
Under review as a conference paper at ICLR 2023

ROBUSTNESS EXPLORATION OF SEMANTIC INFORMA-
TION IN ADVERSARIAL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we look into the problem of adversarial robustness from the seman-
tic information perspective. We present a novel insight that adversarial attacks
destroy the correlation between visual representations and semantic word vec-
tors, and adversarial training fixed it. We further find that the correlation between
robust features of different categories is consistent with the correlation between
corresponding semantic word vectors. Based on that, we introduce the semantic
information to assist model training and propose Semantic Constraint Adversar-
ial Robust Learning (SCARL). Firstly, we follow an information-theoretical lens
to formulate the mutual information between the visual representation and the
corresponding semantic word vector in the embedding space to bridge the infor-
mation gap. We further provide a differentiable lower bound to optimize such
mutual information efficiently. Secondly, we propose a novel semantic structural
constraint, encouraging the trained model to keep the structure of visual repre-
sentations consistent with that of semantic word vectors. Finally, we combine
these two techniques with adversarial training to learn robust visual representa-
tion. Experimentally, we conduct extensive experiments on several benchmarks,
demonstrating that semantic information is indeed beneficial to model robustness.

1 INTRODUCTION

Word embedding is one of the critical technologies in natural language processing (Pennington et al.,
2014; Goldberg & Levy, 2014; Tang et al., 2014). It statistics the co-occurrence frequency between
pairs of words within a given context in a large-scale training corpus to learn an encoder that can
infer vectors for any words in a learned embedded space. A well-trained word embedding model is
usually regarded as a knowledge graph (Matthews & Matthews, 2001; Wang et al., 2018), in which
the meaning of a word is determined by its relationship to other words in the learned vector space.
That is, analogies and correlations between words can be presented by the learned vectors (Hohman
et al., 2018; Chersoni et al., 2021), which help the model associate seen objects with unseen objects.

Recently, several works have explored using semantic word/text embedding as supervision signs
for zero-shot learning and visual-linguistic pre-training, and have achieved impressive successes in
various AI tasks (Qiao et al., 2017; Wang et al., 2018; Radford et al., 2021; Wang et al., 2022).
On the other hand, deep neural networks are usually vulnerable to adversarial examples (Szegedy
et al., 2014; Goodfellow et al., 2015; Madry et al., 2018; Bhojanapalli et al., 2021), which severely
limits their applications in many security scenarios. Fortunately, some studies (Radford et al., 2021;
Yu et al., 2022) have shown that the visual model trained with semantic supervised information has
much more robust to distribution shift and adversarial examples than standard trained models. As a
result, these preliminaries raise a natural question:

What is the impact of semantic informations on adversarial robustness?

To answer this question, we explore the relationship between semantic information and model ro-
bustness from two aspects: distribution and structural relevance. Firstly, we apply the canonical
correlation analysis (CCA) (Hotelling, 1992), which can reflect connections between two random
variables. to analyze the distribution relevance between the visual representation and the correspond-
ing semantic word vector. We mainly analyze the correlation coefficient of natural and adversarial
image representation with semantic word vector under non-robust and robust models (Madry et al.,
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CCA = 0.94 CCA = 0.53 CCA = 0.67 CCA = 0.79 

(a) Nat. image under Nat. model (b) Adv. image under Nat. model (c) Adv. image under Adv. Model* (d) Adv. image under Adv. Model

Figure 1: The canonical correlation analysis (CCA) of the natural and adversarial image with the
semantic words under the natural and adversarial trained model, respectively. In each plot, we
sample 500 image-words pairs to calculate the correlation coefficient. * indicates the model is
trained by FGSM, it’s less robust than standard adversarial training (d). The larger the CCA, the
stronger the correlation between the visual representation and semantic word vector.

(a) Non-robust feature (b) Robust feature (c) Glove vectors (d) CLIP feature

Figure 2: The similarity matrix between different categories of features learned by different models
on CIFAR-10, Different numbers represent different categories. The similarity is calculated by
operate inner product between different categories of normalized features. The color is brighter with
a larger similarity.

2018). The results in Figure 1 indicate that, for the non-robust model, the representation of the
natural image has a high correlation with its corresponding word vector. In contrast, the adversarial
image has a lower correlation. This result means that the adversarial attack will destroy the semantic
information from the non-robust model, which responds to the previous observations in (Zhang &
Zhu, 2019; Ilyas et al., 2019) via a new perspective. For the robust model trained on adversarial
examples (Madry et al., 2018), the correlation between the visual representation and word vector
has a significant enhancement. As a result, we can summarize a novel intriguing property: the more
robust model, the stronger the correlation.

Secondly, to verify the semantic word vectors could present the analogies and correlations between
words, we visualize the similarity matrix of word vectors generated by a trained Glove (Pennington
et al., 2014) on CIFAR-10, which is shown in Figure 2 (c), As can be seen from the figure, the
correlation between category 3 (Cat) 1 and category 5 (Dog) is stronger than the correlation between
category 3 (Cat) and category 9 (Truck). We further visualize the similarity between different cate-
gories of non-robust features , and the similarity of robust features. which are shown in Figure 2 (a)
and (b) respectively. We can observe that the robustness feature can also reflect the relatedness be-
tween categories, and it is similar to the relatedness reflected by the semantic word vector. However,
the non-robust features cannot reflect the association between categories. Recently, CLIP (Radford
et al., 2021) uses large-scale image-text pairs to jointly learn semantic representations. Therefore,
we also visualize the semantic representation correlation matrix learned by CLIP. which is shown
in Figure 2 (d). the semantic representations learned by CLIP present analogies and correlations
between categories, but there is a certain gap with the real semantics.

