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Abstract

Logical reasoning of text is an important ability that requires understanding the1

logical information present in the text and reasoning through them to infer new2

conclusions. Prior works on improving the logical reasoning ability of language3

models require complex processing of training data (e.g., aligning symbolic knowl-4

edge to text), yielding task-specific data augmentation solutions that restrict the5

learning of general logical reasoning skills. In this work, we propose AERIE,6

an adaptively pre-trained language model that has improved logical reasoning7

abilities. We select a subset of Wikipedia, based on a set of logical inference key-8

words, for continued pretraining of a language model. We use two self-supervised9

loss functions: a modified masked language modeling loss where only specific10

parts-of-speech words, that would likely require more reasoning than basic lan-11

guage understanding, are masked, and a sentence classification loss that teaches12

the model to distinguish between entailment and contradiction types of sentences.13

The proposed training paradigm is both simple and generalizable across tasks.14

We demonstrate the effectiveness of AERIE by comparing it with prior baselines15

on two logical reasoning datasets. AERIE performs comparably on ReClor and16

outperforms baselines on LogiQA.17

1 Introduction18

Logical reasoning is an important ability of humans that helps us in making rational decisions based19

on some known information. Recently, logical reasoning of text has seen an increasing focus as it is a20

fundamental skill required to solve any downstream task that requires machine reading [Yu et al.,21

2020, Liu et al., 2021]. In these datasets, the model needs to understand a given context, reason22

about a question, and then select the correct answer from a set of options. With the advent of large23

pre-trained language models (PLMs) in NLP [Devlin et al., 2019, Radford et al., 2019, Raffel et al.,24

2020], understanding and improving the logical reasoning abilities of these models has become even25

more important as these are increasingly being used across a wide variety of real-world tasks.26

There have been some recent works on improving the logical reasoning abilities of PLMs [Wang et al.,27

2022, Ouyang et al., 2022, Jiao et al., 2022]. These works typically generate a dataset containing28

symbolic structures such as logical graphs from text, logical contrast sets, etc., and then train the LM29

using custom loss objectives to learn logical reasoning abilities. While the performance improvements30

achieved by these methods are encouraging, the proposed solutions generally require complex data31

processing to generate the additional structural information (graphs, contrast data, etc.) required for32

logical reasoning. Further, the loss functions proposed in these works are very specifically designed33

in accordance to their respective data augmentation technique, and widely differs from the typical34

masked language modeling loss used for LM pretraining [Devlin et al., 2019]. These complex35
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processing steps usually require task-specific design choices, which are not necessarily learning36

generalizable logical reasoning ability that is reusable across different task formats. Also, it is unclear37

if these specific inductive biases are indeed essential for improving the logical reasoning abilities in38

language models, or a simpler approach is sufficient.39

Prior works [Gururangan et al., 2020] have shown that continued domain-adaptive pretraining of40

PLMs lead to performance gains on downstream tasks. Inspired by this, we propose AERIE, a41

continued pretraining-based approach to inject logical reasoning abilities in language models. To42

gather a dataset that can teach logical reasoning, we use a set of keywords to select a subset of43

the Wikipedia, such that every sentence in the subset contains at least one of the keywords. These44

keywords are chosen such that the sentences containing the keywords are more likely to elicit45

reasoning when filling out masked tokens. We note that in contrast to previous works [Gururangan46

et al., 2020], our method only requires selecting sentences from Wikipedia, eliminating the need47

for extra domain-specific corpus. Secondly, we restrict the type of tokens being masked from any48

random token, to only specific types of tokens based on the parts-of-speech of the word. This choice49

is again based on increasing the likelihood of using logical reasoning to predict the masked word.50

Lastly, we add a sentence-level classification loss to predict if the reasoning in the sentence conveys51

an entailment or a contradiction. This enables the model to understand the differences between these52

two types of logical reasoning.53

To test AERIE, we evaluate it on two downstream logical reasoning tasks: ReClor and LogiQA, and54

compare it with other baselines. We achieve state-of-the-art performance on LogiQA and comparable55

performance on ReClor. This demonstrates that our simple approach is generalizable to different56

datasets and enables the PLM to learn logical reasoning abilities.57

2 Problem Statement58

In this work, we study the problem of using logical reasoning to solve the task of multiple choice59

question answering based on a given context. Formally, for a given context C, question Q, and a60

list of K candidate answers A = {A1, . . . AK}, the task is to select the correct answer Ay, where61

y ∈ [1,K]. Getting to the right answer typically requires reasoning logically through the context62

and then selecting the best answer for the question. Evaluation of a model is based on the accuracy63

metric.64

3 Method65

In this section, we describe the details of our proposed approach. In AERIE, we use a keyword-based66

dataset selection strategy to collect a dataset of reasoning-related sentences called IMPLICATION67

