
YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity
Benchmark for Hyperparameter Optimization

Florian Pfisterer1,2 Lennart Schneider1,2 Julia Moosbauer1 Martin Binder1 Bernd Bischl1

1Department of Statistics, LMU Munich, Germany
2Equal contributions

Abstract When developing and analyzing new hyperparameter optimization methods, it is vital to
empirically evaluate and compare them on well-curated benchmark suites. In this work, we
propose a new set of challenging and relevant benchmark problems motivated by desirable
properties and requirements for such benchmarks. Our new surrogate-based benchmark
collection consists of 14 scenarios that in total constitute over 700 multi-fidelity hyper-
parameter optimization problems, which all enable multi-objective hyperparameter opti-
mization. Furthermore, we empirically compare surrogate-based benchmarks to the more
widely-used tabular benchmarks, and demonstrate that the latter may produce unfaithful
results regarding the performance ranking of HPO methods. We examine and compare our
benchmark collection with respect to defined requirements and propose a single-objective
as well as a multi-objective benchmark suite on which we compare 7 single-objective and
7 multi-objective optimizers in a benchmark experiment. Our software is available at
[https://github.com/slds-lmu/yahpo_gym].

1 Introduction
Hyperparameter optimization (HPO) of machine learning (ML) models is a crucial step for achiev-
ing good predictive performance [43]. Over the last ten years, a large and still growing set of HPO
tuning methods based on different principles has been developed [31, 66, 38]. A particularly inter-
esting development aremulti-fidelitymethods, whichmake use of relatively cheap approximations
of a given true objective, thereby achieving good performance relatively quickly [44, 21, 35], as
well as multi-objective methods, which allow for simultaneous optimization of multiple objectives
[40]. While different HPO methods found considerable adoption in practice, it is by no means
clear which method performs best under which circumstances. In order to investigate this, it is
necessary to evaluate these methods on testbeds that are ideally 𝑖) highly efficient, 𝑖𝑖) include a
sufficient amount of representative and diverse benchmark instances and 𝑖𝑖𝑖) are easy to set up
and integrate with different optimizer APIs. Furthermore, benchmarks have found use in meta-
learning [70, 74, 59] and meta-optimization [49, 53]. In those settings, a larger number of poten-
tially relevant optimization problems is required in order to obtain results that generalize beyond
the set of (meta-)training instances. Simultaneously, those applications require a large number
of evaluations that make obtaining real evaluations prohibitively expensive, indicating a need for
benchmarks that are cheap to query.

Several benchmarks that aim to address this, each of which are collections of multiple bench-
mark instances, have been proposed [69, 15, 60, 19]. Benchmark instances can be classified into
four categories: (i) synthetic functions, (ii) benchmarks incorporating real evaluations, (iii) tab-
ular benchmarks based on pre-evaluated grid points, and (iv) surrogate benchmarks making use
of meta-models that approximate the relationship between configurations and performance met-
rics. Each category has various advantages and drawbacks. Synthetic functions can be evaluated
quickly but are often not representative for the type of problems encountered in practice; real
evaluations on the other hand are often prohibitively expensive, especially in the context of larger

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

mailto:florian.pfisterer@stat.uni-muenchen.de
mailto:lennart.schneider@stat.uni-muenchen.de
mailto:julia.moosbauer@stat.uni-muenchen.de
mailto:martin.binder@stat.uni-muenchen.de
mailto:bernd.bischl@stat.uni-muenchen.de
https://github.com/slds-lmu/yahpo_gym
https://creativecommons.org/licenses/by/4.0/

benchmarks and neural architecture search (NAS). Tabular benchmarks, while cheap to evaluate,
rely on a pre-defined grid which changes the optimization problem and can potentially lead to
biases. Surrogate benchmarks are also cheap to query but require high quality surrogates in order
to avoid introducing bias. While benchmark suites have found some use in scientific publications,
they are not used ubiquitously. This lack of permeation – and consequently the lack of a standard
test bed – can result in researchers choosing benchmark problems that favor their own method,
leading to the publication of biased results. The problem of cherry picking, also termed rigging the
lottery [14], can be ameliorated through the use of standardized testing infrastructure along with
a detailed definition of evaluation criteria that are widely adapted.

We therefore observe a clear need for benchmark libraries that provide unified interfaces to
a variety of cheap to evaluate, realistic, and practically relevant benchmarking problems that are
defined across diverse search spaces. In this work, we propose YAHPO Gym, a surrogate-based
benchmark library including a collection of over 700 benchmark instances defined across 14
scenarios. Scenarios are comprised of evaluations of one given machine learning algorithm on
different datasets (= instances) and therefore share the same search space and performance
metrics. It contains a versioned set of surrogate models that allow for multi-fidelity evaluations
of multiple objectives. Our library is licensed under the Apache 2.0 license and can be freely used
and extended by the community. Usage and available functionality is extensively documented1.

Contributions: We introduce YAHPO Gym, a surrogate-based benchmark for machine-
learning HPO. We conceptually demonstrate that tabular benchmarks may induce bias in perfor-
mance estimation and ranking of HPO methods, and that this happens to a lesser degree with
surrogate benchmarks. We argue that our surrogate benchmark YAHPO Gymmeets all desiderata
for a good benchmark, providing faithful results, fast evaluation, relevant problems and realistic
objective landscapes both on local as well as global scales. In order to demonstrate this, we conduct
an extensive evaluation of the proposed surrogates indicating that our surrogate models indeed
provide high quality approximations. We propose two benchmark suites for single-objective and
multi-objective evaluation comprised of a subset of our instances and demonstrate how they can
be used with YAHPO Gym in a multi-fidelity and a multi-objective optimization benchmark.

2 Related Work

Several efforts to provide unified testbeds for black-box optimization exist. For general pur-
pose black-box optimization, COCO [29] provides a collection of various synthetic black-box
benchmark functions, while kurobako [56] is a collection of various general black-box optimizers
and benchmark problems. Similarly, Bayesmark [69] includes several benchmarks for Bayesian
Optimization on real problems and LassoBench [64] provides a benchmark for high-dimensional
optimization problems. HPOlib [15] was one of the first to propose a common test bed for
empirically assessing the performance of HPO methods. It provides a common API to access
synthetic test functions, real-world HPO problems, tabular benchmarks as well as some surrogate
benchmarks and found use in empirical benchmark studies [6]. Its successor HPOBench [19] offers
similar capabilities, focussing on reproducible containerized benchmarks. It offers 12 benchmark
scenarios and more than 100 test instances. Recently, [60] introduced HPO-B, a large-scale
reproducible (tabular) benchmark for black-box HPO based on OpenML [71]. HPO-B2 relies on 16
search spaces that were evaluated sparsely on 101 datasets. PROFET [37] in contrast is not based
on real datasets but uses a generative meta-model to generate synthetic but realistic benchmark
instances. In the past, tabular benchmarks have been used frequently to speed up experiments
in the context of HPO [66, 23, 72, 22] and NAS (c.f. [50]). Eggensperger et al. [17] compared

1Documentation and data are available at https://github.com/slds-lmu/yahpo_gym.
2We consider the published v2 version for comparison. Surrogates are only available in the v3 version.

2

https://github.com/slds-lmu/yahpo_gym

Table 1: Comparison of HPO Benchmark Suites.

Suite Types #Collections #HPs MF MO TF Async H Time† Memory†

YAHPO Gym S 14 2-38 ✓ ✓ ✓ (-) ✓ 0.4∗𝑠 0.1 GB
HPOBench R/T/S 12 4-26 ✓ ✓ (-) − (-) 12.2s 0.2 GB
HPO-B (v2) T/(S) 16 2-18 − − ✓ − − 18.8s 3.7 GB
MF: Multi-fidelity; MO: Multi-objective, TF: Transfer-HPO, Async: Asynchronous evaluation; H: hierarchical search spaces.
✓: fully supported; (-): partially supported; -: not supported; R/T/S:real/tabular/surrogate.
† : Runtime and memory footprint for 300 iterations of Random Search on an SVM instance. ∗: allowing for batched evaluation, YAHPO Gym takes only 0.13𝑠 .

different instance surrogate models for 9 different HPO problems and concluded that the results
of benchmarks run on surrogate models generally closely mimic those of benchmarks using
the actual evaluations that they are derived from, if performance measures of the surrogate
models indicate that they predict the underlying objective values sufficiently well (cross-validated
Spearman’s 𝜌 between 0.9 and 1 [17]). Similar observations have been made in the context of
algorithm configuration [18] and NAS [65].

We compare YAHPO Gym with the recently published benchmarks HPOBench [19] and HPO-
B [60] in Table 1. Our library relies on high quality surrogates that allow for multi-fidelity as well
as multi-objective evaluation. While existing benchmark suites could in principle be used to con-
struct multi-objective benchmarks, they do not offer full support: HPOBench contains only few
instances that allow evaluating multiple metrics and offers no unified API to query those, while
HPO-B does not support multiple objectives at all. Furthermore, neither propose a concrete evalu-
ation protocol, opening up a multiplicity of (benchmark) design choices which can lead to incon-
clusive results (c.f. [55]). Instead of relying on containerization to allow for portability, our library
relies on neural network surrogates compressed using ONNX [3], allowing for reproducibility and
portability while simultaneously being extremely fast and efficient due to minimal overhead. This
is demonstrated in a small experiment where we measure runtime and memory consumption for
evaluating 300 random configurations on SVM search spaces also shown in Table 1, demonstrat-
ing that our software is more time and memory efficient. See details in Supplement B.2. While
YAHPOGym provides the flexibility to design and execute any subset of the provided benchmarks,
we also propose two fully specified testbeds for single- and multi-objective optimization that were
specifically selected to cover a diverse set of relevant instances while being less extensive. See
details in Supplement E.2 and Supplement E.3.

3 Background

3.1 Hyperparameter Optimization

An ML learner or inducer I configured by hyperparameters 𝝀 ∈ Λ maps a dataset D ∈ D to
a model 𝑓 , i.e., I : D × Λ → H, (D,𝝀) ↦→ 𝑓 . HPO methods for ML aim to identify a well-
performing hyperparameter configuration (HPC) 𝝀 ∈ Λ̃ for I𝝀 [10]. Typically, the considered
search space Λ̃ ⊂ Λ is a subspace of the set of all possible HPCs: Λ̃ = Λ̃1 × Λ̃2 × · · · × Λ̃𝑑 , where
Λ̃𝑖 is a bounded subset of the domain of the 𝑖-th hyperparameter Λ𝑖 . This Λ̃𝑖 can be either real,
integer, or category valued, and the search space can contain dependent hyperparameters, leading
to a possibly hierarchical search space. We formally define the (potentially multi-objective) HPO
problem as:

𝝀∗ ∈ argmin
𝝀∈Λ̃

𝑐 (𝝀), with 𝑐 : Λ̃ → R𝑚, (1)

where 𝝀∗ denotes the theoretical optimum and 𝑐 maps an arbitrary HPC to (possibly multiple)
target metrics. The classical HPO problem is defined as 𝝀∗ ∈ argmin𝝀∈Λ̃ ĜE(𝝀), i.e., the goal is

3

to minimize the estimated generalization error, see [10] for further details. Instead of optimizing
only for predictive performance, other metrics such as model sparsity or computational efficiency
of prediction (e.g., MACs and FLOPs or model size and memory usage) could be included, resulting
in a multi-objective HPO problem [62, 30, 7, 57, 27]. 𝑐 (𝝀) is a black-box function, as it usually has
no closed-form mathematical representation, and analytic gradient information is generally not
available. Furthermore, the evaluation of 𝑐 (𝝀) can take a significant amount of time. Therefore,
the minimization of 𝑐 (𝝀) forms an expensive black-box optimization problem.

Many HPO problems allow for approximations of the objective to a varying fidelity, making
multi-fidelity optimization a viable option [44, 62, 35]. For example, in the context of fitting neural
networks, it is possible to stop or pause training runs early when performance does not indicate
a promising final result [67]. Another possibility is given by reducing the fraction of the dataset
Dtrain used for training [38], since the complexity of evaluating 𝑐 (𝝀) is often at least linear in
|Dtrain |. Formally, the possibility of multi-fidelity evaluation can be represented in the form of a
“budget” hyperparameter which we denote by 𝜆budget as a component of 𝝀.

3.2 Hyperparameter Optimization Benchmarks
Benchmark suites are comprised of a set of benchmark instances that each define an optimization
problem to be solved. We formally define benchmark instances adapted from [19] as:

Definition 1 (Benchmark Instance) A benchmark instance consists of a function 𝑔 : Λ → R𝑚,𝑚 ∈
N+, and a bounded hyperparameter space Λ̃ which is the Cartesian product of hyperparameters
Λ̃1, . . . , Λ̃𝑑 . Multi-fidelity benchmarks can be queried at lower fidelities by varying the budget pa-
rameter Λ̃budget ∈ Λ̃.While hyperparameters Λ̃𝑖 can be continuous, integer, ordinal or categorical, we
require at least ordinal scales for the fidelity parameter(s) Λbudget. We call a benchmark instance
multi-objective if the number of objectives𝑚 > 1 and single-objective otherwise.

We consider HPO benchmark instances estimating the generalization error 𝑔(𝝀) = ĜE(I,J , 𝜌,𝝀)
given an inducer I , resampling J , and performance metric(s) 𝜌 , along with other possibly rele-
vant metrics (computational cost, memory, ...). Real instances are based on actually performing
these evaluations during the benchmark, while tabular instances are based on a fixed set of pre-
recorded evaluations. Instances based on surrogates in turn approximate the functional relation-
ship between 𝝀 and 𝑔(𝝀). For clarity, we provide more precise definitions of synthetic, tabular and
surrogate instances in Supplement B.3. Real instances rely on live evaluations of the generalization
error and are therefore often prohibitively computationally expensive, especially when consider-
ing larger benchmarks or meta-learning scenarios across many tasks [70, 59, 24]. Practitioners
therefore often rely on tabular or surrogate benchmarks for large benchmark studies because they
are often cheaper to evaluate by orders of magnitude. For tabular benchmarks, a large collection
of pre-computed hyperparameter performance mappings is provided, which serves as a look-up
table during runs of HPO methods. This has the downside of constraining the search space to
precomputed evaluations, essentially turning the optimization problem from a continuous/mixed
space to a discrete optimization problem. Surrogate benchmarks can strike a balance between the
efficiency and faithful approximation to the real problem by learning the functional relationship
between hyperparameters and performance values yielding an approximation 𝑔(𝝀) of 𝑔(𝝀). This
allows evaluations across the full search space Λ̃ while being considerably cheaper to evaluate.
The usefulness of surrogates in turn relies on the approximation quality of the surrogate model.
We present an in-depth analysis of approximation qualities of the surrogates employed in YAHPO
Gym in Supplement E.1.