Taking our analysis into consideration, we introduce the semantic information learned by word em-
bedding into model training, which aims at improving the robustness of the current neural networks
(He et al., 2016a). We follow an information-theoretical perspective to bridge the information gap

1The CIFAR-10 contains 10 categories: airplane (0), car (1), bird (2), cat (3), deer (4), dog (5), frog (6),
horse (7), ship (8), truck (9).
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between visual representations and semantic word vectors, which consists of two key techniques.
First, we use mutual information to enhance semantic information in the visual representation, which
aims to enhance the correlations via distributional information. Second, we introduce geometric
constraints to align the manifold information from the visual representation space to the word vector
space, which aims to enhance the correlations via structural information. Finally, we propose the
Semantic Constraint Adversarial Robust Learning (SCARL) framework, which combines the above
two techniques with adversarial training.

Our contributions are summarized as follows:

• We are the first to explore the correlation between semantic word information and the deep
model via the classical CCA method. We find that, the more robust the model, the stronger
the correlation between visual representation and semantic word vector.

• We analyze the correlations between different categories of image features, and find that the
robust features can reflect the semantic association between categories, which is consistent
with the word vector, but the not-robust features can not.

• We introduce a Semantic Constraint Adversarial Robust Learning (SCARL) framework
that captures the distributional and structural information from semantic word vectors via
mutual information optimization and geometry constraints, to promote robustness.

• We conduct extensive experiments on three widely-used benchmarks. The results show that
the proposed SCARL behaves more robust than several state-of-the-art techniques, which
demonstrates semantic information indeed helps improve robustness.

2 SEMANTIC CONSTRAINT ADVERSARIAL ROBUST LEARNING

2.1 PROBLEM SETTING AND NOTATIONS

The robustness against adversarial example attacks has attracted a lot of attention, and various train-
ing algorithms have been proposed to mitigate the problem (Madry et al., 2018; Dhillon et al., 2018;
Yang et al., 2019; Song et al., 2019; Wu et al., 2020). However, none of these methods could sur-
vive the latest gradient masking-based attack (Athalye et al., 2018). In this competition between
attackers and defenders, adversarial training (Madry et al., 2018; Zhang et al., 2019) stands out as
a promising solution to defend against those strongest adversarial attacks. The approach augments
the training data with adversarial inputs produced by an adversarial attack, which can be formulated
as a min-max optimization problem:

min
θ

E
[
max
xadv

L
(
Fθ

(
xadv

)
, y
)]

, (1)

where Fθ is a DNN model with parameters θ, and L is the loss function of the DNN, xadv denote
adversarial examples.

On the other hand, several works have explored using semantic word embedding as supervision
information to improve model performance (Gan et al., 2020; Radford et al., 2021). However, most
of them are pre-trained on large-scale image-text datasets and then transferred to downstream tasks.
There are several critical limitations of adversarial training: 1) Requesting large-scale image-text
datasets, which are collected from the web, often with noisy data; 2) Inconsistency of representation
space between visual image and semantic word; 3) There is no reliable robustness evaluation method
for multimodal information.

To overcome these limitations, Firstly, we only focus on the essential image classification task, and
we use the CIFAR (Krizhevsky et al., 2009) and TinyImageNet (Deng et al., 2009) datasets, which
have the one-hot label and the corresponding semantic words. Secondly, for the semantic word vec-
tor, we use the Glove (Pennington et al., 2014) or CLIP (Radford et al., 2021) to embed the names
or descriptions of the target dataset’s classes. Then, we project visual representation and semantic
word vector into the consistency manifold, and introduce two constraint strategies from the infor-
mation and structural perspective to ensure the visual representation manifold is consistent with that
of the semantic word vector. Lastly, we combine the proposed semantic constraint techniques with
adversarial training to learn robust representation, which is called Semantic Constraint Adversarial
Robust Learning (SCARL). The overall framework is shown in Figure 3.
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Figure 3: The framework of our SCARL, the visual representation and semantic word vector are
extracted by a DNN and a word embedding model respectively. We maximize the mutual informa-
tion between visual representation and the corresponding semantic word vector by Lemma 2.1, and
maximize the mutual information between visual representation and one-hot label by minimizing
cross-entropy loss. By geometric structure constraints, we further align the manifold information
from the visual representation space to the word vector space. Best viewed in color.

Notations. We define random variables X,Y, Z ∈ pD(x, y, z), where X represents the image input,
Y represents the one-hot class label. Z represents the corresponding semantic words. pD is the
data distribution, and x, y, z are the observed values. For the image classification task, our goal is to
build a classifier q(y|Fθ(x)), where Fθ(x) is referred to as our objective model. We define random
variable S = Fθ(X) as the visual representation of X extracted by classifier Fθ, and define random
variable T = Eθ(Z) as word vector of Z encoded by the word embedding model Eθ. Our goal is to
train Fθ(x) such that X is capable of predicting Y .

2.2 MAXIMIZING LOWER BOUND ON SEMANTIC MUTUAL INFORMATION

In the classification task, the classifier is often trained with cross-entropy loss, which can be viewed
as maximizing the mutual information I(S;Y ) = log p(S,Y )

p(S)p(Y ) , where p(S, Y ) denotes the joint
probability distribution of S, Y , and both p(S) and p(Y ) are the marginals. According to variational
inference, we can use q(y|s) as a variational distribution of p(y|s), and derive a variational lower
bound on I(S;Y ) as follows:

I(S;Y ) = H(Y )− Es,y∼pD [− log q(y | s)] + KL
(
p(· | s)∥q(· | s)

)
≥ H(Y )− Es,y∼pD [− log q(y | s)],

(2)

where H(Y ) is a constant measuring the shannon entropy of Y , and ES,Y [− log q(y | s)] is essen-
tially the cross-entropy loss using q(y, s) for classification. Therefore, the objective of maximizing
I(S;Y ) can be achieved by minimizing ES,Y [− log q(y | s)] instead.

