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Abstract

Controlled text perturbation is useful for eval-001
uating model generalizability and improving002
model robustness to dataset artifacts. How-003
ever, current techniques rely on training a per-004
turbation model for every targeted attribute,005
which is expensive and hard to generalize. We006
present Tailor, a semantically-controlled text007
generation system. Tailor builds on a pre-008
trained seq2seq model, and produces textual009
outputs conditioning on control codes derived010
from semantic representations. We craft a011
set of operations to modify the control codes,012
which in turn steer generation towards targeted013
attributes. These operations can be further014
composed into higher-level ones, allowing for015
flexible perturbation strategies. Tailor can016
be applied in various scenarios. We use it017
to automatically create high-quality contrast018
sets for four distinct natural language process-019
ing (NLP) tasks. These contrast sets contain020
fewer spurious biases and are complementary021
to manually annotated ones in terms of lexical022
diversity. We show that Tailor helps improve023
model generalization through data augmenta-024
tion, with a 5.8-point gain on an NLI challenge025
set, by perturbing just ∼2% of training data.026

1 Introduction027

Controllable text generation through semantic per-028

turbations modifies sentences to match certain tar-029

get attributes, such as verb tense or sentiment (e.g.,030

positive→negative). It has been widely applied to a031

variety of tasks, e.g., style transfer (Reid and Zhong,032

2021), mitigating dataset biases (Gardner et al.,033

2021), explaining model behaviors (Ross et al.,034

2020), and improving model generalization (Teney035

et al., 2020; Wu et al., 2021). Existing efforts train036

task-specific generators, e.g., training a sentiment037

style transferer requires instances annotated with038

positive and negative labels (Madaan et al., 2020b).039

As a result, costly annotated data and re-training040

LOCATIVE→TEMPORAL+partial: in

LOCATIVE
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AGENT
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[   |   |   ] <id_0>, the doctor <id_2> <id_3> <id_4>.

[TEMPORAL: In the midst of the earthquake], the doctor 
[VERB: is comforting][PATIENT: the athlete panicking].
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VERB+active+past→present: comfort
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LOCATIVE:CHANGE_TAG(TEMPORAL)

VERB:CHANGE_VTENSE(present)

PATIENT:CHANGE_SPEC(partial)

Figure 1: A compositional perturbation using Tai-
lor.1 Given (A) an original sentence, we abstract
each span into a structured header that contains
its semantic roles and keywords. We specify de-
sired perturbations by modifying each control code
(e.g., changing role LOCATIVE)TEMPORAL in (B), verb
tense past)present, and patient keyword specificity
complete)partial). Given these perturbed control codes
in the input (C), Tailor generates a new sentence (D)
that reflects the desired perturbations.

are required for every task of interest. 041

This work introduces Tailor, a system that sup- 042

ports application-agnostic perturbations. At its core 043

is a controlled generator (§2) that flexibly gener- 044

ates outputs from target semantic attributes. We 045

combine structured control codes with the inputs 046

to represent desired linguistic properties of outputs. 047

As shown in Figure 1, each code builds on the 048

PropBank semantic analysis (Palmer et al., 2005) 049

of the original sentence, and specifies an argument 050

span and its semantic role. To encourage control 051

code following, we train with unlikelihood train- 052

ing (Welleck et al., 2020) and penalize generations 053

that are not aligned with designated codes. 054

The use of semantic roles allows Tailor to per- 055

form fine-grained changes to individual arguments 056

in a sentence (e.g., one can just change the patient 057

1We opensource Tailor at [URL omitted].
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Input Target Output Description

A
[VERB+active+past: comfort | AGENT+complete: the doctor
| PATIENT+partial: athlete | LOCATIVE+partial: in]
<id_0>, <id_1> <id_2> <id_3>.

[LOCATIVE: In the operating room],
[AGENT: the doctor] [VERB: comforted]
[PATIENT: the athlete].

Mask all roles

B [VERB+active+past: comfort | LOCATIVE+partial: in]
<id_0>, the doctor <id_1> <id_2> the athlete <id_3>.

[LOCATIVE: In the operating room], the
doctor [VERB: comforted] the athlete. Empty blanks

C [VERB+active+past: comfort | LOCATIVE+partial: in]
<id_0>, the doctor <id_1> the athlete.

[LOCATIVE: In the operating room], the
doctor comforted the athlete.

Mask subset of
arguments

N
[VERB+passive+present: comfort | PATIENT+complete:
the doctor | AGENT+partial: athlete | TEMPORAL+partial:
in] <id_0>, <id_1> <id_2> <id_3>.

[TEMPORAL: In the operating room],
[PATIENT: the doctor] [VERB: comforted]
[AGENT: the athlete].

Negative sample

Table 1: Example input/output formats for sentence “In the operating room, the doctor comforted the athlete.” A–C
show different input formats the generator accepts, each with a header containing control codes and context with
blanks denoting where to insert new texts. The last input (N) is a negative sample for unlikelihood training.

in Figure 1). This is critical for generating datasets058

to evaluate and improve models’ language under-059

standing (Kaushik et al., 2020; Wu et al., 2021).060

Instead of relying on a single target property pos-061

itive)negative, we can decompose it into specific062

linguistic transformations (e.g., changing sentiment063

through negation or antonym replacement).064

To highlight perturbations that Tailor facilitates,065

we craft a list of primitive perturbation operations066

(§3) on inputs to the generator; these can be easily067

composed to achieve more complex perturbations.068

In Figure 1, Tailor transforms sentence A to D069

through a series of perturbations: syntactic rewrit-070

ing (changing verb tense), then sentence expansion071

(extending “the athlete”), and finally data recombi-072

nation (i.e., generating new text that contains “in”073

but follows the TEMPORAL control). Compared to074

existing approaches that require training a sepa-075

rate model for every step or annotating a dataset076

that represents this transformation end-to-end, such077

compositions make Tailor more cost-effective and078

generalizable. In fact, on nine fine-grained and079

compositional StylePTB perturbations (Lyu et al.,080

2021), Tailor achieves performance compatible081

with task-specific baselines, and even outperforms082

them on five transfers (§F).083

Tailor’s flexible control codes allow for broad,084

easily extendable applicability. We demonstrate085

its utility in evaluating and improving NLP model086

robustness, showing that Tailor can help replicate087

existing contrast sets on four diverse tasks. By ab-088

stracting manual perturbation types in prior work089

into Tailor strategies, we generalize the changes090

to larger datasets while saving manual annotation091

efforts. Our analysis suggests that these contrast092

sets not only have high rates of validity, but also093

reduce spurious biases in datasets. In addition,094

Tailor-produced contrast sets complement human 095

annotated ones in terms of lexical diversity: only 096

∼10% of their unique tokens overlap with manually 097

created contrast sets. We also explore Tailor’s util- 098

ity in data augmentation. We find that augmenting 099

training data with just a small portion of Tailor per- 100

turbations (∼2%) improves the robustness of natu- 101

ral language inference (NLI) models to inference 102

heuristics, increasing performance on the HANS 103

evaluation set by an average of 5.81 points (McCoy 104

et al., 2019) and outperforming a previous syntactic 105

augmentation method for NLI. 106

2 Tailor’s Controllable Generator 107

Here we provide an overview of the Tailor gener- 108

ator. To allow for control over sentence meaning 109

at varying granularity levels, we incorporate three 110

types of controls outlined in We first outline three 111

types of controls that allows for specifying sentence 112

meanings at varying granularity (§2.1), and then 113

explain how to embed them within inputs to the 114

generator (§2.2). We train the generator to follow 115

control codes with unlikelihood training (§2.3). 116

2.1 Three Types of Controls 117

We use the following three types of controls to 118

specify the shallow semantics, the actual content, 119

and the ordering of various phrases in a sentence. 120

Semantic roles to denote shallow semantics. 121

We rely on the PropBank semantic formal- 122

ism (Palmer et al., 2005), as it provides well- 123

established representations of meanings that are 124

generalizable across different predicates and lan- 125

guages (Hajič et al., 2009). It represents sen- 126

tence meanings with predicate-argument structures. 127

Predicates are usually evoked by verbs and reflect 128

events (what happened), like “comforted” (Fig- 129
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Type Predicate control: VERB+active+past: comfort

