Wilson et al.
(2021); Siegel (2019); Chen & Luo (2021).

Nesterov accelerated gradient (NAG) method (Nesterov, 1983, page 81) can be viewed as an alter-
native enhancement of the HB method. Nesterov’s approach calculates the gradient at points that
are extrapolated based on the inertial force:

xk+1 = xk + β(xk − xk−1)− γ∇f(xk + β(xk − xk−1)), with β =

√
L−√µ
√
L+
√
µ
, γ =

1

L
. (4)

Nesterov devised the method of estimate sequences (Nesterov, 2013) to prove that (4) achieves the
accelerated linear convergence rate 1−√ρ.

Later on, numerous accelerated gradient methods have been developed for smooth strongly convex
optimization problems (Lin et al., 2015; Drusvyatskiy et al., 2018; Bubeck et al., 2015; Aujol et al.,
2022; Van Scoy et al., 2017; Cyrus et al., 2018); to name just a few. However, little is known
beyond convex optimization. One reason is that the techniques developed are often specialized on
the convexity of the objective function, making them difficult to extend to non-convex cases. In
machine learning terms, these approaches lack generalization ability.

Main contributions for smooth strongly convex optimization. We propose a variant of the HB
method in the form of

xk+1 = xk − γ(2∇f(xk)−∇f(xk−1)) + β(xk − xk−1),

γ =
1

(
√
L+
√
µ)2

, β =
L

(
√
L+
√
µ)2

.
(5)

The most notable yet simple change is using 2∇f(xk) − ∇f(xk−1) not ∇f(xk) to approximate
∇f(x). Namely an over-relaxation technique (Hadjidimos, 1978) is applied to the gradient term.
Therefore, we name (5) accelerated over-relaxation heavy-ball (AOR-HB) method.
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Rather than second-order ODEs, we consider a first-order ODE system proposed in Chen & Luo
(2021), referred to as the rotated gradient flow:

x′ = y − x, y′ = x− y − 1

µ
∇f(x), (6)

which is a special case of the HB flow (3) with θ = 2 and η = 1
µ when y is eliminated. Although (6)

is mathematically equivalent to an HB flow, the structure of this 2×2 first-order ODE system is cru-
cial for convergence analysis and algorithmic design. The same second-order ODE can correspond
to different first-order systems. Another one equivalent to (3) is

x′ = v, v′ = −θv − η∇f(x), (7)
where v represents velocity, offering a physical interpretation. However, the convergence analysis is
less transparent in the form (7) or the original second-order ODE (3).

We obtain AOR-HB by discretization of (6) with two iterates (xk, yk) cf. (14). The AOR is used to
symmetrize the error equation (19), which represents a novel contribution compared to Luo & Chen
(2022) and Chen & Luo (2021). The choice of parameters (β, γ) in (5) is derived from the time
step-size α =

√
µ/L. We rigorously prove that AOR-HB enjoys the global linear convergence with

accelerated rate, which closes a long-standing theoretical gap in optimization theory.
THEOREM 1.1 (Convergence of AOR-HB method). Suppose f is µ-strongly convex and L-smooth.
Let (xk, yk) be generated by scheme (14) with initial value (x0, y0) and step size α =

√
µ/L. Then

there exists a constant C0 = C0(x0, y0, µ, L) so that we have the accelerated linear convergence

f(xk+1)− f(x∗) +
µ

2
‖yk+1 − x∗‖2 ≤ C0

(
1

1 + 1
2

√
µ/L

)k
, k ≥ 1. (8)

Remark on non-strongly convex optimization. When µ = 0, we propose a variant of the AOR-
HB method that incorporates the dynamic time rescaling introduced in (Luo & Chen, 2022):

xk+1 = xk −
k

k + 3

1

L

(
2∇f(xk)−∇f(xk−1)

)
+

k

k + 3
(xk − xk−1), (9)

which achieves an accelerated rate of O(1/k2), comparable to NAG. We refer the details and the
proofs to Appendix D. Another approach to extend the acceleration involves using the perturbed
objective f(x) + ε

2‖x‖
2, as discussed in (Lessard et al., 2016, Section 5.4).

Relation to other acceleration methods. The AOR term 2∇f(xk)−∇f(xk−1) can be treated as
adding a gradient correction in the high resolution ODE model (Shi et al., 2022). AOR-HB (5) can
be also rendered as a special case of the ‘SIE’ iteration described in Zhang et al. (2021). However,
the parameter choice (

√
s = 1

L and m = 1 ) recovering AOR-HB, does not satisfy the condition in
their convergence analysis (Zhang et al., 2021, Theorem 3).

For strongly convex optimization, acceleration can be viewed from various perspectives, with the
resulting three-term formulas differing only by a higher-order O(ρ) perturbation. With a proper
change of variables, NAG (4) can be seen as a parameter perturbation of the AOR-HB in the form
of (5). The performance of AOR-HB are thus comparable to NAG but less precise than triple mo-
mentum (TM) methods (Van Scoy et al., 2017) for strongly convex optimization.

However, extending these methods (NAG, TM, SIE, and high-resolution ODEs) beyond the convex
optimization is rare and challenging. In contrast, AOR-HB has a superior generalization capability
as the true driving force of acceleration is better captured by the 2× 2 first-order ODE model (6).

Extension to composite convex minimization. Consider the optimization problem:
min
x
f(x) + g(x), (10)

where f is µ-strongly convex and L-smooth, and g is a non-smooth convex function. To handle this,
we only need to split the gradient term in (6) into∇f(x) + ∂g(y) and use an implicit discretization
scheme for y. This is equivalent to applying the proximal operator

proxλg(x) := min
y
g(y) +

1

2λ
‖y − x‖2,

3
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which we assume is available. The convergence analysis of the AOR-HB-composite Algorithm 2
directly follows from Theorem 1.1. Numerically, Algorithm 2 also performs well for certain non-
smooth and non-convex functions g when its proximal operator is available, further demonstrating
the generalization capability of the AOR-HB method.

Extension to a class of saddle point problems. We extend the AOR-HB method (Algorithm 3) to
a strongly-convex-strongly-concave saddle point system with bilinear coupling, defined as follows:

min
u∈Rm

max
p∈Rn

L(u, p) := f(u)− g(p) + 〈Bu, p〉 (11)

where B ∈ Rn×m is a matrix and B> denotes its transpose, f : Rm → R and g : Rn → R are
strongly convex functions with convexity constant µf and µg , respectively. Problem (11) has a large
number of applications, some of which we briefly introduce in Appendix B.3.

Only few optimal first-order algorithms for saddle point problems have been developed re-
cently (Metelev et al., 2024; Thekumparampil et al., 2022; Kovalev et al., 2022; Jin et al., 2022).
In particular, Thekumparampil et al. (2022) introduced the Lifted Primal-Dual (LPD) method, the
first optimal algorithm for problem (11). However, LPD involves five parameters, whereas AOR-
HB-saddle requires only a single parameter: the step size α. Numerically, AOR-HB-saddle achieves
highly efficient performance while retaining the simplicity of the HB method.
THEOREM 1.2 (Convergence of AOR-HB-saddle method). Suppose f is µf -strongly con-
vex and Lf -smooth, g is µg-strongly convex and Lg-smooth. Let (uk, vk, pk, qk)
be generated by Algorithm 3 with initial value (u0, v0, p0, q0) and step size α =

maxβ∈(0,1) min
{√

βmin
{√

µf
Lf
,
√

µg
Lg

}
, (1− β)

√
µfµg
‖B‖

}
. Then there exists a non-negative con-

stant C0 = C0(u0, v0, p0, q0, µf , Lf , µg, Lg) so that we have the linear convergence

Df (uk+1, u
∗) +Dg(pk+1, p

∗) +
µf
2
‖vk+1 − u∗‖2 +

µg
2
‖qk+1 − p∗‖2 ≤ C0

(
1

1 + α/2

)k
.

Extension to a class of monotone operator equations. Our approach provides a unified frame-
work for convex optimization, saddle-point problems, and monotone operator equations. Specifi-
cally, these cases can be represented by the following form:(

x′

y′

)
=

(
−I I

I − µ−1A −I − µ−1N

)(
x
y

)
.

• Strongly convex optimization: A(x) = ∇f(x), N = 0. This is the rotated flow developed in Luo
& Chen (2022) and Chen & Luo (2021).
• Composite convex optimization: A(x) = ∇f(x), N(y) = ∂g(y).

• Saddle-point problem with bilinear coupling: A(x) =

(
∇f(u) 0

0 ∇g(p)

)
, N =

(
0 B>

B 0

)
.

• A class of monotone operators: A(x) = ∇F (x), N is linear and skew-symmetric.

Accelerated methods for monotone operator equation ∇F (x) + Nx = 0 can be developed, signif-
icantly expanding the scope of acceleration beyond its traditional boundaries. In the discretization,
AOR can be utilized to faithfully preserve the structure of the flow. In this work, we focus on
AOR-HB methods for µ > 0 to present the core ideas more clearly.

