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ABSTRACT

Goal-directed generation, aiming for solving downstream tasks by generating di-
verse data, has a potentially wide range of applications in the real world. Previous
works tend to formulate goal-directed generation as a purely data-driven problem,
which directly approximates the distribution of samples satisfying the goal. How-
ever, the generation ability of preexisting work is heavily restricted by inefficient
sampling, especially for sparse goals that rarely show up in off-the-shelf datasets.
For instance, generating safety-critical traffic scenes with the goal of increasing the
risk of collision is critical to evaluate autonomous vehicles, but the rareness of such
scenes is the biggest resistance. In this paper, we integrate causality as a prior into
the safety-critical scene generation process and propose a flow-based generative
framework – Causal Autoregressive Flow (CausalAF). CausalAF encourages the
generative model to uncover and follow the causal relationship among generated
objects via novel causal masking operations instead of searching the sample only
from observational data. Extensive experiments on three heterogeneous traffic
scenes illustrate that CausalAF requires much fewer optimization resources to
effectively generate goal-directed scenes for safety evaluation tasks.

1 INTRODUCTION

Deep generative models (DGMs) have shown their powers for data generation in several domains.
Recently, people have been weary of random generation and turned to generating goal-directed
samples useful for downstream tasks. Standing on the top of successful DGMs, goal-directed
generation demonstrates potentiality in molecule [32] and natural language [26] areas, which is
usually formulated as shifting the generative distribution to satisfy specific goals.

One typical application of goal-directed generation is generating traffic scenes, which is a universally
acknowledged way to evaluate autonomous vehicles [31]. Rare but significant, safety-critical scenes
are extraordinarily important for the evaluation. Taking the safety-critical scene as a goal, such
a generation task is challenging since we need to simultaneously consider scene realism to avoid
conjectural scenes that will never happen in the real world, as well as the safety-critical level
which are indeed rare compared with ordinary scenes. In addition, generating reasonable threats to
vehicles’ safety can be inefficient if the model purely relies on the correlation of observation, as the
safety-critical scenes are rare and follow certain fundamental physical principles.

Existing work [12] searches in the latent space of generative model to build scenes that satisfy
downstream requirements. The biggest challenge is that ordinary scenes may dominate the latent
space while safety-critical samples are ignored as "outliers". Another approach [36] is to retrain the
model during the searching to avoid forgetting the high-quality but rare data. However, the efficiency
could still be unacceptably low due to the sparsity of qualified samples. In contrast, humans are good
at abstracting the causation beneath the observations with prior knowledge, which lights up a new
direction towards causal generative models.

In this paper, we build a goal-directed generative model with causal priors that are accessible in
many applications. We model the causality as a directed acyclic graph (DAG) named causal graph
(CG) [29]. To facilitate CG in the downstream tasks, we propose the Behavioral Graph (BG), which
can be regarded as instances of CG [16], for interactive and dynamic scenes representation. The
graphical representation of both graphs makes it possible to use the BG to unearth the causality given
by CG. We propose the first generative model that integrates causation into the graph generation task
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and name it CausalAF. To connect BG and CG at the graph level, we propose two types of causal
masks – Causal Order Masks (COM) and Causal Visibility masks (CVM). COM modifies the node
order for node generation, and CVM removes irrelevant information for edge generation.

For a better explanation, we consider a running example of a traffic scene. When the vision of the
autonomous vehicle a is clear, a can easily see the pedestrian c crossing the road then decelerate in
advance. However, if another vehicle b is parked in the middle between a and c, the vision of a will
be blocked, making a have less time to brake and more likely to collide c. This example may take
autonomous driving vehicles millions of hours to collect [13], which is challenging for real-world
applications. However, when we use a generative model to create such a scene, it will not consider the
causality but try only to memorize the location of all objects then generate adversarial examples [15].
Consequently, the generated scene may not cause any risk if the objects are slightly different.

Overall, we show the diagram of goal-directed generation with CausalAF in Fig. 1 and we summarize
our contributions below:

• We proposed a causal generative model named CausalAF that integrates causal graphs and
temporal graphs for safety-critical scene generation.

• We designed two novel mask operators to reliably integrate causation order and causation visibility
into the flow-based generation procedure.

• We showed CausalAF demonstrates dramatic improvement in efficiency and generalizability on
three standard traffic settings compared with purely data-driven goal-directed baseline.