Definition 2 (Benchmark Scenario) A benchmark scenario consists of a set of𝐾 functions 𝑔𝑘 : Λ →
Y ⊆ R𝑚,𝑚 ∈ N+, 𝑘 ∈ {1, ..., 𝐾} corresponding to a set of Benchmark Instances. Each instance
within a scenario shares the same bounded hyperparameter space Λ̃ (and therefore fidelity parameters)
as well as the same co-domain Y .

4

Table 2: YAHPO Gym Benchmarks.

Scenario Search Space #Instances Target Metrics Fidelity H

rbv2_super 38D: Mixed 103 9: perf(6) + rt(2) + mem fraction ✓
rbv2_svm 6D: Mixed 106 9: perf(6) + rt(2) + mem fraction ✓
rbv2_rpart 5D: Mixed 117 9: perf(6) + rt(2) + mem fraction
rbv2_aknn 6D: Mixed 118 9: perf(6) + rt(2) + mem fraction
rbv2_glmnet 3D: Mixed 115 9: perf(6) + rt(2) + mem fraction
rbv2_ranger 8D: Mixed 119 9: perf(6) + rt(2) + mem fraction ✓
rbv2_xgboost 14D: Mixed 119 9: perf(6) + rt(2) + mem fraction ✓
nb301 34D: Categorical 1 2: perf(1) + rt(1) epoch ✓
lcbench 7D: Numeric 34 6: perf(5) + rt(1) epoch
iaml_super 28D: Mixed 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction ✓
iaml_rpart 4D: Numeric 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction
iaml_glmnet 2D: Numeric 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction
iaml_ranger 8D: Mixed 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction ✓
iaml_xgboost 13D: Mixed 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction ✓
Mixed = numeric and categorical hyperparameters; perf = performance measures; rt = train/predict time; mem = memory consumption; inp = interpretability measures; H
= Hierarchical search space. We do not include the fidelity parameter in the search space dimensionality.

A scenario is therefore a collection of instances sharing the same search space and objective(s),
e.g., allowing for hyperparameter transfer learning between instances of the scenario. Benchmark
Suites in turn are sets of instances that do not need to share the same objectives, but instead can
consist of instances stemming from different scenarios.

4 YAHPO Gym

Motivated by the need for efficient and faithful benchmarks for HPO, we develop YAHPO Gym
based on a set of Criteria for HPO Benchmarks discussed in Supplement B.1. YAHPO Gym is ex-
plicitly designed to use surrogate-based benchmarks only. It consists of a collection of 14 scenarios
that can be evaluated across a total of ∼ 700 instances. Each benchmark instance consists of an
objective function that is parameterized in the form of a ConfigSpace Python object [48], making
the search space computer-readable and readily usable with a range of existing HPO implemen-
tations. The objective function generates a prediction using the instance surrogate model, which
is a compressed neural network. Table 2 provides an overview of all benchmark scenarios avail-
able in YAHPO Gym. We describe data sources as well as the full search spaces in Supplement F.
We want to highlight the rbv2_super collection, which reflects an AutoML pipeline: It is, to our
knowledge, the first available benchmark simulating a combined algorithm and hyperparameter
selection problem [68] in the form of a high dimensional hierarchical search space by introducing
the algorithm as an additional tunable hyperparameter.

In YAHPO Gym, every scenario allows for querying objective values at lower fidelities, en-
abling efficient benchmarking of multi-fidelity HPO methods. Analogously, every benchmark al-
lows for returning multiple target metrics as criteria, enabling benchmarking of multi-objective
HPO methods. Finally, almost all benchmark scenarios provide problems on a large number of
instances (mostly ranging from 34 to 119), allowing for benchmarking of transfer-learning HPO
methods. Predictions as well as sampling can be made reproducible through seeding. In order to
achieve portability while still being efficient, YAHPO Gym uses fitted neural networks compressed
via ONNX [3] as surrogate models. Our neural networks are ResNets for tabular data [26] consist-
ing of up to 8 layers with a width of up to 512 and hyperparameters individually tuned for each
scenario. We refer the reader to Supplement D for details regarding architecture and fitting proce-
dure. Surrogate models have very small memory and inference time overhead and are compatible

5

BenchmarkSet(s, i)

get_opt_space()

objective_function(xs)

instances (1,...,K)
targets

ConfigSpace

{’t1’: 0.95, ..., ’t5’: 0.87}

(a) YAHPO Gym’s core functionality (s: scenario,
i: instance, xs: configuration). Evaluating
objective_function for a given configuration xs
returns a dictionary of predicted metrics for a given
scenario and instance.

from yahpo_gym import *

b = BenchmarkSet('lcbench', instance='3945')

Sample a point from the ConfigSpace

xs = b.get_opt_space().sample_configuration(1)

Evaluate the configuration

b.objective_function(xs)

(b) Python code for instantiating a benchmark in-
stance, sampling a new configuration and evaluat-
ing the objective function.

Figure 1: API overview.

across platforms and operating systems. In contrast to other benchmarks, evaluating 𝑐 (𝝀) requires
only 10 − 100 ms and only 100MB of memory. In fact, YAHPO Gym’s current infrastructure is so
lightweight, it can easily be integrated in any existing toolbox or benchmark suite.

4.1 Suites: YAHPO-SO & YAHPO-MO

Together with YAHPO Gym, we propose two carefully selected benchmark suites. They constitute
a proposal for surrogate-based benchmarks of HPO problems. We call those YAHPO-SO (single-
objective, 20 instances) and YAHPO-MO (multi-objective, 25 instances). Together with the set of
instances, we provide specific evaluation criteria, such as the budget available for optimization and
number of stochastic replications as well as metrics to be used and fully specified search spaces
which can be obtained from our software. Instances were selected across all scenarios taking into
account approximation quality of the underlying surrogate and diversity. We consider those bench-
marks a first draft for such a benchmark set (version v1.0) and explicitly invite the community to
jointly work on a larger, more comprehensively evaluated set of benchmark instances. Details
with respect to how instances were selected, and a full list of included instances, can be found in
Supplement C.2. We conduct a benchmark providing anytime performance for a large variety of
baselines on the proposed benchmark suites.

5 Tabular or Surrogate Benchmarks?

Consider the true objective 𝑐 (𝝀) of a real benchmark instance with 𝑐 : Λ̃ → R in the single-
objective setting. In a tabular benchmark, the domain of the objective function is implicitly dis-
cretized into a finite grid Λ̃discrete of the original domain and pre-evaluated at these points and
the benchmark objective 𝑐tabular(𝝀) is thus the original 𝑐 (𝝀) restricted to Λ̃discrete. The extent to
which discretization affects the faithfulness of tabular benchmarks depends on the nature and di-
mensionality of the search space: It disregards local structure in the response function and might
even impose fixed fidelity schedules, should evaluations not be available at all budget levels. In
order to assess the magnitude of this effect, we investigate the practical effects of discretization
in the following experiment by comparing 8 black-box optimizers on tabular, surrogate and real
versions of 5 synthethic multi-fidelity functions of varying dimensionality (Branin2D, Currin2D,
Hartmann3D/6D, and Borehole8D [35]). The tabular benchmark is constructed by drawing and
evaluating 106 points from a grid. Surrogates are then fitted using those points. We compare
Random Search (RS), several versions of Bayesian optimization (BO) and Hyperband (HB, [44])
across all settings. BO is configured with algorithm surrogate model either a Gaussian process
(BO_GP), ensemble of feed-forward neural networks (BO_NN, [73]) or random forest (BO_RF, [12])
and acquisition function optimizer either Nelder-Mead/exhaustive search3 (*_DF [54]) or Random

3for tabular benchmarks

6

Real Surrogate Tabular

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.0

0.2

0.4

0.6

Cumulative Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

Hartmann6D R2 = 1 ρ = 1 τ = 0.97

Real Surrogate Tabular

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.0

0.2

0.4

0.6

Cumulative Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

Borehole8D R2 = 1 ρ = 1 τ = 1

Real Surrogate Tabular

40 60 80 100 40 60 80 100 40 60 80 100

2

4

6

Cumulative Budget

M
ea

n
R

an
k

Real Surrogate Tabular

40 60 80 100 40 60 80 100 40 60 80 100

2

4

6

8

Cumulative Budget

M
ea

n
R

an
k

HPO Method
BO_GP_RS

BO_GP_DF

BO_NN_RS

BO_NN_DF

BO_RF_RS

BO_RF_DF

HB

RS

Figure 2: Mean normalized regret (top) and mean ranks (bottom) of different HPO methods on dif-
ferent benchmarks. Ribbons represent standard errors. The gray vertical line indicates the
cumulative budget used for the initial design of BO methods. Performance measures of the
surrogate benchmarks are stated after the benchmark function. 30 replications.

Search (*_RS). We describe additional details regarding the benchmark setup in Supplement E.1
and briefly present results: Figure 2 shows the anytime performance and mean rank of each HPO
method split for the real, surrogate, and tabular benchmark on the Hartmann6D and Borehole8D
test functions. We observe very similar performance traces of HPO methods on surrogate ver-
sions of benchmarks compared to real versions (Figure 2, top). However, in tabular benchmarks,
we notice that for some problems, the BO methods converge substantially faster to a lower mean
normalized regret (especially for BO_GP_*), which can possibly be explained by the much simpler
infill optimization problem solved in the tabular case. Moreover, Hyperband appears to consis-
tently perform better on tabular benchmarks. We further investigate average rankings over all
replications (Figure 2, bottom). Each benchmark function yields an average ranking of HPO meth-
ods (e.g., with respect to final performance). Using consensus rankings, we can arrive at a single
ranking over all benchmark functions [51] for a given benchmark type. We use the optimization
based symmetric difference (SD) [36] minimizing rank reversals to compare both the surrogate
and tabular inferred consensus rankings with the “ground truth” real function consensus ranking.
We observe that consensus rankings obtained using surrogate benchmarks (permutation order 2)
match more closely than tabular benchmarks (permutation order 5). We again provide additional
details in Supplement E.1.

6 A Benchmark of HPO Methods on YAHPO Gym
We now demonstrate how YAHPO Gym can be used in practice to benchmark different HPOmeth-
ods. We benchmark 7 single-objective HPO methods on YAHPO-SO and 7 multi-objective HPO
methods on YAHPO-MO and want to answer the following research questions: (RQ1) Do multi-
fidelity (single-objective) HPOmethods improve over full-fidelity methods? (RQ2)Do advanced multi-
objective HPO methods improve over Random Search?

7

6.1 RQ1: Do multi-fidelity (single-objective) HPO methods improve over full-fidelity methods?

We compare Random Search and SMAC (SMAC4HPO facade; [47]) to the multi-fidelity methods
Hyperband [44], BOHB [21], DEHB [4], SMAC-HB (SMAC4MF facade; [47]) and optuna ([2]; TPE
sampler and median pruner following successive halving steps). More details on the experimental
setup and HPO methods is given in Supplement E.2. All optimizers are run for a total budget of
⌈20 + 40 · √search_space_dim ⌉ full-fidelity evaluations with 30 replications. Figure 3a shows the
average rank of HPO methods with respect to their anytime performance. Figure 3b and Figure 3c
show critical difference plots (𝛼 = 0.05) of mean ranks after 25% and 100% of the optimization bud-
get. The corresponding Friedman tests indicate significant differences (𝑝 < 0.001) in both cases.
We observe that all multi-fidelity optimizers outperform Random Search with respect to interme-
diate performance (25% of optimization budget) and optuna, BOHB, SMAC-HB and Hyperband
also outperform SMAC. With respect to final performance, SMAC takes the lead closely followed
by SMAC-HB with other multi-fidelity optimizers slightly falling behind. We conclude that multi-
fidelity HPO methods indeed improve over full-fidelity methods, but only with respect to interme-
diate performance. Our results are in line with what has been reported in other benchmarks [19]
with the exception that optuna seems more competitive in our benchmark, while DEHB is less
competitive. One reason for this difference might be that we include hierarchical search spaces in
contrast to previous work.

2

3

4

5

6

7

0.25 0.50 0.75 1.00
Fraction of Budget Used

M
ea

n
R

an
k

Optimizer
Random

SMAC

HB

BOHB

DEHB

SMAC−HB

optuna

(a) Mean ranks of HPO methods. x-
axis starts after 10%.

2 3 4 5 6 7

CD

optuna

BOHB

HB

SMAC−HB

DEHB

SMAC

Random

(b) Critical differences plot for mean
ranks of HPO methods after 25%
of the optimization budget.

1 2 3 4 5 6 7

CD

SMAC

SMAC−HB

optuna

BOHB

DEHB

HB

Random

(c) Critical differences plot for mean
ranks of of HPO methods after
100% of the optimization budget.

Figure 3: Results of YAHPO-SO single-objective benchmark across 7 optimizers (20 instances).

6.2 RQ2: Do advanced multi-objective HPO methods improve over Random Search?

We compare Random Search, Random Search x4 (Random Search with quadrupled budget as
a strong baseline), ParEGO [40], SMS-EGO [61], EHVI [20], MEGO [33] and MIES [46] on
multi-objective HPO problems with 2 − 4 objectives. More details on the experimental setup
and HPO methods is given in Supplement E.3. All optimizers are run for a total budget of
⌈20 + 40 · √search_space_dim ⌉ full-fidelity evaluations for 30 replications. Figure 4a shows the
average rank of HPO methods with respect to their anytime performance (determined based on
the normalized Hypervolume Indicator). Figure 4b and Figure 4c show critical difference plots
(𝛼 = 0.05) of these ranks after 25% and 100% of the optimization budget. The corresponding
Friedman tests indicate significant differences (𝑝 < 0.001) in both cases. We observe that not all
methods significantly improve over Random Search with respect to final performance, i.e., EHVI
and SMS-EGO fail to do so. Especially with respect to intermediate performance (25% of optimiza-
tion budget), Random x4 outperforms all competitors. However, with respect to final performance,
MEGO, ParEGO and MIES yield similar performance catching up to Random x4. We conclude that,
in general, advanced multi-objective HPO methods improve over Random Search but also want
to highlight that optimizer performance strongly varies with respect to the different benchmark
instances.