2 AOR-HB METHOD FOR CONVEX OPTIMIZATION

Strong Lyapunov property. To simplify notation, introduce z = (x, y)> and z∗ = (x∗, x∗)>.
Let G(z) be a vector field with G(z∗) = 0. For a generic ODE z′ = G(z), a Lyapunov function is
a non-negative function E(z) satisfying −〈∇E(z),G(z)〉 ≥ 0 for all z near z∗ and E(z) = 0 if and
only if z = z∗. In order to get the exponential stability, Chen & Luo (2021) introduce the so-called
strong Lyapunov property: there exists c > 0 such that

− 〈∇E(z),G(z)〉 ≥ c E(z) ∀z ∈ Rd. (12)
LEMMA 2.1. Let z′ = G(z) with z(0) = z0. Assume there exists a Lyapunov function E(z)
satisfying the strong Lyapunov property (12). Then we have the exponential stability

E(z) ≤ e−ctE(z0).

4
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Proof. By the chain rule and the strong Lyapunov property:
d

dt
E (z(t)) = 〈∇E(z), z′〉 = 〈∇E(z),G(z)〉 ≤ −cE(z(t)), (13)

and the exponential stability follows.

For the system (6), let E(x, y) = f(x) − f(x∗) + µ
2 ‖y − x∗‖2. By direct calculation and the

µ-convexity of f , we obtain the strong Lyapunov property
− 〈∇E(x, y),G(x, y)〉 = 〈∇f(x), x− x∗〉 − µ〈x− y, y − x∗〉

= 〈∇f(x), x− x∗〉 − µ

2

(
‖x− x∗‖2 − ‖x− y‖2 − ‖y − x∗‖2

)
≥ f(x)− f(x∗) +

µ

2
‖y − x∗‖2 +

µ

2
‖x− y‖2 = E(x, y) +

µ

2
‖x− y‖2.

As shown above, the strong Lyapunov property and exponential stability can be established more
straightforwardly using the first-order ODE system (6) rather than the original second-order ODE
(3) or its equivalent form (7).

AOR-HB method for smooth strongly convex minimization problems. Based on discretization
of (6), we propose an accelerated over-relaxation heavy-ball (AOR-HB) method:

xk+1 − xk
α

= yk − xk+1, (14a)

yk+1 − yk
α

= xk+1 − yk+1 −
1

µ
(2∇f(xk+1)−∇f(xk)). (14b)

Setting α =
√
µ/L and eliminating yk leads to the formulation (5) and summarized in Algorithm

1. The gradient∇f(xk+1) can be re-used in the next iteration and thus essentially only one gradient
evaluation is required for one iteration in Algorithm 1.

Algorithm 1 Accelerated Over-Relaxation Heavy-Ball Method (AOR-HB)

1: Parameters: x0, x1 ∈ Rd, L, µ. Set γ = 1
(
√
L+
√
µ)2

, β = L
(
√
L+
√
µ)2

.
2: for k = 1, 2, . . . do
3: xk+1 = xk − γ(2∇f(xk)−∇f(xk−1)) + β(xk − xk−1)
4: end for
5: return xk+1

The convergence rate in Theorem 1.1 is global and accelerated, in the sense that to obtain f(xk) −
f(x∗) ≤ ε and ‖xk − x∗‖ ≤ ε, we need at most O (

√
κ| log ε|) iterations. The iteration complexity

is optimal for first-order methods (Nesterov, 2013). We give a proof for Theorem 1.1 in Appendix
C and will outline the key steps using convex quadratic objectives here.

Preliminaries for convergence analysis. For a symmetric matrix A, introduce 〈x, y〉A =
〈Ax, y〉 = 〈x,Ay〉 and ‖ · ‖2A := 〈·, ·〉A. Consider the quadratic and convex function f(x) =
1
2‖x‖

2
A − 〈b, x〉 + c for b ∈ Rd, c ∈ R and symmetric and positive definite (SPD) matrix A with

bound 0 < µ ≤ λ(A) ≤ L, where λ(A) denotes a generic eigenvalue of matrix A, and λmin(A) and
λmax(A) are minimal and maximal eigenvalues of A, respectively.

For two symmetric matrices D,A, we denote A ≺ D if D − A is SPD and A � D if D − A is
positive semi-definite. One can easily verify that A � D is equivalent to λmax(D−1A) ≤ 1 when
D is non-singular or λmin(A−1D) ≥ 1 when A is non-singular.

Denote by D =

(
A 0
0 µI

)
and Asym =

(
0 A
A 0

)
. Define two Lyapunov functions

E(z) :=
1

2
‖z− z∗‖2D, and Eα(z) :=

1

2
‖z− z∗‖2D+αAsym .

By direct calculation, we have λ(D−1Asym) = ±
√
λ(A)/µ which implies

(1− α/√ρ)D � D + αAsym � (1 + α/
√
ρ)D, ρ = µ/L. (15)

Therefore for 0 ≤ α ≤ √ρ,

0 ≤ (1− α/√ρ) E(z) ≤ Eα(z) ≤ 2E(z), ∀z = (x, y)> ∈ R2d. (16)

5
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Convergence analysis for quadratic functions. The AOR-HB method (14) can be written as a
correction of the implicit Euler discretization of the flow (6)

zk+1 − zk = αG(zk+1)− α
(

0 I
1
µA 0

)
(zk+1 − zk). (17)

As E is quadratic, DE(z,y) = 1
2‖z − y‖2D. So use the definition of Bregman divergence, we have

the identity for the difference of the Lyapunov function E at consecutive steps:

E(zk+1)− E(zk) = 〈∇E(zk+1), zk+1 − zk〉 −
1

2
‖zk − zk+1‖2D. (18)

Substitute (17) into (18) and expand the cross term as:

〈∇E(zk+1), zk+1 − zk〉 = α〈∇E(zk+1),G(zk+1)〉 − α〈zk+1 − z∗, zk+1 − zk〉Asym . (19)

The AOR Ax ≈ 2Axk+1 −Axk = Axk+1 + A(xk+1 − xk) is used to make the last term in (19)
associated to a symmetric matrix Asym. With such symmetrization, we can use identity of squares

〈zk+1 − z∗, zk+1 − zk〉Asym =
1

2

(
‖zk+1 − z∗‖2Asym + ‖zk+1 − zk‖2Asym − ‖zk − z∗‖2Asym

)
.

Substitute back to (18) and rearrange terms, we obtain the following identity:

Eα(zk+1)− Eα(zk) = α〈∇E(zk+1),G(zk+1)〉 − 1

2
‖zk+1 − zk‖2D+αAsym , (20)

which holds for arbitrary step size α.

Now take α =
√
ρ. Due to (15), the last term in (20) is non-positive. Use the strong Lyapunov

property −〈∇E(z),G(z)〉 ≥ E(z), and the bound Eα(z) ≤ 2E(z) in (16) to get

Eα(zk+1)− Eα(zk) ≤ −αE(zk+1) ≤ −α
2
Eα(zk+1), (21)

which implies the global linear convergence of Eα:

Eα(zk+1) ≤ 1

1 + α/2
Eα(zk) ≤

(
1

1 + α/2

)k+1

Eα(z0), k ≥ 0. (22)

Moreover, (21) implies

E(zk+1) ≤ 1

α
(Eα(zk)− Eα(zk+1)) ≤ 1

α
Eα(zk) ≤ 1

α

(
1

1 + α/2

)k
Eα(z0),

which implies (8) with C0 = 1
αE

α(z0) ≥ 0. Note that C0 = O(
√
κ) is large. However, when

considering the convergence of Eα as in (22), this dependency is absent.

AOR-HB method for composite convex optimization. For the composite convex optimization
problem (10), AOR-HB can be seamlessly extended by using:

x′ = y − x, µy′ − [µ(x− y)−∇f(x)] ∈ ∂g(y), (23)

where ∂g(·) denotes the set of subgradient. The strong Lyapunov property and exponential stability
still hold (see Appendix E) as the modification only bring an additional monotone term.

We use implicit discretization in g and apply AOR to∇f :

xk+1 − xk
α

= yk−xk+1, µ
yk+1 − yk

α
−µ(xk+1−yk+1)+(2∇f(xk+1)−∇f(xk)) ∈ ∂g(yk+1).

Given the proximal operator of g, an equivalent and computation-favorable formulation is proposed
in Algorithm 2. In the convergence analysis, since the non-smooth part is discretized implicitly, no
difference arises in the error equation (17). Therefore, the convergence rate and proof are identical
to those in Theorem 1.1; see Theorem E.1. In contrast, it requires considerable effort to generalize
Nesterov’s accelerated gradient to the composite case Beck & Teboulle (2009).