However, maximizing I(S;Y ) does not take into account the semantic information of the seman-
tic words. To bridge visual representation and semantic word vector. We follow an information-
theoretical lens to look into the information gap between visual representation and semantic word
vector, and propose maximum semantic mutual information to improve model training. We formu-
late our objective as follows:

max I(S;Y, T ). (3)
Our goal is to train the model such that S is capable of predicting Y , as well as learning the semantic
information from T . However, since the objective of equation 3 is difficult to optimize directly, we
decompose it into two terms as follows:

I(S;Y, T ) = I(S;Y ) + I(S;T | Y ), (4)

where I(S;Y ) measures how well the model can predict the one-hot label, and I(S;T | Y ) mea-
sures how well the visual representation can learn semantic information from the semantic word
vector. The I(S;Y ) can be optimized using the cross-entropy loss. For optimizing I(S;T | Y ), in-
spired by (Hjelm et al., 2018; Tian et al., 2020), we use contrastive learning to derive a lower bound
−Linfo on the conditional mutual information. To achieve a tractable objective, We introduce the
following Lemma:
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Lemma 2.1. Given 1 congruent pair {x, z, y|Cy = 1} and N incongruent pairs
{xi, zi, yi|Cy = 0}Ni=1, which is sampled i.i.d. from the distribution pD(x, y, z), s = Fθ(x)
and t = Eθ(z), I(S;T | Y ) is lower bounded by

−Linfo = Eq(S,T |CY =1)[log
egs(s)

′gt(t)/τ

egs(s)′gt(t)/τ + c
] +NEq(S,T |CY =0)[log(1−

egs(s)
′gt(t)/τ

egs(s)′gt(t)/τ + c
)],

(5)

where c is the cardinality of the dataset and τ is a temperature that adjusts the concentration level.
gs and gt are nonlinear projection heads to transform the representation into the same manifold
space and further normalize by the L2-norm. The proof is shown in the supplementary material. By
leveraging Lemma 2.1, Linfo can be computed using a batch of samples and then minimized for
maximizing I(S;T | Y ).

We further analyse the characteristics of semantic mutual information and its corresponding differ-
ential lower bound. From Lemma 2.1, we add Eq(S,T |CY =0)

[
log (1− egs(s)′gt(t)/τ

egs(s)′gt(t)/τ+c
)
]

to relax the
bound. Then, our final bound in Lemma 2.1 contains two parts. The first part is to maximize the
mutual information between an image and the corresponding semantic words; the second part is
to minimize the mutual information between an image and the mismatched semantic words. Intu-
itively, the formulation of Lemma 2.1 is similar to the fundamental goal for metric learning: learn a
representation that is close in some metric space for “positive” pairs and push apart the represen-
tation between “negative” pairs. Different from traditional metric learning, our approach is based
on the perspective of information theory and can be seen as special metric learning by optimizing
the mutual information.

2.3 SEMANTIC STRUCTURE CONSTRAINT

In the last subsection, we bridged semantic word vector and visual representation through mutual
information, but ignored the structure relationship in linguistic words. Based on our findings in
Figure 2, the correlation between robust features is similar to that of semantic word vectors. Another
reason for using structural constraints is that when a non-robust model is attacked, the manifold of
representations is distorted with the disruption of the space structure; thus, maintaining the structure
stability is beneficial to the defense. Therefore, we proposed semantic structure constraint loss to
keep the structure of images consistent with that of semantic words.

Given a dataset D with K classes. Let M ∈ Rd be a lower-dimensional manifold, where {s, t ∈
M |s = Fθ(x), t = Eθ(z), x, z ∈ D}. s was defined using the output of any layer of the network
(e.g., a hidden output of the logic layer). We define the visual representation centers as Simage =
{s1, . . . , sk|si ∈ M}, which is the set of K vertices representative of dataset D. Each vertex si is the
centroid vector representing one class of feature vectors within a neighbourhood region. Similarly,
we define the word vector centers Tword = {t1, . . . , tk|ti ∈ M}.

To get Tword, we first randomly initialize its value by picking a random position in manifold space.
Then, we update ti iteratively using the momentum rule:

tinew = ti +m ·
(
Eθ(z|y = i)− ti

)
, i = 1, · · · ,K, (6)

where tinew denotes the updated vertex, and the hyperparameter m ∈ [0, 1) is momentum coefficient.
The equation 6 ensures the vertex has a stable step towards the center as training goes on.

For visual representation centers, we construct a new center sinew for the observed values of each
vertex in each training epoch. sinew is estimated by the averaging representation of the same class in
the mini-batch samples:

sinew =
1

N

N∑
n

Fθ(xn|yn = i), i = 1, · · · ,K. (7)

Then, let the Tword restrict the Simage to make them consistent. To this end, we propose two geometry
relation matching metrics: distance-wise and angle-wise. Both of them aim to match the geometry
structure information between visual representation and semantic word vector.
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Distance-wise Matching. For distance-wise metrics, given a pair of representation center <
si, sj >, and a distance-wise function ϕD, we separately calculate the distance (e.g., Euclidean
distance) between the two image centers in the representation space:

ϕD(si, sj) =
1

µ
· ∥si − sj∥2, (8)

where µ is a normalization factor for distance. To focus on the relative distance among other
pairs, we set µ to the average distance between pairs from Simage. µ is defended as: µ =
1

|S2|
∑

si,sj∈S ∥si − sj∥2. Similarly, we can calculate the ϕD(ti, tj). Using the distance-wise po-
tential measured in both image and word centers, a distance-wise matching loss is defined as:

LD =
∑

si,sj∈S,ti,tj∈T

lδ
(
ϕD(si, sj), ϕD(ti, ti)

)
, (9)

where lδ is smooth L1 loss (Ren et al., 2015), The distance-wise loss matches the relationship of
centers by penalizing the distance difference between their output in manifold space.