8

2

4

6

0.25 0.50 0.75 1.00
Fraction of Budget Used

M
ea

n
R

an
k

Optimizer
Random

Random x4

ParEGO

SMS−EGO

EHVI

MEGO

MIES

(a) Mean ranks of HPO methods. x-
axis starts after 10%.

1 2 3 4 5 6

CD

Random x4

SMS−EGO

ParEGO

MEGO

EHVI

MIES

Random

(b) Critical differences plot for differ-
ences in ranks of HPOmethods af-
ter 25% of optimization budget.

2 3 4 5 6

CD

MEGO

ParEGO

Random x4

MIES

SMS−EGO

EHVI

Random

(c) Critical differences plot for differ-
ences in ranks of HPO methods af-
ter 100% of optimization budget.

Figure 4: Results of the YAHPO-MO multi-objective benchmark across 7 optimizers (25 instances).

In total, both benchmarks described in this section took the equivalent of 139.57 CPU days
using YAHPO Gym. We estimate that the YAHPO-SO benchmark, would take 14.75 CPU years
when running real benchmarks, while our benchmark using YAHPO Gym took only 397.51 CPU
hours, essentially speeding up evaluation by a factor of ∼ 300.

7 Conclusions, Limitations and Broader Impact

We present YAHPO Gym, a multi-fidelity, multi-objective benchmark for HPO. Our benchmark
is based on surrogates, which strike a favorable trade-off between faithfulness and efficiency,
which we demonstrate in various experiments throughout our paper before conducting a large
scale benchmark of modern single- and multi-objective optimizers. An as of yet under-explored
domain are asynchronous optimization algorithms, which have recently gained popularity [45].
This has been studied in surrogate-based benchmarks by predicting runtimes and pausing the ob-
jective function for the predicted runtime, lowering computational demand for benchmarks but
leading to a large waiting time [21]. In future work we plan on introducing faster-than-real time
asynchronous benchmarking based on predicted runtimes.

Limitations. YAHPOGym is based on surrogatemodels and therefore heavily relies on the faithful-
ness of those models in order to allow for valid conclusions. We have comprehensively evaluated
surrogate models and provide a detailed report of performance metrics, hoping to demonstrate the
faithfulness of our surrogates, but can only do so to a certain degree. We are furthermore aware
that the real HPO problems modeled in our surrogates are in fact stochastic, and results can vary
depending on randomness of the fitting procedure, data splits or initialization. We therefore pro-
vide a set of noisy surrogate models that intend to model the stochasticity of the problems using
an ensemble of neural networks, but simultaneously allow for full control of the stochastic process
by using random seeds.

Broader Impact. This manuscript presents a set of surrogate-based benchmarks for HPO. As such,
our work does not have direct implications on society or individuals, but can lead to such indirectly
if new methods are developed based on it. We would like to emphasize the possible societal &
environmental benefits. First, we hope our benchmarks can improve the state of benchmarking
in hyperparameter optimization contexts, leading to better tracking of progress in the discipline.
Second, and more important, we hope that experiments based on YAHPO Gym can drastically
reduce computational cost of hyperparameter optimization experiments. This type of experiments
is usually extremely expensive, if real experiments are run for the evaluation of each HPC, which
can be sped up by large factors if cheap approximations through surrogates are available.

9

8 Reproducibility Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 7.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 7.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?
[Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
tal results, including all requirements (e.g., requirements.txt with explicit version), an
instructive README with installation, and execution commands (either in the supplemental
material or as a url)? [Yes] The full code for experiments, figures and table can be obtained
from the following GitHub repositories:

i. Software: https://github.com/slds-lmu/yahpo_gym
ii. Documentation: https://slds-lmu.github.io/yahpo_gym/
iii. Surrogates & Search Spaces: https://github.com/slds-lmu/yahpo_data
iv. Code for Results: https://github.com/slds-lmu/yahpo_exps

(b) Did you include the raw results of running the given instructions on the given code
and data? [Yes] We make the full data used to train our surrogates available at https:
//syncandshare.lrz.de/getlink/fiCMkzqj1bv1LfCUyvZKmLvd/.

(c) Did you include scripts and commands that can be used to generate the figures and tables
in your paper based on the raw results of the code, data, and instructions given? [Yes] See
https://github.com/slds-lmu/yahpo_exps.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed
hyperparameter settings, and how they were chosen)? [Yes] See Supplement F for search
spaces, the code repository as well as the software repository for further fixed hyperpa-
rameters.

(f) Did you ensure that you compared different methods (including your own) exactly on the
same benchmarks, including the same datasets, search space, code for training and hyper-
parameters for that code? [Yes] This is explicitly guaranteed by our software.

(g) Did you run ablation studies to assess the impact of different components of your approach?
[Yes] Partially, see sections throughout the supplementary material.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]

10

https://github.com/slds-lmu/yahpo_gym
https://slds-lmu.github.io/yahpo_gym/
https://github.com/slds-lmu/yahpo_data
https://github.com/slds-lmu/yahpo_exps
https://syncandshare.lrz.de/getlink/fiCMkzqj1bv1LfCUyvZKmLvd/
https://syncandshare.lrz.de/getlink/fiCMkzqj1bv1LfCUyvZKmLvd/
https://github.com/slds-lmu/yahpo_exps

(i) Did you compare performance over time? [Yes] Anytime performances are reported in all
relevant figures throughout the paper.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] We
perform 30 replications for each run. Random seeds can be obtained from the accompany-
ing code.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] All figures reporting experimental results include error bars.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] Surrogate
benchmarks.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
gpus, internal cluster, or cloud provider)? [Yes] We state the total computation as well as
CO2 equivalent in the respective section and briefly summarize here: Tuning and fitting
surrogates required a total of 45 GPU-days (116 kg CO2-equivalent on NVIDIA DGX-A100
instances) while the main experiments require 139.57 CPU days across all replications (263
kg CO2 equivalent). The tabular vs. surrogate benchmark required 22 CPU-hours (2 kg
CO2) equivalent.

(n) Did you report how you tuned hyperparameters, andwhat time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and
also hyperparameters of your own method)? [Yes] We report tuning of surrogates in the
supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, throughout the paper
and explicitly in Supplement F for datasets we base our surrogates on.

(b) Did you mention the license of the assets? [Yes] Yes, see Supplement F.

(c) Did you include any new assets either in the supplemental material or as a url?
[Yes] Yes, trained surrogates are available at https://github.com/slds-lmu/yahpo_data.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] Data is meta-data about ML experiments and we do not consider
any personal data. All used data is available via OSS Licenses and no consent was required.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Data is only metadata about ML experiments.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A] No crowd sourcing.

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(irb) approvals, if applicable? [N/A] No IRB was required.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]

Acknowledgements. The authors of this work take full responsibilities for its content. This work
was supported by the German Federal Ministry of Education and Research (BMBF) under Grant
No. 01IS18036A. Lennart Schneider is supported by the Bavarian Ministry of Economic Affairs, Re-
gional Development and Energy through the Center for Analytics Data Applications (ADACenter)

11

https://github.com/slds-lmu/yahpo_data

within the framework of BAYERN DIGITAL II (20-3410-2-9-8). This work has been carried out by
making use of AI infrastructure hosted and operated by the Leibniz-Rechenzentrum (LRZ) der
Bayerischen Akademie der Wissenschaften and funded by the German Federal Ministry of Educa-
tion and Research (BMBF) under Grant No. 01IS18036A. The authors gratefully acknowledge the
computational and data resources provided by the Leibniz Supercomputing Centre (www.lrz.de).
The authors gratefully acknowledge the computational and data resources provided by the ARCC
Teton HPC [1].

12

www.lrz.de

References

[1] Advanced Research Computing Center. Teton computing environment. https://doi.org/
10.15786/M2FY47, 2018. University of Wyoming.

[2] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyper-
parameter optimization framework. In Proceedings of the 25rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2019.

[3] ONNX authors. ONNX. https://github.com/onnx/onnx, 2022.

[4] N. Awad, N. Mallik, and F. Hutter. DEHB: Evolutionary hyberband for scalable, robust and
efficient hyperparameter optimization. arXiv:2105.09821 [cs.LG], 2021.

[5] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization.
In Proceedings of the 24th International Conference on Neural Information Processing Systems,
pages 2546–2554, 2011.

[6] J. Bergstra, B. Komer, C. Eliasmith, and D. Warde-Farley. Preliminary evaluation of hyperopt
algorithms on HPOLib. In ICML Workshop on Automatic Machine Learning, 2014.

[7] M. Binder, J. Moosbauer, J. Thomas, and B. Bischl. Multi-objective hyperparameter tuning and
feature selection using filter ensembles. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, pages 471–479, 2020.

[8] M. Binder, F. Pfisterer, M. Lang, L. Schneider, L. Kotthoff, and B. Bischl. mlr3pipelines - Flexi-
ble machine learning pipelines in R. Journal of Machine Learning Research, 22(184):1–7, 2021.

[9] M. Binder, F. Psterer, and B. Bischl. Collecting empirical data about hyperparameters for data
driven AutoML. In ICML Workshop on Automatic Machine Learning, 2020.

[10] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann, M. Becker,
A.-L. Boulesteix, D. Deng, and M. Lindauer. Hyperparameter optimization: Foundations,
algorithms, best practices and open challenges. arXiv:2107.05847 [stat.ML], 2021.

[11] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette, H. Hoos, F. Hutter,
K. Leyton-Brown, K. Tierney, and Vanschoren J. Aslib: A benchmark library for algorithm
selection. Artificial Intelligence, 237:41–58, 2016.

[12] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[13] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado,
W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, and H. Shah. Wide & deep
learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, pages 7–10, 2016.

[14] M. Dehghani, Y. Tay, A. A. Gritsenko, Z. Zhao, N. Houlsby, F. Diaz, D. Metzler, and O. Vinyals.
The benchmark lottery. arXiv:2107.07002 [cs.LG], 2021.

[15] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. H. Hoos, and K. Leyton-Brown.
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In
NIPS Workshop on Bayesian Optimization in Theory and Practice, 2013.

[16] K. Eggensperger, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Surrogate benchmarks for
hyperparameter optimization. In MetaSel@ ECAI, pages 24–31, 2014.

13

https://doi.org/10.15786/M2FY47
https://doi.org/10.15786/M2FY47
https://github.com/onnx/onnx

[17] K. Eggensperger, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Efficient benchmarking of hy-
perparameter optimizers via surrogates. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, pages 1114–1120, 2015.

[18] K. Eggensperger, M. Lindauer, H. H. Hoos, F. Hutter, and K. Leyton-Brown. Efficient bench-
marking of algorithm configurators viamodel-based surrogates.Machine Learning, 107(1):15–
41, 2018.

[19] K. Eggensperger, P. Müller, N. Mallik, M. Feurer, R. Sass, A. Klein, N. Awad, M. Lindauer, and
F. Hutter. HPOBench: A collection of reproducible multi-fidelity benchmark problems for
HPO. In J. Vanschoren and S. Yeung, editors, Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks, volume 1, 2021.

[20] M. T. M. Emmerich. Single- and multi-objective evolutionary design optimization assisted by
Gaussian random field metamodels. PhD Dissertation, 2005.

[21] S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient hyperparameter optimization
at scale. In International Conference on Machine Learning, pages 1437–1446, 2018.

[22] M. Feurer, B. Letham, F. Hutter, and E. Bakshy. Practical transfer learning for Bayesian opti-
mization. arXiv:1802.02219 [stat.ML], 2021.

[23] M. Feurer, T. Springenberg, and F. Hutter. Initializing Bayesian hyperparameter optimization
viameta-learning. In B. Bonet and S. Koenig, editors, Proceedings of the Twenty-Ninth National
Conference on Artificial Intelligence (AAAI15), volume 15, pages 1128–1135, 2015.

[24] P. Gijsbers, F. Pfisterer, J. N. van Rijn, B. Bischl, and J. Vanschoren. Meta-learning for sym-
bolic hyperparameter defaults. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 151–152, 2021.

[25] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley. Google Vizier: A
service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1487–1495, 2017.

[26] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko. Revisiting deep learning models for
tabular data. Advances in Neural Information Processing Systems, 34, 2021.

[27] J. Guerrero-Viu, S. Hauns, S. Izquierdo, G. Miotto, S. Schrodi, A. Biedenkapp, T. Elsken,
D. Deng, M. Lindauer, and F. Hutter. Bag of baselines for multi-objective joint neural ar-
chitecture search and hyperparameter optimization. In 8th ICML Workshop on Automated
Machine Learning, 2021.

[28] C. Guo and F. Berkhahn. Entity embeddings of categorical variables. arXiv:1604.06737 [cs.LG],
2016.

[29] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff. COCO: A platform for
comparing continuous optimizers in a black-box setting. Optimization Methods and Software,
36(1):114–144, 2021.

[30] D. Horn and B. Bischl. Multi-objective parameter configuration of machine learning algo-
rithms using model-based optimization. In 2016 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1–8, 2016.

14

[31] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In International Conference on Learning and Intelligent Optimization,
pages 507–523, 2011.

[32] K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2015.

[33] S. Jeong and S. Obayashi. Efficient global optimization (EGO) for multi-objective problem and
data mining. In 2005 IEEE Congress on Evolutionary Computation, volume 3, pages 2138–2145,
2005.

[34] D. R. Jones, M. Schonlau, andW. J.Welch. Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13(4):455–492, 1998.

[35] K. Kandasamy, G. Dasarathy, J. Schneider, and B. Póczos. Multi-fidelity Bayesian optimisation
with continuous approximations. In International Conference on Machine Learning, pages
1799–1808, 2017.

[36] J. G. Kemeny and J. L. Snell. Mathematical Models in the Social Sciences. MIT Press, Cambridge,
MA, USA, 1972.

[37] A. Klein, Z. Dai, F. Hutter, N. Lawrence, and J. Gonzalez. Meta-surrogate benchmarking for
hyperparameter optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32,
2019.

[38] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian optimization of ma-
chine learning hyperparameters on large datasets. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics (AISTATS), volume 54, pages 528–536, 2017.