2 REPRESENTATION OF CAUSATION AND SCENES

Our CausalAF is built upon the relation between the CG and the BG. We start by introducing the
definition of these two types of graphs and the autoregressive generation process of the BG.

2.1 CAUSAL GRAPH AND BEHAVIORAL GRAPH

Figure 1: Diagram of proposed
CausalAF framework.

The causal graph is defined over m random variables
{x1, ..., xm}. The variables in this vector forms a DAG
GC = (V C , EC). V C ∈ {0, 1}m×n is the node matrix
and EC ∈ {0, 1}m×m is the adjacency matrix with m
nodes in n types. Each node i is associated with a ran-
dom variable xi. Each edge (i, j) represents a causal
relation from variable xi to xj . For a DAG, there ex-
ists a (not necessarily unique) causal order of the nodes,
such that the cause variable precedes the effect variable:
p(x1, ..., xn) =

∏n
j=1 pj(xj | pa(xj)) , where pa(xj) rep-

resents the parent nodes for variable xj . In this work, we
assume GC is fully accessible with human knowledge and
experience for certain tasks.

We then define the Behavioral Graph GB to represent
objects in a dynamic and interactive scene. According
to Definition 1, GB works as a high-level planner for
objects and controls their behaviors in the physical scene
with interpretable edge meanings. A self-loop edge (i, i)

represents that one object takes one action irrelevant to other objects (e.g., a car goes straight or turns
left with no impact on other road users), while other edges (i, j) means object i takes one action
related to object j (e.g., a car i moves towards a pedestrian j). The edge attributes represent the
properties of actions. For instance, the attribute [x, y, vx, vy] of one edge represents the 2-d position
and velocity for agent nodes.

Definition 1 (Behavioral Graph) Suppose there are n types of nodes and a scene have m objects.
Then the Behavioral Graph GB = (V B , EB) contains a node matrix V B ∈ Rm×n representing
the categories of objects and an edge matrix EB ∈ Rm×m×(h1+h2) representing the sequential
interaction between objects, where h1 is the number of edge types and h2 is the dimension of edge
attributes.
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2.2 BEHAVIORAL GRAPH GENERATION WITH AUTOREGRESSIVE FLOW

Considering the directed acyclic nature of GC , we incorporate autoregressive flow models (AF) [18],
which is a type of DGMs that sequentially generate nodes based on their predecessors to generate
GB . It uses an invertible and differentiable transformation f to convert the observations x to a
latent variable z that follows a base distribution p0(z) (e.g., Normal distribution). According to
the change of variables theorem, we can obtain px(x) = p0(f

−1(x))
∣∣∣det∂f

−1(x)
∂x

∣∣∣. To increase the
representing capability, we repeatedly substitute the variable for the new variable zi and eventually
obtain a probability distribution of x whose log-likelihood can be written as:

log p(x) = p0(z0)−
K∑
i=1

log

∣∣∣∣det
dfi

dzi−1

∣∣∣∣ (1)

In AF models, the transformation f construct x in a sequential way, which is naturally consistent with
the construction of GC . To implement the function invertible f , we build a modelMϕ parametrized
by ϕ . The inverse ofMϕ, denoted asM−1

ϕ , can be used to sample new data from Gaussian noises:
x = zK = f−1

K ◦ f−1
K−1 ◦ · · · ◦ f

−1
0 =M−1

ϕ (z0), where ◦ means the composition of two functions
and z0 ∼ N (0, I). Let V B

[i,:] and EB
[i,j,:] represent the node xi and edge (i, j) of GB sampled from

Gaussian distribution

V B
[i,:] ∼ N

(
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2
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2
)
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i,j + σe
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where⊙ denotes the element-wise product. ϵ follows a Normal distributionN (0, I) and [:] represents
all elements in one dimension. In (2), variables µv

i , σv
i , µe

i,j , and σe
i,j are obtained fromMϕ:

µv
i , σ

v
i =Mϕ(V

B
[0:i−1], E

B
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i,j , σ
e
i,j =Mϕ(V

B
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B
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where [0 : i] represents the elements from index 0 to index i. According to (3), the generation of the
current node depends on all previous nodes and edges. Then the edges between current node and
previous nodes are generated. Eventually, EB will be an upper-triangular matrix since only the latter
generated nodes have edges pointed to formerly generated nodes. This process is illustrated in Fig. 2.

