
Under review as a conference paper at ICLR 2024

LANGUAGE REWARD MODULATION FOR PRETRAINING
REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Using learned reward functions (LRFs) as a means to solve sparse-reward rein-
forcement learning (RL) tasks has yielded some steady progress in task-complexity
through the years. In this work, we question whether today’s LRFs are best-suited
as a direct replacement for task rewards. Instead, we propose leveraging the capa-
bilities of LRFs as a pretraining signal for RL. Concretely, we propose LAnguage
Reward Modulated Pretraining (LAMP) which leverages the zero-shot capabilities
of Vision-Language Models (VLMs) as a pretraining utility for RL as opposed
to a downstream task reward. LAMP uses a frozen, pretrained VLM to scalably
generate noisy, albeit shaped exploration rewards by computing the contrastive
alignment between a highly diverse collection of language instructions and the
image observations of an agent in its pretraining environment. LAMP optimizes
these rewards in conjunction with standard novelty-seeking exploration rewards
with reinforcement learning to acquire a language-conditioned, pretrained policy.
Our VLM pretraining approach, which is a departure from previous attempts to
use LRFs, can warmstart sample-efficient learning on robot manipulation tasks in
RLBench.

1 INTRODUCTION

A longstanding challenge in reinforcement learning is specifying reward functions. Extensive domain
knowledge and ad-hoc tuning are often required in order to manually design rewards that “just
work.” However, such rewards can be highly uninterpretable and riddled with cryptic mathematical
expressions and constants. Furthermore, hand-crafted reward functions are often over-engineered to
the domain in which they were designed, failing to generalize to new agents and new environments
(Shah et al., 2022; Langosco et al., 2022). As a result, a long history of foundational work in Inverse
Reinforcement Learning (IRL) (Abbeel & Ng, 2004; Ng & Russell, 2000; Kim et al., 2003; Peng
et al., 2021; Escontrela et al., 2022) has produced an abundance of methods for learning rewards
from demonstration data assumed to optimal under the desired reward function. However, learned
reward functions are also notorious for noise and reward misspecification errors (Amodei et al., 2016;
Amodei & Clark, 2016) which can render them highly unreliable for learning robust policies with
reinforcement learning. This is especially problematic in more complex task domains such as robotic
manipulation, particularly when in-domain data for learning the reward function is limited.

While acknowledging that learned reward functions are subject to potential errors, we hypothesize
that they may be effectively employed to facilitate exploration during the lower-stakes pretraining
stage of training. During pretraining, we generally desire a scalable means of generating diverse
behaviors to warmstart a broad range of possible downstream tasks. LRFs are an appealing means
for supervising these behaviors since they do not rely on human-design and carry the potential to
scale with dataset diversity. Despite this potential, obtaining LRFs that generalize to new domains is
non-trivial (Shah et al., 2022). Notably, however, large-pretrained models have shown impressive
zero-shot generalization capabilities that enable them to be readily applied in unseen domains. Indeed,
large pretrained VLMs have shown recent successes in reward specification for task learning by
computing alignment scores between the image observations of an agent and a language input
describing the desired task (Cui et al., 2022; Mahmoudieh et al., 2022). While these methods
adopt similar reward mispecification shortcomings to other LRFs, they come with the novel and
relatively under-explored property of being a scalable means of generating many different rewards
by simply prompting with different language instructions. This property is particularly compatible

1

Under review as a conference paper at ICLR 2024

Figure 1: LAMP Framework. Given a diverse set of tasks generated by hand or by a LLM, we
extract VLM rewards for language-conditioned RL pretraining. At finetuning time, we condition the
agent on the new task language embedding and train on the task reward.

with the assumptions of RL pretraining where we desire to learn general-purpose behaviors with
high coverage of environment affordances, require minimal human supervision, and do not require
pretrained behaviors to transfer zero-shot to fully solve downstream tasks. Instead of relying on
noisy VLM LRFs to train task-specific experts, can we instead use them as a tool for pretraining a
general-purpose agent?