Angle-wise Matching. For angle-wise metrics, given a triplet of training centers < si, sj , sk >,
an angle-wise relational potential measures the angle formed by the visual representation and word
vector centers in the output manifold space:

ϕA(s
i, sj , sk >) = cos∠ijk =< eij , ekj >, (10)

where eij = si−sj

∥si−sj∥2
, ekj = sk−sj

∥sk−sj∥2
. Using the angle-wise potentials measured in both visual

representation and word vector, an angle-wise matching loss is formulated as:

LA =
∑

si,sjsk∈S,ti,tj ,tk∈T

lδ
(
ϕA(s

i, sj , sk), ϕA(t
i, tj , tk)

)
. (11)

The angle-wise loss matches the structure of the visual manifold with semantic structure by penal-
izing angular differences.

2.4 ADVERSARIAL TRAINING WITH SEMANTIC CONSTRAINT

Finally, we combine the proposed semantic constraint techniques with the adversarial training frame-
work to learn robust representation, which is called Semantic Constraint Adversarial Robust Learn-
ing (SCARL). Our goal is to maximize equation 4 and maintain the manifold structure under the
adversarial setting.

Maximizing Adversarial I(Sadv;Y ): As mentioned in 2.2, maximizing I(Sadv;Y ) can be achieved
by minimizing a cross-entropy loss instead. To encourage adversarial robustness, this cross-entropy
loss can be upgraded to maximize Kullback-Leibler divergence between natural examples xnat and
adversarial examples xadv as in (Zhang et al., 2019; Dong et al., 2021). Therefore, the objective
function can be formulated as follows:

Ladv = Lce(Fθ(xadv), y) + β · KL
(
P (·|xadv)∥P (·|xnat)

)
. (12)

Maximizing Adversarial I(Sadv;T | Y ): To maximize the semantic mutual information I(Sadv;T |
Y ). According to Lemma 2.1 , we formulate the objective to minimize Linfo as follows:

Linfo = Eq(S,T |CY =1)[− log
egs(s)

′gt(t)/τ

egs(s)′gt(t)/τ + c
]

+NEq(S,T |CY =0)[− log(1− egs(s)
′gt(t)/τ

egs(s)′gt(t)/τ + c
)],

(13)

where sadv = Fθ(xadv), t = Eθ(zy), and c is cardinality of the dataset and τ is a temperature that
adjusts the concentration level. gs and gt are nonlinear projection heads.

Restricting Simage with Tword: Based on the geometric matching, we formulate the semantic
structure constraint loss as follows:

Lstruc = LD + LA (14)
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Table 1: Robustness accuracy comparison of the proposed approach and baseline models under
different attack methods under the ℓ∞ norm with ϵ = 8/255 on different datasets. All the models
are based on pre-activation ResNet-18 architecture. We choose the best checkpoint according to the
highest robust accuracy on the test set under PGD-10. The best results are blodfaced.

Dataset Method Natural FGSM PGD-100 CW-100 Square AutoAttack

CIFAR-
10

AT 83.14 57.98 51.11 49.83 54.42 47.56
TLA 83.75 58.17 51.35 50.54 56.17 48.17
ACL 84.03 58.48 52.75 50.78 56.43 48.86

TRADES 82.76 58.85 53.43 50.91 54.85 49.34
SCARL 80.57 58.44 54.22 51.23 55.93 50.42

CIFAR-
100

AT 57.96 32.64 29.29 27.46 28.26 24.06
TLA 56.51 32.59 29.16 27.44 30.57 25.15
ACL 57.63 32.58 29.01 27.53 30.93 25.11

TRADES 58.95 33.19 30.07 26.53 30.43 25.33
SCARL 58.74 34.13 31.61 27.41 31.13 26.32

Tiny-
ImageNet

AT 48.49 25.37 23.07 20.72 26.42 18.59
TLA 47.36 25.31 23.09 21.06 27.87 18.84
ACL 48.04 25.06 22.79 20.82 26.01 18.62

TRADES 49.89 25.32 23.18 19.59 25.41 18.47
SCARL 49.35 26.10 23.51 21.67 27.07 19.29

Overall Objective Loss: We integrate all the above technologies into an end-to-end training frame-
work. The overall loss function of our algorithm is formulated as follows:

Lobj = Ladv + λ1 · Linfo + λ2 · Lstruc, (15)
where λ1 and λ2 are hyperparameters to control the relative importance among the three losses.
The training process not only maximizes the mutual information between visual representation and
semantic word vector in the consistent manifold space, and also captures the semantic structure
information, which enables our model to learn more semantic and robust representations that are not
sensitive to the input perturbation.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We compare the proposed methods with the baselines on widely-used benchmark datasets,
including: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and TinyImageNet (Deng et al., 2009).
These datasets can easily obtain one-hot labels and the corresponding semantic words.

