
Proceedings of Machine Learning Research 260, 2024 ACML 2024

Graph Neural Networks (with Proper Weights) Can Escape
Oversmoothing

Zhijian Zhuo zhijianzhuo@stu.pku.edu.cn
School of Mathematical Sciences, Peking University

Yifei Wang yifei w@mit.edu
CSAIL, MIT

Jinwen MaB jwma@math.pku.edu.cn
School of Mathematical Sciences, Peking University

Yisen WangB yisen.wang@pku.edu.cn

National Key Lab of General Artificial Intelligence,

School of Intelligence Science and Technology, Peking University

Editors: Vu Nguyen and Hsuan-Tien Lin

Abstract

Graph Neural Networks (GNNs) are known to suffer from degraded performance with more
layers. Most prior works explained it from graph propagation, arguing that it inevitably
leads to indistinguishable node features under more depth, known as oversmoothing. How-
ever, we notice that these analyses largely ignore the role of GNN weights either directly
or by unrealistically strong assumptions. In this paper, we rediscover the role of GNN
weights on oversmoothing with a systematic study. Notably, contrary to previous findings,
we show that when learned freely, there always exist ideal weights such that vanilla GNNs
completely avoid oversmoothing, even after infinite propagation steps. It indicates that
oversmoothing is a problem of learning disabilities instead of the doom of GNNs them-
selves. To facilitate the learning of proper weights, we propose Weight Reparameterization
(WeightRep) as a way to adaptively maintain the ideal weights in vanilla GNNs along the
learning process. We theoretically show that for linear GNNs, WeightRep can always mit-
igate oversmoothing (full collapse) as well as dimensional collapse. Extensive experiments
on nine benchmark datasets demonstrate its effectiveness and efficiency in practice.

Keywords: Graph neural networks, Oversmoothing, Semi-supervised learning.

1. Introduction

Graph Neural Networks (GNNs) have revolutionized a multitude of fields with their unique
ability to learn from graph-structured data, finding widespread application in domains such
as node classification (Kipf and Welling, 2017; Hamilton et al., 2017), drug discovery (Xiong
et al., 2019), computational chemistry (Gilmer et al., 2017), recommendation systems (Wang
et al., 2018), and traffic prediction (Zhao et al., 2019). Generally, most existing GNNs are
based on the message-passing paradigm (Kipf and Welling, 2017; Veličković et al., 2018),
which includes neighborhood aggregation and feature transformation, to learn representa-
tions of given graphs.

© 2024 Z. Zhuo, Y. Wang, J. Ma & Y. Wang.

Zhuo Wang Ma Wang

Despite their rapid development, GNNs face a common issue: the oversmoothing phe-
nomenon (Li et al., 2018; Guo et al., 2023a; Rusch et al., 2023), where node representations
become excessively similar across the graph as the depth of networks increases, leading to
significant performance deterioration. Hence, the best performance is usually attached when
networks are shallow. This limitation constrains GNNs’ representation capability, making
it crucial to investigate and counter oversmoothing for real-world applications. Empirically,
oversmoothing has been observed on many GNNs and datasets (Li et al., 2018; Chen et al.,
2020a; Rusch et al., 2023). Theoretically, oversmoothing has been shown to inevitably oc-
cur both asymptotically (Li et al., 2018; Oono and Suzuki, 2020; Cai and Wang, 2020; Guo
et al., 2023b; Roth and Liebig, 2023) and non-asymptotically (Keriven, 2022).

In this paper, we challenge these theoretical results by proving that common GNNs,
such as GCN, can indeed escape oversmoothing, even after infinite propagation steps. Our
key insight is to rediscover the potential of weight matrices in GNNs, which were either
neglected (Li et al., 2018) or assumed to be small enough (Oono and Suzuki, 2020) in
previous studies. Notably, we theoretically prove the existence of specific weights that en-
sure representations of GNNs are well distinguished at each layer. Therefore, our analysis
suggests that oversmoothing is not an inherent structural flaw but rather a result of the
learning process failing to identify non-smoothing weights. That is, existing optimizers are
unable to find the non-smoothing weights that do exist. Guided by the principle, we pro-
pose Weight Reparameterization (WeightRep), a novel approach that dynamically
constructs input-dependent weights that maintain a desirable representation spectrum in
vanilla GNNs. This method ensures that weights of GNNs remain ideal (in the sense of
escaping from oversmoothing) throughout the training process. Our extensive experiments
across various models and benchmark datasets show that GCN employing WeightRep out-
performs vanilla GCN as well as with normalization on various depths. Our key contribu-
tions are summarized as follows:

• We systematically analyze the role of GNN weights on oversmoothing in three cases:
without weights, random weights, and freely learnable weights. Contrary to previous
findings, we show that when weights are learnable, there always exist proper weights
that can prevent oversmoothing at each GNN layer.

• Inspired by the theoretical analysis, we propose WeightRep which reparameterizes
weights to be adaptive to input features. In this way, WeightRep ensures that weights
of GNNs stay ideal throughout the training process, as supported by theoretical guar-
antees.