Signals

Primary predicate label (Always VERB)
Lemma (Any verb lemma)
Voice (active, passive)2

Tense (past, present, future)

Type Argument control: PATIENT+partial: athlete

Signals

Primary argument label (AGENT, PATIENT,
TEMPORAL, LOCATIVE, MANNER, CAUSE, etc.)
Content (* symbol or any text)
Specificity (complete, partial, sparse)

Table 2: Tailor’s control codes. Primary controls build
on predicate/argument labels, and others affect the form
and content of generations (More in §A.1).

ure 1); whereas arguments, usually spans of tokens,130

realize thematic roles of the predicates, including131

core arguments such as who (e.g., “the doctor”) and132

to whom (“the athlete”), as well as adjunct ones133

like where (“In the operation room”) and how.134

Keywords for steering the generated content of135

actual predicates and arguments. The keywords can136

either be sparse (e.g., adding a random temporal137

constraint), or fully specified (adding a fixed “in138

the midst of the earthquake”). As later shown in139

Table 3, such control is important for supporting140

different perturbation strategies and applications.141

Span ordering for determining how the the-142

matic roles should be combined. We use predicate143

form to control the order of core arguments. For ex-144

ample, to distinguish “the athlete was comforted by145

the doctor” from the semantically equivalent “the146

doctor comforted the athlete,” we target the former147

ordering through a passive control, and the latter148

through an active control. Additionally, we use149

the location of blank tokens (<id_*> in Figure 1150

and Table 1) to determine the position of generated151

arguments (Wu et al., 2021) — e.g., where “in the152

operating room” appears in the generation.153

2.2 Input Format Design154

We integrate the aforementioned controls into the155

input format detailed in §A.1, and finetune seq2seq156

models to output corresponding full sentences.157

As in Table 1, we start our input with a bracketed158

header, a series of abstract control codes (Table 2)159

with each denoting the semantic role and keywords160

for a span to realize. We map original semantic161

roles in PropBank to human-readable labels (i.e.,162

ARG0 → AGENT) in order to leverage knowledge163

learned by pretrained models about roles’ mean-164

ings (Paolini et al., 2021). After the header, we ap-165

pend the context, consisting of text to be preserved166

2We use http://spacy.io/ for verb or POS detection.

and blanks specifying where new text should be 167

generated. Given such inputs, we train our gener- 168

ator to output text augmented with control codes 169

and brackets, which together specify which gen- 170

erated spans correspond to which control signals. 171

For example, in Table 1C, “[LOCATIVE: In the op- 172

erating room]” represents the target span of control 173

code “LOCATIVE+partial: in”, and it is gener- 174

ated at the location of blank <id_0> right before 175

the preserved context “the doctor”. 176

Note that we explicitly separate the header from 177

the context. This is to detach the placement of 178

a role from its semantic representation, such that 179

given any combination of target roles in the header 180

— whose optimal ordering is usually unknown — 181

the generator can recombine them in the most flu- 182

ent way. We further remove possible correlations 183

between the control codes and the blanks in the con- 184

text in two ways: First, we order the control codes 185

in an input-independent way (see §A.1) to discour- 186

age the generator from solely following their rela- 187

tive orders. Second, we insert extra empty blanks 188

into the context (e.g., <id_3> in Table 1B), so the 189

generator can learn to generate spans in the blank 190

locations that result in the most fluent text. 191

With this flexibility in argument reordering 192

comes the challenge of making strict controls on a 193

single argument: Even if we only want to change 194

verb tense, the generator may reorder other ar- 195

guments. To trade off generation flexibility and 196

strict control, which facilitates minimal perturba- 197

tions (Ross et al., 2020), we further vary the num- 198

ber of arguments encoded in the header. As in 199

Table 1C, our generator can take inputs that only 200

mask a subset of arguments, such that, e.g., any 201

changes on the LOCATIVE constraint or the VERB 202

do not affect the agent and patient. 203

2.3 Training 204

We finetune T5-base (Raffel et al., 2020) on input- 205

output pairs derived from gold semantic roles 206

from OntoNotes 5.0 train (Table 1; Pradhan et al., 207

2013).3 To make our generator sensitive to the 208

different input formats, for each original input, 209

we randomly sample the numbers of arguments 210

to mask and extra empty blanks, and keyword con- 211

tent/specificity for each role (§A.2). 212

Standard maximum likelihood estimation (MLE) 213

is insufficient for training our generator to follow 214

3On par with T5, the blanks are in the form of
<extra_id_*>; we refer them as <id_*> for simplicity.
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(a) Syntactically controlled rewriting

Strategy CHANGE_VTENSE(present)
) [VERB+active+past )present: comfort]

Perturb. In the operation room, the doctor comforts the athlete.

Strategy CHANGE_VVOICE(passive)
) [VERB+active )passive+past: comfort]

Perturb. In...room, the athlete was comforted by the doctor.

Strategy CHANGE_IDX(4:0)
) <id_0> In the operation room <id_0>

Perturb. The doctor comforted the athlete in the operation room.

Strategy CORE(SWAP_CORE)
) [AGENT+complete: the athlete )doctor
| PATIENT+complete: the doctor )athlete ]

Perturb. In the operation room, the athlete comforted the doctor.

(b) Sentence expansion and abstraction

Strategy LOCATIVE:CHANGE_SPEC(partial)
) [LOCATIVE+complete )partial: in the operation room]

Perturb. Under the dim light in the operation room, the doctor com-
forted the athlete.

Strategy LOCATIVE:DELETE
) [LOCATIVE+complete: in the operation room]

Perturb. In the operation room, the doctor comforted the athlete.

(c) Data recombination (with external labels and/or contents)

Strategy CAUSE:CHANGE_CONTENT(because he was in pain)
)[CAUSE+complete: because he was in pain]

Perturb. In the operation room the doctor comforted the athlete
because he was in pain.

Table 3: We design a list of primitive operations on input controls to guide perturbations with the Tailor generator.

the control codes, as there may exist signals be-215

yond the codes for the generation form. Con-216

sider the input: [VERB+active+past: comfort217

| AGENT+partial: athlete | PATIENT+complete:218

the doctor] In the operating room, <id_0>, <id_1>219

<id_2>. A generator trained with MLE may ignore220

controls AGENT and PATIENT and instead output221

text “The doctor comforted the athlete” rather than222

“The athlete comforted the doctor,” as the former is223

more natural given context “in the operation room.”224

To encourage reliance on controls, we incorpo-225

rate unlikelihood training (Welleck et al., 2020)226

to penalize generations that conflict with input con-227

trols. That is, besides Table 1A–C which are used228

for MLE, we also create “negative” samples by ran-229

domly perturbing the control codes in our header230

(as in Table 1N, last row), such that most spans in231

the target output are not aligned with the control232

codes. We create up to three negative samples per233

input by randomly perturbing 1) verb voice/tense234

and primary controls for arguments, 2) keyword235

contents, and 3) keyword specificities (§A.1). Our236

final training data consists of 223K positive and237

541K negative examples.238

3 Creating Perturbations with Tailor239

With Tailor, we can create diverse perturbations by240

varying controls in inputs. Given an original sen-241

tence, we transform it to an input for Tailor by ex-242

tracting its semantic parses, masking spans we wish243

to modify, and adding their control codes.4 Then,244

we modify these signals to generate perturbed sen-245

tences with Tailor, filtering out degenerate ones.246

4External semantic role labelers can be used when gold
annotations are not available. Our experiments use the
opensourced implementation of Shi and Lin (2019): demo.
allennlp.org/semantic-role-labeling, with a test F1
of 86.5 on the Ontonotes 5.0 dataset (Pradhan et al., 2013).