Baselines Setup. We compare the robustness of our proposed SCARL with some classical adver-
sarial training methods, including standard AT(Madry et al., 2018), TRADES (Zhang et al., 2019).
triplet loss adversarial training (TLA) (Mao et al., 2019) and adversarial training with contrastive
learning (ACL) (Jiang et al., 2020). We test the defence under different white- and black-box at-
tacks including FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2018), CW (Carlini & Wagner,
2017), Square (Andriushchenko et al., 2019) and AutoAttack (Croce & Hein, 2020).

Model Details. We adopt a pre-activation ResNet-18 He et al. (2016b) as the image feature extractor,
then follow a nonlinear projection with one additional hidden layer (and ReLU activation). The
output vector (64-D) is normalized by its L2-norm. This is the representation of the image. For the
word embedding model, we use the Glove (Pennington et al., 2014), which is trained with Wikipedia
(Scheepers, 2017) and Gigaword (Rush et al., 2015) datasets. The word vector is also projected into
a vector (64-D) by a nonlinear projection head and normalized. This is the representation of semantic
words.

Training Details. For training, the initial learning rate is γ = 0.1, and the learning rate schedule is
[0.1, 0.01, 0.001] for all datasets, the decay epoch schedule is [75, 90] for CIFAR and [50, 55] for
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TinyImageNet. The training scheduling of 100 epochs for CIFAR and 60 epochs for TinyImageNet.
Following (Rice et al., 2020), we adopt the common setting that the threat model with radius 8/255,
with the PGD attack taking 10 steps of size 2/255 on all datasets. We train with the SGD optimizer
with momentum 0.9, weight decay 5 · 10−4 using a batch size of 128. We performed standard
data augmentation including random crops and random horizontal flips during training. For hyper-
parameter, we set the hyperparameter λ1 = 1.0 and λ2 = 1.0 along a Gaussian ramp curve in
equation 15, the β = 6 in equation 12. Our implementation is based on PyTorch and the code to
reproduce our results will be available.

3.2 MAIN RESULTS

Table 2: The robustness results in CIFAR-
10 under the ℓ∞ norm with ϵ = 8/255.
Method FGSM AutoAttack

Nat. training 33.24 0.0
Nat. training + SemInfo 36.32 0.0
Adv. training 57.98 47.56
Adv. training + SemInfo 58.63 48.81

To verify the impact of the semantic information on
model robustness. we train a natural model and ro-
bust model with semantic information (SemInfo), and
compare it with another model trained without seman-
tic information. Table 2 shows the results. We find that
the model using semantic information is more robust
against simple attacks such as FGSM, but still not ro-
bust against stronger attacks. Further, we combine se-
mantic information with standard adversarial training
(Madry et al., 2018), The Seminfo improves the robustness by 1.25% under standard AutoAttack,
which demonstrated the semantic information is beneficial to the model’s robustness.

In order to further verify the influence of semantic information on the robustness of the model, we
calculate the CCA of our SCARL where the model trained with the equation 15, the CCA is 0.84
2, which means visual representations learned by our SCARL are more semantic information than
standard adversarial training (Madry et al., 2018). We further report the results under different white-
and black-box attacks at the best checkpoint, which is selected based on the performance under the
PGD-10 attack. The results are shown in Table 1. The proposed method SCARL achieves the best
robustness against the strongest attacks AutoAttack on both CIFAR and TinyImageNet, where every
small margin of improvement is significant.

Table 3: Robustness comparison of different ad-
versarially trained models under adaptive attacks.

Model Natural PGD-CE PGD-KL PGD-Info

AT 83.75 51.35 51.88 52.36
TRADES 82.76 52.73 52.33 53.97
SCARL 80.57 54.22 53.81 54.75

We further verify the robustness of our method
under adaptive attack (Akhtar & Mian, 2018)
where the attacker has the knowledge and
white-box access to the word embedding
model. We use the PGD-based adaptive at-
tack to evaluate AT, TRADES and our SCARL
model under ResNet-18 on CIFAR10. The re-
sults are shown in Table 3 and demonstrate our
SCARL can still defend against the adaptive at-
tack. We also tested the performance under WideResNet (Zagoruyko & Komodakis, 2016), the
results are shown in supplementary material since space limitations. In addition, We plot the results
of testing accuracy over epochs and evaluate adversarial accuracy against PGD attacks under differ-
ent attack budgets with a fixed attack step of 10, and we also conduct experiments using PGD attacks
with different attack iterations with a fixed attack budget of 8/255. The results shown in Figure 4
(a-c). Our SCARL is better than standard AT and TRADES at a larger budget, besides, our SCARL
is stable against large iterations attacks, e.g., PGD attack with 500 step iterations. Therefore, the
results demonstrate the effectiveness of our proposed SCARL.

3.3 ABLATION STUDIES

For ablation studies, all comparative experiments were performed on the CIFAR-10, and all other
hyper-parameters were kept exactly the same other than the contrast variable used.

Ablation Different Techniques. We validate the two proposed techniques in SCARL, of which
results are given in Table 4, From Table 4, we can observe significant performance gains by each
technique. This confirms the merits of our proposed techniques.

2Due to space limitations, we show the visualization of CCA in the supplementary material.
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(d)(c)(b)(a)

Figure 4: (a) is the test accuracy curves (under PGD-10). (b) and (c) is the test accuracy under PGD
attack with different attack budgets and attack iterations, respectively. (d) is the test accuracy under
different batch sizes. All these experiments were conducted on CIFAR-10.

Table 4: Impact of different techniques of our
proposed method. Base indicates the model
trained with equation 12.