• We validate the effectiveness of WeightRep through comprehensive experiments on
real-world graphs. Results show that our method can effectively mitigate oversmooth-
ing across different types of graph datasets.

2. Related Work

Graph Neural Networks. There are two main families of GNNs, spectral-based methods
and spatial-based methods. Spectral-based approaches use graph convolutions which are
based on graph spectral theory (Bruna et al., 2013; Klicpera et al., 2019; He et al., 2021).

Graph Neural Networks Can Escape Oversmoothing

And spatial-based approaches define graph convolutions by aggregating and transforming
feature information from neighbors (Hamilton et al., 2017). It includes a lot of famous
variants like GCN (Kipf and Welling, 2017) and GAT (Veličković et al., 2018).

Oversmoothing in GNNs. Oversmoothing is a key issue with GNNs, where increas-
ing the depth of GNNs results in the node features converging to similar values Li et al.
(2018). GNNs usually achieve optimal performance when networks are shallow due to over-
smoothing. Some methods are proposed to mitigate oversmoothing in GNNs. Inspired by
the dropout technique (Hinton et al., 2012), researchers also add a random dropping module
to each layer. For instance, DropEdge (Rong et al., 2019) and DropNode (Feng et al., 2020)
randomly drop edges and nodes of the underlying graph during training, respectively. And
DropMessage (Fang et al., 2023) unified random dropping of edges and nodes for GNNs.
A proven way is adding residual connections that change the structure of GNNs, including
JKNet (Xu et al., 2018), DeepGCNs (Li et al., 2019) and GCNII (Chen et al., 2020b).
Another line of research is utilizing normalization techniques such as PairNorm (Zhao and
Akoglu, 2020), NodeNorm (Zhou et al., 2021), ContraNorm (Guo et al., 2023a).

Theoretical Analysis of Oversmoothing. Existing theoretical results are mainly to
prove the existence of oversmoothing. The pioneering work of Li et al. (2018) showed that
the output of GCNs would converge to the eigenspace associated with the maximum eigen-
value under the linear and without the feature transformation setting. For nonlinear GNNs,
Oono and Suzuki (2020) proved that the infinite layer GCN only outputs information of the
graph Laplacian with bounded feature transformation. And Cai and Wang (2020) showed
that the Dirichlet energy of embeddings will converge to zero. Keriven (2022) also charac-
terized oversmoothing from a non-asymptotic view. We note that Roth and Liebig (2023)
claimed that oversmoothing of GNNs occurs independently of feature transformations. Re-
cently, Wu et al. (2023) proved that GAT loses expressive power exponentially under mild
assumptions. Different from the previous theory, we prove the existence of proper weights
such that GNNs can avoid oversmoothing and such weights can be found by WeightRep.

3. Preliminaries

3.1. Notations and Assumption

We first describe key notations used in this paper. We denote a graph as G = (V, E , X)
consisting of a set of N nodes V = {v1, v2, . . . , vN}, a set of edges E ⊆ V × V and the node
feature matrix X ∈ RN×d. The neighborhood set of node vi is denoted by Ni. Also, we
use the adjacency matrix A ∈ RN×N to describe the graph structure. An N−dimension
all-ones vector is denoted by 1. Let D = diag(A1) denote the degree matrix of G. The
graph Laplacian is defined as L = D−A and two versions of normalized Laplacian are then
given by Lsym = D− 1

2LD− 1
2 and Lrm = D−1L, respectively.

Let ∥ · ∥2, ∥ · ∥F be the 2-norm and Frobenious norm of matrix, respectively. We use
the shorthand [n] = {1, 2, . . . , n}. Tr(·) denotes trace of a matrix. The spectral radius of
a square matrix A denoted by ρ(A) is defined as ρ(A) = max{|λ1|, |λ2|, . . . , |λN |}, where
λ1, λ2, . . . , λN are eigenvalues of A. For two real matrices with the same dimension B, C,
we define B ≥ C (B > C) if Bij ≥ Cij (Bij > Cij) for each i, j.

We make the following assumption on the graph which is a common assumption for the
theoretical analysis of graphs Cai and Wang (2020); Wu et al. (2023).

Zhuo Wang Ma Wang

Assumption 1 The graph G is connected and each node on the graph has a self-loop.

For disconnected graphs, we can apply our results to each connected component of graphs.
And in practice, we usually add a self-loop to every node, e.g., GCN (Kipf and Welling,
2017) and GAT (Veličković et al., 2018).

3.2. Graph Neural Networks

We consider Message-Passing Graph Neural Networks (MP-GNNs) which iteratively trans-
form the layer-wise forward-propagation operation of the form:

X(k+1) = σ(PX(k)W (k)), (1)

where P is the aggregation operator, PX(k) denotes message aggregation, W (k) ∈ Rd×d is
the learnable weight matrix used for weight transformation σ(·W (k)), σ denotes a pointwise

nonlinear activation function and X(k) = [X
(k)
1 , X

(k)
2 , · · · , X(k)

N]⊤ represents k-th layer node
embedding matrix and X(1) = X.