[39] A. Klein, L. C. Tiao, T. Lienart, C. Archambeau, and M. Seeger. Model-based asynchronous
hyperparameter and neural architecture search. arXiv:2003.10865 [cs.LG], 2020.

[40] J. Knowles. ParEGO: A hybrid algorithm with on-line landscape approximation for expen-
sive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation,
10(1):50–66, 2006.

[41] M. Lang, M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au, G. Casalicchio, L. Kot-
thoff, and B. Bischl. mlr3: A modern object-oriented machine learning framework in R. Jour-
nal of Open Source Software, 4(44):1903, 2019.

[42] M. Lang, B. Bischl, and D. Surmann. batchtools: Tools for R to work on batch systems. The
Journal of Open Source Software, 2017.

[43] N. Lavesson and P. Davidsson. Quantifying the impact of learning algorithm parameter tun-
ing. In Proc. of AAAI, volume 6, pages 395–400, 2006.

[44] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. Journal of Machine Learning Re-
search, 18(185):1–52, 2018.

[45] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, J. Bentzur, M. Hardt, B. Recht, and A. Tal-
walkar. A system for massively parallel hyperparameter tuning. In I. Dhillon, D. Papail-
iopoulos, and V. Sze, editors, Proceedings of Machine Learning and Systems, volume 2, pages
230–246, 2020.

15

[46] R. Li, M. T. M. Emmerich, J. Eggermont, T. Bäck, M. Schütz, J. Dijkstra, and J. H. C. Reiber.
Mixed integer evolution strategies for parameter optimization. Evolutionary Computation,
21(1):29–64, 2013.

[47] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T. Ruhopf,
R. Sass, and F. Hutter. SMAC3: A versatile Bayesian optimization package for hyperparameter
optimization. Journal of Machine Learning Research, 23(54):1–9, 2022.

[48] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, J. Marben, P. Müller, and F. Hutter.
BOAH: A tool suite for multi-fidelity Bayesian optimization & analysis of hyperparameters.
arXiv:1908.06756 [cs.LG], 2019.

[49] M. Lindauer, M. Feurer, K. Eggensperger, A. Biedenkapp, and F. Hutter. Towards assessing
the impact of Bayesian optimization’s own hyperparameters. arXiv:1908.06674 [cs.LG], 2019.

[50] H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In Proceedings
of the International Conference on Learning Representations, 2019.

[51] O. Mersmann, H. Trautmann, B. Naujoks, and C. Weihs. Benchmarking evolutionary multi-
objective optimization algorithms. In IEEE Congress on Evolutionary Computation, pages 1–8,
2010.

[52] C. Molnar, G. Casalicchio, and B. Bischl. Quantifying model complexity via functional decom-
position for better post-hoc interpretability. In P. Cellier and K. Driessens, editors, Machine
Learning and Knowledge Discovery in Databases, pages 193–204, 2020.

[53] J. Moosbauer, M. Binder, L. Schneider, F. Pfisterer, M. Becker, M. Lang, L. Kotthoff, and B. Bis-
chl. Automated benchmark-driven design and explanation of hyperparameter optimizers.
arXiv:2111.14756 [cs.LG], 2021.

[54] J. A. Nelder and R. Mead. A simplexmethod for functionminimization. The Computer Journal,
7(4):308–313, 1965.

[55] C. Nießl, M. Herrmann, C. Wiedemann, G. Casalicchio, and A.-L. Boulesteix. Over-optimism
in benchmark studies and the multiplicity of design and analysis options when interpreting
their results. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, page
e1441, 2021.

[56] T. Ohta and H. V. Yamazaki. Kurobako. https://github.com/optuna/kurobako, 2022.

[57] M. Parsa, J. P. Mitchell, C. D. Schuman, R. M. Patton, T. E. Potok, and K. Roy. Bayesian
multi-objective hyperparameter optimization for accurate, fast, and efficient neural network
accelerator design. Frontiers in Neuroscience, 14:667, 2020.

[58] V. Perrone, R. Jenatton, M. W. Seeger, and C. Archambeau. Scalable hyperparameter transfer
learning. In Advances in Neural Information Processing Systems, volume 31, 2018.

[59] F. Pfisterer, J. N. van Rijn, P. Probst, A. C. Müller, and B. Bischl. Learning multiple defaults
for machine learning algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 241–242, 2021.

[60] S. Pineda Arango, H. S. Jomaa, M. Wistuba, and J. Grabocka. HPO-B: A large-scale repro-
ducible benchmark for black-box HPO based on OpenML. In J. Vanschoren and S. Yeung,
editors, Proceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks, volume 1, 2021.

16

https://github.com/optuna/kurobako

[61] W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze. Multiobjective optimization on a lim-
ited budget of evaluations using model-assisted S-metric selection. In G. Rudolph, T. Jansen,
N. Beume, S. Lucas, and C. Poloni, editors, Parallel Problem Solving from Nature PPSN X,
pages 784–794, 2008.

[62] R. Schmucker, M. Donini, V. Perrone, M. B. Zafar, and C. Archambeaut. Multi-objective multi-
fidelity hyperparameter optimization with application to fairness. In NeurIPS Workshop on
Meta-Learning, volume 2, 2020.

[63] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni. Green AI. Communications of the ACM,
63(12):54–63, 2020.

[64] K. Šehić, A. Gramfort, J. Salmon, and L. Nardi. LassoBench: A high-dimensional hyperpa-
rameter optimization benchmark suite for lasso. arXiv:2111.02790 [cs.LG], 2021.

[65] J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter. NAS-Bench-301 and the
case for surrogate benchmarks for neural architecture search. arXiv:2008.09777 [cs.LG], 2020.

[66] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems, volume 25, 2012.

[67] K. Swersky, J. Snoek, and R. P. Adams. Freeze-thaw Bayesian optimization. arXiv:1406.3896
[stat.ML], 2014.

[68] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined selection
and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 847–855,
2013.

[69] R. Turner. Uber bayesopt benchmark. https://github.com/uber/bayesmark, 2022.

[70] J. Vanschoren. Meta-Learning. In F. Hutter, L. Kotthoff, and J. Vanschoren, editors, Auto-
mated Machine Learning: Methods, Systems, Challenges, pages 35–61. Springer International
Publishing, 2019.

[71] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine
learning. SIGKDD Explor., 15(2):49–60, 2013.

[72] M. Volpp, L. P. Fröhlich, K. Fischer, A. Doerr, S. Falkner, F. Hutter, and C. Daniel. Meta-
learning acquisition functions for transfer learning in Bayesian optimization. International
Conference on Learning Representations, 2020.

[73] C. White, W. Neiswanger, and Y. Savani. BANANAS: Bayesian optimization with neural ar-
chitectures for neural architecture search. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021.

[74] M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Learning hyperparameter optimization
initializations. 2015 IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pages 1–10, 2015.

[75] M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Two-stage transfer surrogate model for
automatic hyperparameter optimization. In European Conference on Machine Learning and
Knowledge Discovery in Databases - Volume 9851, pages 199–214, 2016.

17

https://github.com/uber/bayesmark

[76] C. Ying, A. Klein, E. Christiansen, E. Real, K.Murphy, and F. Hutter. NAS-Bench-101: Towards
reproducible neural architecture search. In Proceedings of the 36th International Conference
on Machine Learning, pages 7105–7114, 2019.

[77] L. Zimmer. data_2k_lw.zip. figshare. Dataset. https://doi.org/10.6084/m9.figshare.
11662422.v1, Apache License, Version 2.0, 2020.

[78] L. Zimmer. nasbench301_full_data. figshare. Dataset. https://doi.org/10.6084/m9.
figshare.13286105.v1, Apache License, Version 2.0, 2020.

[79] L. Zimmer, M. Lindauer, and F. Hutter. Auto-pytorch tabular: Multi-fidelity metalearning for
efficient and robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(9):3079–3090, 2021.

[80] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V. G. da Fonseca. Performance assess-
ment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary
Computation, 7(2):117–132, 2003.

18

https://doi.org/10.6084/m9.figshare.11662422.v1
https://doi.org/10.6084/m9.figshare.11662422.v1
https://doi.org/10.6084/m9.figshare.13286105.v1
https://doi.org/10.6084/m9.figshare.13286105.v1

A Maintenance of YAHPO Gym

Following [19], we present a maintenance plan for YAHPO Gym.

• Who is maintaining the benchmarking library?
YAHPO Gym is developed and maintained by the Statistical Learning and Data Science Group at
LMU Munich.

• How can the maintainer of the dataset be contacted (e.g., email address)?
Questions should be submitted via an issue on the Github repository at https://github.com/
slds-lmu/yahpo_gym.

• Is there an erratum?
No.

• Will the library be updated?
We plan on adding new instances as well as continuously updating existing instances should
need occur. Changes will be communicated via Github releases as well as a CHANGELOG.

• Will older versions of the benchmarking library continue to be supported/hosted/maintained?
Old versions are available via GitHub releases in the git repositories. We aim to support old
versions on a best-effort basis with limited support for older versions.

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so?
We have detailed how additional benchmarks can be added in the documentation https://
slds-lmu.github.io/yahpo_gym/extending.html. We have furthermore made available the
full code used to tune, fit and export surrogate models used in YAHPO Gym. The code is easily
extendable for future datasets.

• Which dependencies does YAHPO Gym have?
YAHPO Gym currently relies on the following dependencies
(versions used throughout experiments in brackets):

– onnxruntime (1.10.0)

– pyyaml (5.4.1)

– configspace (0.4.20)

– pandas (1.3.5)

B Benchmark Suites

B.1 Criteria for Benchmark Suites and Instances

To allow for a more systematic assessment of the quality of benchmarking instances, we define
criteria that guided the development of YAHPO Gym and which should be satisfied to make a
compelling argument for the use of any HPO benchmark.

I. Representativity & Diversity of Tasks The goal of benchmark suites is to allow for a rank-
ing of HPO methods according to their performance on future problems. Instances should
therefore cover response surfaces encountered in relevant problem domains.

II. Difficulty and Structure Benchmarks must be non-trivial, i.e., they should contain instances
of sufficient difficulty to identify rankings between optimizers. Search spaces should reflect

19

https://github.com/slds-lmu/yahpo_gym
https://github.com/slds-lmu/yahpo_gym
https://slds-lmu.github.io/yahpo_gym/extending.html
https://slds-lmu.github.io/yahpo_gym/extending.html

search spaces that are encountered frequently in practice including mixed spaces with inter-
actions as well as hierarchical spaces and sufficient dimensionality.

III. Faithfulness Rankings based on approximations (e.g., for tabular and surrogate instances)
should reflect true rankings. The performance of surrogate models 𝑔 should be close enough
to 𝑔 based on performance metrics such as Spearman’s 𝜌 .

IV. Efficiency Benchmark experiments often require repeated evaluation of several optimizers
across several datasets leading to considerable computational (and consequentially environ-
mental cost [63]). Benchmarks should therefore strive for computational efficiency.

V. Ease of useBenchmark software needs to be accessible and portable across operating systems
and programming languages. In practice, systems which do not require complex set up or es-
tablishment of databases might lead to more widespread adoption. Meta-data such as search
spaces should be available and machine-readable. As benchmarks allow for embarrassingly
parallel execution, parallelization should be supported.

VI. Reproducibility While performance estimation in practice often includes stochastic compo-
nents, it is important that benchmark suites can be made reproducible through the use of
random seeds. Additionally, software dependencies and versions should be clearly commu-
nicated and design components should be fixed and versioned to avoid cherry picking.

VII. Stochasticity Performance estimates obtained in real instances are realizations of random
variables. In order to reflect this in practice, instances should allow for repeated evaluations.

While we consider the above requirements for good benchmarking suites, we furthermore want
to highlight other properties that might be relevant for benchmarking suites.

A. Multi-fidelity Multi-fidelity methods have been shown to considerably speed up evaluation.
Benchmark instances should therefore allow for querying performances at multiple fidelities.

B. Runtime In practice, HPO evaluations, especially for complex AutoML scenarios, can have
very heterogeneous runtimes [66], which should also be reflected in a realistic benchmark by
providing access to (estimated) runtimes which could subsequently be used to more accurate
benchmark cost-efficient optimization methods.

C. Asynchronous Evaluation Although technically non-trivial, benchmarks should ideally allow
the comparison of parallel HPO methods, allowing to compare, e.g., asynchronous HPO pro-
cedures [45, 39].

D. Multi-Objective Inmany scenarios, users are not only interested inmaximizing a single perfor-
mance metric such as accuracy, but instead multiple relevant metrics such as calibration, infer-
ence time, memory usage, and many others. We therefore consider including multi-objective
HPO problems an important characteristic of a benchmark suite.

E. Meta-Learning Last but not least, in many cases, data collections are used to test scenarios for
meta-learning [70, 59, 24] or transfer learning [75, 58]. For these scenarios, the availability of
data across a large amount of datasets is often useful.

B.2 Comparison to other Benchmark Suites

While a variety of benchmarking suites for optimization such as COCO [29], HPOlib [16], ASlib
[11] and others exist, we do not go into detail and instead refer the reader to [19] where those
libraries are discussed in more detail. We instead compare YAHPO Gym to the most similar suites:
HPOBench [19] and HPO-B [60] and discuss and justify assessments made in Table 1.
Evaluations in Table 1 follow the doctrine “the documentation is the product” and we therefore
consider only features that are explicitly documented in the accompanying manuscript and doc-

20

umentation, not considering other features. We note that all three libraries could theoretically
be used or extended for additional tasks such as multi-objective evaluations but instead focus on
scenarios where the considered property is explicitly included in the documented API. We fur-
thermore note that several important aspects such as ease of use are not easily quantifiable and
assessments made are therefore subjective. We derive assessments made in this section based on
the criteria defined in Supplement B.1.

I. Representativity YAHPO Gym contains 14 across diverse search spaces for widely used ML
algorithms trained on representative datasets. Search spaces are often mixed and sometimes
include dependent hyperparameters resulting in a hierarchical search space. While theo-
retically possible, none of the instances in HPOBench currently contain hierarchical search
spaces. HPO-B only supports continuous search spaces.

II. Difficulty To the best of our knowledge, it is not yet clear how to assess the difficulty of a
benchmark instance. We therefore instead focus on showing that benchmark instances in
YAHPO Gym are not trivial, e.g., constant across the full search space.