Method Natural AutoAttack

Base 80.44 49.36
Base + Linfo 81.38 50.29
Base + Lstruc 80.96 50.08
Base + Linfo + Lstruc 80.57 50.42

Base + LinfoNCE 81.68 49.95
Base + LinfoNCE + Lstruc 81.31 50.13

Table 5: The effect of different word embed-
ding. Base indicates the model trained with
equation 12.

Method Natural AutoAttack

Base 80.44 49.36
Random Embedding 79.69 48.87
NN Embedding 81.23 49.38
CLIP Embedding 80.38 50.04
Glove Embedding 80.57 50.42

Comparison with InfoNCE. The proposed Linfo is similar to InfoNCE (Hjelm et al., 2018). In-
foNCE is an alternative contrastive objective that selects a single positive out from a set of distractors
via a softmax function. We compare InfoNCE with our Linfo when using the same number of neg-
atives. The Table 4 show that our Linfo outperforms InfoNCE. This confirms the merits of the
proposed Linfo.

Effect of Semantic Embeddings. We use different word embedding to verify semantic information
is beneficial to robustness. we design four embedding schemes: a) Random: a random vector as
the semantic word vector; b) NN: word vector is generated by a learnable neural network embedded
layer; c) CLIP: word vector is generated by a trained CLIP model; d) Glove: word vector is gener-
ated by a trained Glove model. The results are shown in Table 5. It is observed that the stronger the
semantic information, the higher the robustness.

Effect of Batch Size. Theoretically, the proposed Linfo and InfoNCE can benefit from a large
batch size. To evaluate the effect of batch sizes, we test six values of batch size and show the
results in Figure 4(d). For the standard adversarial training, as the mini-batch sizes get larger, the
performance drops dramatically. This proves that adversarial training is not suitable for large batch
sizes on CIFAR-10. The other reason for the Linfo is not to benefit from large batch size is that,
under a given dataset, the semantic words of the data category are fixed, when calculating Linfo,
even if using the large batch size, the negative samples in Linfo is still restricted by the number of
semantic words.

4 CONLUSION

In this paper, we analyzed the relationship between semantic information and model robustness
from a distribution and structural perspective. which shows the robustness of image representation
is closely related to semantic information. Based on our findings, we proposed Semantic Constraint
Adversarial Robustness Learning (SCARL), which learns visual representation by capturing seman-
tic word distribution and structure information. Experimentally, we demonstrated the effectiveness
of the proposed SCARL in multiple benchmark datasets and revealed that semantic information
could indeed improve model robustness.
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A THE PROOF OF LEMMA 2.1

Lemma 2.1. Given 1 congruent pair {x, z, y|Cy = 1} and N incongruent pairs
{xi, zi, yi|Cy = 0}Ni=1, which is sampled i.i.d. from the distribution pD(x, y, z), s = Fθ(x)
and t = Eθ(z), I(S;T | Y ) is lower bounded by

−Linfo = Eq(S,T |CY =1)[log
egs(s)

′gt(t)/τ

egs(s)′gt(t)/τ + c
] +NEq(S,T |CY =0)[log(1−

egs(s)
′gt(t)/τ

egs(s)′gt(t)/τ + c
)],

(16)
where c is the cardinality of the dataset and τ is a temperature that adjusts the concentration level. gs
and gt are nonlinear projection heads to transform the representation into the same manifold space
and further normalize by L2-norm.

Proof. For deriving the lower bound, we define the mutual information containing the joint distribu-
tion p(S, T ) and the product of marginal distributions p(S)p(T ). Therefore, we can maximize the
mutual information between visual representation and word vector via optimizing KL-divergence
between these distributions. To this end, we define a distribution q with the latent variable CY .
When CY = 1, the pair ⟨S, T ⟩ have the same one-hot label, which is drawn from the joint distribu-
tion. On the contrary, when S and T have different one-hot labels (CY = 0), the pair is independent
of each other, which is drawn from the product of marginal. As a result, the formulations can be
written as:

q(S, T |CY = 1) = p(S, T |Y ),

q(S, T |CY = 0) = p(S|Y )p(T |Y ).
(17)

Suppose that, there are 1 congruent pair, which is drawn from the joint distribution, and N incon-
gruent pairs, which are drawn from the product of marginal. We can define the priors on the latent
C are:

q(CY = 1) =
1

1 +N
, q(CY = 0) =

N

1 +N
. (18)

By using Bayes’ rule, the posterior for class CY =1 is:

q(CY = 1|S, T ) = q(S, T |CY = 1)q(CY = 1)

q(S, T |CY = 0)q(CY = 0) + q(S, T |CY = 1)q(CY = 1)

=
p(S, T |Y )

p(S, T |Y ) +Np(S|Y )p(T |Y )
. (19)

Then, we bridge a connection with mutual information as:

log q(CY = 1|S, T ) = log
p(S, T |Y )

p(S, T |Y ) +Np(S|Y )p(T |Y )

= − log
(
1 +N

p(S|Y )p(T |Y )

p(S, T |Y )

)
≤ − logN + log

p(S, T |Y )

p(S|Y )p(T |Y )
.