6
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Algorithm 2 Accelerated Over-Relaxation Heavy-Ball Method for Convex Composite Minimization
(AOR-HB-composite)

1: Parameters: x0, y0 ∈ Rd, L, µ. Set α =
√

µ
L and λ = α

(1+α)µ .
2: for k = 1, 2, . . . do
3: xk+1 =

1

1 + α
(xk + αyk)

4: yk+1 = proxλg(zk) where zk = 1
1+α (yk + αxk+1)− λ(2∇f(xk+1)−∇f(xk))

5: end for
6: return yk+1

3 AOR-HB METHOD FOR A CLASS OF SADDLE POINT PROBLEMS

In this section, we extend the flow (3) to min-max problems and propose an accelerated first-order
method for strongly-convex-strongly-concave saddle-point problems.

Strongly-convex-strongly-concave saddle point problem with bilinear coupling. The solution
(u∗, p∗) to the min-max problem (11) is called a saddle point of L(u, p) = f(u)− g(p) + 〈Bu, p〉:

L(u∗, p) ≤ L(u∗, p∗) ≤ L(u, p∗), ∀ u ∈ Rm, p ∈ Rn.

As L(·, p) is strongly convex for any given p and L(u, ·) is strongly concave for any given u, we
called it a strongly-convex-strongly-concave saddle point problem. Under this setting, the saddle
point (u∗, p∗) exists uniquely and is necessarily a critical point of L(u, p) satisfying:

∇L(u∗, p∗) :=

(
∇f B>

B −∇g

)(
u∗

p∗

)
=

(
0
0

)
, (24)

where 〈∇f, u〉 := ∇f(u) and 〈∇g, p〉 := ∇g(p).

HB-saddle flow. We propose the following HB-saddle flow for solving the min-max problem (11):

u′ = v − u, v′ = u− v − 1

µf
(∇f(u) +B>q),

p′ = q − p, q′ = p− q − 1

µg
(∇g(p)−Bv).

(25)

The HB-saddle flow (25) preserves the strong Lyapunov property (see Appendix G.2) and thus the
exponential stability of (u∗, p∗) for (25) follows.

For the gradient term, we use J∇L instead of ∇L with J =

(
I 0
0 −I

)
. When ∇f and ∇g are

linear,∇L is symmetric but not monotone. J∇L is non-symmetric but strongly monotone. Namely

〈J∇L(x)− J∇L(y), x− y〉 ≥ min{µf , µg}‖x− y‖2, ∀ x = (u, p)>, y = (v, q)>.

The strong monotonicity has essential similarity to strongly convexity. Comparing to the convex
optimization, one extra difficulty is the bilinear coupling 〈Bu, p〉 which can be again handled by the
AOR technique in discretization.

AOR-HB-saddle method. We propose the accelerated over-relaxation heavy-ball method (AOR-
HB-saddle) for solving the min-max problem (11) in Algorithm 3. Each iteration requires 2 matrix-
vector products and 2 gradient evaluations if we store∇f(uk) and ∇g(pk).

The convergence rate in Theorem 1.2 is global and accelerated, meaning that to ob-
tain ‖(uk, pk) − (u∗, p∗)‖ ≤ ε and ‖(vk, qk) − (u∗, p∗)‖ ≤ ε, we need at most
O
(√

Lf/µf + Lg/µg + ‖B‖2/(µfµg)| log ε|
)

iterations. The iteration complexity is optimal for
first-order methods for saddle point problems (Zhang et al., 2022). We refer to the proof of Theorem
1.2 in Appendix G.3.
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Algorithm 3 Accelerated over-relaxation Heavy-ball method for strongly-convex-strongly-concave
saddle point problems with bilinear coupling (AOR-HB-saddle)

1: Parameters: u0, v0 ∈ Rm, p0, q0 ∈ Rn, Lf , Lg, µf , µg, ‖B‖.
2: Set α = maxβ∈(0,1) min

{√
βmin

{√
µf
Lf
,
√

µg
Lg

}
, (1− β)

√
µfµg
‖B‖

}
.

3: for k = 0, 1, 2, . . . do
4: uk+1 =

1

1 + α
(uk + αvk); pk+1 =

1

1 + α
(pk + αqk)

5: vk+1 =
1

1 + α

[
vk + αuk+1 −

α

µf
(2∇f(uk+1)−∇f(uk) +B>qk)

]
6: qk+1 =

1

1 + α

[
qk + αpk+1 −

α

µg
(2∇g(pk+1)−∇g(pk)−B(2vk+1 − vk))

]
7: end for
8: return uk+1, vk+1, pk+1, qk+1

When µf = 0 and µg > 0, AOR-HB-saddle can be extended to the perturbed problem

L(u, p) + λε
2 ‖u‖

2, achieving a convergence rate O
(√

Lf/ε+ ‖B‖/√µgε+
√
Lg/µg

)
log(|ε|),

which is optimal up to logarithmic factors. For more discussion with respect to using the perturba-
tion argument, we refer to Thekumparampil et al. (2022) and references therein.

Remark 3.1. We can treat the coupling implicitly: Line 5 and 6 in Algorithm 3 are replaced by

vk+1 =
1

1 + α

[
vk + αuk+1 −

α

µf
(2∇f(uk+1)−∇f(uk) +B>qk+1)

]
,

qk+1 =
1

1 + α

[
qk + αpk+1 −

α

µg
(2∇g(pk+1)−∇g(pk)−Bvk+1)

]
.

(26)

Now (vk+1, qk+1) are coupled together and can be computed by inverting

(
(1 + α)I α

µf
B>

− α
µg
B (1 + α)I

)
.

It is sufficient to compute
(

(1 + α)2I + α2

µfµg
BB>

)−1
or

(
(1 + α)2I + α2

µfµg
B>B

)−1
,

whichever is a relative small size matrix and can be further replaced by an inexact inner solver.
We name the method as AOR-HB-saddle-I(implicit). For AOR-HB-saddle-I, the convergence rate
can be improved to 1 − O(

√
ρ) with ρ = min {µf/Lf , µg/Lg}; see Appendix H for the formal

results. It is preferable when the size BB> or B>B is small.

4 NUMERICAL RESULTS

In this section, we evaluate the performance of our AOR-HB methods on a suite of optimization
problems. All numerical experiments were conducted using MATLAB R2022a on a desktop com-
puter equipped with an Intel Core i7-6800K CPU operating at 3.4 GHz and 32GB of RAM. We
compare the results against several state-of-the-art optimization algorithms from the literature.

4.1 SMOOTH CONVEX MINIMIZATION

We test our AOR-HB method (Algorithm 1) and compare it with other first-order algorithms includ-
ing: (i) GD: gradient descent; (ii) NAG: Nesterov acceleration (Nesterov, 2013); (iii) HB: Polyak’s
momentum method (Polyak, 1964); (iv) TM: triple momentum method (Van Scoy et al., 2017) and
(v) ADR (Aujol et al., 2022).

First, we test the algorithms using smooth multidimensional piecewise objective functions borrowed
from Van Scoy et al. (2017). Let

f(x) =

p∑
i=1

h
(
a>i x− bi

)
+
µ

2
‖x‖2, h(x) =

{
1
2x

2e−r/x, x > 0

0, x ≤ 0
, (27)
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where A = [a1, . . . , ap] ∈ Rd×p and b ∈ Rp with ‖A‖ =
√
L− µ. Then f is µ- strongly convex

and L-smooth. We randomly generate the components of A and b from the normal distribution and
then scale A so that ‖A‖ =

√
L− µ. We set µ = 1, L = 104, d = 100, p = 5 and r = 10−6.

Figure 1: Simulation results for
the objective function (27).

Figure 1 illustrates the logarithm of ‖xk − x∗‖ for each algo-
rithm’s iterates. The HB method reaches a plateau and fails to
converge, while the other algorithms demonstrate global and lin-
ear convergence. As expected, GD, being non-accelerated, con-
verges slowly due to the large condition number. The AOR-
HB method performs as efficiently as NAG and ADR. The TM
method achieves a convergence rate of (1 −

√
µ/L)2, slightly

outpacing other accelerated algorithms. However, TM requires
more parameter tuning and has not yet been extended beyond
strongly smooth convex optimization.

Next, we report the numerical simulations on a logistic regression problem with `2 regularizer:

Figure 2: Simulation results for
the logistic regression problem
(28).

min
x∈Rd

{
m∑
i=1

log
(
1 + exp

(
−bia>i x

))
+
λ

2
‖x‖2

}
, (28)

where (ai, bi) ∈ Rd × {−1, 1}, i = 1, 2, . . . ,m. For the logistic
regression problem, µ = λ and L = λmax

(∑m
i=1 aia

>
i

)
+ λ.

The data ai and bi are generated by the normal distribution and
Bernoulli distribution, respectively. We set λ = 0.1, d = 1000,
and n = 50. As illustrated by Figure 2, this is an example where
HB converges and it converges fastest. However, such fast con-
vergence lacks theoretical guarantees and may fail in cases like
the one depicted in Figure 1. This highlights the importance
of robust theoretical convergence analysis rather than relying on
empirical success alone.