Primitive perturbation operations. While the 247

input can be modified arbitrarily, we provide an 248

easily-extendable set of macros as in Table 3, which 249

capture three common themes in the literature: 250

First, syntactic rewriting primarily involves shuf- 251

fling text to create paraphrases (Zhang et al., 2019) 252

or adversarial examples (Iyyer et al., 2018). We im- 253

plement such shuffling through operations that per- 254

turb predicate forms, move blank tokens, and swap 255

keyword contents of arguments. Second, expan- 256

sion and abstraction add or remove text fragments 257

from a sentence (Wu et al., 2021). We recreate 258

these through deletions of and operations on key- 259

words. Finally, data recombination involves recom- 260

bining existing textual fragments, within or across 261

inputs (Akyürek et al., 2020; Andreas, 2020). With 262

CHANGE_CONTENT, we can integrate additional con- 263

text (e.g., from corresponding paragraphs in ques- 264

tion answering tasks) into generations. 265

While our control codes are mostly derived 266

from semantic roles, these primitive operations 267

broadly cover both syntactic and semantic changes. 268

They can also be used in conjunction with external 269

knowledge bases to achieve targeted edits.5, or be 270

composed to achieve more complex perturbation 271

strategies. as shown in §5, §6, and Appendix §F. 272

Filtering generations. We notice that the Tai- 273

lor generator produces degenerate outputs for 274

some inputs; we exclude these using heuristics on 275

content and perplexity scores (see §C for details). 276

4 Intrinsic Evaluation 277

Following previous work (Wu et al., 2021; Ross 278

et al., 2020), we evaluate Tailor generations on 279

5For example, if combined with WordNet (Miller, 1998),
Tailor perturbations can recreate natural logic (MacCartney
and Manning, 2014): In Figure 1, we can create an entailment
relationship by replacing doctor with its hyponym adult.
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Closeness Pred. Controllability Arg. Controllability

Generator F1 Precision Recall Lemma Tense Voice Role Content Spec.

Tailor 64.3 66.5 73.4 74.3 80.3 81.6 70.5 64.5 64.5
TailorMLE 58.5 59.5 68.6 72.2 70.2 76.1 60.3 45.1 45.1

Table 4: Intrinsic evaluation performance in percentage. Tailor generates perturbations that are close to the orig-
inal sentence, while reasonably following all the controls specified in Table 2. Ablating unlikelihood training
(TailorMLE) hurts all metrics across the board.

sentence likelihood, controllability, and closeness.6280

We additionally evaluate Tailor’s unique ability to281

make fine-grained and compositional perturbations.282

Metrics. Likelihood measures whether the gen-283

erated text is grammatically correct and semanti-284

cally meaningful. Following Ross et al. (2020), we285

ask whether perturbing a sentence with Tailor dras-286

tically changes its likelihood. We compute the loss287

value for both the original and edited texts using288

a pretrained GPT-2, and report the ratio of edited289

/ original. We desire for a value of 1.0, which290

indicates equivalent losses for the the two.291

Controllability measures if the generator re-292

sponds to the designated control criteria. We rely293

on cycle consistency to evaluate the controls in294

Table 2, checking e.g., whether the predicted se-295

mantic roles on the generated text from an SRL296

predictor match the control codes in the input (i.e.,297

whether “in the midst of the earthquake” in Fig-298

ure 1 gets detected with a TEMPORAL tag). Since299

SRL predictions can be noisy, we manually inspect300

a subset of 98 generated spans and verify that cy-301

cle consistency measures positively correlate with302

ground-truth controllability, with Matthews corre-303

lation coefficient φ = 0.49 (more details in §B).304

Closeness captures whether the generated sen-305

tence involves only necessary changes. Since our306

generator takes controls on the argument span level,307

we measure closeness with a weighted F1 score on308

the expected-to-change and actually-changed spans309

in the original sentence. We identify expected310

changes from perturbation operations; in Figure 1A,311

all spans should be changed except for agent “the312

doctor.” Then, we deem a span actually edited if313

≥ 50% tokens within a span is changed (e.g., “oper-314

ation room” in LOCATIVE). We empirically picked315

the threshold as it tolerates cases where we only316

change keyword sparsity or when the stopwords317

remain in the generation. We weigh spans by their318

lengths to arrive at the final F1.319

Compositionality. We evaluate Tailor without320

any finetuning on the StylePTB benchmark (Lyu321

6We omit the diversity evaluation in Polyjuice, as the key-
word content control inherently impacts lexical diversity.

et al., 2021), which builds on the Penn Treebank 322

and assesses both single, fine-grained transfers (e.g., 323

To Future Tense) and compositional ones that con- 324

currently edit multiple dimensions (e.g., To Future 325

Tense+ Active To Passive). We report mean BLEU 326

scores and compare to the transfer-specific base- 327

lines reported in the StylePTB paper. 328

Data. We use StylePTB for compositionality 329

(see §F), and evaluate Tailor on other metrics by 330

perturbing 1,000 randomly selected sentences from 331

the OntoNotes 5.0 valid set, created the same way 332

as negative samples during training (§A.1).7 333

4.1 Results 334

Tailor generates perturbations with a loss ratio of 335

0.982, indicating no notable change in language 336

modeling loss after the edit. As shown in Table 4, 337

its generations also tend to be close to the original 338

sentence (F1 = 64.3%), with reasonably correct 339

predicates (74.3%-81.6% of the time) and argu- 340

ments (70.5% controllability on semantic roles and 341

64.5% on contents.) Tailor also demonstrates the 342

ability to make compositional changes; it achieves 343

results comparable to those of fine-tuned baselines 344

on 8/9 tested transfers, and even outperforms the 345

fine-tuned baseline on 5 of them (§F, Table 11). 346

Effect of Unlikelihood Training: We compare 347

Tailor with a baseline that is finetuned on T5 with- 348

out unlikelihood training (called TailorMLE in Ta- 349

ble 4). Across all metrics, unlikelihood training out- 350

performs TailorMLE, with more controllable and 351

minimal perturbations (up to a 20% increase). 352

Modulating likelihood and closeness: As men- 353

tioned in §2.2, our input format supports modu- 354

lating likelihood and closeness. We can increase 355

closeness by only masking the arguments we want 356

to perturb. To quantify this effect, we randomly se- 357

lect a single argument to perturb for 1K sentences, 358

7Because these perturbations are generated randomly,
some result in sets of controls that are impossible to follow.
Thus, these results represent a lower bound on Tailor’s con-
trollability in downstream applications, for which strategies
would be designed in a more principled, targeted manner, re-
stricting the perturbations to result in more plausible sets of
controls. See §B for more details.
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Dataset & Task Top-K validity

BoolQ contrast set (Gardner et al., 2020) 82% (k=1)

Original Paragraph:...his bride was revealed...Deadpool also discovers that he has a daughter...from a former flame.
Question: does [AGENT: Deadpool] [VERB: have] [PATIENT: a kid in the comics]? (Answer: True)

Strategy Change entity (AGENT:CHANGE_CONTENT(his bride))
Perturb. Question: does [AGENT: his bride] [VERB: have] [PATIENT: a kid in the comics]? (Answer: False)

UD parsing contrast set (Gardner et al., 2020) 65% (k=10)

Original Sentence: [AGENT: It] [VERB: has] [PATIENT: a diverse range of food at all prices and styles].
PP attachment: Noun (“at all prices and styles” attaches to “food”)

Strategy Swap attachment from noun to verb (noun→verb)
PATIENT:CHANGE_CONTENT(a diverse range of food)
LOCATIVE:CHANGE_CONTENT(at),CHANGE_SPEC(partial)

Perturb. Sentence: [AGENT: It] [VERB: has] [PATIENT: a diverse range of food] [LOCATIVE: at every turn].
PP attachment: Verb (“at every turn” attaches to “has”)

MATRES contrast set (Gardner et al., 2020) 71% (k=1)

QA implication (Ribeiro et al., 2019) 81% (k=1)

Table 5: A demonstration of how we recreate contrast sets. Using primitive operations in Table 3, Tailor supports
context-aware and compositional changes. More examples (e.g., changing PP attachment noun→verb) are in §D.