Remark. In this paper, we mainly consider normalized aggregation operators that
belong to P = {P ∈ RN×N |∃ a > 0 s.t. aP ≥ A and ρ(P) = 1}. It is easy to verify that for
any α ∈ (0, 1], both two versions of normalization Laplacian suffice, i.e., (I − αLsym), (I −
αLrw) ∈ P. Many well-known message-passing GNNs can be included as well, such as GCN
(Kipf and Welling, 2017), GAT (Veličković et al., 2018), SGC (Wu et al., 2019), and DGC
(Wang et al., 2021).

3.3. Metrics for Oversmoothing

Before we are devoted into the formal discussion, it is necessary to define oversmoothing
mathematically. Firstly, we introduce two metrics to quantify the degree of oversmoothing:
the Dirichlet energy and Mean Average Distance. The Dirichlet energy which measures the
smoothness of a function on a graph (Cai and Wang, 2020) is defined as:

E(X(k)) = Tr(X(k)⊤∆X(k)), (2)

where ∆ is some matrix, e.g., Lsym and Lrw. To mitigate the impact of feature amplitude,

the normalized Dirichlet energy E(X(k)

∥X(k)∥) is proposed by Giovanni et al. (2023) and Maskey

et al. (2023).

For two node vectors x, y ∈ Rd, we define cos(x, y) = xT y
∥x∥2∥x∥2 . And if x = 0 or y = 0,

cos(x, y) = 0. Then Mean Average Distance (MAD) (Chen et al., 2020a) which calculates
the average distance betweeen node representations can be defined as:

MAD(X(k)) =
1

N(N − 1)

∑
i,j∈[N]

(
1− cos(X

(k)
i , X

(k)
j)
)
. (3)

Note that MAD is defined on normalized features, hence MAD(X(k)) = MAD(X(k)

∥X(k)∥).

We can define oversmoothing of GNNs with respect to metric µ(·) (E(·) or MAD(·)) as:
Definition 1 Graph Neural Networks (GNNs) are oversmoothing for metric µ(·) if

lim
k→+∞

µ

(
X(k)

∥X(k)∥

)
= 0. (4)

Graph Neural Networks Can Escape Oversmoothing

4. Revisiting Oversmoothing from a Weight Perspective

As introduced in Section 3.2, each layer of Message-Passing GNNs has two parts: message
aggregation and weight transformation. So what role do weights play in the oversmoothing
problem? In this section, we systematically analyze the role of weights on oversmoothing
in three cases: without weights, with random weights, and with freely learnable weights.

4.1. Oversmoothing without Weights

We begin our discussion by considering simply GNNs which only contain message aggrega-
tion without weight transformation:

X(k+1) = σ(PX(k)), k = 1, 2, . . . (5)

Based on Assumption 1, we establish the following proposition which reveals that the repre-
sentationX(k) exponentially converges to the same value as the depth of the model increases.

Proposition 2 Under Assumption 1 and without weigths, i.e., X(k+1) = σ(PX(k)) and
σ(·) is ReLU or the identity map. For any P ∈ P = {P ∈ RN×N |∃a > 0 s.t., aP ≥
A and ρ(P) = 1}, we have that P has eigenpair (1, v) where all components of v are
positive and any other eigenvalue λ of P satisfies |λ| < 1. Furthermore,

lim
k→+∞

X(k) = vc⊤, for some c ∈ Rd, (6)

∥X(k) − vc⊤∥F = O(|λ2|k), (7)

where v is a positive dominant vector of P and λ2 is the eigenvalue of P with the second
maximal module.

We present the proof in Appendix A. The above proposition implies that

lim
k→+∞

E(X(k)) = lim
k→+∞

E

(
X(k)

∥X(k)∥

)
= lim

k→+∞
MAD(X(k)) = 0. (8)

Therefore, only considering the graph propagation process without weights, we prove that
oversmoothing is indeed inevitable. In addition, the convergence rate of oversmoothing is
exponential with the increased depth of GNNs.

4.2. Oversmoothing with Random Weights

In the previous subsection, our analysis reveals that oversmoothing happens under graph
propagation without weights. However, another question is what would happen if we con-
sider weight transformations. There are two cases: random weights and learnable weights.
Next, let us first turn our attention to the effect of multi-layer random weights. Mathemat-
ically, we are interested in the asymptotic behavior of the following system:

X(k+1) = X(k)W (k), k = 1, 2, . . . , (9)

where {W (k) ∈ Rd×d}∞k=1 are random weight matrices in which each element is indepen-
dently and identically distributed from the Gaussian distribution N (0, σ2) or the uniform
distribution Uniform[−a, a] for some positive numbers σ, a > 0. The following proposition
tells us that the representation will collapse to a rank one matrix asymptotically.

Zhuo Wang Ma Wang

Proposition 3 Suppose X(k+1) = X(k)W (k) and all entries of the weight matrices {W (k)}
are drawn i.i.d. from the Gaussian distribution or the uniform distribution, then X(k)

∥X(k)∥
converges to a rank one matrix almost surely.