4.2 COMPOSITE CONVEX AND NON-CONVEX MINIMIZATION

We test the performance of AOR-HB-composite method (Algorithm 2) on non-smooth optimization
problems and compare with two well-known methods: the fast iterative shrinkage-thresholding al-
gorithm (FISTA) Beck & Teboulle (2009) and the accelerated proximal gradient (APG) algorithm
proposed in Li & Lin (2015).

Figure 3: Comparison of `1
minimization methods.

Figure 4: Comparison of `1−
`2 minimization methods.

We first consider the Lasso problem:

min
x

1

2
‖Ax− b‖22 + λ‖x‖1,

which has wide applications in compressed sensing, signal process-
ing, and statistical learning, among other fields (Tibshirani, 1996).
We generate the matrix A with size 1024 × 256 from Gaussian
random matrices and a ground-truth sparse vector x of sparsity 5.
The data vector obtained by matrix-vector multiplication b = Ax.
We set λ = 0.8 and use the step size α = 1/L in FISTA and
APG. We plot the decay of the relative `2 error in Figure 3. All the
methods cannot reach the accuracy of 10−3. This is because the
ground-truth solution may not be the minimizer of the correspond-
ing minimization problem.
Then we test the non-convex `1 − `2 case where the l1 regular-
izer is substituted by ‖x‖1 − ‖x‖2. The proximal operator for
g(x) := λ(‖x‖1 − ‖x‖2) is given in Yin et al. (2015). Using such
non-smooth and non-convex function g will produce solution with
better sparsity. The other settings remain the same as the Lasso
problem. Figure 3 and 4 show the convergence of the relative `2 er-
ror, where all methods converges but AOR-HB outperforms others.
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4.3 SADDLE POINT PROBLEMS

We compare AOR-HB-saddle (Algorithm 3) with the following algorithms: (i) AG-OG: accel-
erated gradient-optimistic gradient method with restarting regime (Li et al., 2023); (ii) APDG:
accelerated primal-dual gradient method (Kovalev et al., 2022); (iii) LPD: lifted primal-dual
method (Thekumparampil et al., 2022); (iv) EG: a variant of extra-gradient method (Mokhtari et al.,
2020).

We consider policy evaluation problems in reinforcement learning (Du et al., 2017) when finding
minimum of the mean squared projected Bellman error (MSPBE):

arg min
u

1

2
‖Bu− b‖2C−1 +

1

2
‖u‖2.

The corresponding saddle point problem (see Appendix B.3) is

min
u∈Rm

max
p∈Rn

1

2
‖u‖2 − 1

2
‖p‖2C − 〈b, p〉+ 〈Bu, p〉. (29)

The saddle point formulation saves the computation cost of inverting C. In this example, µf =
Lf = 1, µg = λmin(C) and Lg = λmax(C). We generate random matrices B and C such that
µg = 1 and the condition number κg = ‖B‖2. We set m = 2500 and n = 50.

Figure 5: Simulation results for
MSPBE (29).

Figure 6: Rate of convergence.

We plot the convergence of error versus the number of itera-
tions in Figure 5. Since each method has a comparable per-
iteration computational cost, the iteration count serves as a fair
measure of efficiency. We only plot the case κg = 104. Simi-
lar trends are observed for other condition numbers, where our
AOR-HB-saddle methods consistently exhibit faster linear con-
vergence compared to other algorithms. Among the methods,
AOR-HB-saddle-I achieves the fastest convergence and is over-
all the most time-efficient, especially when the coupling term
‖B‖2/(µfµg) exceeds √κf and √κg . AOR-HB-saddle-I, the
semi-implicit scheme (26), utilizes the direct solver \ to com-
pute ((1 + α)I + α2

(1+α)µfµg
BB>)−1, as this involves a small

50 × 50 SPD matrix. When the direct solver becomes com-
putationally expensive, the explicit scheme AOR-HB-saddle is
preferable, provided an optimized step-size α is used.
In Figure 6, we plot the iteration number K versus κg such
that ‖xK−x

∗‖
‖x0−x∗‖ ≤ 10−6. In this log-log scale plot, we can ob-

serve that the growth of iteration complexity is O(
√
κg) for

accelerated algorithms and O(κg) for EG, which matches the
convergence analysis.

Among all accelerated algorithms we have tested, our AOR-HB-saddle method requires fewer iter-
ation steps to achieve the desired accuracy. In addition, AOR-HB-saddle has a single-loop structure
and requires fewer parameters to tune, which is favorable for implementation.

5 CONCLUDING REMARKS

In conclusion, we have introduced the Accelerated Over-Relaxation Heavy-Ball (AOR-HB) meth-
ods, a significant advancement of the accelerated first order optimization algorithms. This fills a
theoretical gap in heavy-ball momentum methods and opens the door to developing accelerated
methods with potential forays into non-convex optimization scenarios.

AOR-HB comes with certain limitations. First, AOR-HB methods require the parameters µ and
L. While this is typical for accelerated methods, exploring adaptive strategies to reduce parameter
dependence is an interesting direction for future research. Second, the convergence rates established
in some theorems are not as tight as those achieved by the TM method (Van Scoy et al., 2017; Taylor
& Drori, 2023). Finally, investigating the algorithm’s performance under stochastic conditions is
essential for assessing its robustness in real-world machine learning applications.
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Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Felix E Browder and Wolodymyr V Petryshyn. Construction of fixed points of nonlinear mappings
in Hilbert space. Journal of Mathematical Analysis and Applications, 20(2):197–228, 1967.
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A DEFINITIONS AND STANDARD RESULTS

We review some foundational results from the convex analysis.

Recall that the Bregman divergence of f is defined as

Df (y, x) := f(y)− f(x)− 〈∇f(x), y − x〉,
which is in general non-symmetric, i.e., Df (y, x) 6= Df (x, y). A symmetrized Bregman divergence
is defined as

〈∇f(x)−∇f(y), x− y〉 = Df (y, x) +Df (x, y).

We have the following bounds on the Bregman divergence and the symmetrized Bregman diver-
gence.
LEMMA A.1 (Section 2.1 in Nesterov (2018)). Suppose f : Rd → R is µ-strongly convex and
L-smooth. For any x, y ∈ Rd,

µ

2
‖x− y‖2 ≤ Df (y, x) ≤ L

2
‖x− y‖2, (30a)

1

2L
‖∇f(x)−∇f(y)‖2 ≤ Df (y, x) ≤ 1

2µ
‖∇f(x)−∇f(y)‖2, (30b)

µ‖x− y‖2 ≤ 〈∇f(x)−∇f(y), x− y〉 ≤ L‖x− y‖2, (30c)
1

L
‖∇f(x)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y), x− y〉 ≤ 1

µ
‖∇f(x)−∇f(y)‖2. (30d)

The following three-point identity on the Bregman divergence will be used to replace the identity of
squares.
LEMMA A.2 (Bregman divergence identity (Chen & Teboulle, 1993)). If function f : Rd → R is
differentiable, then for any x, y, z ∈ Rd, it holds that

〈∇f(y)−∇f(x), y − z〉 = Df (z, y) +Df (y, x)−Df (z, x). (31)

Proof. By definition,
Df (z, y) = f(z)− f(y)− 〈∇f(y), z − y〉,
Df (y, x) = f(y)− f(x)− 〈∇f(x), y − x〉,
Df (z, x) = f(z)− f(x)− 〈∇f(x), z − x〉.

Direct calculation gives the identity.
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B RELATED WORKS

B.1 EXTENSIONS/APPLICATIONS OF HEAVY-BALL METHODS

While the acceleration guarantee has not yet proved rigorously, applications of heavy-ball methods
including extension to constrained and distributed optimization problems have confirmed its perfor-
mance benefits over the standard gradient-based methods (Wang & Miller, 2013; Ochs et al., 2015;
Ghadimi et al., 2013; Diakonikolas & Jordan, 2021).

Sutskever et al. (2013) showed that stochastic gradient descent with momentum improves the train-
ing of deep and recurrent neural networks. Also, using heavy-ball flow improves neural ODEs
training and inference (Xia et al., 2021). Recently, accelerated convergence of stochastic heavy-
ball methods has been established in Pan et al. (2023); Bollapragada et al. (2022); Wang et al.
(2021) but only for quadratic objectives. To get rid of the hyperparameters used in the heavy-ball
methods, Saab Jr et al. (2022) proposed an adaptive heavy-ball that estimates the Polyak’s optimal
hyper-parameters at each iteration.

B.2 FIRST-ORDER METHODS AND DYNAMIC SYSTEM

One approach to better understand the mechanism of the iterative method is the continuous-time
analysis: derive an ordinary differential equation (ODE) model which coincides with the iterative
method taking step size close to zero. Starting from the accelerated first-order methods for un-
constrained optimization, an important milestone in this direction is to understand the acceleration
from the variational perspective (Su et al., 2016; Wibisono et al., 2016). While the iterative meth-
ods are first-order, the continuous-time dynamics proposed for accelerated methods are high-order
or high-resolution ODEs (Shi et al., 2022; Sun et al., 2020; Muehlebach & Jordan, 2019; Attouch
et al., 2000). With the continuous-time dynamic, novel accelerated methods are proposed by time
discretization of the ODE model and usually the behaviour of the dynamic facilitates the conver-
gence analysis of the iterative methods (Krichene et al., 2015; Luo & Chen, 2022; Aujol et al., 2022;
Wilson et al., 2021; Siegel, 2019).