III. Faithfulness We evaluate the quality of fitted surrogates in Supplement D.2. To the best of
our knowledge, analyses that establish the faithfulness of tabular benchmarks have not been
conducted for tabular benchmarks previously.

IV. Efficiency We consider efficiency with respect to two aspects: computational cost and mem-
ory consumption. Tabular benchmarks often keep the full data inmemory, essentially limiting
the amount of parallel optimization runs on a given hardware required, e.g., for replications
of stochastic benchmark experiments. Moreover, surrogate benchmarks are often based on
un-optimized models fitted for each single instance. As a result, the required metadata (and
memory consumption when multiple models are kept in memory) is often comparatively
large. Our surrogates in contrast are highly optimized, compressed neural networks fitted
across an entire scenario. Our surrogates are furthermore portable across platforms, alle-
viating concerns regarding software dependencies. Prediction on a surrogate requires only
10-100 ms and around 100 MB of memory allowing for a high degree of parallelization. In
a small experiment, we estimate runtime and memory overhead for 300 iterations of Ran-
dom Search on comparable SVM search spaces in Table 1 using the Python memory profiler
(https://pypi.org/project/memory-profiler/). Since memory profiling is not accurate
for HPO-Bench due to external processes, we estimate memory consumption using htop.
Differences partially stem from more expensive setup in other libraries, but we consider 300
iterations of Random Search a representative use-case for many scenarios. Benchmarks were
conducted on an AMD Ryzen 5 3600 6-Core CPU.

V. Ease of use YAHPO Gym does not require setting up containerization or any database and
has only four dependencies that are both widely used and mature. All metadata required
can be downloaded from a single, versioned metadata repository 4. The modules API is sim-
ple to use (see, e.g., Figure 1). Other benchmarking suites either require benchmark instance
specific software dependencies that can differ from benchmark instance to instance. While
HPOBench has solved this using containerization adding considerable computational over-
head, our surrogates only rely on a single fixed version of ONNX and can therefore completely
ignore the problem.

VI. Reproducibility surrogates used in the benchmarking suites proposed along with YAHPO
Gym are deterministic. Reproducibility therefore only requires ensuring seeding of any
stochastic procedures in the optimization algorithm. Furthermore, we fix several design
choices that might lead to differences between benchmarks: 𝑖) search spaces Λ̃ are fixed

4https://github.com/slds-lmu/yahpo_data

21

https://pypi.org/project/memory-profiler/
https://github.com/slds-lmu/yahpo_data

for each scenario and should be used in benchmarks 𝑖𝑖) target metrics and exact evaluation
protocol are fixed within the benchmark suites (see Supplement C.2) to ensure comparability.

Additional properties 𝐴. − 𝐸. described in Supplement B.1 are compared in Table 1 and described
in more detail below.

A. Multi-fidelity Only surrogate based benchmarks allow doing so for the full range of available
fidelity steps. This essentially enforces evaluation at fixed fidelities in tabular benchmarks, e.g.,
disallowing evaluation of differing fidelity schedules. In contrast, surrogates in YAHPO Gym
allow for evaluation at all fidelity steps.

B. Runtime All surrogates in YAHPO Gym allow for querying the predicted runtime for training
a configuration, essentially allowing benchmarking methods that take into account runtimes.

C. Asynchronous Evaluation To our knowledge, none of the existing benchmark suites allow
for asynchronous evaluation (except for real instances in HPO-Bench). YAHPO Gym currently
allows for asynchronous evaluation, but this is considered an experimental feature. We hope
to be able to fully allow asynchronous benchmarking in future versions of our benchmark.

D. Multi-Objective YAHPO Gym explicitly includes multiple objective for each scenario and al-
lows the user to subset the returned targets explicitly. In contrast, HPO-Bench contains only
few multi-objective benchmarks and does not explicitly document how they are supposed to
be used.

E. Transfer Learning All considered suites allow for transfer learning. In contrast to HPO-Bench
and HPO-B, YAHPO Gym includes the (to our knowledge) largest collection of instances for a
given scenario for the rbv2_* scenarios consisting of up to 119 instances. Only few collections
in HPOBench contain enough instances for meta-learning.

We furthermore define a single objective as well as amulti-objective benchmark task that include a
evaluation protocol with respect to instances, search spaces, evaluation budget and target metrics.
This allows for reproduction and extension by practitioners without additional design choices and
provides a singular point of references.

B.3 A Benchmark Instance

In order to improve differentiation, we formally define four different types of benchmark instances
derived from Definition 1. We therefore only consider benchmarks based on tabular, surrogate and
real instances in our manuscript.

Definition 3 (Synthetic Benchmark Instance) A synthetic benchmark instance is a benchmark in-
stance, where 𝑔 : 𝝀 → R𝑚 is a mathematically tractable function.

Synthetic instances, such as the ones, e.g., included in COCO [29] rely on mathematically tractable
test functions (e.g., Rosenbrock-2D) as response surface. While they provide cheap evaluations,
problem structures in such functions are qualitatively distinct from test functions encountered in
HPO scenarios, and the resulting optimization problem is therefore often not representative for
optimization problems typically encountered in HPO.

Definition 4 (Tabular Benchmark Instance) A tabular benchmark instance returns function eval-
uations 𝑔(𝝀) from a table of pre-recorded performance results. Performance results are typically ob-
tained by estimating ĜE(I,J , 𝜌,𝝀) for given I , J and 𝜌 . In contrast to synthetic and surrogate
instances, the search space Λ is discretized and 𝑔 can therefore be only evaluated at discrete points
Λ̃ ∈ Λ.

22

Definition 5 (Surrogate Benchmark Instance) A surrogate benchmark returns predictions 𝑔(𝝀) of
machine learning models trained to infer the functional relationship between 𝝀 and function evalua-
tions 𝑔(𝝀) based on a set of pre-recorded performance results.

For clarity, we would like to differentiate in terminology between the instance surrogate of a sur-
rogate benchmark, and the algorithm surrogate potentially used by an HPO method, e.g., the
Gaussian process as surrogate model in BO explicitly mentioning the algorithm surrogate where
required. The instance surrogate model 𝑔 or the tabular data should approximate the true relation-
ship between 𝝀 and the target metrics reasonably well. We consider a mapping 𝑔 to be faithful
if:

1. cross-validated performance metrics are sufficiently good with respect to metrics such as 𝑅2
and Spearman’s 𝜌 . We typically consider a cutoff 𝜌 > 0.7 for including a surrogate.

2. if the induced ranking of optimizers on a given 𝑔 closely resembles the true rankings on the
original underlying optimization problem (in general, the real setting relying on 𝑔).

3. learning curves of HPO methods on 𝑔 closely resemble the true performance curves.

Definition 6 (Real Benchmark Instance) A real benchmark instance returns function evaluations
𝑔(𝝀). Performance results are typically obtained by estimating ĜE(I,J , 𝜌,𝝀) for given I , J and 𝜌 .

Since the same benchmark instance can be provided as a real, tabular, or surrogate instance, we
speak of different versions of that instance where required.

C YAHPO Gym

In the following we will provide additional details on general aspects of YAHPO Gym. A detailed
description of included surrogates can be found in Supplement D and a detailed description of
used data and included search spaces can be found in Supplement F.

C.1 Usage

The yahpo_gym software can be directly installed from GitHub5 and only requires downloading
one additional GitHub repository containing metadata6 in an initial setup step.

HPO Benchmarking

To ensure interoperability with different optimizer API’s, YAHPO Gym offers only evaluation of
the objective function using the BenchmarkSet.objective_function(xs) method (where xs is a
hyperparameter configuration to be evaluated). This allows for use with many different optimizers
(see, e.g., examples provided in the accompanying notebooks). We furthermore allow for querying
the search space using BenchmarkSet.get_opt_space(xs) in order to ensure that optimizers are
ran on comparable search spaces. We provide additional details with respect to exact setups.

Transfer HPO

Different forms of Transfer HPO are available in YAHPO Gym and can be setup analogous by
querying the objective function across different instances of the scenario. We present examples in
the modules documentation.

5https://github.com/slds-lmu/yahpo_gym
6https://github.com/slds-lmu/yahpo_data

23

https://github.com/slds-lmu/yahpo_gym
https://github.com/slds-lmu/yahpo_data

C.2 Benchmark Suites: YAHPO-SO & YAHPO-MO

This section provides additional details with respect to the two benchmark sets proposed with
YAHPO Gym. Both suites can be obtained via get_suites(<type>, <version>) specifying the
type of the benchmark (currently supporting “single” for YAHPO-SO and “multi” for YAHPO-MO)
and the version (currently 1.0).

• Optimizers should use the search spaces included in YAHPO Gym in order to establish that
differences in performance do not depend on differing search spaces.

• Optimization should be run for ⌈20 + 40 · √search_space_dim ⌉ steps. Each step is equivalent
to a full budget evaluation, essentially allowing multi-fidelity method the same number of full
budget equivalents. We report the budgets for each scenario in Table 3 and Table 4.

• Target metrics to be used with the single-objective and multi-objective suite are reported in
Table 3 and Table 4.

• We encourage reportingmean normalized regret andmean ranks for the anytime performance of
an optimizer. Reported values are based on the target metric for YAHPO-SO and the normalized
Hypervolume Indicator for YAHPO-MO.

• In order to assess variance, we encourage reporting averages and standard errors across 30 repli-
cations with differing random seeds.

We will now go on to discuss criteria for inclusion of tasks in the respective benchmarks.

In light of the criteria defined in Supplement B.1, we strive for diversity by including instances
from all included scenarios. We consider only surrogates that are faithful (measured via Spear-
man’s 𝜌 reported for each target below). Our benchmarks are made available through a fully
documented API. Inference on a surrogate model is highly efficient taking usually only 10-100 mil-
liseconds per batch. Benchmarks are furthermore reproducible and allow for parallelization and
runtime prediction on a continuous range of fidelities. We include search spaces for all problems
in Supplement F.
We furthermore brieflywant to discuss selecting a budget that depends on the scenario at hand. We
consider the search space dimension to be a relevant input for determining the overall optimization
budget that should be used for optimization. Our formula ensures, that optimization runs for a
minimum of 77 iterations (iaml_glmnet, 2D) and a maximum of 267 (rbv2_super, 38D) iterations,
which we consider useful bounds for the respective search space dimensionality, especially given
that multi-fidelity allows for evaluations at a fraction of the full budget.

C.3 R package

While we focus on the Python module in the manuscript, YAHPO Gym offers an R interface that
is equivalent in functionality. We do not present the API in detail here since it follows the same
principles and naming conventions as the Python module. Further information is available from
the package documentation. Listing 1 contains the sample R-code used to first draw a random
configuration from the search space and then evaluate the drawn configuration.

D YAHPO Gym Surrogates

On an implementation level, YAHPO Gym consists of a (versioned) Python module / R package
yahpo_gym and a (versioned) set of required metadata (including fitted surrogate models) which we
will call yahpo_data in the following. The core contribution in YAHPO Gym is a set of surrogate

24

Table 3: YAHPO-SO (v1): Collection of single-objective benchmark instances. We indicate surrogate
approximation quality using Spearman’s 𝜌 .

Scenario Instance Target 𝝆 Budget

1 lcbench 167168 val_accuracy 0.94 126
2 lcbench 189873 val_accuracy 0.97 126
3 lcbench 189906 val_accuracy 0.97 126
4 nb301 CIFAR10 val_accuracy 0.98 250
5 rbv2_glmnet 375 acc 0.80 90
6 rbv2_glmnet 458 acc 0.85 90
7 rbv2_ranger 16 acc 0.93 134
8 rbv2_ranger 42 acc 0.98 134
9 rbv2_rpart 14 acc 0.92 110
10 rbv2_rpart 40499 acc 0.97 110
11 rbv2_super 1053 acc 0.31 267
12 rbv2_super 1457 acc 0.70 267
13 rbv2_super 1063 acc 0.57 267
14 rbv2_super 1479 acc 0.36 267
15 rbv2_super 15 acc 0.75 267
16 rbv2_super 1468 acc 0.77 267
17 rbv2_xgboost 12 acc 0.93 170
18 rbv2_xgboost 1501 acc 0.89 170
19 rbv2_xgboost 16 acc 0.91 170
20 rbv2_xgboost 40499 acc 0.96 170

library("yahpogym")
library("paradox")
library("bbotk")
Instantiate the BenchmarkSet
b = BenchmarkSet$new('lcbench', instance='3945')
Get the objective
objective = b$get_objective('3945', check_values = FALSE)
Sample a point from the ConfigSpace
xdt = generate_design_random(b$get_search_space(), 1)$data
xss_trafoed = transform_xdt_to_xss(xdt, b$get_search_space())
Evaluate the configuration
objective$eval_many(xss_trafoed)

Listing 1: R-code to sample and evaluate a configuration using YAHPO Gym.

models7 based on neural networks. This section provides additional details with respect to the
fitting procedures of surrogate models as well as a rigorous evaluation of the final surrogates.

D.1 Setup and Training

Previous work [17, 18, 65] suggests that tree based regression methods such as random forests
[12] are very suited as instance surrogate models for (single-objective) benchmarks. However,
in YAHPO Gym we want to predict multiple target metrics for each instance of a benchmark
collection efficiently and compactly. As a result, we use neural network surrogates because they
1) can naturally handle multiple outputs and do not require a model for each target metric and 2)

7available at https://github.com/slds-lmu/yahpo_data

25

https://github.com/slds-lmu/yahpo_data

Table 4: YAHPO-MO (v1): Collection of multi-objective benchmark instances. We indicate surrogate
approximation quality using Spearman’s 𝜌 (averaged over targets).