(20)

Taking expectation on both sides w.r.t. p(S, T |Y ) and rearranging, we have:

I(S;T |Y ) ≥ logN + Eq(S,T |CY =1) log q(CY = 1|S, T ), (21)

where I(S;T |Y ) is the conditional mutual information between the distribution of vi-
sual representations and word vectors under the same one-hot label. Thus, maximizing
Eq(S,T |CY =1) log q(CY = 1|S, T ) w.r.t. the parameters of the objective model is to increase a lower
bound on mutual information. However, it is intractable to directly optimize such a lower bound
since we do not know the true distribution q(CY = 1|S, T ). To achieve a tractable objective, We
introduce the following Lemma:

In equation 21, maximizing Eq(S,T |CY =1) log q(CY = 1|S, T ) w.r.t. the parameters of the objec-
tive model is to increase a lower bound on mutual information. However, it is intractable to di-
rectly optimize such a lower bound since we do not know the true distribution q(CY = 1|S, T ).
Thus, we estimate it by fitting a model h : {S, T}− > [0, 1] to samples from the data distribution
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q(CY = 1|S, T ). We maximize the log-likelihood of the data under this model (a binary classifica-
tion problem):

Lest(h) = Eq(S,T |CY =1) [log h(S, T )] +NEq(S,T |CY =0) [log (1− h(S, T ))] . (22)

h⋆ = argmax
h

Lest(h). (23)

According to Gibbs’ inequality, we have:

q(CY = 1|S, T ) = h⋆ = argmax
h

Lest(h). (24)

The details of equation 24 can be found in Appendix B. Thus, we can rewrite equation 21 in terms
of h⋆:

I(S;T |Y ) ≥ logN + Eq(S,T |CY =1)[log h
⋆], (25)

The optimal h⋆ is an estimator whose expectation lower-bounds mutual information. Our goal is
to learn a model Fθ that maximizes the mutual information between visual representations and
corresponding semantic word vectors. As a result, we have the following optimization problem:

Fθ = argmax
θ

Eq(S,T |CY =1) [log h
⋆(S, T )] . (26)

However, this is still difficult to optimize, since the estimator h⋆ depends on the current model Fθ.
To hand this problem, we further relax the bound in equation 25 to:

I(S;T |Y ) ≥ logN + Eq(S,T |CY =1) [log h
⋆(S, T )] +NEq(S,T |CY =0) [log (1− h⋆(S, T ))]

= logN + Lest(h
⋆) = logN +max

h
Lest(h)

≥ logN + Lest(h).

(27)

Since the NES,T |CY =0) [log (1− h⋆(S, T ))] is strictly negative, the inequality still holds by adding
such term into equation 26. Then, optimizing equation 27 w.r.t. the Fθ can be reformulated as
follows:

Fθ = argmax
θ

max
h

Lest(h)

= argmax
θ

max
h

(
Eq(S,T |CY =1) [log h(S, T )] +NEq(S,T |CY =0) [log (1− h(S, T ))]

)
.

(28)

At last, equation 28 is our final learning objective, which jointly optimizes Fθ together with learning
h. Note that, due to equation 27, Fθ = argmaxθ maxh Lest(h), for any h, is always the lower
bound on the mutual information, which means our objective equation 28 does not depend on h
being optimized perfectly. Therefore, we define h with any family of functions that satisfy h :
{S, T} → [0, 1]. In practice, we define the h as follows:

h(S, T ) =
egs(s)

′gt(t)/τ

egs(s)′gt(t)/τ + c
(29)

where c is the cardinality of the dataset and τ is a temperature that adjusts the concentration level. gs
and gt are nonlinear projection heads to transform the representation into the same manifold space
and further normalize by L2-norm. Therefore, I(S;T | Y ) is lower bounded by

−Linfo = Eq(S,T |CY =1)[log
egs(s)

′gt(t)/τ

egs(s)′gt(t)/τ + c
] +NEq(S,T |CY =0)[log(1−

egs(s)
′gt(t)/τ

egs(s)′gt(t)/τ + c
)],

(30)

B THE PROOF OF EQUATION 24

Proof. In equation 24, the first item q(C = 1|S, T ) presents the true distribution of the data that
is from the same one-hot label, where C is a binary variable to judge whether the label is correct.
Therefore, it is intuitive that the q(C|S, T ) can be modeled as a Bernoulli distribution, such as
h : (S, T ) → [0, 1]. For convenience, we define h′(S, T, C = 1) = h(S, T ) and h′(S, T, C = 0) =
1− h(S, T ), then the log-likelihood is:

Ec∈q(C|S,T ) [log h
′(S, T, C = c)] . (31)
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By using Gibbs’ inequality, the max likelihood fit is h′(S, T, C = c) = q(C = c|S, T ), which also
implies that h(S, T ) = q(C = 1|S, T ).
Then, we rewrite our objective in equation 22 as follows:

Es,t∈q(S,T )

[
Ec∈q(C|S=s,T=t) [log h

′(S = s, T = t, C = c)]
]

(32)

= Ec,s,t∈q(C,S,T ) [log h
′(S = s, T = t, C = c)] (33)

= Es,t∈q(S,T |C=1)q(C=1) [log h(S = s, T = t)] + Es,t∈q(S,T |C=0)q(C=0) [log 1− h(S = s, T = t)]
(34)

=
1

N + 1
Es,t∈q(S,T |C=1)[log h(S = s, T = t] +

N

N + 1
Es,t∈q(S,T |C=0)[log 1− h(S = s, T = t]

(35)

Notice that equation 35 is proportional to equation 22 from the Appendix A. For sufficiently ex-
pressive h, then, each term inside the expectation in equation 32 can be maximized, resulting in
h⋆(S = s, T = t) = q(C = 1|S = s, T = t) for all s and t.

C PERFORMANCE UNDER WIDERESNET

Many works have demonstrated larger model capacity can usually lead to better adversarial ro-
bustness (Madry et al., 2018; Gowal et al., 2020; Pang et al., 2021). Therefore, we employ the
large-capacity network, e.g.,, Wide ResNet(Zagoruyko & Komodakis, 2016). Table 6 reports the
best test robustness against AA on the CIFAR-10. We compare several state-of-the-art adversarial
trained models on robust benchmark (Croce et al., 2020). our SCARL achieves 54.65% and 56.42%
with AWP respectively, which makes the trained model surpass the previously state-of-the-art mod-
els reported by the benchmark. where every small margin of improvement is significant. Notes, our
experiments did not use additional datasets.