Influence of Initialization Schemes. It is worth noting that commonly used Xavier
initialization (Glorot and Bengio, 2010) and Kaiming initialization (He et al., 2015) satisfy
the condition that all entries of the weight matrices are independently drawn from the
Gaussian distributions or the uniform distribution. Therefore, the above proposition reveals
a critical fact that such initialization will make the presentation of neural networks degraded.
It follows that random weights result in the collapse representation of GNNs. And this
makes training deep networks more difficult.

4.3. Oversmoothing with Freely Learnable Weights

In the above, our focus is to consider message aggregation without weights or with random
weight transformations respectively, and we have shown that oversmoothing does occur in
these cases. Now, let us consider graph propagation with learnable weights:

X(k+1) = PX(k)W (k), k = 1, 2, . . . , (10)

where {W (k) ∈ Rd×d}∞k=1 are learnable paremeters. However, would oversmoothing happen
under graph propagation with freely learnable weights as well? Our answer is NO, since
we find that oversmoothing actually can be avoided with proper weight transformations.
In fact, in the following Theorem 4, we reveal that there exists proper weights such that
GNNs representations are well distinguished at each layer.

Theorem 4 Suppose that σ(·) is the identity map, i.e., X(k+1) = PX(k)W (k). For P ∈ P
and Rank(X) > 1, there exist proper feature transformations {W (k)}∞i=1 and a constant
a > 0 such that

E(X(k)), E(
X(k)

∥X(k)∥F
), MAD(X(k)) > a, ∀k ∈ N. (11)

Theorem 4 tells us that there exist such weight matrices such that oversmoothing can be
avoided in the infinite layer GCN: the oversmoothing metric is always larger than a constant
number and does not converge to zero with the increased depth of the model. And we can
get similar results for GAT-like dynamic message-passing X(k+1) = P kX(k)W (k) as bellow:

Corollary 5 Suppose that σ(·) is the identity map, i.e., X(k+1) = P kX(k)W (k). For P k ∈
P and Rank(X) > 1, there exist proper feature transformations {W (k)}∞i=1 and a constant
a > 0 such that

E(X(k)), E(
X(k)

∥X(k)∥F
), MAD(X(k)) > a, ∀k ∈ N. (12)

Remark. Above, we theoretically prove the existence of weights that make GNNs not
oversmoothing. However, we need to point out that the optimizer cannot find such weights
in practice since the optimization of deep networks has always been a difficult problem. Here,

Graph Neural Networks Can Escape Oversmoothing

2 4 8 16 32 64 128
#Layer

20

30

40

50

60

70
Ac

cu
ra

cy
(%

)
GCN
MLP

(a) GCN v.s. MLP

2 4 8 16 32
#Layer

0

20

40

60

80

Ac
cu

ra
cy

(%
)

GCN
WeightInit
WeightRep

(b) Models Performance

Figure 1: Experiments on Cora dataset. (a): The impact of message aggregation and weight
transformation when varying the depth of models on Cora dataset. MLP has the
same structure as GCN except for the absence of message aggregation. (b):
Performance comparison of GCN, WeightInit and WeightRep on Cora dataset
with various depths.

we empirically examine the impacts of message aggregation and weight transformation on
trained deep models. To control variables, we compare MLP and GCN models on Cora
dataset, where MLP has the same structure as GCN except for the absence of message
aggregation. From Figure 1(a), we can see that when the performance of the MLP declines,
the performance of the GCN also declines, and the trend is consistent. This indicates that
the optimization of weights may be the main reason that the performance drops of GCN
as the depth increases. For more experiment evidence on other datasets, please see Figure
3 in Appendix C.

5. Building Non-oversmoothing GNNs with Weight Reparameterization

From the theoretical analysis in the previous section, we know that the proper weight
transformation which maintains the linearly independent of each layer’s presentation is
critical in mitigating oversmoothing. In this section, our goal is to leverage this insight to
mitigate the oversmoothing problem.

5.1. Failure of Weight Initialization

It seems natural to directly initialize weights (dubbed WeightInit) as the construction in
Theorem 4. However, there are some problems with this method. First, since the number
of nodes in graph datasets is usually large (see Table 4), the calculation cost of eigenvalue
decomposition of the aggregation matrix is very expensive. Second, the existence of the non-
linear activation function. Third, weights are constantly updated by the optimizer during
the training. As a result, the performance of WeightInit is poor (see Figure 1(b). Next, we
explore an input-dependent approach to keep the linearly independent of the representation
during the training.

Zhuo Wang Ma Wang

5.2. Proposed Weight Reparameterization

As analyzed in Section 5.1, direct weight initialization fails to preserve the weight structure
since the hidden representation X(k) starts to shift once the training begins. To ensure
that weights always remain linearly independent of the features during the training, our
approach is to dynamically construct input-dependent weights from the representation
of each layer. Concretely, suppose that X̂(k) = PX(k−1)W (k−1) and X(k) = X̂(k)Ŵ (k),
where W (k−1) is the learnable weight and Ŵ (k) is the constructed weight such that keeping
the linearly independent of the representation X(k).