but vary the number of masked arguments and the359

number of inserted blanks. Closeness is maximized360

when we only mask the target argument to per-361

turb in the format of Table 1B (with F1 = 67.4%),362

whereas masking two extra arguments and inserting363

six extra blanks decreases closeness by 3% and 6%,364

respectively. On the other hand, we can trade off365

closeness to prioritize likelihood by adding more366

blanks (e.g., insert extra roles whose optimal loca-367

tions are not known in advance). On another 1K368

sentences, we observe that adding six extra blanks369

increases the likelihood ratio from 0.93 to 0.95.370

5 Contrast Set Creation371

Manually creating contrast sets is expensive, e.g.,372

Gardner et al. (2020) reported spending 10-15 min-373

utes per perturbation for UD Parsing, whereas label-374

ing existing data is more efficient (Wu et al., 2021).375

We show that Tailor can save human labors by au-376

tomatically generating contrast set instances, such377

that annotators only have to label them, on four378

tasks: boolean question answering (BoolQ: Clark379

et al., 2019), extractive QA (SQuAD: Rajpurkar380

et al., 2016), dependency tree parsing (UD En-381

glish: Nivre et al., 2016), and temporal relation382

extraction (MATRES: Ning et al., 2018).383

5.1 Replicating Contrast Sets with Tailor384

We take advantage of two key properties of Tai-385

lor: First, Tailor can make context-dependent386

changes. To recreate the BoolQ contrast set, we387

replicate change events in Gardner et al. (2020)388

by replacing content keywords in questions with389

words in the paragraph that have the same seman-390

tic roles. For example, the paragraph in Table 5 391

indicates “his bride” can serve as an AGENT. Sec- 392

ond, Tailor allows for compositonal changes. As 393

in Table 5, we change prepositional phrase (PP) 394

attachments from noun to verb to recreate the UD 395

Parsing contrast set by removing the prepositional 396

phrase from the patient keyword (e.g., “a diverse 397

range of food at all prices and styles”) and intro- 398

ducing an adjunct argument with the preposition 399

as partial keyword (e.g., LOCATIVE “at”). These 400

strategy details are in §D.1. 401

Contrast set validity. We consider our perturba- 402

tion strategies successful if they help reduce human 403

labor, i.e., a contrast set author can easily label or 404

take inspiration from Tailor’s generations. Two 405

authors sampled 100 original instances per task, 406

inspected the top-K Tailor perturbations, and la- 407

beled an instance to be valid if there is at least one 408

perturbation that changes the groundtruth answer 409

while being fluent or requiring only minor fixes.8 410

Table 5 shows that these Tailor perturbation strate- 411

gies generate contrast sets with high validity.9 412

5.2 Measuring Contrast Set Quality 413

We sanity check that Tailor-generated contrast sets 414

can be used to reveal model errors. For example, 415

a T5-base model finetuned on BoolQ (with test ac- 416

curacy 83%) has a performance of 65% on both 417

8Because we exercised controls at different granularity (i.e.,
UD requires sourcing contents from the generator while others
mostly require syntactic rewrites with predetermined content),
we set k = 10 for UD—an upper bound for not overloading
the human inspector—and k = 1 for other tasks.

9Tailor achieves higher validity changing attachment from
noun→verb (82%) than verb→noun (48%). Discussion in §D.
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our Tailor contrast sets and Gardner et al. (2020)’s418

(more in §D.2). However, this metric is only a419

proxy for the quality of evaluation data, since it can420

be made intentionally low if we generate all exam-421

ples to target a known model error. Thus, we di-422

rectly analyze the quality of Tailor-generated con-423

trast sets by measuring their lexical diversity and424

impact on feature-level artifacts, both of which425

play important roles in dataset debiasing.426

We measure lexical diversity on UD Parsing con-427

trast sets because it involves sufficient generation428

of new content. We compare Tailor- and human-429

generated (Gardner et al., 2020) contrastive edits430

for the same 100 UD instances: we randomly sam-431

ple one edit for each valid instance, heuristically432

extract modified PPs, and compute diversity as the433

ratio of unique to total new tokens in the PPs, fil-434

tering stopwords. For noun→verb, the ratios are435

respectively 0.78 and 0.99 for Tailor and humans;436

for verb→noun, both are 1.0. Thus, Tailor can437

help generate contrast sets without significantly438

reducing lexical diversity. Tailor outputs are dis-439

tinguishable from humans’: their unique tokens440

only overlap for < 15% in verb→noun, and ∼6%441

for noun→verb, suggesting that Tailor can be used442

as a collaborative tool to diversify generation.443

We ask, using Gardner et al. (2021)’s statisti-444

cal test, whether Tailor perturbations can reduce445

dataset artifacts. Figure 2 plots the numbers of446

occurrences of each word against the conditional447

probability of the positive label given that word, on448

BoolQ validation data (red dots) and the contrast449

created by Tailor (green dots). All features above450

or below the blue line show statistically significant451

correlation with positive labels and thus are con-452

sidered dataset artifacts. While many words in the453

original data show such a bias, most in Tailor per-454

turbations fall within the confidence region. Thus,455

Tailor can help create less biased evaluation data.456

5.3 Discussion457

Across the four tasks, we are able to replicate all458

perturbation strategies described in the original con-459

trast sets. While Tailor requires manual effort to460

implement perturbation strategies, we believe the461

overall saved annotation effort outweighs this ini-462

tial cost. First, with the manual perturbations ab-463

stracted into Tailor strategies, they can be general-464

ized to larger datasets without requiring additional465

annotation effort. This is important especially for466

tasks whose single-instance annotation time is sig-467
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Figure 2: Dataset artifacts in original BoolQ validation
set vs. contrast set created with Tailor.

nificant (e.g., UD Parsing). Second, given that 468

Tailor generations are distinguishable from human 469

ones, they may have the potential to compensate 470

for human omissions and thereby increase test case 471

variety, which has been shown to be beneficial in 472

prior work (Ribeiro et al., 2020). Third, the im- 473

plementation overhead itself diminishes as more 474

strategies are implemented. In BoolQ, while Gard- 475

ner et al. (2020) manually created “a diverse set of 476

perturbations, including adjective, entity, and event 477

changes” (see their Appendix B.9), these are all a 478

type of data recombination in Table 3, and we were 479

able to unify their implementations with Tailor into 480

the aforementioned match-and-replacement. 481

6 Data Augmentation 482

We explore whether Tailor can be combined 483

with noisy automated labeling for data augmen- 484

tation. For the Stanford Natural Language Infer- 485

ence (SNLI) task (Bowman et al., 2015), we show 486

that data augmentation with Tailor perturbations 487

increases model robustness to inference heuristics. 488

Min et al. (2020) find that augmenting SNLI 489

training data by swapping hypotheses’ sub- 490

ject/objects (e.g., This collection contains 16 El 491

Grecos. 9 16 El Grecos contain this collection) im- 492

proves performance on HANS, a challenge set for 493

diagnosing fallible syntactic heuristics in NLI mod- 494

els (McCoy et al., 2019). Following this, we use 495

Tailor to perturb hypotheses with the SWAP_CORE 496

operation such that original hypothesis→ premise 497

and perturbed hypothesis→ new hypothesis. 498

We finetune RoBERTa-base (Liu et al., 2019) 499

on different data: original SNLI train data (unaug- 500

mented baseline), SNLI train augmented with Min 501

et al. (2020) (augmented baseline, referred to as 502

Syntactic Perturb. in Table 6), and SNLI train aug- 503

mented with Tailor perturbations. We augment 504

∼2% of SNLI train.10 For each subset, we train 20 505

models with different random seeds. We evaluate 506

10We augment the 549,367 SNLI train instances with 10,987
new instances. See §E for more details.
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HANS Subset
Training Data SNLI All Entail. Non-entail.