Scenario Instance Targets 𝝆 Budget

1 iaml_glmnet 1489 mmce,nf 0.86 77
2 iaml_glmnet 1067 mmce,nf 0.73 77
3 iaml_ranger 1489 mmce,nf,ias 0.93 134
4 iaml_ranger 1067 mmce,nf,ias 0.92 134
5 iaml_super 1489 mmce,nf,ias 0.82 232
6 iaml_super 1067 mmce,nf,ias 0.82 232
7 iaml_xgboost 40981 mmce,nf,ias 0.88 165
8 iaml_xgboost 1489 mmce,nf,ias 0.92 165
9 iaml_xgboost 40981 mmce,nf,ias,rammodel 0.89 165
10 iaml_xgboost 1489 mmce,nf,ias,rammodel 0.92 165
11 lcbench 167152 val_accuracy,val_cross_entropy 0.98 126
12 lcbench 167185 val_accuracy,val_cross_entropy 0.91 126
13 lcbench 189873 val_accuracy,val_cross_entropy 0.93 126
14 rbv2_ranger 6 acc,memory 0.90 134
15 rbv2_ranger 40979 acc,memory 0.73 134
16 rbv2_ranger 375 acc,memory 0.85 134
17 rbv2_rpart 41163 acc,memory 0.85 110
18 rbv2_rpart 1476 acc,memory 0.80 110
19 rbv2_rpart 40499 acc,memory 0.83 110
20 rbv2_super 1457 acc,memory 0.66 267
21 rbv2_super 6 acc,memory 0.68 267
22 rbv2_super 1053 acc,memory 0.45 267
23 rbv2_xgboost 28 acc,memory 0.80 170
24 rbv2_xgboost 182 acc,memory 0.79 170
25 rbv2_xgboost 12 acc,memory 0.76 170

should scale better than a random forest (fitted on each target metric) if the dimensionality of the
data (especially in the number of features) increases.
Surrogate models used in YAHPO Gym are based on ResNet architectures for tabular data [26].
Instead of relying on a fixed architecture, we tune the neural network for each Scenario using
optuna [2]. We used the Adam optimizer for a maximum of 100 epochs (early stopping with
patience of 10) with L2 loss. Surrogates were trained jointly for each benchmark scenario (for all
instances and target metrics). We use a stratified train/validation/test split of 0.6/0.2/0.2, using
the validation data to determine the surrogate model architecture and report performances on
the test set. The search space as well as the fully reproducible code for fitting can be obtained at
YAHPO Gym. Tuning and fitting of a single Scenario takes 3 GPU days on average on an NVIDIA
DGX-A100 instance, we therefore estimate a one time cost of 45 GPU days for establishing the full
benchmark.
We adapt the architecture proposed in [26] in multiple ways:
Feature- andOutput-ScalingHyperparameters as well as resulting performancemetrics (e.g learn-
ing rates of log-loss values) often vary across orders of magnitudes. We have practically observed
that transforming target metrics to the unit cube prior to training and reverse-transforming af-
terwards massively improves quality of the resulting surrogates. Available scaling techniques in-
clude Neg-Exp and Log transformation before scaling to [0, 1]. We furthermore include clamping
to ensure that predictions are in valid ranges. Non-numeric features were transformed via entity
embeddings [28].

26

Ensembles In order to allow for an estimate of variance, we make noisy versions of our surrogates
available together with the standard deterministic set of surrogates. Ensembles consist of repli-
cations of the architecture determined during tuning and fitted on different permutations of the
data with differing initial weights. The prediction step is the weighted average over predictions
from ensemble members with weights 𝛼𝑖 sampled from a Dirichlet distribution.

We additionally consider scenarios that allow simulating asynchronous evaluation and therefore
predict the time of the training procedure using our surrogates. YAHPO Gym currently supports
asynchronous scheduling by estimating the runtime of training a model and then idling the system
for the estimated time. This is implemented via objective_function_timed in yahpo_gym but
currently considered in an experimental status.
In future work, we hope to propose and evaluate a surrogate-based benchmark explicitly allowing
for benchmarking of asynchronous scheduling strategies based on surrogate predictions. To enable
more realistic scheduling, we hope to furthermore include memory constraints using predicted
peak memory consumption for a training run.

D.2 Surrogate Quality

We provide an overview over surrogate quality measured on the test set using Spearman’s 𝜌 aver-
aged across all instances in Table 5. Metrics are routinely ≥ 0.9 except for few instances / target
metrics and even surpasses performances for surrogate models reported, e.g., in [65]. We further-
more depict real and predicted learning curves for four randomly drawn configurations in Figure 5.
Note that in our work, learning curves are predicted only based on hyperparameters, and not based
on initial, low-fidelity observations (as done in learning curve prediction tasks). Our surrogates
therefore solve a much harder task. Surrogates in general predict the learning curves with a high
degree of precision.

Table 5: Average surrogate performance (Spearman’s 𝜌) across all instances per scenario/target. We
abbreviate cross_entropy (ce) and balanced_accuracy(bac) for brevity.

Scenario 𝝆

iaml_glmnet mmce:0.97,f1:0.9,auc:0.92,logloss:0.97,rammodel:0.97,timetrain:0.95,mec:0.9,ias:0.91,nf:0.97
iaml_ranger mmce:0.99,f1:0.98,auc:1,logloss:0.95,rammodel:1,timetrain:0.91,mec:0.88,ias:0.98,nf:1
iaml_rpart mmce:0.99,f1:0.96,auc:0.99,logloss:0.96,rammodel:1,timetrain:0.96,mec:0.71,ias:0.96,nf:0.96
iaml_super mmce:0.93,f1:0.95,auc:0.89,logloss:0.93,rammodel:0.71,timetrain:0.61,mec:0.94,ias:0.65,nf:0.92
iaml_xgboost mmce:0.97,f1:0.98,auc:0.97,logloss:0.93,rammodel:0.86,timetrain:0.71,mec:0.95,ias:0.84,nf:0.99
lcbench time:0.94,val_accuracy:0.95,val_ce:0.97,val_bac:0.98,test_ce:0.99,test_bac:0.98
nb301 val_accuracy:0.98,runtime:0.94
rbv2_aknn acc:0.99,bac:0.99,auc:0.98,brier:1,f1:0.91,logloss:0.99,timetrain:0.64,memory:0.83
rbv2_glmnet acc:0.99,bac:0.95,auc:0.91,brier:1,f1:0.96,logloss:0.99,timetrain:0.79,memory:0.82
rbv2_ranger acc:0.99,bac:0.98,auc:0.95,brier:1,f1:0.92,logloss:1,timetrain:0.84,memory:0.66
rbv2_rpart acc:0.98,bac:0.96,auc:0.93,brier:0.99,f1:0.93,logloss:0.98,timetrain:0.72,memory:0.86
rbv2_super acc:0.82,bac:0.78,auc:0.73,brier:0.91,f1:0.91,logloss:0.89,timetrain:0.69,memory:0.71
rbv2_svm acc:0.99,bac:0.98,auc:0.94,brier:0.99,f1:0.91,logloss:0.99,timetrain:0.76,memory:0.84
rbv2_xgboost acc:0.98,bac:0.96,auc:0.94,brier:0.99,f1:0.92,logloss:0.98,timetrain:0.93,memory:0.78

Some of the targets available require further study and we therefore discourage their use in bench-
marks. Those are rampredict & ramtrain (iaml_* scenarios) as well as timepredict (rbv2_* scenarios).
Reasons for this assessment are partially poor surrogates, but we also assume that the underlying
data is at fault: Prediction times are often very small and heavily influenced by system load, while
correct estimation of required memory are relatively difficult to obtain in general.

27

0 20 40 60 80 100

50

75

nb301:CIFAR10

0 10 20 30 40 50

40

60

lcbench:167168

0 10 20 30 40 50
0

25

50
lcbench:189873

0 10 20 30 40 50

25
50
75

lcbench:189906

0.2 0.4 0.6 0.8 1.0

0.5

1.0
rbv2_xgboost:12

0.2 0.4 0.6 0.8 1.0

0.25
0.50
0.75

rbv2_xgboost:1501

0.2 0.4 0.6 0.8 1.0

0.5

1.0
rbv2_xgboost:16

0.2 0.4 0.6 0.8 1.0

0.5

1.0
rbv2_xgboost:40499

0.2 0.4 0.6 0.8 1.0

0.7

0.8

rbv2_super:1053

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

rbv2_super:1457

0.2 0.4 0.6 0.8 1.0
0.75

0.80

0.85

rbv2_super:1063

0.2 0.4 0.6 0.8 1.0
0.6

0.8

rbv2_super:1479

0.2 0.4 0.6 0.8 1.0
0.6

0.8

1.0
rbv2_super:15

0.2 0.4 0.6 0.8 1.0
0.25
0.50
0.75

rbv2_super:1468

0.2 0.4 0.6 0.8 1.0
0.85

0.90

0.95
rbv2_glmnet:375

0.2 0.4 0.6 0.8 1.0

0.8

1.0
rbv2_glmnet:458

0.2 0.4 0.6 0.8 1.0

0.5

1.0
rbv2_ranger:16

0.2 0.4 0.6 0.8 1.0

0.25
0.50
0.75

rbv2_ranger:42

0.2 0.4 0.6 0.8 1.0

0.25

0.50

rbv2_rpart:14

0.2 0.4 0.6 0.8 1.0
0.25
0.50
0.75

rbv2_rpart:40499

Figure 5: Predicted learning curves (lines) together with true learning curves (dotted) for four ran-
domly drawn configurations (differentiated by colour) out of each instance in YAHPO-SO
reporting the respective target metric.

D.3 Instance Difficulty

We quantify difficulty of instances using the empirical cumulative distribution function (ECDF),
assuming that difficult instances have only a small probability mass close to the optimum. ECDFs

28

for all instances in YAHPO-SO are shown in Figure 6. Differences between real evaluations and
surrogate predictions can stem from the sampling procedure (random on surrogates vs. unknown
sampling for real evaluations), as well as biases in the surrogates. All evaluations are made at
maximal fidelity. We furthermore provide ECDF plots for all optimizers in Figure 7. This allows
for a different perspective on the quality of solutions found by the different optimizers.

E Experiments

E.1 Tabular vs. Surrogate Benchmarks

Resolution of Tabular Benchmarks. In practice, the resolution of grid points needs to be low for
high dimensional spaces to limit the resulting table to a usable size. With purely categorical search
spaces, often used in NAS, an exhaustive (i.e., Λ̃discrete = Λ̃) tabular benchmark is often possible,
as in, e.g., NAS-Bench-101 [76], which contains “only” 423k unique architectures. Multi-fidelity
evaluations essentially add an additional dimension to the optimization problemwhen considering
tabular data, since each evaluation now needs to be stored at multiple fidelity steps. If fidelity steps
are not available at all budget levels, optimization benchmarks can be restricted to fixed fidelity
progression (e.g., geometric progression as used in Hyperband).

Discrete Search Spaces. The modification of the search space from Λ̃ to Λ̃discrete can be handled
in one of two ways: One can let HPO methods operate on the original search space Λ̃ and trans-
parently “round” values to the nearest point contained in Λ̃discrete. This effectively presents the
optimization algorithm with a locally constant objective function. Alternatively, one can inform
the HPO algorithm about the discrete nature of Λ̃discrete, and possibly even modify the optimiza-
tion procedure. As an example, consider the acquisition function optimization step within the BO
framework: In the context of tabular benchmarks, the problem of optimizing the infill criterion
becomes trivial because one can perform an exhaustive search over all points not yet evaluated to
determine the next candidate(s) for evaluation. Note that we could also proceed to use a 1-Nearest-
Neighbor model to evaluate HPCs in tabular benchmarks. This essentially results in a surrogate
benchmark because we now rely on a performance model for the evaluation. In contrast to approx-
imation by discretization, in a surrogate benchmark the domain of the objective function is not
explicitly altered. Instead, predictions of an instance surrogate regression model 𝑔(·) are returned
as function evaluations, 𝑐surrogate : Λ̃ → R𝑚 , 𝝀 ↦→ 𝑔(𝝀). The drawback here is that values returned
by the surrogate model may misrepresent the local structure of the problem as well. Beyond the
resolution of the surrogate model training data, these structures are interpolated and influenced
by the inductive bias implied by the model.

Experimental Setup. As a real benchmark, we consider the original synthethic benchmark
function, while we generate a grid containing at most 106 points for the tabular version, storing
these pre-evaluated points in a look-up table together with their function value. The resolution of
the grid is the same for all functions along the budget parameter dimension, with 10 grid points
ranging from 2−9 to 1 on a 2𝑥 scale. For all other parameters of the domain, an equidistant grid
was generated by using ⌊(105) 1

𝐷 ⌋ grid points for each dimension 𝑑 = 1, . . . , 𝐷 . With the same data
we employ a similar surrogate neural network as used in YAHPO Gym. We compare the following
methods on real, surrogate, and tabular benchmarks: All HPOmethods were run for a total budget
of 100 evaluations reflecting 100 full fidelity evaluations. The synthetic test functions used in the
experiments [35] include a multi-fidelity parameter allowing for the use of multi-fidelity methods
such as Hyperband. Of the methods investigated, only HB makes use of the fidelity parameter,
while all other methods perform full budget evaluations. As a surrogate, we train a Wide & Deep
Network [13]. More details can be found in https://github.com/slds-lmu/yahpo_exps. BO
variants used Expected Improvement [34] as acquisition function and an initial design of 5 · 𝐷
points sampled uniformly at random. The Gaussian process surrogate model used a Matérn 3/2

29

https://github.com/slds-lmu/yahpo_exps

80 85 90 95
0.0

0.2

0.4

0.6

0.8

1.0
nb301:CIFAR10

25 50 75
0.0

0.2

0.4

0.6

0.8

1.0
lcbench:167168

0 25 50 75
0.0

0.2

0.4

0.6

0.8

1.0
lcbench:189873

0 25 50 75
0.0

0.2

0.4

0.6

0.8

1.0
lcbench:189906

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_xgboost:12

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_xgboost:1501

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_xgboost:16

0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_xgboost:40499

0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_super:1053

0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_super:1457

0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_super:1063

0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_super:1479

0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_super:15

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_super:1468

0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_glmnet:375

0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_glmnet:458

0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_ranger:16

0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_ranger:42

0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_rpart:14

0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0
rbv2_rpart:40499

Figure 6: Empirical cumulative distribution function (ECDF) for surrogate predictions (blue) and real
evaluations (orange).

kernel. Nelder-Mead as acquisition function optimizer was terminated if the relative change in
the maximum fell below 1𝑒 − 4. Tabular benchmarks used an exhaustive search for optimizing
the acquisition function in the scenario of *_DF. Random Search as acquisition function optimizer

30

rbv2_xgboost:12 rbv2_xgboost:1501 rbv2_xgboost:16 rbv2_xgboost:40499

rbv2_super:1457 rbv2_super:1468 rbv2_super:1479 rbv2_super:15

rbv2_rpart:14 rbv2_rpart:40499 rbv2_super:1053 rbv2_super:1063

rbv2_glmnet:375 rbv2_glmnet:458 rbv2_ranger:16 rbv2_ranger:42

lcbench:167168 lcbench:189873 lcbench:189906 nb301:CIFAR10

0.000.250.500.75 0.000.250.500.751.00 0.000.250.500.751.00 0.000.250.500.75

0.250.500.751.00 0.000.250.500.751.00 0.00.20.40.6 0.00.20.40.6

0.20.40.60.8 0.250.500.75 0.00.20.40.60.8 0.00.20.40.60.8

0.000.250.500.75 0.00.20.40.6 0.000.250.500.75 0.000.250.500.75

0.20.40.60.8 0.000.250.500.751.00 0.250.500.75 0.20.40.60.8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Missclassification Error

P
(X

≥
 x

)

Optimizer
Random

SMAC

HB

BOHB

DEHB

SMAC−HB

optuna

Figure 7: Empirical cumulative distribution function (ECDF) for optimizer traces on YAHPO-SO.

was allowed 104 evaluations.