Construction of the weight Ŵ (k). Now let us describe in detail how to get the weight
Ŵ (k). Denote Σ = X̂(k)⊤X̂(k) ∈ Rd×d as the covariance matrix of X̂(k). Our goal is making
X(k)⊤X(k) = Id, i.e., Ŵ

(k)⊤ΣŴ (k) = Id. Since Σ is a symmetric positive definite matrix 1,
suppose Σ has the spectral decomposition Σ = UΛU⊤, where Λ is a diagonal matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd > 0 and U is an orthogonal matrix. It is straightforward to
verify that we can get an explicit solution

Ŵ (k) = Σ−1/2 = UΛ−1/2U⊤.

Then we have the new node representation, i.e., X(k) = X̂(k)Σ−1/2.
In addition, we can extend the construction of the weight Ŵ (k) to more generalized

cases that can be applied to various scenarios. Given the spectral decomposition of the
covariance matrix Σ, the generalized construction of Ŵ (k) with the function f(·) is defined
as:

Ŵ (k) = Σf = Uf(Λ)UT , (13)

where f(Λ) is denoted as the function f(·) is applied on every diagonal element of the
digonal marix Λ, i.e., f(Λ) = diag{f(λi), f(λ2), . . . , f(λd)}. And the new node feature is
calculated by X(k) = X̂(k)Ŵ (k) = X̂(k)Σf .

The choices of f(·) can be varied widely, in this paper we mainly consider the power
function family, i.e., f(λ) = λp. When the power exponent p = −1

2 , this construction
becomes the whitening transformation. In this view, our method WeightRep is a special
normalization layer like LayerNorm (Ba et al., 2016) and PairNorm (Zhao and Akoglu,
2020).

Reparameterized Weight. In fact, we can reformulate the representation X(k) as:

X(k) = PX(k−1)W (k−1)Ŵ (k) = PX(k−1)W̃ (k), (14)

where W̃ (k) = W (k−1)Ŵ (k) is the reparameterized weight. Based on the reformulation in Eq.
(14), we can understand the construction of new weights as the weight reparameterization
(dubbed WeightRep). It follows that reparameterized weights play the same role as in
Theorem 4 that reparameterized weights can help keep the linearly independent of the
representation X(k). Under this perspective, this implicitly helps us to get such proper
weight transformations.

1. In practice, we calculate Σ by Σ = X̂(k)⊤X̂(k)+ϵId for the numerical stability, where ϵ is a small positive
number (default: 1e− 6). Hence, we can consider Σ as the symmetric positive definite matrix.

Graph Neural Networks Can Escape Oversmoothing

5.3. Theoretical Guarantees

In this subsection, we theoretically analyze the oversmoothing behaviors of WeighRep.

Proposition 6 For WeightRep as in Eq (14) with p = −1
2 , there exists a > 0 such that

E(X(k)), E(
X(k)

∥X(k)∥F
), MAD(X(k)) > a.

Proposition 6 shows that WeightRep can guarantee non-oversmoothing throughout the
training. Besides, Guo et al. (2023a) pointed out that features may still suffer from di-
mensional collapse, whether features lie in a low-dimensional subspace while not fully col-
lapsed, which may be regarded as subtle oversmoothing as well. The effective rank can be
used to measure such dimension collapse. As defined below, a lower effective rank means
that feature eigenvalues are more concentrated, indicating a higher degree of dimensional
collapse.

Definition 7 (Effective Rank (Roy and Vetterli, 2007)) Suppose X ∈ RN×d has sin-
gular value decomposition X = UΣV ⊤, where Σ is a diagonal matrix with singular values
σ1, σ2, . . . , σm ≥ 0,m = min{N, d}. The singular value distribution is pi =

σi∑m
j=1 σj

, j =

1, 2, . . . ,m. Then the effective rank of the matrix X, denoted as Erank(X), is defined as
Erank(X) = exp{H(p1, p2, . . . , pm)}, where H(p1, p2, . . . , pm) is the Shannon entropy which
defined as H(p1, p2, . . . , pm) = −

∑m
i=1 pi log(pi).

Proposition 8 Suppose X = X̂Σf with f(λ) = λp and −1
2 ≤ p < 0, then we have

Erank(X) > Erank(X̂). (15)

The proposition above characterizes the impact of WeightRep on the effective rank of the
representation. The rise of the effective rank after WeightRep indicates that representations
of different nodes will be more dilated, thus avoiding dimensional collapse.

5.4. Implementation and Complexity Analysis

Empirically, we think of WeightRep as a gradientless operation in which the constructed
weight Ŵ (k) does not require the gradient. So we disable the gradient calculation of the
operator in Eq (13). This is crucial in saving training time and reducing memory consump-
tion for computations. Therefore, the calculation cost of WeightRep is mainly caused by the
spectral decomposition which does not require the gradient. It follows that the additional
computational complexity is O(Nd2 + d3), which is linearly dependent on the number of
nodes. And if N > d, the additional computational complexity is the same as the linear
transformation O(Nd2).

For GCN, we add WeightRep to every layer except the last layer like PairNorm (Zhao
and Akoglu, 2020) and ContraNorm (Guo et al., 2023a). Therefore, suppose the depth of
GCN is L, the total computational complexity is O(LNd2 + Ld3).