3 CAUSAL AUTOREGRESSIVE FLOW (CAUSALAF)

Transferring the prior knowledge from GC to GB can be implemented by increasing the similarity
between them. However, this similarity is not easy to calculate because it includes the directions
between nodes and the input information of nodes. To solve this problem, we propose the CausalAF
model with two causal masks, i.e., Causal Order Masks (COM) and Causal Visible Masks (CVM), that
make the generated GB follow the causal information given in GC . Particularly, COM is designed for
regulating the order of the node generation, and CVM dynamically masks out irrelevant information
during the edge generation.

Causal Order Masks The order is vital during the generation of GC since we must ensure the cause
is generated before the effect. To achieve this, we maintain a priority queue Q to store the valid node
types for the current step. Q is initialized with Q = {xi| pa(xi) = ∅}, which means all nodes that do
not have parent nodes are valid at the beginning. Then, in each node generation step, we update S by
removing the generated node xi and adding the child nodes of xi. Notice that one node could have
multiple parents; thus, we consider one node valid only if all of its parents have been generated. To
encourage the model to generate nodes that satisfy the causal order, we use Q to create a k-hot mask
Mo(GC) ∈ Rn, where the element is set to 1 if it is corresponding to a valid node. Then, the type of
next node xi will be obtain by vi = argmax(Mo(GC)⊙ softmax(V B [i, :])), where V B [i, :] is the
original node matrix obtained fromMϕ for node xi. Intuitively, this mask reduces the probability of
the invalid node types to 0 to ensure the generated node follows the correct order.

Causal Visible Masks Ensuring a correct causal order is still insufficient to represent the causality,
which will be discussed in the later experiments. Thus, we further propose another type of mask
called CVM. COM serves as a precondition for CVM in that it guarantees the existence of one node’s
parents before this node is ready to be generated. Otherwise, one node may lose prior information
without knowing its causes.
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Figure 2: (a) The generation process of a Behavioral Graph. (b) The causal graph and Behavioral
Graph used in the example of (a). (c) The explanation of CVM when generating edges for c, where
irrelevant node b is masked out in both V B and EB .

At the step of generating edges for node xi, we maintain the current generated graph with GB(t) =
(V B(t), EB(t)), where t is the index for current step. Then, CVM is implemented with Mx(GC) ∈
Rm×n and Me(GC) ∈ Rm×m×(h1+h2) that satisfy

Mx(GC)[j, :] = 0, Me(GC)[:, j, :] = 0, Me(GC)[j, :, :] = 0, ∀{j | xj /∈ pa(xi)} (4)

With these two masks, we can update GB(t) before using it for next step by

V B(t)← V B(t)⊙Mx(GC), EB(t)← EB(t)⊙Me(GC) (5)

We illustrate an example of CVM in (c) of Fig. 2. Assume we are generating edges for node c. We
need to remove node b since node B does not have edges to node C. After applying Mx(GC) and
Me(GC), we move the features of node c to the previous position of b. This permuting operation is
important since the autoregressive model is not permutation invariant.

Goal-directed Optimization We then discuss the training of CausalAF. The target of goal-directed
generation is to create samples satisfying a given goal, which is formulated as an optimization over
objective function minϕ EGB∼M−1

ϕ
[Lg(GB)]. Usually, the objective Lg contains non-differentiable

operators (e.g., complicated simulation and rendering), thus we have to utilize black-box optimization
methods to solve the problem. We consider a policy gradient algorithm named REINFORCE [39],
which estimates the gradient from samples by

∇ϕLg(GB) = EGB∼M−1
ϕ

[∇ϕ logMϕ(GB)Lg(GB)] =
1

N

N∑
i=1

(∇ϕ logMϕ(GBi )Lg(GBi )) (6)

where N is the number of samples used for each iteration. Overall, the entire training algorithm is
summarized in Algorithm 1 in Appendix.

4 EXPERIMENT

We evaluate CausalAF using three top pre-crash traffic scenes defined in [27] and [38]. The benefit of
the experimental setting is that humans usually have good intuitions of traffic scenes to examine the
results. However, our empirical results show that it may not be trivial for the generative models to learn
the underlying causality given the observational data, even if such causality seems understandable
to humans. Particularly, we conduct a series of experiments to answer the question: whether there
is a significant benefit to integrate causation into the generative models? We found that CausalAF
outperforms the baseline and the advantages can be mainly attributed to the causation introduced by
COM and CVM that eliminates irrelevant variables.