SNLI Train 91.1 64.7 99.0 30.5
+ Syntactic Perturb. 91.0 67.5 95.8 39.2
+ Tailor Perturb. 91.1 70.5 81.3 59.7

Table 6: Tailor augmentations lead to statistically sig-
nificant gains on the HANS challenge set, without de-
creasing in-domain accuracy.

each classifier on the in-domain SNLI test set and507

the out-of-domain HANS test set.11508

As shown in Table 6, augmentation with Tailor509

leads to 5.8-point gain on HANS overall, HANS510

and a 29.2-point gain on “non-entailment,” com-511

pared to the unaugmented baseline. The improve-512

ments are significant, with t = −6.42, p < 10−3513

using Student’s t-test. Thus, Tailor perturbations514

decrease reliance on the lexical-overlap-based in-515

ference heuristic for NLI. Furthermore, Tailor out-516

performs Syntactic Perturb., an augmented baseline517

designed specifically for NLI. We hypothesize that518

although they create augmentations through simi-519

lar transformations, Min et al. (2020)’s approach520

is limited to inputs with specific syntactic configu-521

rations, whereas Tailor’s SWAP_CORE argument is522

applicable to any AGENT and PATIENT arguments.523

Thus, Tailor is useful for improving model robust-524

ness – more so than template-based approaches.525

7 Related Work526

Controllable text generation has been widely used527

to influence various properties of generated text528

for data augmentation (Lee et al., 2021), style529

transfer (Reid and Zhong, 2021; Madaan et al.,530

2020a), adversarial example generation (Iyyer531

et al., 2018), etc. Most generators take simple532

labels like tense (Hu et al., 2017) or topic (Keskar533

et al., 2019), which underspecify desired transfor-534

mations. Recent work has explored using syntactic535

signals for paraphrasing (Iyyer et al., 2018; Ku-536

mar et al., 2020), which are similar to ours in their537

high-dimensional specification. To the best of our538

knowledge, Tailor is the first to incorporate fine-539

grained semantic controls. Structured generation540

methods, which reconstruct sentences based on541

semantic representations, are also closely related.542

Abstract Meaning Representation (Banarescu et al.,543

2013; Mager et al., 2020) is an alternative worth544

exploring, as it may further enable controls on en-545

tity recursions (Damonte and Cohen, 2019), though546

11For HANS, we follow the standard practice and collapse
neutral and contradiction predictions to non-entailment.

expressing such relationships is nontrivial. 547

Controlled generators have also been success- 548

fully used to perturb text for model training, 549

evaluation, and explanation. They usually rely 550

on application-specific labels (Ross et al., 2020; 551

Madaan et al., 2020b; Sha et al., 2021; Akyürek 552

et al., 2020) or require pairs of original and per- 553

turbed sentences (Wu et al., 2021), which are ex- 554

pensive to generalize. Recently, several works ex- 555

plore explicitly modeling syntactic structures in 556

controlled text generation (Chen et al., 2019; Bao 557

et al., 2019; Sun et al., 2021). For example, Huang 558

and Chang (2021) designed SynPG, a paraphraser 559

that can mimic parse tree structures learned from 560

non-paired data. In contrast, we focus on fine- 561

grained semantic perturbations that can be com- 562

posed into various changes beyond paraphrasing. 563

Also related are the creation of minimally edited 564

datasets, either through manual rewriting (Gard- 565

ner et al., 2020; Kaushik et al., 2020), or creating 566

perturbation templates (Andreas, 2020; Li et al., 567

2020; Ribeiro et al., 2020; Wu et al., 2019); Tailor 568

reduces the human efforts these studies require. 569

8 Conclusion 570

We propose Tailor, a flexible system that enables 571

task-agnostic, complex and context-aware pertur- 572

bations. Crucially, it shows that language models 573

can be finetuned to learn representations of control 574

codes, if paired with unlikelihood training, which 575

encourages reliance on structured controls, rather 576

than surrounding natural text. Beyond the perturba- 577

tion oriented tasks, we envision Tailor supporting 578

broader controlled generation tasks, and encourage 579

future work to explore alternative control signals 580

for different objectives (e.g., syntactic roles in §7). 581

While being widely applicable, Tailor’s effec- 582

tiveness varies for different inputs. For example, 583

some inputs derived from SRL predictors may miss 584

rare semantic roles; empirically, this did not seem 585

to be a bottleneck, as exposing biases in down- 586

stream tasks usually do not require rarity at the 587

semantic role level (e.g., the syntactic heuristics in 588

NLI only requires swapping agents and patients). 589

Moreover, some text leads to occasional degenera- 590

tion. Future work can explore the effect of penal- 591

izing generation at the span levels (vs. sequences) 592

or more strategically balancing positive and nega- 593

tive samples. Having noted these opportunities, we 594

believe Tailor is already a powerful tool for pertur- 595

bations, and we opensource it at [URL omitted]. 596
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Appendices934

A Tailor Generator Details935

A.1 Input and Output Formats936

All headers in inputs to the Tailor generator be-937

gin with predicate controls, followed by core938

argument controls (first AGENT, then PATIENT),939

and then randomly ordered adjunct argument con-940

trols (LOCATIVE, TEMPORAL, etc.). Secondary con-941

trols are always given in the order of control942

code+voice+tense:lemma for verbs and control943

code+keyword specificity:keyword content for ar-944

guments. We also blank the auxiliary verbs of the945

predicate in an input, using spacy to detect them.946

We exclude discontinuous arguments (e.g., those947

with raw SRL labels B-C-*), as well as those with948

referents (e.g., those with raw SRL labels B-R-*),949

from input headers. We map ARG0→ AGENT and950

ARG1→ PATIENT. For other numbered arguments,951

we create human-readable labels by using argument952

functions included in the PropBank frame for the953

given predicate (Palmer et al., 2005).954

On the output side, we ask the model to generate955

the full sentence (Table 1). We add the semantic956

roles for all the generated arguments, to help the957

generator build explicit mappings between the in-958

put control codes and the output spans – this can be959

important when the input codes are ambiguous (e.g.,960

a TEMPORAL argument and a LOCATIVE argument961

that both have keywords “in”). To use generations962

in downstream applications, we remove these con-963

trol codes to obtain cleaned outputs using regular964

expression matching.965

A.2 Training details966

Training inputs. During training, we randomly967

select, with equal probabilities, whether to mask968

all arguments or a subset. If a subset, we uniformly969

select the proportion of arguments to mask. To de-970

termine the number of extra blanks, we uniformly971

select a value less than 10 and set the number of972

blanks to be the maximum of that selected value973

and the number of arguments to mask. Any extra974

blanks (i.e., remaining after masking arguments)975

are inserted between subtrees of the predicate.976

We also randomly select keyword contents and977

keyword specificities. For each argument span, we978

extract, using spacy, four keyword types from the979

span: noun chunks, random subtrees, exact key-980

words, and prefixes. For prefixes, we uniformly981

select a number of tokens to include as the key- 982

word (from 1 to the entire span). Once we extract 983

all keyword candidates, we create corresponding 984

keyword specificities: A keyword is complete if 985

it contains all tokens in the original span, partial 986

if it contains at least all but 5 tokens, and sparse 987

otherwise. Then, we uniformly select a keyword 988

content/specificity pair for each span from the set 989

of keyword candidates (including the * symbol).12 990

To generate unlikelihood samples, we use three 991

perturbation strategies on inputs: 1) Change seman- 992

tic roles by swapping thematic role control codes 993

(agent/patient), changing adjunct argument control 994

codes to a uniformly selected other adjunct control 995

code, and changing verb tense/voice. We swap verb 996

tense/voice because the control code VERB does not 997

have natural candidate swaps, given that predicates 998

are the building block for semantic parses. We 999

also swap the control codes in the target output. 2) 1000

Change keyword contents by replacing verb lem- 1001

mas and keywords for both the predicate and all 1002

arguments. To make content swaps, we first gather 1003

the most commonly occurring keyword contents 1004

for each argument and predicate in Ontonotes 5.0 1005

train, extracted according to the same process as 1006

described above for creating training inputs. For 1007

each primary control code and keyword specificity 1008

(e.g., TEMPORAL+partial), we store the 15 most 1009

commonly occurring keyword contents. To create 1010

the negative inputs, for each span, we uniformly 1011

sample from these stored keywords given the span’s 1012

control code and keyword specificity. This pertur- 1013

bation is designed to discourage the generator from 1014

ignoring the keyword content and merely generat- 1015

ing commonly occurring text for particular seman- 1016

tic roles. 3) Change keyword specificities by uni- 1017

formly selecting a different specificity. We weight 1018

each unlikelihood sample equally, with a reward of 1019

-1 (vs +1 for positive samples). 1020

Hyperparameters. We train the Tailor genera- 1021

tor using Transformers (Wolf et al., 2020) for 10 1022

12Because of how keywords are sampled, we notice that
the generator is sensitive to the case of keyword contents.
For example, if the keyword for a temporal span is In 1980
instead of in 1980, Tailor is biased towards generating it at
the beginning of the sentence. We hypothesize that because
some of the keywords we sample during training are cased
(e.g., exact will lead to a cased keyword for a capitalized span
beginning a sentence), the generator learns a bias towards
generating spans with uppercase keyword at the beginning of
the sentence. In applying the generator to perturbations, the
case of keyword contents can be used to manipulate the order
of generated roles when a certain order of generated contents
is desired; otherwise, uncased keywords can be used.
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epochs with early stopping. We use batch size 41023