Evaluation. For evaluation, we computed the mean normalized regret for each HPO method sep-
arately on the real, surrogate and tabular benchmarks (where the normalized regret for an HPO

31

Table 6: Consensus Rankings of HPO Methods for Real, Surrogate and Tabular Benchmarks.

Benchmark Consensus Ranking (CR) Permutation Order

Real BO_GP_DF ≻ BO_GP_RS ≻ BO_RF_RS ≻ BO_NN_RS ≻ BO_NN_DF ≻ HB ≻ BO_RF_DF ≻ RS -
Surrogate BO_GP_DF ≻ BO_GP_RS ≻ BO_RF_RS ≻ BO_NN_RS ≻ HB ≻ BO_NN_DF ≻ BO_RF_DF ≻ RS 2
Tabular BO_GP_DF ≻ BO_GP_RS ≻ BO_RF_DF ≻ HB ≻ BO_RF_RS ≻ BO_NN_DF ≻ BO_NN_RS ≻ RS 5

method given a cumulative budget is defined as the difference between the value of the best HPC
found by any algorithm and the value of the best HPC found by this method, scaled by the range of
objective function values as found by any method, see also [60]). Based on the normalized regret,
we also computed the mean rank of each HPO method.
Results for the Branin2D, Currin2D and Hartmann3D benchmark functions are given in Figure 8.

Real Surrogate Tabular

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.000

0.005

0.010

0.015

0.020

Cumulative Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

Branin2D R2 = 1 ρ = 1 τ = 1

Real Surrogate Tabular

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.0000

0.0025

0.0050

0.0075

0.0100

Cumulative Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t
Currin2D R2 = 1 ρ = 1 τ = 1

Real Surrogate Tabular

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.0

0.1

0.2

0.3

Cumulative Budget

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

Hartmann3D R2 = 1 ρ = 1 τ = 1

Real Surrogate Tabular

25 50 75 100 25 50 75 100 25 50 75 100

2

4

6

Cumulative Budget

M
ea

n
R

an
k

Real Surrogate Tabular

25 50 75 100 25 50 75 100 25 50 75 100

2

4

6

8

Cumulative Budget

M
ea

n
R

an
k

Real Surrogate Tabular

25 50 75 100 25 50 75 100 25 50 75 100

2

4

6

Cumulative Budget
M

ea
n

R
an

k

HPO Method
BO_GP_RS

BO_GP_DF

BO_NN_RS

BO_NN_DF

BO_RF_RS

BO_RF_DF

HB

RS

Figure 8: Mean normalized regret (top) and mean ranks (bottom) of different HPO methods on dif-
ferent benchmarks. Ribbons represent standard errors. The gray vertical line indicates the
cumulative budget used for the initial design of BO methods. Performance measures of the
surrogate benchmarks are stated after the benchmark function. 30 replications.

Differences between tabular and real/surrogate benchmarks can be explained by the fact that the
inner optimization problem of BO methods is much easier to solve when only a finite set of po-
tential candidates must be evaluated (i.e., by exhaustive search). We also observe that for the BO
performance on the tabular benchmarks, there is no substantial difference in whether the acquisi-
tion function optimization is solved exactly or via a Random Search. We employ the rank-based
symmetric difference (SD) method which aims to find a consensus ranking that minimizes the
average number of rank reversals for the individual benchmark function rankings. We limit our-
selves to the scenario of considering the set of all linear orders of HPO methods as candidates for
a consensus ranking (SD/L). By comparing the consensus ranking obtained via the surrogate/tab-
ular benchmarks to the consensus ranking obtained using the real benchmarks, we determine the
faithfulness of surrogate and tabular benchmarks. We observe that the consensus ranking obtained
using the surrogate benchmarks matches the real one more closely than rankings obtained using
tabular benchmarks (Table 6).

E.2 Single-Objective Benchmark on YAHPO-SO

Instances and Evaluation Protocol. We use the set of instances and target variables defined for the
YAHPO-SO benchmark suite in Supplement C.2 and detailed in Table 3. We furthermore follow the
described evaluation protocol, using available search spaces and optimization budgets including
30 replications to assess variance in results. As an evaluation criterion, we report mean normalized

32

regret (based on the target metric), see Figure 9. Table 7 provides additional info on all optimiz-
ers used in the benchmark. Random Search simply samples configurations uniformly at random.
SMAC is a model based full-fidelity optimizer using a random forest as surrogate model and Ex-
pected Improvement as acquisition function [34]. We use the SMAC4HPO facade [47]. Hyperband
randomly samples new configurations and allocates more fidelity to promising configurations by
relying on repeated successive halving (SH; [32]). BOHB combines BO with Hyperband and uses
a Tree Parzen Estimator (TPE; [5]) as surrogate model. DEHB is a model-free successor of BOHB
which relies on differential evolution instead of BO. We use the software defaults regarding the
choice of mutation and crossover. SMAC-HB also combines BOwith Hyperband but uses a random
forest as surrogate model (SMAC4MF facade; [47]). Our optuna optimizer uses a TPE as surrogate
model and a median pruner [25] that follows a fixed SH schedule. A configuration is stopped by
the pruner if its best intermediate result (at a given fidelity level determined by the SH schedule)
is worse compared to the median of the other configurations on the same fidelity level.

Table 7: Optimizers used in the single-objective benchmark.

Optimizer Software Reference Version

Random Search - - -
SMAC (SMAC4HPO) https://github.com/automl/SMAC3 [47] 1.1.1
Hyperband https://github.com/automl/HpBandSter [44] 0.7.4
BOHB https://github.com/automl/HpBandSter [21] 0.7.4
DEHB https://github.com/automl/DEHB [4] 67ac239
SMAC-HB (SMAC4MF) https://github.com/automl/SMAC3 [47] 1.1.1
optuna https://optuna.org/ [2] 2.10.0

E.3 Multi-Objective Benchmark on YAHPO-MO

Instances and Evaluation Protocol. We use the set of instances and target variables defined for
the YAHPO-MO benchmark suite in Supplement C.2 and detailed in Table 4. We furthermore
follow the described evaluation protocol, using available search spaces and optimization budgets
including 30 replications to assess variance in results. As an evaluation criterion, we report the
mean Hypervolume Indicator [80] computed on normalized targets (see Figure 10). Nadir points
and reference Pareto fronts were obtained empirically over all replications of all HPO methods
on a given benchmark instance. Table 8 provides additional info on all optimizers used in the
benchmark. Random Search simply samples configurations uniformly at random. Random Search
(x4) at each step samples four configurations uniformly at random (in parallel). We include this
variant as a strong baseline. ParEGO is a model based optimizer relying on a scalarization of the
objectives which we then model using a random forest as surrogate model. As acquisition function
we use Expected Improvement [34]. SMS-EGO is a model based optimizer that uses a surrogate
model for each objective (again, we use random forests) and proposes candidates based on the
S-metric [61]. EHVI is a model based optimizer using a surrogate model for each objective (again,
we use random forests) and proposes candidates based on their Expected Hypervolume Improve-
ment [20]. MEGO is a model based optimizer using a surrogate model for each objective (again, we
use random forests) and proposes candidates by considering the Expected Improvement for each
objective which gives rise to a multi-objective optimization problem of the acquisition functions
themselves. For the final candidate selection, we sample uniformly at random over the Pareto opti-
mal (with respect to the Expected Improvements) candidates. MIES is a mixed integer evolutionary
optimizer (plus survival scheme, 𝜇 = ⌊budget/6⌋, 𝜆 = ⌊𝜇/4⌋8). We use Gaussian mutation (𝑝 = 0.2)

8where budget is the optimization budget for a given instance, i.e., number of total evaluations

33

https://github.com/automl/SMAC3
https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter
https://github.com/automl/DEHB
https://github.com/automl/DEHB/commit/67ac239f8cbede87a0db9951cf0d4aa18ef806da
https://github.com/automl/SMAC3
https://optuna.org/

rbv2_xgboost

12

rbv2_xgboost

1501

rbv2_xgboost

16

rbv2_xgboost

40499

rbv2_super

1457

rbv2_super

1468

rbv2_super

1479

rbv2_super

15

rbv2_rpart

14

rbv2_rpart

40499

rbv2_super

1053

rbv2_super

1063

rbv2_glmnet

375

rbv2_glmnet

458

rbv2_ranger

16

rbv2_ranger

42

lcbench

167168

lcbench

189873

lcbench

189906

nb301

CIFAR10

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.005

0.010

0.030

0.001

0.003

0.010

0.030

0.03

0.05

0.10

0.005

0.010

0.020

1e−06

1e−04

1e−02

0.01

0.03

0.10

0.001

0.003

0.010

0.003

0.010

0.030

0.100

1e−05

1e−03

1e−01

0.01

0.03

0.05

0.03

0.10

0.30

1e−04

3e−04

1e−03

3e−03

3e−04

1e−03

3e−03

1e−02

3e−02

1e−05

1e−04

1e−03

1e−02

0.05

0.07

0.10

0.01

0.03

0.10

1e−04

1e−03

1e−02

0.001

0.010

0.100

0.03

0.05

0.10

0.015

0.020

0.025

0.030

Fraction of Budget Used

M
ea

n
N

or
m

al
iz

ed
 R

eg
re

t

Optimizer
Random

SMAC

HB

BOHB

DEHB

SMAC−HB

optuna

Figure 9: Mean normalized regret of HPO methods separate for each benchmark instance. x-axis
starts after 10%.

34

for numerical parameters and discrete uniform mutation (𝑝 = 0.2) for categorical parameters. For
recombination, we use uniform crossover (𝑝 = 0.2). As parent selection we perform a tournament
selection of parents using nondominated sorting. For survival, we select the best individuals based
on nondominated sorting.

Table 8: Optimizers used in the multi-objective benchmark.

Optimizer Software Reference Version

Random Search - - -
Random Search (x4) - - -
ParEGO https://github.com/mlr-org/mlr3mbo [40] 1f59e13
SMS-EGO https://github.com/mlr-org/mlr3mbo [61] 1f59e13
EHVI https://github.com/mlr-org/mlr3mbo [20] 1f59e13
MEGO https://github.com/mlr-org/mlr3mbo [33] 1f59e13
MIES https://github.com/mlr-org/miesmuschel [46] 3483f11

F Scenarios, Search Spaces and Data Sources

Random Bot V2 (rbv2_)

All scenarios prefixed with rbv2_ use data described in [9]. Data contains results from several ML
algorithms trained across up to 119 datasets evaluated for a large amount of random evaluations.
Table 9 lists all hyperparameters of the search space of the rbv2_ scenarios. Targets are given by
accuracy (acc), balanced accuracy (bac), AUC (auc), Brier Score (brier), F1 (f1), log loss (logloss),
time for training the model (timetrain), and memory usage (memory).
Surrogates are fitted on subsets of the full data available from [9], such that a minimum of 1500
and a maximum of 200000 (depending on the scenario) evaluations are available for each instance
in each scenario. All scenarios consist of a pre-processing step (missing data imputation) and a
subsequently fitted ML algorithm. Instance ID’s correspond to OpenML [71] dataset ids through
which dataset properties can be queried9. OpenML tasks corresponding to each dataset can be
obtained from [9]. We abbreviate the num.impute.selected.cpo hyperparameter with imputation
throughout the tables. We fix the repl parameter to 10 for experiments.

NAS-Bench-301 (nb301)

nb301 uses data of the NAS-Bench-301 benchmark ([78], see also [65]). Table 10 lists all hyperpa-
rameters of the search space of the nb301 scenario. Targets are given by the validation accuracy
(val_accuracy) and the training time (runtime).

LCBench (lcbench)

The lcbench collection uses data of the LCBench benchmark [77], as described in [79]. Table 11
lists all hyperparameters of the search space of the lcbench scenario. Targets are given by the
validation accuracy (val_accuracy), validation cross entropy (val_crossentropy), validation bal-
anced accuracy (val_balanced_accuracy), test cross entropy (test_crossentropy), test balanced
accuracy (test_balanced_accuracy) and the training time (time). Instance ID’s correspond to
OpenML [71] task ids through which task properties can be queried10 The task with the ID 167083
exhibited unnatural learning curves and was therefore excluded.