(§3.1) and then continue training a pretrained model checkpoint using two loss functions jointly68

(§3.2). This model is then finetuned on the training dataset of each task separately.69

3.1 Dataset Selection70

PLMs are typically trained on the data from the internet which helps them in learning the language71

model and then they are finetuned on specific downstream datasets to specialize on a task [Devlin72

et al., 2019, Radford et al., 2018, Raffel et al., 2020]. We hypothesize that using a training data that73

contains more reasoning related sentences, rather than generic internet data, should help in improving74

the logical reasoning abilities of the PLM. Although creating such a dataset can be a challenging task75

in itself, in AERIE, we explore a simple and intuitive way to curate a set of such sentences. First, we76

select logical keywords that are generally encountered in sentences with some implication. Broadly,77

we categorize these keywords into two types:78

• Positive implication (Entailment): These keywords are typically present in sentences79

where the reason entails the inference. We consider the following keywords in this category:80

“therefore”, “accordingly”, “so”, “thus”, “consequently”, “hence”, “thence”, “and so”, “for81

this reason”, “in consequence”, “on account of”, “on the ”grounds”, “since”, “therefrom”,82

“thereupon”, “to that end”, “whence”, and “wherefore”.83

• Negative implication (Contradiction): In this category, the keywords are usually present84

in sentences where the reason contradicts the inference. Here, we consider the following85
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If Earth were frozen entirely and hence be more 
reflective, the temperature would drop below.

If Earth were [MASK] entirely and [MASK] be more 
reflective, the temperature would drop [MASK].

s-MLM

s-CLS
Entailment

Loss Fn =
s-MLM + s-CLS

Figure 1: Loss Functions in AERIE. The S-MLM loss masks tokens from a specific set of POS tags (candidate
tokens highlighted in blue), instead of any random token. The S-CLS loss classifies the masked sentence into
one of two categories: entailment or contradiction. The overall loss function is the sum of both loss functions.

keywords: “but”, “although”, “however”, “nevertheless”, “on the other hand”, “still”,86

“though”, and “yet”.87

Next, we select sentences that contain at least one of the keywords. Specifically, we filter sentences88

from Wikipedia 1 such that they contain at least one of the keywords. We name this filtered version89

of the Wikipedia as IMPLICATION. While this keyword-based filtering does not necessarily ensure90

that the sentence has an implication statement, it increases the chances of such logically rich sentence91

being present in the training set.92

3.2 Loss Function Design93

Selective masked language modeling loss (S-MLM) This a modified version of the masked94

language modeling (MLM) loss used in BERT [Devlin et al., 2019]. In the MLM loss, tokens in a95

sentence are masked at random and the model learns to predict the masked tokens. While this helps96

in learning a good language model, we hypothesize that not all masked tokens require similar degree97

of reasoning to predict them. For example, most prepositions in a sentence are generally governed by98

the English grammar. In contrast, some specific parts-of-speech (POS) tags such as adverbs require99

more reasoning to predict the right token. Thus, in S-MLM, we mask out tokens that belong to a100

specific set of POS tags. In AERIE, we mask tokens from the following POS tags [Honnibal and101

Montani, 2017]: “ADJ”, “ADV”, “CONJ”, “CCONJ”, “PART”, “SCONJ”, and “VERB”.102

Sentence classification loss (S-CLS) In addition to S-MLM, we add another auxiliary loss function103

that predicts whether a sentence contains reasoning that entails or contradicts the inference. To predict104

if a sentence is related to a positive or negative implications, a model would require strong logical105

reasoning abilities. The labels for this loss is bootstrapped using the simple heuristic of whether the106

specific type of keyword is present in the sentence. We note that although the keyword can be a direct107

feature that can be used to predict the label, on average the keyword would be masked more often108

due to our selective masking policy, leading to teaching the model some logical semantics.109

4 Experimental Setup110

Following prior works [Jiao et al., 2022], we evaluate AERIE on two logical reasoning datasets:111

ReClor [Yu et al., 2020] and LogiQA [Liu et al., 2021]. Both the datasets are reading comprehension112

style datasets, where the metric is the accuracy of the model in selecting the right answer for a113

given context and question pair. We compare AERIE with three prominent baselines: LRReasoner114

[Wang et al., 2022], Focal Reasoner [Ouyang et al., 2022], and MERIt [Jiao et al., 2022]. All115

these baselines train a PLM using some additional data to improve logical reasoning abilities.116

Model ReClor LogiQA
Dev Test Dev Test

RoBERTa 62.6 55.6 35 35.3
DAGN 65.2 58.2 35.5 38.7
DAGN (Aug) 65.8 58.3 36.9 39.3
LRReasoner 64.7 62.4 38.1 40.6
Focal Reasoner 66.8 58.9 41.0 40.3
MERIt 66.8 59.6 40.0 38.9

AERIE 66.8 57.6 41.6 42.1

Table 1: Comparison of AERIE with
other baselines on ReClor and LogiQA.