and default values for other parameters (learning1024

rate of 5e-5, Adam optimizer).1025

B Intrinsic Evaluation Details1026

Effectiveness of cycle consistency. To evaluate1027

to what extent cycle consistency reflects true con-1028

trollability, we conducted additional manual an-1029

notation on role-following. We sampled 25 sen-1030

tences from the Ontonotes 5.0 development set,1031

transformed them into inputs with varying num-1032

bers of masked arguments and blank tokens, and1033

created up to two perturbed inputs per sentence1034

by randomly replacing their blanked adjunct argu-1035

ments with other candidate semantic roles (using1036

CHANGE_TAG). The candidate roles were extracted1037

from the frameset for each predicate verb. We1038

also changed the keyword specificity to SPARSE, to1039

make these role swaps more plausible.1040

We collected Tailor and Tailor MLE generations1041

from both the original and perturbed inputs, and1042

one author manually validated the generated span1043

for each specified argument (98 in total). Our anno-1044

tations were following or not following the control1045

(i.e., the span matches/does not match the desig-1046

nated semantic role), or the set of controls can be1047

impossible to follow if the human annotator could1048

not think of any generation that would satisfy the1049

control codes, due to a conflict between the role,1050

keywords, and blank placement. We then com-1051

puted the Matthews correlation coefficient (MCC)1052

between the controllability of the role label as mea-1053

sured by the SRL predictor with the gold controlla-1054

bility annotations for the subset of roles without an-1055

notation impossible. The MCCs are 0.49 and 0.511056

for Tailor MLE and Tailor, respectively, suggest-1057

ing that the cycle consistency measures positively1058

correlate with true controllability measures.1059

Additionally, we measure to what extent the con-1060

trollability measures from cycle consistency cor-1061

relate with whether a set of controls is impossible1062

to follow. The MCCs are -0.33 for both Tailor1063

and Tailor MLE; thus, incorrect role-following as1064

measured by cycle consistency is positively corre-1065

lated with controls that are impossible to follow.1066

14/98 instances were manually annotated as hav-1067

ing impossible-to-follow controls, suggesting that1068

a nontrivial proportion of the generations for which1069

our intrinsic evaluation measures in §4 found to be1070

unaligned with designated role control codes may1071

be explained by impossible-to-follow controls.1072

C Degenerate Outputs 1073

We observe that Tailor produces degenerate out- 1074

puts for some inputs, as shown in Table 8. We 1075

hypothesize that this is a byproduct of unlikeli- 1076

hood training: The generator may learn to reduce 1077

the likelihood of negative sequences by generating 1078

tokens that are very unlikely to appear in natural 1079

text. Certain generation hyperparameters, such as 1080

the number of beams, can reduce the number of 1081

degenerate outputs. While we perform unlikeli- 1082

hood training at the sequence level, future work 1083

can investigate the effect of penalizing generation 1084

at the level of tokens or spans, which may provide 1085

finer-grained signals for which spans should be 1086

considered unlikely, as well as more strategically 1087

balancing positive and negative samples. 1088

Filtering. To exclude degenerations when using 1089

Tailor generations in downstream applications, we 1090

employ a combination of heuristics and perplexity- 1091

based filtering. As shown by the examples in Ta- 1092

ble 8, degenerate outputs are easy to detect: We 1093

can simply search for whether the output includes 1094

“sanatate.” We also use cutoffs in perplexity scores 1095

computed with GPT-2 to filter degenerations, as 1096

degenerations have significantly lower perplexities 1097

than non-degenerate outputs: For generations for 1098

300 randomly sampled validation inputs, the Tailor 1099

generator produced generations with a mean per- 1100

plexity of -346.46 for degenerate outputs (12/300) 1101

compared to -86.747 for others. 1102

D Contrast Set Details (§5) 1103

D.1 Perturbation Strategies 1104

In Table 7, we illustrate our perturbation strategies 1105

for creating contrast sets. Besides BoolQ, already 1106

introduced in §5, the Matres contrast set Gardner 1107

et al. (2020) relies on within-sentence context: As 1108

a task that requires detecting and changing the tem- 1109

poral order of two verbs, our perturbations heavily 1110

rely on their syntactic relationships. For example, 1111

to change the appearance order of verbs in text (as 1112

described in (Gardner et al., 2020)), we would take 1113

the parent verb as the base predicate, and MOVE the 1114

text span containing the child verb. 1115

For QA implication (Ribeiro et al., 2019), we 1116

combine Tailor with semantic heuristics: by defin- 1117

ing mappings between WH-words and answer 1118

types (e.g., “who” and “the Huguenots”), we can 1119

easily create new questions about different targets. 1120
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Dataset & Task Top-K validity

MATRES contrast set (Gardner et al., 2020) 71% (k=1)

Original Sentence: Volleyball is a popular sport in the area, and [AGENT: more than 200 people] would be [VERB:
watching] [PATIENT: the game], the chief said.
Order: watching happens after said

Perturbation strategy: Change tense
Edits VERB:CHANGE_VFORM(past)

→ [VERB+active+present )past: watch] Volleyball is...200 people <id_0> the game, the chief said.
Perturbed Sentence: Volleyball is a popular sport in the area, and [AGENT: more than 200 people] [VERB: watched]

[PATIENT: the game], the chief said.
Order: watched happens before said

Perturbation strategy: Change order
Edits PATIENT:MOVE

→ [VERB+active+past: say | AGENT+complete: Volleyball...the game] <id_0> , the chief said <id_0> .
Perturbed Sentence:[AGENT: the chief] [VERB: said] [PATIENT: Volleyball is a popular sport in the area, and more than

200 people would be watching the game].
Order: said happens before watch

BoolQ contrast set (Gardner et al., 2020) 82% (k=1)

Original Paragraph:...his bride was revealed in the webcomic...Deadpool also discovers that he has a daughter by the
name of Eleanor, from a former flame of Deadpool named Carmelita.
Q: does [AGENT: Deadpool] [VERB: have] [PATIENT: a kid in the comics]? (A: True)

Perturbation strategy: Change entity
Edits AGENT:CHANGE_CONTENT(his bride);

→ [VERB+active+present: have | AGENT+complete: Deadpool )his bride] does <id_0> <id_1> a kid in
the comics?

Perturbed Q: does [AGENT: his bride] [VERB: have] [PATIENT: a kid in the comics]? (A: False)

UD parsing contrast set (pp attachment) (Gardner et al., 2020) 65% (k=10)

Original Sentence: Do [AGENT: you] [VERB: prefer] [PATIENT: ham, bacon or sausages] [ADVERBIAL: with your
breakfast]?
PP attachment: Verb (“with your breakfast” attaches to “prefer”)

Perturbation strategy: Swap attachment to Noun
Edits PATIENT:CHANGE_CONTENT(ham, bacon or sausages with),CHANGE_SPEC(partial)

ADVERBIAL:DELETE
→ [VERB+active+present: prefer | PATIENT+complete )partial: ham, bacon or sausages
with | ADVERBIAL+complete: with your breakfast] <id_0> you <id_1> <id_2> <id_3>?

Perturbed Sentence: Do [AGENT: you] [VERB: prefer] [PATIENT: ham, bacon or sausages with bacon on them]?
PP attachment: Noun (“with bacon them” attaches to “sausages”)

Original Sentence: [AGENT: It] [VERB: has] [PATIENT: local boutiques and a diverse range of food at all prices and
styles].
PP attachment: Noun (“at all prices and styles” attaches to “food”)

Perturbation strategy: Swap attachment to Verb
Edits PATIENT:CHANGE_CONTENT(local boutiques and a diverse range of food)

LOCATIVE:CHANGE_CONTENT(at),CHANGE_SPEC(partial)
→ [VERB+active+present: have | PATIENT+complete: local boutiques and a diverse range of food
at all prices and styles | LOCATIVE+partial: at] <id_0> you <id_1> <id_2> <id_3>?