Zhuo Wang Ma Wang

6. Experiments

In this section, we design extensive experiments to evaluate the effectiveness of our proposed
method WeightRep. We mainly focus on node classification including homophily graphs and
heterophily graphs. Moreover, we conduct ablative studies on hyperparameters sensitivity
analysis. For more details experiment setting and adding experiments can be found in
Appendix B & C

6.1. Experiment Setup

Datasets. We evaluate our method WeightRep on nine common graph node classification
datasets varying in graph size and feature type, including homophily graphs and heterophily
graphs. For the homophily benchmark, we choose the citation datasets Cora, CiteSeer, and
Pubmed (Yang et al., 2016), the Amazon co-purchase graphs Computers and Photo (Shchur
et al., 2018), and the Coauthor datasets CS and Physics (Shchur et al., 2018). For the het-
erophily benchmark, we choose Wikipedia graphs Chameleon and Squirrel (Rozemberczki
et al., 2021). Their data statistics are summarized in Table 4.

Setup. For all methods, we use standard GCNs (Kipf and Welling, 2017) as the back-
bone. Following the previous settings of Zhao and Akoglu (2020), the hidden dimension of
GCNs and dropout rate are set to 32 and 0.6, respectively. We initialize the model parame-
ters randomly and use the Adam optimizer (with weight decay 5e− 4) to train the encoder
(Kingma and Ba, 2015). We run each experiment within 200 epochs. All experiments are
run with 5 random seeds and the average performance and standard deviation are reported.
For three citation networks data, we use the public and standard splits as in Kipf and
Welling (2017). For Amazon co-purchase graph Computers and Photo, and the Coauthor
datasets CS and Physic, we use the same setting as He et al. (2021), who randomly split
the node sets into train, validation and test set ratio 60%, 20% and 20%. For Wikipedia
graphs Chameleon and Squirrel, we use pre-processed data introduced in Pei et al. (2019),
so train, validation, and test splits are available. All our experiments are performed on a
single 24GB Nvidia GeForce RTX 3090.

Hyperparameters. For each classification task and model with different depths, we
select the best power exponent p in the range of {−0.2,−0.3,−0.4,−0.5}. For a fair com-
parison, we select the best configuration of hyperparameters for all methods only based on
the accuracy of the validation set.

6.2. Experimet Results

The test accuracies of GCNs with various depths, 2, 4, 8, and 16, are shown in Table 1 (The
results of 64 hidden dimensions and the MAD metric are shown in Appendix C). The results
show that our method WeightRep significantly outperforms the baseline across the nine
datasets, both homophily graphs and heterophily graphs. First, we can see that our method
can improve the performance of 2-layer GCN which usually has the best performance. For
instance, our WeightRep boosts the performance of 2-layer GCN 10.04% and 14.87% on
Computers and Photo datasets, respectively. Furthermore, one can see that our method
can also improve deeper GCNs. On Cora dataset, for example, the proposed method can
improve the vanilla GCNs with 4 layers and 8 layers by a margin of 5.50 % and 55.12%,

Graph Neural Networks Can Escape Oversmoothing

Table 1: Node classification accuracies (%) on nine datasets. We use GCN as the backbone
with various depths: 2, 4, 8, 16. The hidden dimension is set to 32. Reported
results are averaged over 5 runs. For every layer setting, the highest accuracy is
in bold.

Datasets Model #L=2 #L=4 #L=8 #L=16

Cora
GCN 81.86 ± 0.43 75.21 ± 2.71 21.23 ± 7.99 14.54 ± 8.67
WeightRep 82.21 ± 0.11 80.71 ± 0.35 76.35 ± 2.31 25.62 ± 5.89

CiteSeer
GCN 68.96 ± 0.51 53.74 ± 4.13 19.65 ± 0.00 19.65 ± 0.00
WeightRep 69.04 ± 0.33 65.56 ± 0.24 57.63 ± 3.16 34.38 ± 2.72

Pubmed
GCN 77.94 ± 0.12 75.96 ± 0.51 20.8 ± 0.00 32.02 ± 9.16
WeightRep 77.68 ± 0.12 75.58 ± 0.36 75.23 ± 0.80 73.41 ± 1.71

Computers
GCN 75.99 ± 3.47 38.24 ± 27.21 25.79 ± 25.64 9.46 ± 3.98
WeightRep 86.03 ± 0.19 81.95 ± 0.38 76.78 ± 0.86 59.71 ± 2.34

Photo
GCN 77.50 ± 4.65 48.99 ± 28.49 26.74 ± 16.30 13.05 ± 13.61
WeightRep 92.37 ± 0.15 90.73 ± 0.39 88.30 ± 0.42 69.69 ± 5.84

CoauthorCS
GCN 93.25 ± 0.33 72.30 ± 14.99 2.58 ± 2.32 1.42 ± 0.00
WeightRep 93.81 ± 0.13 92.49 ± 0.07 91.24 ± 0.14 84.47 ± 0.57