In this work, we investigate how to use the flexibility of VLMs as a means of scalable reward
generation to pretrain an RL agent for accelerated downstream learning. We propose LAnguage
Reward Modulated Pretraning (LAMP), a method for pretraining diverse policies by optimizing
VLM parameterized rewards. Our core insight is that instead of scripting rewards or relying solely on
general unsupervised objectives to produce them, we can instead query a VLM with highly diverse
language prompts and the visual observations of the agent to generate diverse, shaped pretraining
rewards. We augment these rewards with intrinsic rewards from Plan2Explore (Sekar et al., 2020), a
novelty-seeking unsupervised RL algorithm, resulting in an objective that biases exploration towards
semantically meaningful visual affordances. A simple language-conditioned, multitask reinforcement
learning algorithm optimizes these rewards resulting in a language-conditioned policy that can be
finetuned for accelerated downstream task learning. We demonstrate that by pretraining with VLM
rewards in a visually complex environment with diverse objects, we can learn a general-purpose
policy that more effectively reduces the sample-complexity of downstream RL. We train LAMP in a
pretraining environment with realistic visual textures and challenging randomization and evaluate
downstream performance on RLBench tasks. We also analyze the influence of various prompting
techniques and frozen VLMs on the performance of the pretrained policy.

2 RELATED WORK

Pretraining for RL Following on the successes of pretraining in vision and language, a number of
approaches have grown in interest for pretraining generalist RL agents in order to reduce sample-
complexity on unseen tasks. Classical works in option learning (Sutton et al., 1999; Stolle & Precup,
2002) and more recent approaches in skill discovery such as (Sharma et al., 2019; Gregor et al.,
2016; Park et al., 2023; Eysenbach et al., 2018) look to pretrain skill policies that can be finetuned
to downstream tasks. Exploration RL algorithms such as (Burda et al., 2018; Sekar et al., 2020;
Pathak et al., 2017; Liu & Abbeel, 2021) use unsupervised objectives to encourage policies to learn
exploratory behaviors. Works such as (Xiao et al., 2022; Nair et al., 2022; Radosavovic et al., 2023)
leverage pretrained vision encoders to accelerate RL from pixels. LAMP combines a large-pretrained
VLM with exploration-based RL to guide exploration towards meaningful behaviors.

Inverse RL from human video Inverse reinforcement learning (IRL) (Arora & Doshi, 2021;
Ziebart et al., 2008; Abbeel & Ng, 2004; Ng & Russell, 2000) proposes a number of approaches to
address the challenges associated with learning reward functions from demonstrations. A number
of more recent works focus on inverse RL from video datasets of human interaction, (Chen et al.,
2021; Zakka et al., 2021; Sermanet et al., 2016; 2017) which are often more readily available than

2

Under review as a conference paper at ICLR 2024

in-domain demonstrations. These methods rely on perceptual metrics such as goal-image similarity
and trajectory similarity to formulate rewards but require task-specific paired data. Other methods
such as (Ma et al., 2023) make weaker assumptions on the task-specificity of the human video dataset
and thus can leverage "in-the-wild" data and exhibit stronger domain generalization. LAMP similarly
exploits "in-the-wild" video data via a frozen, pretrained VLM but focuses on leveraging language to
flexibly modulate the VLM and generate diverse rewards.

VLMs as task rewards A number of works propose methods for extracting shaped task reward
signals from large-scale pretrained LLMs or VLMs (Du et al., 2023b; Cui et al., 2022; Mahmoudieh
et al., 2022). Others such as (Du et al., 2023a) leverage pretrained VLMs as general-purpose success
detectors which can provide sparse task rewards. VLM-based rewards can also be learned on bespoke
datasets or in-domain data (Fan et al., 2022; Shao et al., 2020) to be used directly for downstream
task learning. Instead of relying on VLMs to train task-specific experts, LAMP uses a VLM to
control scalable RL pretraining and employs scripted task rewards to demonstrate reliable downstream
finetuning.

3 BACKGROUND

Reinforcement learning We consider the reinforcement learning (RL) framework where an agent
receives an observation ot from an environment and chooses an action at with a policy ⇡ to interact
with the environment. Then the agent receives an extrinsic reward ret and a next observation ot+1

from the environment. The goal of RL is to train the policy to maximize the expected return defined
as a cumulative sum of the reward with a discount factor �, i.e., Rt = E[

P1
k=0 �

kre(ot+k, at+k)].