Perturbed Sentence: [AGENT: It] [VERB: has] [PATIENT: local boutiques and a diverse range of food] [LOCATIVE:
at every turn].
PP attachment: Verb (“at every turn” attaches to “has”)

QA implication (Ribeiro et al., 2019) 81% (k=1)

Original Q: [MANNER: How] did [AGENT: the Huguenots] [VERB: defend] [PATIENT: themselves]?
A: their own militia

Perturbation strategy: Swap answer to be agent
Edits AGENT:CONTENT(who); MANNER:CONTENT(their own militia),SPEC(partial)

→ [VERB+active+past: defend | AGENT+complete: the Huguenots )who | PATIENT+complete: them-
selves | MANNER+complete )partial: how )their own militia] <id_0> <id_1> <id_2> <id_3>?

Perturbed Q: [AGENT: Who] has [VERB: defended] [PATIENT: themselves] [MANNER: by setting up their own militia]?
A: the Huguenots

Table 7: A demonstration of how we recreate contrast sets for different tasks (§5). Using primitive operations in
Table 3, Tailor supports context-aware and compositional changes.
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Input Degenerate Output

[VERB+passive+past: lower | AGENT: * | PATIENT+partial:
corporate bonds | TEMPORAL+complete: this year] One indication
of a growing number of junk defaults , Mr. Asquith says , is that
about half of the $ 3 billion of <id_0> that <id_1> <id_2> <id_3>
to a default rating <id_4> <id_5> are junk bonds sold during the
market ’s big issue years of 1984 through 1986 ..

pastra pastra sanatate sanatate pastraurmatoarele
sanatateurmatoarele pastradatorita sanatatedatorita
pastracresterea sanatate urmeaza sanatateinformatiile
sanatatecresterea pastra urmeaza urmeaza
pastrainformatiileinformatiiledatoritadatoritaurmatoarele.

[VERB+active+present: visit | AGENT: * | PATIENT+partial:
Galilee | TEMPORAL: *] <id_0> went to <id_1> <id_2> <id_3> .

AG pastra pastra sanatate sanatate pastraurmatoarele
sanatateurmatoareleurmatoarele pastrainformatiile sanatate-
informatiileinformatiile pastradatorita sanatatedatoritadatori-
taurmatoareledatoritainformatiile dumneavoastra sanatate
urmeaza sanatatecresterea

Table 8: Example inputs from the validation set for which the Tailor generator outputs degenerate text.

For UD English (Nivre et al., 2016), we use1121

constrained decoding (Hokamp and Liu, 2017) to1122

prevent generation of the original prepositional1123

phrase. Our strategy for changing prepositional1124

phrase (PP) attachments from verb→noun is sim-1125

ilar to that of noun→verb, introduced in §5. We1126

use the following composition of perturbation op-1127

erations: append the preposition to the patient key-1128

word (e.g., “ham or sausages with”), change patient1129

keyword specificity from complete)partial (to1130

generate a new PP attaching to the patient), and1131

delete the argument with original verb attachment1132

(e.g., ADVERBIAL “with your breakfast”).1133

We note that Tailor achieves higher validity1134

changing attachment from noun→verb (82%) than1135

verb→noun (48%). This result is expected, as all1136

semantic role labeling arguments attach to verb1137

predicates; thus, introducing controls for an SRL1138

argument (e.g., LOCATIVE with keyword content1139

“at”) to generate a preopositional phrase with verb1140

attachment (“at every turn”) reflects the training1141

objective of the generator. On the other hand,1142

our verb→noun strategy involves appending the1143

preposition to the keyword control for an argument,1144

and none of our controls explicitly reflect the tar-1145

get attachment of a prepositional phrase within1146

an argument (e.g., keyword controls do not spec-1147

ify whether “with” should attach to “sausages” vs1148

“ham”). Furthermore, preposition keywords within1149

an SRL argument do not deterministically lead to1150

noun attachments in our training data–Sometimes1151

a preposition within an argument may reflect verb1152

attachment (e.g., in the case of “Do [AGENT: you]1153

[VERB: prefer] [PATIENT: eating with a fork or eat-1154

ing with a knife]?”; here, “eating with a fork or1155

eating with a knife” is the patient of “prefer” but1156

prepositional phrase “with a fork” attaches to verb1157

“eating.”) Because the training objective of our1158

generator does not provide deterministic signal for1159

Dataset Task Eval
Original

Contrast Set
Human ↓ Tailor ↓

BoolQ 82.8 64.8 (-17.5) 64.7 (-17.6)
SQuAD 91.8 66.1 (-25.7) 55.3 (-36.5)
MATRES 70.3 49.4 (-20.9) 42.3 (-28.0)

Table 9: Accuracies of predictors on original task eval-
uation data and contrasts sets. The performance drops
on contrast sets (vs. original test accuracies), shown
in parentheses, are similar for Tailor-generated con-
trast sets and expert-created sets (Gardner et al., 2020;
Ribeiro et al., 2019).

noun attachment outputs, we do not expect our 1160

verb→noun strategy to always result in generations 1161

with noun attachment. Our verb→noun strategy is 1162

instead intended to facilitate the collection of text 1163

with noun attachment. Future work can investigate 1164

incorporating auxiliary signals about target config- 1165

urations of keyword contents in outputs (e.g., that 1166

a preposition should depend on a particular word 1167

in the span). 1168

D.2 Predictor Performance Evaluation 1169

The performances of downstream predictors on 1170

original task evaluation data and contrast sets, both 1171

Tailor-generated and human-expert-generated, are 1172

shown in Table 9.13 For SQuAD, we evaluate a 1173

fine-tuned RoBERTa, the most downloaded model 1174

hosted on Huggingface,14 and use the QA impli- 1175

cation challenge set (Rajpurkar et al., 2016) as the 1176

human contrast set. Since we could not find read- 1177

ily available predictors for BoolQ and MATRES, 1178

we formulate these tasks as a text-to-text task and 1179

fine-tune T5-base for 10 epochs; we evaluate the 1180

13We report accuracy on the test set for MATRES and held-
out validation sets for BoolQ and SQuAD, which do not have
publicly available test sets.

14https://huggingface.co/deepset/
roberta-base-squad2
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Premise Tailor-Generated Hypothesis

A lady in shorts is riding a bike. A bike is riding a lady in shorts.

A band plays drums in the parade. Drums are playing a band in the parade.

A young woman eating doritos on mars. Doritos is eating a young woman on mars

A crowd of people is outside watching a surfer. A surfer is outside watching a crowd of people.

A lady is holding a viola in the woods. A viola is holding a lady in the woods.

A girl in striped swimsuit is jumps into the ocean to catch fish Fish is jumps into the ocean to catch a girl in striped swimsuit

A person is training a choir for the upcoming competition. For the upcoming competition is training a choir has been person

The photographer gathers the bridal party before the ceremony. The bridal party is gathering the photographer before the ceremony

Table 10: Examples of augmented data in NLI augmentation experiments (§6). We use original SNLI hypotheses
as premises in the augmented data and use SWAP_CORE with Tailor to generate new hypotheses.

checkpoint with the lowest validation loss.151181

The drops in predictors’ accuracies on the Tai-1182

lor-generated contrast sets (compared to original1183

test accuracies) show that they can be used to re-1184

veal model errors not reflected in original valida-1185

tion data. However, this result should be interpreted1186

with caution, as it is not directly reflective of dataset1187

quality. For instance, if the contrast data tests one1188

error type or is adversarially constructed to include1189

instances where predictors fail, then lower accuracy1190

does not necessarily mean exposing more model1191

errors. Thus, we treat these performance metrics as1192

secondary to other direct metrics of dataset quality,1193

discussed in §5, and run this analysis on a small1194

number of contrast set instances as a sanity check.1195

That said, the fact that predictors perform poorly1196

on Tailor-generated contrast sets even without in-1197

cluding an adversarial component in our contrast1198

set creation suggests that Tailor can be useful for1199

creating evaluation data to find model errors.1200

E Data Augmentation Details (§6)1201

Augmented data. To create our augmented data,1202

we filter generations by perplexity scores from1203

GPT-2 such that we retain 75% of generations. Ex-1204

amples of augmented inputs are shown in Table 10.1205

Classifiers. We train all SNLI classifiers, which1206

build on RoBERTa-base (Liu et al., 2019), using1207

AllenNLP (Gardner et al., 2018). We train for 101208

epochs using the Adam optimizer with a learning1209

rate of 2e-05 and batch size 32; we use early stop-1210

ping with a patience of 3.1211

15For MATRES, we format inputs by surrounding verbs
with marker “<el>” and “</el>” and train the predictor to
output the label in natural language, e.g., “Mr. Erdogan has
long <el> sought </el> an apology... After that raid An Israeli
raid on this ship <el> left </el> nine passengers dead...” →
“before”.