CoauthorPhysics
GCN 95.74 ± 0.10 95.97 ± 0.11 91.53 ± 3.71 84.3 ± 0.00
WeightRep 96.62 ± 0.09 96.15 ± 0.07 95.7 ± 0.12 94.76 ± 0.18

Chameleon
GCN 47.89 ± 1.50 36.89 ± 1.03 22.37 ± 0.00 22.37 ± 0.00
WeightRep 63.38 ± 0.95 53.42 ± 1.52 45.79 ± 1.76 35.22 ± 1.04

Squirrel
GCN 28.66 ± 0.83 19.31 ± 0.00 19.31 ± 0.00 19.31 ± 0.00
WeightRep 45.90 ± 0.44 38.27 ± 1.02 34.33 ± 0.77 26.07 ± 1.45

respectively. Notably, although WeightRep resolves oversmoothing at each layer and helps
improve the performance, we still observe some degradation under more depth. It indicates
that oversmoothing might not explain all sources of performance degradation. For example,
since the training becomes harder under more depth, the optimizer might not be able
to find good discriminative features for classification, which is not fully captured in the
oversmoothing notion. We leave more in-depth study on this problem to future work.

6.3. Comparison with other Designs

In this subsection, we compare our method with the following normalization techniques
which tackle the oversmoothing problem: LayerNorm (Ba et al., 2016), PairNorm (Zhao and
Akoglu, 2020) and ContraNorm (Guo et al., 2023a). For a fair comparison, for PairNorm
and ContraNorm, we tune the hyperparameter scaler s from {0.2, 0.5, 0.8, 1.0} as in the
paper (Guo et al., 2023a). The comparison results are presented in Table 2. From the

Zhuo Wang Ma Wang

Table 2: Test accuracy (%) comparison of different normalizations. The highest accuracy
is in bold and the second one is underlined. OOM: out of memory.

Datasets Model #L=2 #L=4 #L=8 #L=16

CiteSeer

GCN 68.96 53.74 19.65 19.65
LayerNorm 64.89 61.74 25.4 19.65
PairNorm 46.38 40.17 39.57 24.09
ContraNorm 63.67 60.69 60.18 43.63
WeightRep 69.04 65.56 57.63 34.38

Pubmed

GCN 77.94 75.96 20.8 32.02
LayerNorm 75.04 73.82 43.51 35.97
PairNorm 72.81 67.99 64.05 72.27
ContraNorm 75.42 OOM OOM OOM
WeightRep 77.68 75.58 75.23 73.41

table, we can see that our proposed WeightRep outperforms LayerNorm and PairNorm on
CiteSeer and Pubmed datasets. Compared to ContraNorm, our method performs better in
shallow layers and can scale to larger graph datasets. More results can be found in Table 8.

6.4. Computational Time and GPU Memory

Here we compare different models’ training speed and GPU memory usage under the same
setting. The models are set to 8 layers and are trained in 200 epochs. All models are
evaluated on Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz and a single 24GB Nvidia
GeForce RTX 3090. The comparison results are listed in Table 3. From the table, one can
see that our WeightRep is slightly slower than vanilla GCN and PairNorm, and the GPU
memory usage of our method only increases a little. Compared to ContraNorm, our method
performs better on both the training time and GPU memory. In other words, the cost of
adding WeightRep into GCN is acceptable.

6.5. Hyperparameter Analysis on Power Exponent

To understand the impacts of the hyperparameter p on different layer GCNs (2, 4, 8, 16 and
32) and datasets (CiteSeer, Pubmed, Chameleon, and Squirrel), we conduct experiments
with different power exponent p. For all datasets and models, we vary the power exponent
p in the range of {−0.2,−0.3,−0.4,−0.5}, and other parameters remain consistent. We
present the hyperparameter analysis in Figure 2. From the figure, we observe that when
p = −0.2 or −0.3, models usually achieve the best performance for all layers. Therefore,
our WeigtRep is robust to the power exponent p. In general, we find that p = −0.2 is a
good choice for most GCN with various depths and datasets.

Graph Neural Networks Can Escape Oversmoothing

Table 3: Training time and memory comparison of different methods on CiteSeer and
Pubmed datasets. OOM: out of memory.

Datasets Model Training time GPU memory

CiteSeer

GCN 5.59s 1582MiB
PairNorm 6.99s 1624MiB
ContraNorm 8.91s 3168MiB
WeightRep 8.27s 1702MiB

Pubmed

GCN 5.93s 1640MiB
PairNorm 7.06s 1830MiB
ContraNorm / OOM
WeightRep 8.33s 1758MiB

2 4 8 16 32
#Layer

20

30

40

50

60

70

Ac
cu

ra
cy

(%
)

GCN
p=-0.2
p=-0.3
p=-0.4
p=-0.5

(a) CiteSeer

2 4 8 16 32
#Layer

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

GCN
p=-0.2
p=-0.3
p=-0.4
p=-0.5

(b) Pubmed

2 4 8 16 32
#Layer

30

40

50

60

Ac
cu

ra
cy

(%
)

GCN
p=-0.2
p=-0.3
p=-0.4
p=-0.5

(c) Chameleon

2 4 8 16 32
#Layer

20

25

30

35

40

45

Ac
cu

ra
cy

(%
)

GCN
p=-0.2
p=-0.3
p=-0.4
p=-0.5

(d) Squirrel

Figure 2: Performance when varying the power exponent p on CiteSeer, Pubmed,
Chameleon and Squirrel datasets. Best viewed in color.