Simulator for typical Scenes We consider three safety-critical traffic scenes (shown in Fig. 3) that
have clear causality. The GC for each scenario is displayed on the upper right of the scene. These
GC are not necessarily unique for the scene, while they just hypothesize the potential causation.
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Figure 3: Three causal traffic scenes used in our experiments with corresponding causal graphs

Figure 4: The training objective Lg(GB) of three scenes under two temperature settings.

The details of these scenes can be found in the Appendix B. We implement these scenes in a 2D
simulator, where all agents have radar sensors and dynamics. During the experiments, the goal-
directed generative model firstly samples an GB . Then, the physical properties (e.g., position and
velocity) defined in the generated GB is executed in the simulator to create sequential scenes. After
the execution, the simulator outputs the objective function Lg(GB) as the simulation result.

Our goal is to generate risky scenarios that make collision happen for node A. Therefore, we
set the object function to be a very sparse function: Lg(GB) = 1 only if GB causes collisions.
Since generating goal-directed scenes is a new task, there are no existing methods to compare. We
implement a baseline model with exactly the same structure as CausalAF without considering the
causation during generation to represent data-driven generative models. We also compare with a
model without CVM to conduct ablation studies.

Results and discussion We show the training objectives of three scenes in Fig 4. Notice that
there are two temperatures T = 0.5 and T = 1.0 for all methods, which is use to control the
sampling variance ϵ ∼ N (0, T ). A large temperature provides strong exploration but also causes
slow convergence. In all three scenes, CausalAF outperforms baseline, and the gap is more significant
under T = 1.0 setting than T = 0.5. The reason could be that the new node heavily depends on
previously generated nodes in the autoregressive generation of GB . The baseline has more noisy and
irrelevant relations between nodes; therefore, it is less efficient to find the scenes that achieve Lg . In
addition, a strong exploration makes the irrelevant information have more influence on the baseline.
In contrast, our CausalAF ignores the insignificant information and focuses on the causation that
helps with the goal. We also find that CausalAF without CVM performs a little worse than CausalAF,
which validates our hypothesis that COM may not be powerful enough to represent causality.

5 CONCLUSION

This paper proposes a causal generative model that generates safety-critical scenes with causal graphs
obtained from humans prior. To incorporate the graphical structure of causal graphs, we design a
novel scene representation called the Behavioral Graph. The autoregressive generation process of BG
makes it possible to inject the causation via regulating the generating order and modifying the graph
connection. By introducing causation into generative models, we are able to efficiently create rare
scenes that might be difficult to find, such as safety-critical traffic scenes. Our method outperforms
the baseline in terms of efficiency and performance on three scenes that have clear causation. One
limitation of this work is that the causal graph, usually summarized by humans, is assumed to be
always correct. Automatically discovering the causal graph will be the future direction.
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A ALGORITHM SUMMARY

The training algorithm of our CausalAF method is summarized below:

Algorithm 1: Training process of CausalAF

Input: Dataset D, Causal Graph GC , Goal Lg , Learning rate α, Maximum node number m
Output: The trained modelMϕ

1 InitializeMϕ by maximizing (1) on D
2 while not converged do

// Sample an BG from model GB ∼ M−1
ϕ

3 for i < m do
4 Sample a node V B [i, :] by (2)
5 Calculate Mo(GC) for COM and apply (3) to get the node type vi
6 Calculate Mx(GC) and Me(GC) for CVM by (4)
7 for j < i do
8 Apply CVM to node matrix V B and edge matrix EB by (5)
9 Sample an edge EB [i, j, :] by (2)

10 end
11 end

// Learn model parameters

12 Calculate the likelihood Mϕ(GB) of the sample
13 Execute GB to get the goal objective Lg(GB)
14 Update parameters with ϕ = ϕ− α∇ϕLg(GB) by gradient estimated via (6)
15 end

B DETAILS OF EXPERIMENT SCENE

• Traffic-light. One potential safety-critical event could happen when the traffic light T turns from
green to yellow to give road right to an autonomous vehicle A. R runs the red light, colliding
with with A perpendicularly. Here, A node is the parent for both T and R. T is also a parent for
R because the risk vehicle follows the traffic light T .