F Tailor’s fine-grained and 1212

compositional perturbations on 1213

StylePTB 1214

Here, we show how Tailor can be applied to fine- 1215

grained style transfer. We evaluate Tailor without 1216

any finetuning16 on the StylePTB benchmark (Lyu 1217

et al., 2021), which builds on the Penn Treebank 1218

and assesses fine-grained stylistic changes, both on 1219

single transfers (e.g., To Future Tense) and compo- 1220

sitional ones that concurrently edit multiple stylis- 1221

tic dimensions (e.g., To Future Tense+ Active To 1222

Passive). 1223

Transfers Evaluated. We evaluate on the trans- 1224

fers in StylePTB for which Lyu et al. (2021) report 1225

results, as their baselines require training separate 1226

models for each transfer. Within this subset of 1227

transfers, we exclude PP Back to Front and Pas- 1228

sive to Active from evaluation, as they contain < 5 1229

test inputs. We also exclude the transfers Substate- 1230

ment Removal, Information Addition, Adjective Em- 1231

phasis, and Verb/Action Emphasis, for which our 1232

semantic-role-derived inputs are not well-suited. 1233

For example, Substatement Removal involves re- 1234

moving substatements that represent “referring” 1235

and “situations,” both of which are technical philo- 1236

sophical concepts that cannot be straightforwardly 1237

detected through semantic roles. As another ex- 1238

ample, Information Addition requires adding un- 1239

ordered keyword contents to a sentence (eg the 1240

work force provides the third arm of the alliance; 1241

16This evaluation is zero-shot in spirit, as Tailor is not
trained on any paired transfers present in StylePTB. However,
it is unclear if the test inputs in StylePTB overlap with the
Ontonotes 5.0 training data, since the two do share some data
points (van Son et al., 2018), and StylePTB does not seem to
preserve original PTB splits. This leakage may advantage the
external SRL predictor in parsing StylePTB test inputs. Still,
this advantage should be minor, as the evaluated transfers do
not require complex semantic role parsing.
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(a) Single transfers
Single Finetune Compos. Finetune No Finetune

GPT-2 RetrieveEdit CS-GPT-TV CS-GPT-TP Tailor Tailor, Filtered

To Future Tense 89.5 89.9 72.7 81.0 87.3 88.9, 357/364
To Past Tense 83.6 93.5 69.4 83.4 88.4 89.3, 216/218
To Present Tense 75.4 90.9 73.3 82.6 71.0 84.7, 175/209
ADJ or ADV Removal 64.7 89.7 — — 78.1 84.3, 224/243
PP Front to Back 39.8 54.1 — — 84.2 96.9, 20/23
PP Removal 76.3 79.8 — 76.0 71.7 85.7, 199/238
Active to Passive 47.6 68.1 47.2 — 55.6 77.8, 98/137

(b) Compositional transfers
Compos. Finetune Multi-Single Finetune No Finetune

CS-GPT* CS-Sys-Gen* Tailor Tailor, Filtered

Tense +
Voice

ToPast+ActiveToPassive 40.9 33.7 66.0 66.0, 30/30
ToFuture+ActiveToPassive 49.6 41.9 46.8 67.0, 90/131
ToFuture+PassiveToActive 52.8 39.9 68.3 68.3, 131/131
ToPast+PassiveToActive 47.4 36.5 70.2 70.2, 65/65
ToPresent+PassiveToActive 52.3 42.4 69.9 69.9, 95/95
ToPresent+ActiveToPassive 50.3 44.5 31.5 61.4, 43/84

Tense +
PPRemoval

ToFuture+PPRemoval 73.8 46.5 74.3 79.2, 215/229
ToPast+PPRemoval 77.2 54.2 73.8 79.7, 100/108
ToPresent+PPRemoval 70.9 54.5 69.1 70.4, 153/156

Table 11: BLEU scores for single and compositional style transfers in StylePTB. Baseline results are taken from
Tables 14-16 and 19-20 in Lyu et al. (2021). * represents the same type of models finetuned on different subsets
of styles, e.g.,CS-GPT* in (b) includes CS-GPT-TV, trained on all Tense+Voice compositional transfers, and CS-
GPT-TP, on Tenses+PP Removal. A single Tailormodel helps achieve comparable performance on single transfers
compared to finetuned baselines, and is more capable on multiple compositional transfers.

add keywords: force black→ the work force pro-1242

vides the third arm of the black alliance force.1243

While the Tailor generator was only trained with1244

ordered arguments, one could extend the keyword1245

contents to also include unordered target tokens.1246

Perturbation strategies. For transfers modify-1247

ing only verb tense (e.g., To Future Tense), we1248

mask the verb, modal arguments, and negation ar-1249

guments, as these are relevant to verb conjugations,1250

and make relevant perturbations on the secondary1251

verb control specifying tense. For transfers mod-1252

ifying verb voice, we mask the verb, agent, and1253

patient. For transfers requiring removal of certain1254

parts of speech (POS)—i.e., ADJ or ADV Removal,1255

PP Removal, and all compositional Tense + PP1256

Removal sub-transfers —we first use spacy to de-1257

tect such POS, next mask all arguments containing1258

them, and finally perturb the keyword contents to1259

remove the POS for these arguments. For PP Front1260

to Back, we mask the argument at the beginning of1261

the original text and implement the change using1262

CHANGE_IDX.1263

We use cased keywords (A.2) to encourage gen-1264

erations with similarly ordered arguments as the1265

original sentence, except for the PP Front to Back1266

transfer, which calls for differently ordered argu-1267

ments. For transfers modifying verb form only, we1268

set the number of extra blanks to be 2 to allow for1269

generation of helper verbs; for other transfers, we 1270

allow for 0 extra blanks to preserve the original 1271

order of generated spans. We decode perturbed 1272

sentences greedly using beam search (with beam 1273

width 10) and preventing repeated bigrams. 1274

For each transfer, we create perturbations for 1275

each predicate in the original input, and report 1276

mean BLEU scores.17 Because this process results 1277

in multiple perturbations (one per verb), we choose 1278

the one with the lowest perplexity from GPT-2 to 1279

represent the transfer. Unsuccessful transfers, ei- 1280

ther due to a failure of perturbation strategy (e.g., 1281

no verbs are found by our SRL predictor) or due 1282

to a degenerate output (see §C), are given a BLEU 1283

score of 0.0. 1284

Baselines. We work with baselines reported by 1285

Lyu et al. (2021): GPT-2 and RetrieveEdit are the 1286

best-performing single-transfer models evaluated 1287

but require separate models to be trained for each 1288

transfer. CS-GPT* are models trained on compo- 1289

sitional subsets of data (e.g., Tense+Voice, detailed 1290

in Table 11 caption). CS-Sys-Gen are ablations of 1291

CS-GPT* trained only on corresponding individual 1292

changes but evaluated on compositional transfers.18 1293

Result. On compositional transfers, we find that 1294

Tailor outperforms the baseline system trained 1295

17We report Bleu_1 from nlg-eval (Sharma et al., 2017).
18CS-Sys-Gen refers to CS-GPT-Zero in Lyu et al. (2021).
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without compositional fine-tuning, CS-Sys-Gen, on1296

8/9 compositions, and even outperforms CS-GPT*1297

— models with compositional finetuning — on 51298

cases. It also achieves compatible or better results1299

than GPT-2 and RetrieveEdit on single transfers.1300

Low Tailor performance on some transfers (e.g.,1301

ToFuture+ActiveToPassive) appears to be driven by1302

unsuccessful transfers, rather than generations that1303

do not follow controls, as indicated by the higher1304

performances on the subset where unsuccessful1305

transfers are removed (Filtered Test). Importantly,1306

Tailor achieves these gains with a single model1307

and without any transfer-specific finetuning.1308
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