Reinforcement learning with vision-language reward In sparse reward tasks, the extrinsic
reward re becomes non-zero only when the task successfully terminates, making it difficult to learn
policies that complete the target tasks. To address this, recent approaches have proposed to use
the vision-language alignment score from a large-scale vision-language model (VLM) as a reward
(Fan et al., 2022; Cui et al., 2022). Formally, let x := {x1, ..., xM} be a text that describes the
task consisting of M tokens, F� be a visual feature encoder, and L↵ be a language encoder. Given
a sequence of transitions {oi, ai, rei , oi+1}Ni=1, the key idea is to use the distance between visual
representations F�(oi) and text representations L↵(x) as an intrinsic reward, which is defined as
rinti = D (F�(oi), L↵(x)), where D can be an arbitrary distance metric such as cosine similarity or
L2 distance. This intuitively can be seen as representing the extent to which the current observation
is close to achieving the task specified by the text.

R3M The vision encoders of video-language models have been successfully employed as semantic
feature extractors that enable downstream learning on a variety of domains including standard
prediction and classification tasks as well as, more recently, decision making and control (Xu et al.,
2021). Notably, R3M, has lead to improvements in the data-efficiency of imitation learning in
real-world robotics domains (Nair et al., 2022). R3M extracts semantic representations from the
large-scale Ego4D dataset of language annotated egocentric human videos (Grauman et al., 2022).
The language input is processed by L↵, a pretrained DistilBERT transformer architecture (Sanh
et al., 2019) that aggregates the embeddings of each word in the instruction and the images are
encoded with R3M’s pretrained ResNet-18 F�. A video-language alignment loss encourages the
image representations F�(·) to capture visual semantics by extracting image features that aid in
predicting the associated language annotations, which are embedded by L↵(x). In particular, R3M
trains G✓(F�(o1), F�(oi), L↵(x)) to score whether the language x explains the behavior from image
o1 to image oi. The score function is trained simultaneously to the representations described above
with a contrastive loss that encourages scores to increase over the course of the video and scores to
be higher for correct pairings of video and language than incorrect ones.

4 METHOD

We present LAnguage Reward Modulated Pretraining (LAMP), a simple yet effective framework
for pretraining reinforcement learning with intrinsic rewards modulated with language instructions.
LAMP consists of two stages: (i) a task-agnostic RL pretraining phase that trains policies to maximize

3

Under review as a conference paper at ICLR 2024

Figure 2: LAMP Method. We use R3M (Nair et al., 2022) for our VLM-based rewards. We
query the R3M score predictor for pixel and language alignment, which is pretrained on the Ego4D
dataset (Grauman et al., 2022). The reward model is frozen.

the VLM-based rewards and (ii) a downstream task finetuning phase that adapts pre-trained policies
to solve the target tasks by maximizing the task reward. In this section, we first describe how we
define our intrinsic reward (see Section 4.1), how we pretrain policies (see Section 4.2), and how we
adapt the policies to downstream tasks (see Section 4.3). We provide the overview and pseudocode of
LAMP in Figure 2 and Algorithm 1, respectively.

4.1 LANGUAGE REWARD MODULATION

R3M score as a reward To extract pretraining reward signals for RL, we propose to use the R3M
score as a source of rewards. Our motivation is that the R3M score is well-suited for providing shaped
rewards because its representations are explicitly trained to understand temporal information within
videos (see Section 3 for details) in contrast to other VLMs without such components (Radford et al.,
2021; Xu et al., 2021; Wang et al., 2022). Specifically, we define our VLM reward using the R3M
score as below:

rVLMi = G✓(F�(o1), F�(oi), L↵(x)) (1)

where G✓ denotes the score predictor in R3M. Intuitively, this reward measures how oi is making a
progress from o1 towards achieving the tasks specified by natural language instruction x. We find that
our reward is indeed better aligned with the progress within expert demonstrations in our considered
setups compared to other VLMs (see Figure 3 for supporting experiments).