Due to the appealing results, systematic framework to draw connection between the dynamic system
and the accelerated iterative method gains lots of interest (Scieur et al., 2017; Ushiyama et al., 2024;
Taylor et al., 2018; Sanz Serna & Zygalakis, 2021). In fact, the theory and methods developed for
other problem classes often build upon the work done in unconstrained optimization (Diakonikolas
& Orecchia, 2019).

B.3 APPLICATIONS OF STRONGLY-CONVEX-STRONGLY CONCAVE SADDLE POINT PROBLEMS
WITH BILINEAR COUPLING

A classical application is the regularized empirical risk minimization (ERM) with linear predictors,
which is a classical supervised learning problem. Given a data matrix B = [b1, b2, · · · , bn]> ∈
Rn×m where bi ∈ Rm is the feature vector of the i-th data entry, the ERM problem aims to solve

min
u∈Rm

g(Bu) + f(u), (32)

where g : Rn → R is some strongly convex loss function, f : Rm → R is a strongly convex
regularizer and u ∈ Rm is the linear predictor. Equivalently, we can solve the saddle point problem

min
u∈Rm

max
p∈Rn

{
p>Bu− g∗(p) + f(u)

}
. (33)

The saddle point formulation is favorable in many scenarios, for instance (Zhang & Xiao, 2017; Du
& Hu, 2019; Lei et al., 2017).

Another application is policy evaluation problems in reinforcement learning when finding minimum
the mean squared projected Bellman error (Du et al., 2017):

arg min
u

1

2
‖Bu− b‖2C−1 +

1

2
‖u‖2,

where B,C are given matrices. The corresponding saddle point problem is

min
u∈Rm

max
p∈Rn

1

2
‖u‖2 − 1

2
‖p‖2C − 〈b, p〉+ 〈Bu, p〉.

The saddle point formulation saves the computation cost of inverting C.
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C PROOF OF THEOREM 1.1

Consider the Lyapunov function

E(z) = E(x, y) : = f(x)− f(x∗) +
µ

2
‖y − x∗‖2 = Df (x, x∗) +

µ

2
‖y − x∗‖2, (34)

and the modified Lyapunov function

Eα(z) = Eα(x, y) : = E(x, y) + α〈∇f(x)−∇f(x∗), y − x∗〉

= Df (x, x∗) +
µ

2
‖y − x∗‖2 + α〈∇f(x)−∇f(x∗), y − x∗〉.

(35)

The novelty of Eα(x, y) is the inclusion of the cross term α〈∇f(x)−∇f(x∗), y − x∗〉.
We denote the right-hand side of the accelerated gradient descent flow (6) as

G(z) = G(x, y) :=

(
y − x,

x− y − 1
µ∇f(x)

)
.

LEMMA C.1 (Strong Lyapunov property (Luo & Chen, 2022)).

− 〈∇E(x, y),G(x, y)〉 ≥ E(x, y) +
µ

2
‖x− y‖2, ∀ x, y ∈ Rd. (36)

Proof. By direct calculation and the µ-convexity of f ,

− 〈∇E(x, y),G(x, y)〉 = 〈∇f(x), x− x∗〉 − µ〈x− y, y − x∗〉

= 〈∇f(x), x− x∗〉 − µ

2

(
‖x− x∗‖2 − ‖x− y‖2 − ‖y − x∗‖2

)
≥ f(x)− f(x∗) +

µ

2
‖y − x∗‖2 +

µ

2
‖x− y‖2 = E(x, y) +

µ

2
‖x− y‖2.

LEMMA C.2. Suppose f : Rd → R is µ-strongly convex and L-smooth. Denote by ρ = µ/L.
For any two vectors zk, zk+1 ∈ R2d and α > 0, we have the following inequality on the Bregman
divergence of E defined by (34)(

1− α
√
ρ

)
DE(zk, zk+1) ≤ DE(zk, zk+1)± α〈yk+1 − yk,∇f(xk+1)−∇f(xk)〉

≤
(

1 +
α
√
ρ

)
DE(zk, zk+1).

Proof. Using the identity of squares (for y) and Bregman divergence identity (31) (for x), we have
the component form of

DE(zk, zk+1) = Df (xk, xk+1) +
µ

2
‖yk − yk+1‖2.

By Cauchy-Schwarz inequality and bound (30b) in Lemma A.1, we have

α |〈yk+1 − yk,∇f(xk+1)−∇f(xk)〉| ≤ α

2
√
µL
‖∇f(xk)−∇f(xk+1)‖2 +

α
√
Lµ

2
‖yk − yk+1‖2

≤ α

√
L

µ
Df (xk, xk+1) +

α
√
Lµ

2
‖yk − yk+1‖2

= α

√
L

µ

(
Df (xk, xk+1) +

µ

2
‖yk − yk+1‖2

)
.
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By Lemma C.2 and E(z) = DE(z, z
∗) where z∗ := (x∗, x∗)>, it is straightforward to verify the

following bounds for E , Eα as Lyapunov functions. Assume 0 < α ≤ √ρ with ρ = µ
L . Then

0 ≤ Eα(z) ≤ 2E(z), ∀ z = (x, y)> ∈ R2d. (37)

Now we are in the position to prove our first main result.

Proof of Theorem 1.1. We write (14) as a correction of Implicit Euler discretization of (6):

zk+1 − zk = αG(zk+1)− α
(

yk+1 − yk
1
µ (∇f(xk+1)−∇f(xk))

)
. (38)

and substitude into the identity of E

E(zk+1)− E(zk) = (∇E(zk+1), zk+1 − zk)−DE(zk, zk+1)

= α〈∇E(zk+1),G(zk+1)〉 − α〈∇E(zk+1),

(
yk+1 − yk

1
µ (∇f(xk+1)−∇f(xk))

)
〉 −DE(zk, zk+1).

We write out the component form of the middle term and split it as

α〈∇f(xk+1)−∇f(x∗), yk+1 − yk〉+ α〈yk+1 − x∗,∇f(xk+1)−∇f(xk)〉
= α〈∇f(xk+1)−∇f(x∗), yk+1 − x∗〉+ α〈yk+1 − yk,∇f(xk+1)−∇f(xk)〉
− α〈yk − x∗,∇f(xk)−∇f(x∗)〉.

Substitute back to (18) and rearrange terms, we obtain the following identity:

Eα(zk+1)− Eα(zk) = α〈∇E(zk+1),G(zk+1)〉
−DE(zk, zk+1)− α〈yk+1 − yk,∇f(xk+1)−∇f(xk)〉, (39)

By Lemma C.2, we can drop the terms in the second line for 0 ≤ α ≤ √ρ. Use the strong Lyapunov
property (36) and bound (37), we have

Eα(zk+1)− Eα(zk) ≤ −αE(zk+1) ≤ −α
2
Eα(zk+1), (40)

which implies the global linear convergence of Eα:

Eα(zk+1) ≤ 1

1 + α/2
Eα(zk) ≤

(
1

1 + α/2

)k+1

Eα(z0), k ≥ 0.

Moreover, (40) implies

E(zk+1) ≤ 1

α
(Eα(zk)− Eα(zk+1)) ≤ 1

α
Eα(zk) ≤ 1

α

(
1

1 + α/2

)k
Eα(z0),

which coincides with (8) with C0 = 1
αE

α(z0) ≥ 0.

D AOR-HB METHOD FOR NON-STRONGLY CONVEX MINIMIZATION

In this section, we present AOR-HB for non-strongly convex case, i.e., µ = 0. The convergence
analysis is motivated by the Hessian-driven Nesterov accelerated gradient (HNAG) flow proposed
in Chen & Luo (2021).

D.1 AOR-HB-0 METHOD

Consider the rescaled rotated gradient flow

x′ = y − x,

y′ = − 1

γ
∇f(x),
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where γ > 0 is a time rescaling parameter. This is the degenerated version of the rotated gradient
flow Chen & Luo (2021) for non-strongly convex cases.

Using AOR technique to discretize, we get the update rule: given (xk, yk), compute
xk+1 − xk

αk
= yk − xk+1,

yk+1 − yk
αk

= − 1

γk
(2∇f(xk+1)−∇f(xk)).

(41)

We shall choose the parameters

αk =
2

k + 1
, γk = α2

kL.

By eliminating yk’s, we get the AOR-HB-0 method:

xk+1 = xk −
k

k + 3

1

L

(
2∇f(xk)−∇f(xk−1)

)
+

k

k + 3
(xk − xk−1).