7. Conclusions

In this paper, we proposed a new understanding of oversmoothing from a weight perspec-
tive. Different from the common conclusions of existing theories, we first showed that if
learned freely, vanilla GNNs (e.g., GCN, GAT, SGC) can provably escape oversmoothing
with the existence of ideal weights. Inspired by the theoretical analysis, we then proposed
WeightRep to mitigate oversmoothing and provided theoretical guarantees on WeightRep.
Experimental results demonstrated that GCN employing WeightRep can outperform the
vanilla GCN even with normalization on various depth settings. Our analysis challenged
common beliefs of GNN oversmoothing, and it paved a new understanding of oversmoothing
from the learning perspective, opening up new avenues for future research.

Acknowledgments

Yisen Wang was supported by National Key R&D Program of China (2022ZD0160300),
National Natural Science Foundation of China (92370129, 62376010), Beijing Nova Program
(20230484344), and CCF-Baichuan-EB Fund. Jinwen Ma was supported by the Natural

Zhuo Wang Ma Wang

Science Foundation of China under grant 62071171 and the high-performance computing
platform of Peking University.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

Philippe Bougerol et al. Products of random matrices with applications to Schrödinger
operators, volume 8. Springer Science & Business Media, 2012.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
locally connected networks on graphs. In ICLR, 2013.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv
preprint arXiv:2006.13318, 2020.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In AAAI,
2020a.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In ICML, 2020b.

Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Lucchi.
Batch normalization provably avoids ranks collapse for randomly initialised deep net-
works. In NeurIPS, 2020.

Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang Yang.
Dropmessage: Unifying random dropping for graph neural networks. In AAAI, 2023.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised
learning on graphs. In NeurIPS, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In ICML, 2017.

Francesco Di Giovanni, James Rowbottom, Benjamin Paul Chamberlain, Thomas
Markovich, and Michael M. Bronstein. Understanding convolution on graphs via en-
ergies. Transactions on Machine Learning Research, 2023.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In AISTATS, 2010.

Xiaojun Guo, Yifei Wang, Tianqi Du, and Yisen Wang. Contranorm: A contrastive learning
perspective on oversmoothing and beyond. In ICLR, 2023a.

Xiaojun Guo, Yifei Wang, Zeming Wei, and Yisen Wang. Architecture matters: Uncovering
implicit mechanisms in graph contrastive learning. In NeurIPS, 2023b.

Graph Neural Networks Can Escape Oversmoothing

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In ICCV, 2015.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral
filters via bernstein approximation. In NeurIPS, 2021.

IN Herstein. A note on primitive matrices. The American Mathematical Monthly, 61(1):
18–20, 1954.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature de-
tectors. arXiv preprint arXiv:1207.0580, 2012.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph
(over)smoothing. In LoG, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propa-
gate: Graph neural networks meet personalized pagerank. In ICLR, 2019.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can gcns go
as deep as cnns? In CVPR, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional
networks for semi-supervised learning. In AAAI, 2018.

Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A fractional graph lapla-
cian approach to oversmoothing. In NeurIPS, 2023.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power
for node classification. In ICLR, 2020.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. In ICLR, 2019.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. DropEdge: Towards deep
graph convolutional networks on node classification. In ICLR, 2019.

Andreas Roth and Thomas Liebig. Rank collapse causes over-smoothing and over-
correlation in graph neural networks. In LoG, 2023.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality.
In EUSIPCO, 2007.

Zhuo Wang Ma Wang

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, 2021.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on over-
smoothing in graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. Relational Representation Learning Work-
shop, NeurIPS, 2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. In ICLR, 2018.

Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun Lee.
Billion-scale commodity embedding for e-commerce recommendation in alibaba. In KDD,
2018.

Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the diffusion
process in linear graph convolutional networks. In NeurIPS, 2021.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and
Kilian Q Weinberger. Simplifying graph convolutional networks. In ICML, 2019.

Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying oversmoothing in
attention-based graph neural networks. In NeurIPS, 2023.

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li,
Zhaojun Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al. Pushing the boundaries of
molecular representation for drug discovery with the graph attention mechanism. Journal
of medicinal chemistry, 2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks.
In ICML, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In ICML, 2016.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li.
T-gcn: A temporal graph convolutional network for traffic prediction. IEEE transactions
on intelligent transportation systems, 2019.

Lingxiao Zhao and Leman Akoglu. PairNorm: Tackling oversmoothing in gnns. In ICLR,
2020.

Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and
Jiashi Feng. Understanding and resolving performance degradation in graph convolutional
networks. In CIKM, 2021.

Zhijian Zhuo, Yifei Wang, Jinwen Ma, and Yisen Wang. Towards a unified theoretical
understanding of non-contrastive learning via rank differential mechanism. In ICLR,
2023.