Rewards with diverse language prompts To fully exploit the language understanding of VLMs,
we propose to query them with a diversity of texts describing a diversity of objectives, as opposed
to computing the reward by repeatedly using a single instruction. Specifically, we obtain diverse,
semantic rewards modulated by language, generating diverse sets of language instructions for each
task and use them for prompting the model. Given an instruction template, we query ChatGPT1 for
a diverse set of language instructions with a focus on two categories: imperative instructions and
statements of completion (e.g. move the mug vs. the mug is moved). Given that large-scale video
datasets are predominantly human-centric, we obtain prompts that are human-centric, robot centric,
as well as ambiguous (e.g. the robot arm moved the mug vs. use your hand to move the mug vs. reach
toward the mug and move it). Moreover, we augment the instructions by querying for synonym nouns.
By inputting diverse language instructions from the dataset along with the agent’s image observations,
we effectively modulate the frozen, pretrained R3M reward and produce diverse semantic rewards
that are grounded in the visual environment of the agent.

1
https://chat.openai.com

4

https://chat.openai.com

Under review as a conference paper at ICLR 2024

Video-Language Alignment Rewards

Figure 3: Video-Language alignment scores from R3M (Nair et al., 2022), InternVideo (Wang et al.,
2022), and ZeST (Cui et al., 2022) on RLBench downstream tasks plotted over an expert episode
with 3 snapshots visualized. Rewards are highly noisy and do not increase smoothly throughout the
episode. Optimizing this signal with RL is unlikely to lead to stable solutions, and thus we instead
use rewards as an exploration signal during pretraining.

4.2 LANGUAGE-CONDITIONED PRETRAINING

While several recent works have shown that rewards from VLMs can be used for training RL
agents (Fan et al., 2022; Cui et al., 2022), it is still questionable whether these rewards can serve as a
sufficiently reliable signal for inducing the intended behavior. In this work, we instead propose to
leverage such rewards from VLMs as a pretraining signal for RL policies, utilizing the knowledge
captured within large VLMs for scripting diverse and useful exploration rewards.

Pretraining environment To learn diverse behaviors that can be transferred to various downstream
tasks, we design a set of tasks with realistic visuals and diverse objects. Specifically, we build a
custom environment based on the RLBench simulation toolkit (James et al., 2020). In order to
simulate a realistic visual scene, we download images from the Ego4D dataset (Grauman et al., 2022)
and overlay them as textures on the tabletop and background of the environment (see Figure 2). To
produce diverse objects and affordances, we import ShapeNet (Chang et al., 2015) object meshes into
the environment. Both the visual textures and the objects are randomized every episode of training.

Objective Because the VLM reward can be seen as measuring the extent to which the agent is
closer to solving the task (see Section 4.1), it can be readily be combined with novelty-seeking
unsupervised RL methods that optimize both extrinsic and intrinsic rewards. Therefore, to incentivize
exploration, we combine the VLM reward with the novelty score from a separate exploration
technique. Specifically, we consider Plan2Explore (Sekar et al., 2020) that utilizes the disagreement
between future latent state predictions as a novelty score. Let this novelty-based score be rP2Ei . We
then train our pretraining agent to maximize the following weighted sum of rewards:

rLAMPi = ↵ · rP2Ei + (1� ↵) · rVLMi (2)

where ↵ is a hyperparameter that balances the two rewards. By combining this novelty-based reward
with the VLM reward, we encourage the agent to efficiently explore its environment but with an
additional bias towards interacting with the semantically meaningful affordances. We found that an ↵
value of 0.9 works quite well across the tasks evaluated.

Pretraining pipeline During task-agnostic pretraining, the agent is deployed in a language-
conditioned MDP where there are no environment task rewards rei . For the underlying RL algorithm,
we use Masked World Models (MWM) (Seo et al., 2022), an off-policy, model-based method with
architectural inductive biases suitable for fine-grained robot manipulation. Every episode, our method
randomly samples some language prompt x from the generated dataset as specified in Section 4.1.
Then we condition the MDP and agent on the respective embedding L↵(x) such that each rolled out
transition in the episode can be expressed as (oi, ai, oi+1, L↵(x)). After each episode is collected, we
compute the rewards for each transition by embedding the observations with the R3M visual encoder