• Pedestrian. A pedestrian P and an autonomous vehicle A are crossing the road in vertical
directions. There also exists a static vehicle S parked by the side of the road. Then a potentially
risky scene could happen when S blocks the vision of A and P . In this scene, A node is the
parent for both P and S. S is also a parent for P since S determines the vision of P .

• Lane-changing. An autonomous vehicle A takes a lane-changing behavior due to a static car
S parked in front of it. Meanwhile, a vehicle R drives in the opposite lane. When S blocks the
vision of A, then A is likely to collide with R. In this scene, we make A node as the parent for
both R and S. S is also a parent for R since the S determines the vision of P .

C RELATED WORK

C.1 GOAL-DIRECTED GENERATIVE MODELS

DGMs, such as Generative Adversarial Networks [14] and Variational Auto-encoder [22], have shown
powerful capability in randomly data generation tasks [5]. Thanks to the boom of diverse DGMs,
goal-directed generation methods are widely used in many applications [26]. One line of research
leverages conditional GAN [24] and conditional VAE [33], which take as input the conditions or
labels during the training stage. Another line of research injects the goal into the model after the
training. [12] proposes a latent space optimization framework that finds the samples by searching
in the latent space. This spirit is also adopted in other fields: [25] finds the molecules that satisfy
specific chemical properties, [1] searches in the latent space of StyleGAN [20] to obtain targeted
images.
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Recent works combine the advantages of the above two lines by retraining the generative model
during the search. To expand the area of the desired region in the latent space, [36] iteratively
updates the high-quality samples and retrains the model weights. [32] pre-trains the generative model
and optimize the sample distribution with reinforcement learning algorithms. This paper enhances
the generalizability and efficiency by leveraging causation graphs so that it is applicable to rare
safety-critical scenes.

C.2 SAFETY-CRITICAL TRAFFIC SCENE GENERATION

Traditional traffic scene generation algorithms sample from pre-defined rules and grammars, such
as probabilistic scene graphs [30] and heuristic rules [11]. In contrast, DGMs [6, 35, 7, 8] are
recently used to learn the distribution of objects to construct diverse scenes. There are two lines
of work. One is to directly search for the adversarial scenes. [42] modifies the light condition.
[3, 40, 19] manipulate the pose of objects in traffic scenes. [37, 2] adds objects on the top of existing
vehicles to make them disappear, [34] creates a ghost vehicle by adding an ignorable number of
points, and [10] generates the layout of the traffic scene with a tree structure integrated with human
knowledge. Another line of research generates the risky scenes while also considering the likelihood
of occurring of the scenes in the real world, which requires a probabilistic model of the environment.
[43, 28, 4] used various importance sampling approaches to generate risky but probable scenes. [8]
merges the naturalistic and collision datasets with conditional VAE to generate near-misses. [9] uses
reinforcement learning to search for risky cyclist encounters for victim cars with a penalty of rarity.
Compared with purely probabilistic methods, CausalAF method may have better generalization, data
efficiency, and statistically robust against sparse data as it not only learns Bayesian models but also
capture the causation of collisions.

C.3 CAUSAL GENERATIVE MODELS AND REPRESENTATION LEARNING

The research of causality, mainly described with probabilistic graphical models-based language [29],
is usually divided into two aspects: causal discovery tries to find the underlying mechanism from the
observational and interventional data. In contrast, causal inference extrapolates the given causality
to solve new problems. Discovering the causal graph has been prevalent for several decades. [45]
proposed a flexible and efficient RL-based method to search over the DAGs space for the best causal
graph that fits the dataset. A toolbox named NOTEARs is proposed in [44] to learn causal structure
in a fully differentiable way, which drastically reduces the complexity caused by combinatorial
optimization. [17] show the identifiability of learned causal structure from interventional data, which
is obtained by manipulating the causal system under interventions.

Recently, causality has been introduced into DGMs to learn the cause and effect with representation
learning. CausalGAN [23] captures the causation between labels by training the generator with
the causal graph as a prior, which is very similar to our setting. In CausalVAE [41], the authors
disentangle latent factors by learning a causal graph from data and corresponding labels. Previous
work CAREFL [21] also explored the combination of causation and autoregressive flow-based model
and is used for causal discovery and prediction tasks.
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