D.2 EQUIVALENCE TO HNAG

Introduce another parameter βk > 0 and change of variable

yk = vk − βk∇f(xk). (42)

Substitute back yk to (41), we obtain discretization in terms of (xk, vk):
xk+1 − xk

αk
= vk − xk+1 − βk∇f(xk),

vk+1 − vk
αk

= − 1

γk

(
2− γkβk+1

αk

)
∇f(xk+1) +

(
1

γk
− βk
αk

)
∇f(xk).

(43)

Now we choose βk =
αk
γk

such that αkβk =
α2
k

γk
=

1

L
. We can further simplify (43) to

xk+1 − xk
αk

= vk − xk+1 − βk∇f(xk), (44a)

vk+1 − vk
αk

= − 1

γ̃k
∇f(xk+1), (44b)

with

γ̃k =

(
2− γkβk+1

αk

)−1
γk =

(
2− αk

αk+1

)−1
γk =

k + 1

k
γk.

It is straight forward to verity that γ̃k satisfies

γ̃k+1 =
k + 2

k + 1
γk+1 =

k + 2

k + 1

α2
k+1

α2
k

γk =
k + 1

k + 2
γk ≤

(k + 1)2

k(k + 3)
γk =

1

1 + αk
γ̃k,

which is equivalent to
γ̃k+1 − γ̃k

αk
≤ −γ̃k+1. (45)

Therefore, (44) combining (45) is a discretization of the following variant of the HNAG flow:

x′ = v − x− β∇f(x),

v′ = − 1

γ̃
∇f(x),

γ̃′ ≤ −γ̃.

(46)

Notice that the flow for the dynamic coefficient is γ′ = −γ in Chen & Luo (2021). We shall show
the convergence rate is accelerated for the scheme formulated in (44). The proofs turned out to be
similar.
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D.3 CONVERGENCE ANALYSIS

Define the Lyapunov function

E(x, v, γ̃) := f(x)− f(x∗) +
γ̃

2
‖v − x∗‖2.

We denote the right hand side of the flow (46) as G(x, v, γ̃). Direct computation gives

−〈∇E(x, v, γ̃),G(x, v, γ̃)〉 = 〈∇f(x), x− x∗〉+ β‖∇f(x)‖2 +
γ̃

2
‖v − x∗‖2

> E(x, v, γ̃) + β‖∇f(x)‖2.

Hence E(·) satisfies strong Lyapunov property.
THEOREM D.1 (Convergence rate for non-strongly convex minimization). For (xk, vk) generated
by (44) with initial values (x1, v1, γ̃1) = (x0, v0, γ̃0) and

αk =
2

k + 1
, βk =

1

αkL
, γ̃k =

k + 1

k
α2
kL, k ≥ 1

we have the convergence

E(xk+1, vk+1, γ̃k+1) ≤
k∏
j=1

1

1 + αj
E0 ≤

6

(k + 3)(k + 2)
E0, (47)

where E0 = E(x0, v0, γ̃0).

Proof. For short, we denote zk = (xk, vk, γ̃k) and the right hand side of (46) by G(zk) :=
[Gxk ,Gvk ,G

γ
k ]>. Let us calculate the difference E(zk+1)− E(zk) = I1 + I2 + I3 with

I1 := E (xk+1, vk, γ̃k)− E(zk),

I2 := E (xk+1, vk+1, γ̃k)− E (xk+1, vk, γ̃k) ,

I3 := E(zk+1)− E (xk+1, vk+1, γ̃k) .

We shall estimate the above three terms one by one.

As E is linear in terms of γ̃, we get

I3 = 〈∇γE (xk+1, vk+1, γ̃k+1) , γk+1 − γk〉 = αk〈∇γE (xk+1, vk+1, γ̃k+1) ,Gγk+1〉.

For the second item I2, we use the fact that E (xk+1, ·, γ̃k) is quadratic and equation (44b) to get

I2 = 〈∇vE (xk+1, vk+1, γ̃k) , vk+1 − vk〉 −
γ̃k
2
‖vk+1 − vk‖2

= αk〈∇vE (xk+1, vk+1, γ̃k+1) ,Gvk+1〉 −
γ̃k
2
‖vk+1 − vk‖2 ,

where in the last step, we switch the variable (xk+1, vk+1γ̃k) to (xk+1, vk+1, γ̃k+1) as the parameter
γ̃ is canceled in the product 〈∇vE ,Gv〉.
Next for I1 we use the update formula (44a) and bound (30b),

I1 = 〈∇xE (xk+1, vk, γ̃k+1) , xk+1 − xk〉 −Df (xk, xk+1)

≤ αk〈∇xE (zk+1) ,Gx (zk+1)〉+ αkβk〈∇f (xk+1) ,∇f (xk+1)−∇f (xk)〉

+ αk 〈∇f (xk+1) , vk − vk+1〉 −
1

2L
‖∇f (xk+1)−∇f (xk)‖2 .

(48)

In the first term, we can switch (xk+1, vk, γ̃k) to zk+1 because ∇xE = ∇f(x) is independent of
(v, γ).

We use Cauchy-Schwarz inequality to bound the terms in (48) as follows:

αk ‖∇f (xk+1)‖ ‖vk − vk+1‖ 6
1

2L
‖∇f (xk+1)‖2 +

α2
kL

2
‖vk − vk+1‖2 ,

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

and
αkβk〈∇f (xk+1) ,∇f (xk+1)−∇f (xk)〉

=− αkβk
2
‖∇f (xk)‖2 +

αkβk
2
‖∇f (xk+1)‖2 +

αkβk
2
‖∇f (xk+1)−∇f (xk)‖2 .

Adding all together and applying strong Lyapunov property at zk+1 (but with βk not βk+1) yields
that

E(zk+1)− E(zk) 6 −αkE(zk+1)− 1

2

(
γ̃k − α2

kL
)
‖vk − vk+1‖2 −

αkβk
2
‖∇f (xk)‖2

+
1

2

(
1

L
− αkβk

)
‖∇f (xk+1)‖2

+
1

2

(
αkβk −

1

L

)
‖∇f (xk+1)−∇f (xk)‖2

By our choice of parameters:

αkβk −
1

L
= 0, γ̃k > γ = α2

kL,

we get
E(zk+1)− E(zk) 6 −αkE(zk+1)

by throwing away negative terms. Rearrange terms and by induction we have the decay (47).

The convergence rate

k∏
j=1

1

1 + αj
=

k∏
j=1

j + 1

j + 3
=

6

(k + 3)(k + 2)
= O

(
1

k2

)
.

We conclude that for AOR-HB-0 method (9), f(x) − f(x∗) converges with complexity O(1/
√
ε).

E STRONGLY LYAPUNOV PROPERTY FOR AOR-HB-COMPOSITE FLOW

Consider the Lyapunov function

E(x, y) := Df (x, x∗) +
µ

2
‖y − x∗‖2,

where the Bregman divergence Df (x, x∗) is generalization of f(x) − f(x∗) in the single convex
function case.

We rewrite the flow (23) as

x′ = y − x,

y′ = x− y − 1

µ
(∇f(x) + ξ), ξ ∈ ∂g(y).

With this formulation, we denote the right-hand side as

G(z) = G(x, y) :=

(
y − x,

x− y − 1
µ∇(f(x) + ξ)

)
.

Using the first order optimality condition, G(z∗) = 0 for some ξ∗ ∈ ∂g(x∗).

We restate and prove the strong Lyapunov property in the following Lemma. The difference com-
pared with the proof of Lemma C.1 is highlighted in blue.
LEMMA E.1 (Strong Lyapunov property for AOR-HB-composite flow (23).

−〈∇E(x, y),G(x, y)〉 ≥ E(x, y) +
µ

2
‖x− y‖2, ∀ x, y ∈ Rd.
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Proof. By direct calculation and the µ-convexity of f ,

− 〈∇E(x, y),G(x, y)〉 = −〈∇E(x, y),G(x, y)− G(x∗, x∗)〉
= 〈∇f(x)−∇f(x∗), x− x∗〉 − µ〈x− y, y − x∗〉+〈ξ − ξ∗, y − x∗〉

= 〈∇f(x)−∇f(x∗), x− x∗〉 − µ

2

(
‖x− x∗‖2 − ‖x− y‖2 − ‖y − x∗‖2

)
+〈ξ − ξ∗, y − x∗〉

≥ Df (x, x∗) +
µ

2
‖y − x∗‖2 +

µ

2
‖x− y‖2 = E(x, y) +

µ

2
‖x− y‖2,

where the inequality used the convexity of g:

〈ξ − η, y − x〉 ≥ 0, ∀ x, y ∈ Rd and ξ ∈ ∂g(y), η ∈ ∂g(x).

THEOREM E.1 (Convergence rate of AOR-HB method for composite convex minimization). Sup-
pose f is µ-strongly convex and L-smooth and g is non-smooth and convex. Let (xk, yk) be gen-
erated by Algorithm 2 with initial value (x0, y0) and step size α =

√
µ/L. Then there exists a

non-negative constant C0 = C0(x0, y0, µ, L) so that we have the accelerated linear convergence

Df (x, x∗) +
µ

2
‖yk+1 − x∗‖2 ≤ C0

(
1

1 + 1
2

√
µ/L

)k
, k ≥ 1. (49)

Proof. See Appendix C.