5

Under review as a conference paper at ICLR 2024

Algorithm 1 Language Reward Modulated Pretraining (LAMP)
1: Initialize Masked World Models (MWM) parameters
2: Load pretrained DistilBERT L↵

3: Load pretrained R3M visual encoder F�

4: Load pretrained R3M score predictor G✓

5: Initialize replay buffer B 0
6: Prefill language prompt buffer Bl

7: Prefill synonym buffer Bs

8: for each episode do

9: Randomize scene textures by sampling among Ego4D and original RLBench textures
10: Sample ShapeNet Objects to place in scene
11: Sample language prompt x from Bl (e.g., Pick up the [NOUN])
12: Replace [NOUN] in x by sampling a synonym from Bs for a random object in the scene
13: Process the prompt via DistilBERT to obtain language embeddings L↵(x)
14: Collect episode transitions with ⇡(a|(s, L↵(x))
15: Assign LAMP rewards to all time steps (in parallel) by embedding frames with F� and

querying the R3M score predictor G✓

16: Add all episode transitions to B
17: Update MWM and Plan2Explore parameters as in (Seo et al., 2022; Sekar et al., 2020) by

sampling transitions from B and augmenting LAMP rewards with novelty bonus to train agent
18: end for

F� and then applying the R3M score predictor G✓ - afterwards adding the data to the replay buffer.
We then sample batches of transitions from the buffer, augment the reward with the Plan2Explore
intrinsic reward, and make reinforcement learning updates to a language-conditioned policy, critic,
and world model. By the conclusion of pretraining, we obtain a language-conditioned policy capable
of bootstrapping diverse behaviors specified by the language x.

4.3 DOWNSTREAM TASK ADAPTATION

Figure 4: We pretrain on domain-
randomized environments based on
Ego4D textures, occasionally sam-
pling the default, non-randomized
RLBench environment.

In order to evaluate the quality of the pretrained skills, we eval-
uate on downstream reinforcement learning tasks with scripted
task rewards re

i . Since we have learned a language-conditioned
policy, we simply select a language instruction xft roughly
corresponding to the downstream task semantics in order to
condition the pretrained agent. We remark that an additional
advantage of LAMP is its use of language as a task-specifier,
which enables this simplicity of zero-shot selection of a policy
to finetune (Adeniji et al., 2022). We fix this language instruc-
tion selection for the entirety of task learning and finetune all
RL agent model components except the critic, which we linear
probe for training stability.

5 EXPERIMENTS

5.1 SETUP

Environment details As previously mentioned in Section 4.2,
we consider domain-randomized environments for pre-training
(see Figure 4 for examples).

Specifically, our pretraining environments consist of 96 domain-randomized environments with
different Ego4D textures overlayed over the table, walls, and floor. We also sample the environments
having default RLBench environment textures with probability of 0.2. We do not include any of the
downstream evaluation tasks that the agent finetunes on in the pretraining setup. The pretraining
tasks are exclusively comprised of ShapeNet objects. All of the downstream tasks are unseen tasks
from the original RLBench task suite.

6

Under review as a conference paper at ICLR 2024

Figure 5: Finetuning performance on visual robotic manipulation tasks in RLBench. We include
results with additional unsupervised RL baselines in the supplementary material. The solid line and
shaded region represent mean and standard deviation across 3 seeds.

For finetuning, we implement a shaped reward function based on the ground truth simulator state
and train the agent to optimize this signal instead of the pretraining reward. We use the exact scenes
released in RLBench in order to encourage reproducibility, notably keeping the default background
and table textures fixed throughout the course of training. We use a 4-dimensional continuous action
space where the first three dimensions denote end-effector positional displacements and the last
controls the gripper action. We fix the end-effector rotation and thus select tasks that can be solved
without changing the orientation of the end-effector.

Baselines As a baseline, we first consider a randomly initialized MWM agent trained from scratch
to evaluate the benefit of pretraining. In order to evaluate the benefit of pretraining with LAMP that
modulates the reward with language, we also consider Plan2Explore (Sekar et al., 2020) as a baseline,
which is a novelty-seeking method that explores based on model-uncertainty. Our method, LAMP, is
the combination of the VLM reward and the Plan2Explore reward with a fixed ↵ value of 0.9 across
tasks as described in equation 2.