117

5 Results118

Overall Results We use RoBERTa-Large pretrained check-119

points as the starting point for AERIE and all the baselines.120

In Table 1, we compare the performance of our method121

with the baselines on the two logical reasoning datasets.122

Overall, we observe that AERIE performs at par on ReClor123

and outperforms all baselines on LogiQA.124

1https://huggingface.co/datasets/wikipedia
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Ablation Studies To study the effect of using IMPLICA-125

TION for continued pretraining along with the proposed loss functions, we first create RANDOM, a126

random subset of Wikipedia of similar size as that of IMPLICATION, and also consider using the127

standard masked language modeling (MLM) loss Devlin et al. [2019], where any token can be masked128

at random. The results of the ablation are shown in Table 2. We observe that using the IMPLICATION129

dataset leads to consistent improvements on both datasets, when compared to RANDOM dataset.130

Additionally, we find that both the S-MLM and S-CLS loss lead to improvements over MLM loss.131

Thus, this empirically justifies our choice of the dataset and loss functions proposed here.132

6 Related Works133

Continued Training Setup ReClor LogiQA
RoBERTa (RANDOM w/ MLM) 60.2 35.0
RoBERTa (RANDOM w/ S-MLM) 63.8 36.4

RoBERTa (IMPLICATION w/ MLM) 64.8 36.6
RoBERTa (IMPLICATION w/ S-MLM) 65.4 41.5
RoBERTa (IMPLICATION w/ S-MLM + S-CLS) 66.8 41.6

Table 2: Effect of IMPLICATION dataset and the loss functions
on the validation performance of ReClor and LogiQA.

Reasoning in natural language134

has been a prevalent problem in135

NLP. In recent years, logical rea-136

soning in text has seen an increas-137

ing focus. ReClor [Yu et al.,138

2020] and LogiQA [Liu et al.,139

2021] are reading comprehension140

style datasets focused on ques-141

tions that require reasoning using142

information from a given context.143

Wang et al. [2022] proposed LRReasoner, which parses symbolic logical structures from the train-144

ing data of ReClor for data augmentation using logical context extensions. Ouyang et al. [2022]145

constructed logical graphs using the chain of facts present in a task instance, and used GNNs to146

reason on the graph. Jiao et al. [2022] proposed MERIt, that used Wikipedia to generate sentence147

pairs for contrastive learning that are logically related, and trained the PLM using contrastive loss.148

Both LRReasoner and Focal Reasoner use data augmentation that are specific to the task being149

solved, making the pretraining process specific to the downstream dataset, and thus not generalizable150

across tasks. While MERIt addresses this issue by using Wikipedia to generate logical graphs, their151

contrastive loss formulation requires counterfactual data augmentation, that potentially distorts the152

factual knowledge present in the pretrained model. In contrast to prior works, we propose a simple153

continued pretraining strategy using minor modifications of standard masked language modeling154

loss [Devlin et al., 2019] and sentence classification loss to improve the logical reasoning ability of155

language models. Our approach is simple to integrate during pretraining, and is generalizable across156

tasks.157

In a related line of work, a set of works [Clark et al., 2020, Saha et al., 2020, Tafjord et al., 2021,158

Sanyal et al., 2022b] used synthetically generated data to show that PLMs can perform complex159

deductive reasoning to predict entailment of a given hypothesis. While progress on these datasets are160

encouraging, some recent works have questioned if models are indeed robustly learning to perform161

logical reasoning Sanyal et al. [2022a].162

7 Conclusion163

In this paper, we proposed AERIE, an adaptive pre-trained language model with logical reasoning164

abilities. We use a subset of Wikipedia sentences for continued pretraining of the model using two165

self-supervised loss functions. The choice of the training dataset and loss functions are guided by166

the objective to include more reasoning related sentences and training signals, respectively. Through167

experiments on two logical reasoning datasets and ablation studies, we demonstrate the effectiveness168

of our proposed approach. Overall, we show that AERIE is a generalized solution to improving169

logical reasoning in language models.170
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