Table 6: Robustness accuracy comparison of the proposed approach and several state-of-the-art
models under AA at ℓ∞ norm with ϵ = 8/255 on CIFAR-10. Most of the results are directly copied
from the leaderboards (Croce & Hein, 2020). ⋆ indicates the model is re-produced by ourselves.

Method Architecture Nat. AA

TRADES (Zhang et al., 2019)(ICML2019) WideResNet-34-10 84.92 53.08
Overfitting (Rice et al., 2020)(ICML2020) ⋆ WideResNet-34-10 85.18 53.14
SAT (Huang et al., 2020)(NeurIPS2020) WideResNet-34-10 83.48 53.34
Overfitting (Rice et al., 2020)(ICML2020) WideResNet-34-20 85.35 53.42
FAT (Zhang et al., 2020)(ICML2020) WideResNet-34-10 84.52 53.51
LBGAT (Cui et al., 2021)(ICCV2021) WideResNet-34-20 88.70 53.57
HE (Pang et al., 2020)(NeurIPS2020) WideResNet-34-20 85.14 53.74
Bag of Tricks (Pang et al., 2021)(ICLR2021) ⋆ WideResNet-34-10 86.28 53.84
LAS-AT Jia et al. (2022)(CVPR2022) WideResNet-34-10 85.24 54.13
Bag of Tricks (Pang et al., 2021)(ICLR2021) WideResNet-34-20 86.43 54.39
SCARL (Ours) WideResNet-34-10 84.33 54.65

TRADES + AWP (Wu et al., 2020)(NeurIPS2020) WideResNet-34-10 85.26 56.17
LAS-AT + AWP Jia et al. (2022)(CVPR2022) WideResNet-34-10 84.98 56.26
SCARL + AWP WideResNet-34-10 84.70 56.42
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D VISUALIZATION OF CCA

We calculate the CCA of our SCARL, which is shown in Figure 5. It is observed that the visual
representations learned by our SCARL are more semantic information than standard adversarial
training (AT) Madry et al. (2018).

CCA = 0.94 CCA = 0.53 CCA = 0.79 

(a) Nat. image under Nat. model (b) Adv. image under Nat. model (c) Adv. image under AT (d) Adv. image under SCARL

CCA = 0.84 

Figure 5: The canonical correlation analysis (CCA) of the natural and adversarial image with the
semantic words under the non-robust and robust model, respectively. In each plot, we sample 500
image-words pairs to calculate the correlation coefficient. The larger the CCA, the stronger the
correlation between the visual representation and semantic word vector.

E RELATED WORK

The problem of adversarial examples was first studied in (Szegedy et al., 2014). Then, many works
proposed a series of adversarial attack methods (Moosavi-Dezfooli et al., 2016; Papernot et al.,
2016a; Carlini & Wagner, 2017; Croce & Hein, 2020), which puts severe limitations on the applica-
tion of deep learning in security-critical scenarios. With the rapid development of attack methods,
considerable efforts have been devoted to defending against adversarial attacks, such as defensive
distillation (Papernot et al., 2016b), manifold-projection (Samangouei et al., 2018), pre-processing
(Guo et al., 2018; Yang et al., 2019), verification and provable defences (Raghunathan et al., 2018;
Salman et al., 2019), and Adversarial Training (Madry et al., 2018; Zhang et al., 2019). Among
them, adversarial training has been demonstrated to be a practical approach for strengthening the
robustness of deep neural networks (Athalye et al., 2018). Adversarial training involves the min-
max optimization problem as Eq. equation 1. The inner maximization can be solved approximately,
using FGSM or PGD attack. The outer minimization can be achieved by minimizing cross-entropy
loss instead. Based on that, a number of new adversarial training methods have also been devoted
from different aspects including designing new adversarial regularization (Zhang et al., 2019; Mao
et al., 2019), robustness architecture search (Guo et al., 2020; Hosseini et al., 2021), training strategy
(Wong et al., 2020; Pang et al., 2021) and data augmentation (Carmon et al., 2019; Rebuffi et al.,
2021). To the best of our knowledge, we are the first to explore the impact of semantic information
for adversarial training.
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F MORE ABLATION RESUTLS

F.1 COMPARISON WITH TRADES WITH DIFFERENT SETTINGS

we combined the semantic information (SemInfo) with TRADES, the balance parameter β set as 1
and 6. The results are shown above. We can see the robustness can be further improved.

Table 7: Robustness accuracy comparison

Method FGSM AutoAttack

Adv. training 83.14 47.56
Adv. training + SemInfo 82.72 48.81
TRADES (β = 1) 87.49 44.80
TRADES (β = 1) + SemInfo 86.88 45.21
TRADES (β = 6) 82.76 49.34
TRADES (β = 6) + SemInfo 82.22 49.72

F.2 IMPACT OF THE WORD EMBEDDING MODELS

We provide the results obtained by training several different word embedding models, as shown in
the following table: We can see that different word embedding models can improve the robustness
of the model.

Table 8: Different Glove model

Method Natural AutoAttack

Random Embedding 79.69 48.87
CLIP 80.38 50.04
Glove (Twitter) 80.71 50.12
Glove (Common Craw) 81.06 50.25
Glove (Wikipedia 2014 and Gigaword) 80.57 50.42
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