5.2 RESULTS

Across tasks in Figure 5, we find that training a randomly initialized agent from scratch on a new task
exhibits high-sample complexity in order to learn a performant policy. Across most RLBench tasks,
Plan2Explore, which employs purely unsupervised exploration, exceeds the performance of training
from scratch. LAMP outperforms or is competitive with Plan2Explore and consistently outperforms
training from scratch. We hypothesize that this is because by pretraining with a VLM reward, LAMP
biases the agent to explore efficiently in ways that are semantic meaningful and avoids spending time
investigating spurious novelty. It is also possible that by optimizing more diverse rewards during
pretraining, the agent learns representations that allow it to quickly adapt to the unseen task reward
during finetuning. We further note that the VLM rewards in isolation can lead to effective pretraining
as we demonstrate in Figure 8. Solely optimizing the VLM rewards (LAMP w/o Plan2Explore) is
able to achieve strong performance, however, we find that the combination of VLM and Plan2Explore
rewards yields the best overall performance.

6 ABLATIONS

6.1 LANGUAGE PROMPTING

A particular convenience of using VLMs trained on internet-scale data is the diversity of language we
can query for plausibly infinite reward functions. We ablate different prompt styles used during the
pretraining phase. The 6 language prompting styles are as such:

1. Prompt Style 1: Pick up the [NOUN].

2. Prompt Style 2: [RELEVANT VERB] and [SYNONYM NOUN].

3. Prompt Style 3: [RELEVANT VERB] and [RANDOM NOUN].

4. Prompt Style 4: [IRRELEVANT VERB] and [SYNONYM NOUN].

5. Prompt Style 5: [IRRELEVANT VERB] and [RANDOM NOUN].

6. Prompt Style 6: [Snippets from Shakespeare].

7

Under review as a conference paper at ICLR 2024

Figure 6: Finetuning performance on RLBench task. (Left) Effect of pretraining with rewards from
different language prompting styles. Language prompts focus on action-based tasks. (Right) Effect
of pretraining on action-based prompts (Lang 2) and random prompts (Lang 6).

For Prompt Styles 1-5, we compare the effect of using relevant and irrelevant nouns and verbs, though
all remain action-based and task-relevant. For Prompt Style 6, we select snippets of Shakespeare
text to see the effect of pretraining on rewards generated from completely out of distribution and
implausible tasks.

The prompting styles provide varying types of language diversity during pretraining. We evaluate
how important it is that the prompts be aligned with possible tasks in the environment– might an
instruction like “sweep the floor” still encourage possibly more interesting behaviors even when the
agent is only presented with mugs? In addition, providing a multitude of prompts may mitigate the
adverse effects of overfitting by exploiting the imperfections of the VLM rewards for a particular
prompt.

In Figure 6 (Left), we compare the finetuning results of Prompt Styles 1-5, which are action-based
prompts. We evaluate on the task “Pick Up Cup” because the task name is simple and aligned
to prompts used during pretraining. We find that for this task, Prompt Style 2, which pretrains
on semantically similar but diverse wordings of prompts, is most successful. In addition, Prompt
Style 1, which pretrains on very simple instructions that are similar to the pretraining task, finetunes
efficiently, as well. For our main experiments, we choose Prompt 2 based on both its strong finetuning
performance as well as increased diversity compared to Style 1.

In Figure 6 (Right), we also compare the performance of our best action-based prompt, Prompt
2, with a non-action-based prompt, Prompt 6. In this figure, we also investigate the effect of the
auxiliary exploration objectives. While LAMP Prompt 6 (w/o Plan2Explore) and LAMP Prompt 2
(w/o Plan2Explore) perform similarly, we notice that adding in the exploration objectives dramatically
decreases the finetuning effectiveness of LAMP Prompt 6. We hypothesize that both exploration cov-
erage and exploration efficiency during pretraining play an important role. By separately increasing
exploration coverage through Plan2Explore, the quality of the VLM rewards becomes more important
for focusing the auxiliary exploration objective on useful exploratory behaviors. Thus, LAMP Prompt
2, which incorporates Plan2Explore, is trained on higher-quality, more relevant rewards, and can
explore more efficiently during pretraining, and therefore enables more effective finetuning.