F EQUIVALENT FORMULATION OF AOR-HB-SADDLE

Algorithm 2 is equivalent to the following discretization of the HB-saddle flow (56):

uk+1 − uk
α

= vk − uk+1, (50a)

pk+1 − pk
α

= qk − pk+1, (50b)

vk+1 − vk
α

= uk+1 − vk+1 −
1

µf

(
2∇f(uk+1)−∇f(uk) +B>qk

)
, (50c)

qk+1 − qk
α

= pk+1 − qk+1 −
1

µg
(2∇g(pk+1)−∇g(pk)−B(2vk+1 − vk)) . (50d)

The discretization is a mixture of implicit Euler and explicit Euler with time step size α. For both
the gradient terms and Bv term, we use the AOR technique, i.e., ∇f(u) ≈ 2∇f(uk+1)−∇f(uk),
∇g(p) ≈ 2∇g(pk+1)−∇g(pk) and Bv ≈ B(2vk+1−vk). Algorithm 3 is implementation-friendly
while (50) is convenient for deriving convergence analysis.

G PROOFS OF SECTION 3

G.1 A CLASS OF MONOTONE OPERATOR EQUATIONS

In fact, we can extend HB flow to a broad class of monotone operator equation A(x) = 0 with

A(x) = ∇F (x) +Nx, (51)

where F is a strongly convex function and LF smooth, andN is a linear and skew-symmetric opera-
tor, i.e.,N> = −N . ThenA is Lipschitz continuous with constantLA ≤ LF+‖N‖. ThereforeA is
monotone and Lipschitz continuous which is also known as inverse-strongly monotonicity (Browder
& Petryshyn, 1967; Liu & Nashed, 1998) or co-coercitivity (Zhu & Marcotte, 1996). Consequently
equation A(x) = 0 has a unique solution x∗ (Rockafellar, 1976).

As a special case, we recover strongly-convex-strongly-concave saddle point problems with bilinear

coupling when x := (u, p)>, F (x) := f(u) + g(p) and N :=

(
0 B>

−B 0

)
.
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We introduce an accelerated gradient flow{
x′ = y − x,
y′ = x− y − µ−1(∇F (x) +N y).

(52)

Comparing with the accelerated gradient flow (6) for convex optimization, the difference is the
gradient and skew-symmetric splitting A(x)→ ∇F (x) +N y.

Denote the vector field on the right hand side of (52) by G(x, y). Then G(x∗, x∗) = 0 and thus
(x∗, x∗) is an equilibrium point of (52).

We first show (x∗, x∗) is exponentially stable. Consider the Lyapunov function:

E(x, y) = DF (x, x∗) +
µ

2
‖y − x∗‖2. (53)

For µ-strongly convex F , function DF (·, x∗) ∈ Sµ. Then E(x, y) ≥ 0 and E(x, y) = 0 iff x = y =
x∗.

We then verify the strong Lyapunov property. The proof is similar to that of Lemma C.1.
THEOREM G.1 (Strong Lyapunov Property). Assume function F is µ-strongly convex. Then for
the Lyapunov function (53) and the accelerated gradient flow vector field G asoociated to (52), the
following strong Lyapunov property holds

−∇E(x, y) · G(x, y) ≥ E(x, y) +
µ

2
‖y − x‖2, ∀ x, y ∈ V. (54)

Proof. First of all, as G(x∗, x∗) = 0,

−〈∇E(x, y),G(x, y)〉 = −〈∇E(x, y),G(x, y)− G(x∗, x∗)〉.
Direct computation gives

−〈∇E(x, y),G(x, y)〉 = 〈∇DF (x, x∗), x− x∗ − (y − x∗)〉 − µ〈y − x∗, x− x∗〉
+µ‖y − x∗‖2 + 〈∇F (x)−∇F (x∗), y − x∗〉+ 〈y − x∗,N (y − x∗)〉

= 〈∇F (x)−∇F (x∗), x− x∗〉+ µ‖y − x∗‖2 − µ〈y − x∗, x− x∗〉,
where we have used ∇DF (x, x∗) = ∇F (x) − ∇F (x∗) and 〈y − x∗,N (y − x∗)〉 = 0 since N is
skew-symmetric. We expand the last two term using the identity of squares:

1

2
‖y − x∗‖2 − 〈y − x∗, x− x∗〉 =

1

2
‖y − x‖2 − 1

2
‖x− x∗‖2.

Using the bound (30a), we get

〈∇F (x)−∇F (x∗), x− x∗〉 = DF (x, x∗) +DF (x∗, x) ≥ DF (x, x∗) +
µ

2
‖x− x∗‖2

and obtain (54).

The calculation is more clear when ∇F (x) = Ax is linear with A = ∇2F ≥ µI . We denote by

z = (x, y)> and E(z) = 1
2‖z−z

∗‖2D withD =

(
A 0
0 µI

)
. Then−〈∇E(x, y),G(x, y)−G(x∗, x∗)〉

is a quadratic form (z− z∗)>M(z− z∗). We calculate the matrixM as(
A 0
0 µI

)(
I −I

−I + µ−1A I + µ−1N

)
=

(
A −A

−µI +A µI +N

)
.

As v>Mv = v> sym(M)v where sym(·) is the symmetric part of a matrix, direct computation
gives

sym

(
A −A

−µI +A µI +N

)
=

(
A −µI/2

−µI/2 µI

)
≥
(
A/2 0

0 µI/2

)
+

1

2

(
µI −µI
−µI µI

)
,

where in the last step we use the convexity A ≥ µI . Then (54) follows.
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G.2 EXPONENTIAL STABILITY OF HB-SADDLE FLOW

Return to the saddle point problems, we let z = (x, y)> with x = (u, p)>, y = (v, q)> ∈ Rm ×Rn
and denote by

F (x) := f(u) + g(p), N :=

(
0 B>

−B 0

)
, Dµ :=

(
µf 0
0 µg

)
.

Consider the Lyapunov function

E(z) = E(u, v, p, q) := DF (x, x∗) +
1

2
‖y − x∗‖2Dµ

= Df (u, u∗) +Dg(p, p
∗) +

µf
2
‖v − u∗‖2 +

µg
2
‖q − p∗‖2,

(55)

As f, g are strongly convex, E(z) ≥ 0 and E(z) = 0 iff u = v = u∗ and p = q = p∗. Recall that
the HB-saddle flow is

u′ = v − u,
p′ = q − p,

v′ = u− v − 1

µf
(∇f(u) +B>q),

q′ = p− q − 1

µg
(∇g(p)−Bv).

(56)

Denoted the vector field on the right hand side of (56) by G(u, v, p, q), as a special case of Theorem
G.1, we obtain the following strong Lyapunov property.
THEOREM G.2 (Strong Lyapunov property for HB-saddle flow). Suppose f is µf -strongly convex
g is µg-strongly convex. The following strong Lyapunov property holds for all u, v ∈ Rm, p, q ∈ Rn.

−〈∇E(u, v, p, q),G(u, v, p, q)〉 ≥ E(u, v, p, q) +
µf
2
‖v − u‖2 +

µg
2
‖q − p‖2. (57)

Consequently, for solutions (u(t), v(t), p(t), q(t)) of the HB-saddle flow (25), we have the exponen-
tial stability:

Df (u, u∗) +Dg(p, p
∗) +

µf
2
‖v − u∗‖2 +

µg
2
‖q − p∗‖2 ≤ e−tE(u(0), v(0), p(0), q(0)), t > 0.

G.3 PROOF OF THEOREM 1.2

Consider the modified Lyapunov function

Eα(z) := E(z) + α〈∇F (x)−∇F (x∗), y − x∗〉 − α‖y − y∗‖2Bsym , (58)

where E(z) is defined as (55) and Bsym =

(
0 B>

B 0

)
. Due to the bilinear coupling, additional

cross term α‖y − y∗‖2Bsym = 2α(B(v − v∗), q − q∗) is included in Eα.

We shall split 1
2‖y − x

∗‖2Dµ to β
2 ‖y − x

∗‖2Dµ + 1−β
2 ‖y − x

∗‖2Dµ to bound the two cross terms. The
cross term α〈∇F (x)−∇F (x∗), y−x∗〉 can be bounded using the vector form of Lemma C.2. Next
we focus on the α‖y − y∗‖2Bsym .