9https://www.openml.org/d/<dataset_id>
10https://www.openml.org/t/<task_id>

35

https://github.com/mlr-org/mlr3mbo
https://github.com/mlr-org/mlr3mbo/commit/1f59e1366f97c59e4c4cdbe4c198ce5215b34cc0
https://github.com/mlr-org/mlr3mbo
https://github.com/mlr-org/mlr3mbo/commit/1f59e1366f97c59e4c4cdbe4c198ce5215b34cc0
https://github.com/mlr-org/mlr3mbo
https://github.com/mlr-org/mlr3mbo/commit/1f59e1366f97c59e4c4cdbe4c198ce5215b34cc0
https://github.com/mlr-org/mlr3mbo
https://github.com/mlr-org/mlr3mbo/commit/1f59e1366f97c59e4c4cdbe4c198ce5215b34cc0
https://github.com/mlr-org/miesmuschel
https://github.com/mlr-org/miesmuschel/commit/3483f112195ab8d8197e36e72481847a8022880c
https://www.openml.org/d/<dataset_id>
https://www.openml.org/t/<task_id>

rbv2_super

1457

acc_memory

rbv2_super

6

acc_memory

rbv2_xgboost

12

acc_memory

rbv2_xgboost

182

acc_memory

rbv2_xgboost

28

acc_memory

rbv2_ranger

6

acc_memory

rbv2_rpart

1476

acc_memory

rbv2_rpart

40499

acc_memory

rbv2_rpart

41163

acc_memory

rbv2_super

1053

acc_memory

lcbench

167152

val_accuracy_val_cross_entropy

lcbench

167185

val_accuracy_val_cross_entropy

lcbench

189873

val_accuracy_val_cross_entropy

rbv2_ranger

375

acc_memory

rbv2_ranger

40979

acc_memory

iaml_super

1489

mmce_nf_ias

iaml_xgboost

1489

mmce_nf_ias

iaml_xgboost

1489

mmce_nf_ias_rammodel

iaml_xgboost

40981

mmce_nf_ias

iaml_xgboost

40981

mmce_nf_ias_rammodel

iaml_glmnet

1067

mmce_nf

iaml_glmnet

1489

mmce_nf

iaml_ranger

1067

mmce_nf_ias

iaml_ranger

1489

mmce_nf_ias

iaml_super

1067

mmce_nf_ias

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.3

0.5

0.7

0.3

0.5

1.0

0.05

0.10

0.30

0.50

1e−05

1e−03

1e−01

1e−16

1e−11

1e−06

1e−01

1.8

2.0

2.2

2.4

0.2

0.3

0.5

0.1

0.2

0.3

0.1

0.3

0.5

1e−15

1e−10

1e−05

1e+00

2.5

3.0

3.5

0.3

0.5

1.0

0.1

0.3

1.0

0.2

0.3

0.5

3e−04

1e−03

3e−03

1e−02

3e−02

0.03

0.10

0.30

0.2

0.3

0.5

0.03

0.10

0.30

0.3

0.5

0.7

1e−06

1e−04

1e−02

0.03

0.10

0.30

0.03

0.10

0.30

0.05

0.07

0.10

0.05

0.10

0.30

0.001

0.010

0.100

Fraction of Budget Used

M
ea

n
N

or
m

al
iz

ed
 H

V
I

Optimizer
Random

Random x4

ParEGO

SMS−EGO

EHVI

MEGO

MIES

Figure 10: Mean normalized Hypervolume Indicator of HPO methods separate for each benchmark
instance. x-axis starts after 10%.

36

Table 9: Search spaces of YAHPO Gym’s rbv2_ scenarios. ⊢ indicates the parent in case dependencies
between hyperparameters exist. The super scenario inherits dependencies from previous
scenarios, while additional dependencies on the learner_id are introduced, indicated by a
prefix.

rbv2_glmnet

Hyperparameter Type Range Info

alpha continuous [0, 1]
s continuous [0.001, 1097] log
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_rpart

Hyperparameter Type Range Info

cp continuous [0.001, 1] log
maxdepth integer [1, 30]
minbucket integer [1, 100]
minsplit integer [1, 100]
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_svm

Hyperparameter Type Range Info

kernel categorical {linear, polynomial, radial}
cost continuous [4.5e-05, 2.2e4] log
gamma continuous [4.5e-05, 2.2e4] log, ⊢ kernel
tolerance continuous [4.5e-05, 2] log
degree integer [2, 5] ⊢ kernel
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_aknn

Hyperparameter Type Range Info

k integer [1, 50]
distance categorical {l2, cosine, ip}
M integer [18, 50]
ef integer [7, 403] log
ef_construction integer [7, 403] log
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_ranger

Hyperparameter Type Range Info

num.trees integer [1, 2000]
sample.fraction continuous [0.1, 1]
mtry.power integer [0, 1]
respect.unordered.factors categorical {ignore, order, partition}
min.node.size integer [1, 100]
splitrule categorical {gini, extratrees}
num.random.splits integer [1, 100] ⊢ splitrule
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_xgboost

Hyperparameter Type Range Info

booster categorical {gblinear, gbtree, dart}
nrounds integer [7, 2980] log
eta continuous [0.001, 1] log, ⊢ booster
gamma continuous [4.5e-05, 7.4] log, ⊢ booster
lambda continuous [0.001, 1097] log
alpha continuous [0.001, 1097] log
subsample continuous [0.1, 1]
max_depth integer [1, 15] ⊢ booster
min_child_weight continuous [2.72, 148.4] log, ⊢ booster
colsample_bytree continuous [0.01, 1] ⊢ booster
colsample_bylevel continuous [0.01, 1] ⊢ booster
rate_drop continuous [0, 1] ⊢ booster
skip_drop continuous [0, 1] ⊢ booster
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_super

Hyperparameter Type Range Info

svm.kernel categorical {linear, polynomial, radial}
svm.cost continuous [4.5e-05, 2.2e4] log
svm.gamma continuous [4.5e-05, 2.2e4] log
svm.tolerance continuous [4.5e-05, 2] log
svm.degree integer [2, 5]
glmnet.alpha continuous [0, 1]
glmnet.s continuous [0.001, 1097] log
rpart.cp continuous [0.001, 1] log
rpart.maxdepth integer [1, 30]
rpart.minbucket integer [1, 100]
rpart.minsplit integer [1, 100]
ranger.num.trees integer [1, 2000]
ranger.sample.fraction continuous [0.1, 1]
ranger.mtry.power integer [0, 1]
ranger.respect.unordered.factors categorical {ignore, order, partition}
ranger.min.node.size integer [1, 100]
ranger.splitrule categorical {gini, extratrees}
ranger.num.random.splits integer [1, 100]
aknn.k integer [1, 50]
aknn.distance categorical {l2, cosine, ip}
aknn.M integer [18, 50]
aknn.ef integer [7, 403] log
aknn.ef_construction integer [7, 403] log
xgboost.booster categorical {gblinear, gbtree, dart}
xgboost.nrounds integer [7, 2980] log
xgboost.eta continuous [0.001, 1] log
xgboost.gamma continuous [4.5e-05, 7.4] log
xgboost.lambda continuous [0.001, 1097] log
xgboost.alpha continuous [0.001, 1097] log
xgboost.subsample continuous [0.1, 1]
xgboost.max_depth integer [1, 15]
xgboost.min_child_weight continuous [2.72, 148.41] log
xgboost.colsample_bytree continuous [0.01, 1]
xgboost.colsample_bylevel continuous [0.01, 1]
xgboost.rate_drop continuous [0, 1]
xgboost.skip_drop continuous [0, 1]
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}
learner_id categorical {aknn, glmnet, ranger, rpart, svm, xgboost}

37

Table 10: Search space of the nb301 scenario. We summarize multiple parameters (using, e.g., {3 − 5}
if parameters with suffix 3 through 5 are present).

Hyperparameter Type Range Info

NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_{0-13} categorical {max_pool_3x3, avg_pool_3x3, skip_connect,
sep_conv_3x3, sep_conv_5x5, dil_conv_3x3, dil_conv_5x5}

NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_{0-13} categorical {max_pool_3x3, avg_pool_3x3, skip_connect,
sep_conv_3x3, sep_conv_5x5, dil_conv_3x3, dil_conv_5x5}

NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_{3-5} categorical {0_1, 0_2, 1_2}
NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_{3-5} categorical {0_1, 0_2, 1_2}
epoch integer [1, 98] budget

Table 11: Search space of the lcbench scenario.

Hyperparameter Type Range Info

epoch integer [1, 52] budget
batch_size integer [16, 512] log
learning_rate continuous [1e-04, 0.1] log
momentum continuous [0.1, 0.9]
weight_decay continuous [1e-05, 0.1]
num_layers integer [1, 5]
max_units integer [64, 1024] log
max_dropout continuous [0, 1]

Interpretable AutoML (iaml_)

All scenarios prefixed with iaml_ rely on data that were newly collected by us. Different mlr3
[41] learners (“classif.glmnet”, “classif.rpart”, “classif.ranger”, “classif.xgboost”) were incorporated
into an ML pipeline with minimal preprocessing (removing constant features, fixing unseen fac-
tor levels during prediction and missing value imputation for factor variables by sampling from
non-missing training levels) via mlr3pipelines [8]. Hyperparameters of the learners were sam-
pled uniformly at random (for the search spaces, see Table 12) and the ML pipeline performance
(classification error - mmce, F1 score - f1, AUC - auc, logloss - logloss) was evaluated via 5-fold
cross-validation on the following OpenML [71] datasets (dataset id): 40981, 41146, 1489, 1067. Each
pipeline was then refitted and used for prediction on the whole data to estimate training and pre-
dict time (timetrain, timepredict) and RAM usage (during training and prediction, ramtrain and
rampredict as well as model size, rammodel). Moreover, interpretability measures as described
in [52] were computed for all models: number of features used (nf), interaction strength of fea-
tures (ias) and main effect complexity of features (mec). To our best knowledge, this is the first
publicly available benchmark that combines performance, resource usage and interpretability of
models allowing for the construction of interesting multi-objective benchmarks. Hyperparameter
configurations were evaluated at different fidelity steps (training sizes of the following fractions:
0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1) achieved via incorporating resampling in the ML pipeline. The super
learner scenario was constructed by using the data of all four base learners introducing condi-
tional hyperparameters in the form of branching. In total, 5451872 different configurations were
evaluated. Data collection was performed on the moran partition of the ARCC Teton HPC cluster
of the University of Wyoming using batchtools [42] for job scheduling and took around 9.8 CPU
years. Surrogate models were then fitted on the available data as described in Supplement D.1.
Table 12 lists all hyperparameters of the search spaces of the iaml_ scenarios. Instance ID’s corre-
spond to OpenML [71] dataset ids through which dataset properties can be queried11.

11https://www.openml.org/d/<dataset_id>

38

https://www.openml.org/d/<dataset_id>

Table 12: Search spaces of YAHPOGym’s iaml_ scenarios. ⊢ indicates the parent in case dependencies
between hyperparameters exist. The super scenario inherits dependencies from previous
scenarios, while additional dependencies on the learner are introduced, indicated by a prefix.

iaml_glmnet

Hyperparameter Type Range Info

alpha continuous [0, 1]
s continuous [1e-04, 1000] log
trainsize continuous [0.03, 1] budget

iaml_rpart

Hyperparameter Range Type Info

cp continuous [1e-04, 1] log
maxdepth integer [1, 30]
minbucket integer [1, 100]
minsplit integer [1, 100]
trainsize continuous [0.03, 1] budget

iaml_ranger

Hyperparameter Type Range Info

num.trees integer [1, 2000]
replace boolean {TRUE, FALSE}
sample.fraction continuous [0.1, 1]
mtry.ratio continuous [0, 1]
respect.unordered.factors categorical {ignore, order, partition}
min.node.size integer [1, 100]
splitrule categorical {gini, extratrees}
num.random.splits integer [1, 100] ⊢ splitrule
trainsize continuous [0.03, 1] budget

iaml_xgboost

Hyperparameter Type Range Info

booster categorical {gblinear, gbtree, dart}
nrounds integer [3, 2000] log
eta continuous [1e-04, 1] log, ⊢ booster
gamma continuous [1e-04, 7] log, ⊢ booster
lambda continuous [1e-04, 1000] log
alpha continuous [1e-04, 1000] log
subsample continuous [0.1, 1]
max_depth integer [1, 15] ⊢ booster
min_child_weight continuous [exp(1) , 150] log, ⊢ booster
colsample_bytree continuous [0.01, 1] ⊢ booster
colsample_bylevel continuous [0.01, 1] ⊢ booster
rate_drop continuous [0, 1] ⊢ booster
skip_drop continuous [0, 1] ⊢ booster
trainsize continuous [0.03, 1] budget

iaml_super

Hyperparameter Type Range Info

learner categorical {glmnet, rpart, ranger, xgboost}
glmnet.alpha continuous [0, 1]
glmnet.s continuous [1e-04, 1000] log
rpart.cp continuous [1e-04, 1] log
rpart.maxdepth integer [1, 30]
rpart.minbucket integer [1, 100]
rpart.minsplit integer [1, 100]
ranger.num.trees integer [1, 2000]
ranger.replace boolean {TRUE, FALSE}
ranger.sample.fraction continuous [0.1, 1]
ranger.mtry.ratio continuous [0, 1]
ranger.respect.unordered.factors categorical {ignore, order, partition}
ranger.min.node.size integer [1, 100]
ranger.splitrule categorical {gini, extratrees}
ranger.num.random.splits integer [1, 100]
xgboost.booster categorical {gblinear, gbtree, dart}
xgboost.nrounds integer [3, 2000] log
xgboost.eta continuous [1e-04, 1] log
xgboost.gamma continuous [1e-04, 7] log
xgboost.lambda continuous [1e-04, 1000] log
xgboost.alpha continuous [1e-04, 1000] log
xgboost.subsample continuous [0.1, 1]
xgboost.max_depth integer [1, 15]
xgboost.min_child_weight continuous [exp(1) , 150] log
xgboost.colsample_bytree continuous [0.01, 1]
xgboost.colsample_bylevel continuous [0.01, 1]
xgboost.rate_drop continuous [0, 1]
xgboost.skip_drop continuous [0, 1]
trainsize continuous [0.03, 1] budget

39

	Introduction
	Related Work
	Background
	Hyperparameter Optimization
	Hyperparameter Optimization Benchmarks

	YAHPO Gym
	Suites: YAHPO-SO & YAHPO-MO

	Tabular or Surrogate Benchmarks?
	A Benchmark of HPO Methods on YAHPO Gym
	RQ1: Do multi-fidelity (single-objective) HPO methods improve over full-fidelity methods?
	RQ2: Do advanced multi-objective HPO methods improve over Random Search?

	Conclusions, Limitations and Broader Impact
	Reproducibility Checklist
	Maintenance of YAHPO Gym
	Benchmark Suites
	Criteria for Benchmark Suites and Instances
	Comparison to other Benchmark Suites
	A Benchmark Instance

	YAHPO Gym
	Usage
	Benchmark Suites: YAHPO-SO & YAHPO-MO
	R package

	YAHPO Gym Surrogates
	Setup and Training
	Surrogate Quality
	Instance Difficulty

	Experiments
	Tabular vs. Surrogate Benchmarks
	Single-Objective Benchmark on YAHPO-SO
	Multi-Objective Benchmark on YAHPO-MO

	Scenarios, Search Spaces and Data Sources