Overall, the differences in pretraining with different action-based prompting styles is not extreme,
suggesting that LAMP is robust to different prompting strategies, and providing diverse instructions
can be an effective way of pretraining an agent.

6.2 REWARD WEIGHTING ABLATION

We provide an ablation of the ↵ reward weighting term for the joint pretraining reward introduced
in Equation 2. As shown in Figure 7, we find that the method is somewhat robust to the choice of
↵, however, larger values in general work better. We also isolate the relative contributions of the
Plan2Explore and LAMP rewards by setting the alpha value to 0 and 1. We find that, while either
option performs somewhat similarly, the synergy of the two rewards achieves the highest performance.

8

Under review as a conference paper at ICLR 2024

Figure 7: We find that LAMP is robust to the reward weighting hyperparameter alpha. Notably, with
purely VLM rewards (alpha = 0), LAMP obtains competitive performance across all tasks evaluated.
However, the synergy of the two rewards achieves the strongest performs.

6.3 VLM MODEL

We compare our method across different vision-language reward models. CLIP, which is trained on
static image-caption pairs, can serve as a reward model by extracting the cosine similarity between
text feature and image feature changes as presented as ZeST in (Cui et al., 2022). Following ZeST, in
order to express feature displacements, we assign context features in image and language space as s0,
the initial image in an episode, and x0, a language prompt that inverts the action (open microwave
inverts close microwave) described in the desired instruction x. In particular, we use the following
reward parameterization,

ri = (F�(si)� F�(s0)) · (L↵(x)� L↵(x0)). (3)

where F� is the CLIP pretrained image encoder, L↵ is the CLIP pretrained language encoder, and the
task reward ri is defined as the dot product of the visual and language delta embeddings.

We show finetuning results on the RLBench downstream tasks in Figure 8. While R3M seems to lead
to consistently good performance, we observe that LAMP pretraining with CLIP rewards can also
perform well.

Figure 8: Finetuning performance on visual robotic manipulation tasks in RLBench. The solid line
and shaded region represent mean and standard deviation across 3 seeds. We observe that CLIP
rewards can also work well with LAMP components.

7 DISCUSSION

In this work, we present LAMP, an algorithm for leveraging frozen VLMs to pretrain reinforcement
learning agents. We observe a number of limitations of using LRFs for task reward specifcation in
RL, and propose a new setting and methodology that is more accommodating of these limitations.
We demonstrate that by leveraging the flexibility and zero-shot generalization capabilities of VLMs,
we can easily produce diverse rewards during pretraining that encourage the learning of semantically
grounded exploratory behaviors. Furthermore, we show that VLM parameterized rewards exhibit
strong synergies with novelty-seeking RL pretraning methods and can lead to strong performance
in combination with Plan2Explore. We evaluate LAMP on a number of challenging downstream
tabletop manipulation tasks from RLBench as well as show evidence that our method is not limited to
a particular VLM architecture. Overall, we see LAMP as an indication of the promise of leveraging
large pretrained VLMs for pretraining behaviors in challenging environments. A limitation of
LAMP is its reliance on performing inference of the VLM model many times throughout the course
of pretraining in order to generate rewards. Inference speed for larger, more powerful VLMs
may be slow, bottlenecking the speed of the pretraning process. Another limitation is that LAMP
does not address the long-horizon sequencing setting where we might be interested in finetuning
agents conditioned on many language prompts. We leave this as in intriguing direction for future work.

9

	Introduction
	Related Work
	Background
	Method
	Language Reward Modulation
	Language-Conditioned Pretraining
	Downstream Task Adaptation

	Experiments
	Setup
	Results

	Ablations
	Language Prompting
	Reward Weighting Ablation
	VLM Model

	Discussion
	Masked World Models
	Video-Language Models
	Experimental Details
	Language Prompting Types
	ShapeNet Objects
	Ego4D Textures
	Compute

	Additional Experiments and Ablations
	Finetuning Results with Instruction Tuning
	Pretraining Performance
	Random Network Distillation

	Hyperparameters