LEMMA G.1. Denoted by Dµ =

(
µfI 0

0 µgI

)
with µf , µg > 0 and Bsym =

(
0 B>

B 0

)
. For

any α, c > 0, we have(
1− α‖B‖

c
√
µfµg

)
cDµ ≤ cDµ ± αBsym ≤

(
1 +

α‖B‖
c
√
µfµg

)
cDµ. (59)

Proof. We first calculate the eigenvalues of D−1µ Bsym. By choosing the SVD basis of B = UΣV ,

its eigenvalue is given by the 2×2 matrix
(

0 µ−1f σ(B)

µ−1g σ(B) 0

)
, where σ(B) is a singular value
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of B. So λ(D−1µ Bsym) = ± σ(B)√
µfµg

and consequently

− ‖B‖
√
µfµg

≤ λmin(D−1µ Bsym) ≤ λmax(D−1µ Bsym) ≤ ‖B‖
√
µfµg

. (60)

Then write cDµ ± αBsym = cDµ(I ± α
cD
−1
µ Bsym) and apply the bound (60) to get the desired

result.

LEMMA G.2. Suppose f : Rm → R is µf -strongly convex and Lf -smooth, g : Rn → R is
µg-strongly convex and Lg-smooth. Let F (z) = f(u) + g(p). For any β ∈ (0, 1), denoted by

√
ρ = min

{√
βmin

{√
µf
Lf

,

√
µg
Lg

}
, (1− β)

√
µfµg

‖B‖

}
.

Then for any α > 0 and E defined by (55) and any two vectors zk, zk+1 ∈ R2(m+n)(
1− α
√
ρ

)
DE(zk, zk+1)

≤ DE(zk, zk+1)± α〈yk+1 − yk,∇F (xk+1)−∇F (xk)〉 ± α‖yk − yk+1‖2Bsym ,

≤
(

1 +
α
√
ρ

)
DE(zk, zk+1).

(61)

In particular, for α ≤ √ρ, we have the bound

0 ≤ Eα(z) ≤ 2E(z) z ∈ R2d. (62)

Proof. For any β ∈ (0, 1), using the vector form of Lemma C.2, we have bound(
1− α
√
ρF

)(
DF (xk, xk+1) +

β

2
‖yk − yk+1‖2Dµ

)
≤ DF (xk, xk+1) +

β

2
‖yk − yk+1‖2Dµ ± α〈yk+1 − yk,∇F (xk+1)−∇F (xk)〉

≤
(

1 +
α
√
ρF

)(
DF (xk, xk+1) +

β

2
‖yk − yk+1‖2Dµ

) (63)

with ρF = βmin
{
µf
Lf
,
µg
Lg

}
.

Use Lemma G.1, we have the bound(
1− 2α‖B‖

(1− β)
√
µfµg

)
1− β

2
‖yk − yk+1‖2Dµ ≤

1− β
2
‖yk − yk+1‖2Dµ ± α‖yk − yk+1‖2Bsym

≤
(

1 +
2α‖B‖

(1− β)
√
µfµg

)
1− β

2
‖yk − yk+1‖2Dµ .

(64)
Adding (63) and (64) implies (61).

Apply (61) with zk = z and zk+1 = z∗ to get (62).

In Lemma G.2, the optimal β∗ such that

√
β∗min

{√
µf
Lf

,

√
µg
Lg

}
= (1− β∗)

√
µfµg

‖B‖
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gives the largest step size

α∗ =
√
ρ∗ =

√
min

{√
µf
Lf
,
√

µg
Lg

}2

+
4µfµg
‖B‖2 −min

{√
µf
Lf
,
√

µg
Lg

}
2
√
µfµg
‖B‖

min

{√
µf
Lf

,

√
µg
Lg

}

=

1−

(√
min

{√
µf
Lf
,
√

µg
Lg

}2

+
4µfµg
‖B‖2 −min

{√
µf
Lf
,
√

µg
Lg

})2

4µfµg
‖B‖2


√
µfµg

‖B‖

An alternative simple choice to check the order of convergence rate is to set β = 3 − 2
√

2 and the
consequent step size is

α =
√
ρ = (

√
2− 1) min

{√
µf
Lf

,

√
µg
Lg
,

√
µfµg

‖B‖

}
.

Now we are ready to prove the theorem.

Proof of Theorem 1.2. We write (50) as a correction of the implicit Euler method

zk+1 − zk = αG(zk+1)− α
(

0 I
D−1µ ∇F 0

)
(zk+1 − zk)− α

(
0

D−1µ Bsym(yk+1 − yk)

)
. (65)

Use the definition of Bregman divergence, we have the identity for the difference of the Lyapunov
function E at consecutive steps:

E(zk+1)− E(zk) = (∇E(zk+1), zk+1 − zk)−DE(zk, zk+1)

Substitute (65) and expand the cross term:

〈∇E(zk+1),zk+1 − zk〉 = α〈∇E(zk+1),G(zk+1)〉
−α〈∇F (xk+1)−∇F (x∗), yk+1 − yk〉 − α〈yk+1 − x∗,∇F (xk+1)−∇F (xk)〉
−α〈yk+1 − y∗, yk+1 − yk〉Bsym

(66)

We split the gradient term as

α〈∇F (xk+1)−∇F (x∗), yk+1 − yk〉+ α〈yk+1 − x∗,∇F (xk+1)−∇F (xk)〉
= α〈∇F (xk+1)−∇F (x∗), yk+1 − x∗〉+ α〈yk+1 − yk,∇F (xk+1)−∇F (xk)〉
− α〈yk − x∗,∇F (xk)−∇F (x∗)〉.

We can use identity of squares to expand

〈yk+1 − y∗, yk+1 − yk〉Bsym =
1

2

(
‖yk+1 − y∗‖2Bsym + ‖yk+1 − yk‖2Bsym − ‖yk − y∗‖2Bsym

)
.

Substitute back to (18) and rearrange terms, we obtain the following identity:

Eα(zk+1)− Eα(zk) = α〈∇E(zk+1),G(zk+1)〉
−DE(zk, zk+1) + α〈yk+1 − yk,∇F (xk+1)−∇F (xk)〉 − α‖yk − yk+1‖2Bsym ,

(67)

which holds for arbitrary step size α.

Now take α ≤ √ρ. The last term in (67) is non-positive. Use the strong Lyapunov property, and the
bound Eα(z) ≤ 2E(z) to get

Eα(zk+1)− Eα(zk) ≤ −αE(zk+1) ≤ −α
2
Eα(zk+1), (68)
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which implies the global linear convergence:

Eα(zk+1) ≤ 1

1 + α/2
Eα(zk) ≤

(
1

1 + α/2

)k+1

Eα(z0), k ≥ 0.

Moreover, (68) implies

E(zk+1) ≤ 1

α
(Eα(zk)− Eα(zk+1)) ≤ 1

α
Eα(zk) ≤ 1

α

(
1

1 + α/2

)k
Eα(z0),

which coincides with (8) with C0 = 1
αE

α(z0) ≥ 0.

H AOR-HB-SADDLE-I ALGORITHM AND CONVERGENCE ANALYSIS

We propose the AOR-HB-saddle-I algorithm in the following Algorithm 4.

Algorithm 4 AOR-HB-saddle-I Algorithm

1: Parameters: u0, v0 ∈ Rm, p0, q0 ∈ Rn, Lf , Lg, µf , µg, ‖B‖.
2: Set α = min

{√
µf
Lf
,
√

µg
Lg

}
.

3: for k = 0, 1, 2, . . . do
4: uk+1 =

1

1 + α
(uk + αvk); pk+1 =

1

1 + α
(pk + αqk)

5: Find (vk+1, qk+1) such that

vk+1 =
1

1 + α

(
vk + αuk+1 −

α

µf
(2∇f(uk+1)−∇f(uk) +B>qk+1)

)
,

qk+1 =
1

1 + α

(
qk + αpk+1 −

α

µg
(2∇g(pk+1)−∇g(pk)−Bvk+1)

)
.

6: end for
7: return uk+1, vk+1, pk+1, qk+1

Consider the modified Lyapunov function

Eα(z) := E(z) + α〈∇F (x)−∇F (x∗), y − x∗〉, (69)

The following theorem show the convergence rate of AOR-HB-saddle-I method.
THEOREM H.1 (Convergence of AOR-HB-saddle-I method). Suppose f is µf -strongly convex

and Lf -smooth, g is µg-strongly convex and Lg-smooth and let
√
ρ = min

{√
µf
Lf
,
√

µg
Lg

}
. Let

(uk, vk, pk, qk) be generated by Algorithm 4 with initial value (u0, v0, p0, q0) and step size α =
√
ρ.

Then there exists a non-negative constant C0 = C0(u0, v0, p0, q0, µf , Lf , µg, Lg) so that we have
the linear convergence

Df (uk+1, u
∗) +Dg(pk+1, p

∗) +
µf
2
‖vk+1 − u∗‖2 +

µg
2
‖qk+1 − p∗‖2 ≤ C0

(
1

1 + 1
2

√
ρ

)k
.

(70)

Proof. AOR-HB-saddle-I can be written as a correction of the implicit Euler method

zk+1 − zk = αG(zk+1)− α
(

0 I
D−1µ ∇F 0

)
(zk+1 − zk). (71)

The proof follows the proof of Theorem 1.1 in Appendix C with f = F .
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