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ABSTRACT

Hierarchical order of play is an important concept for reinforcement learning to
understand better the decisions made by strategic agents in a shared environment.
In this paper, we compare the learning dynamics between Stackelberg and si-
multaneous reinforcement learning agents. Agents are trained using their policy
gradient and are tested against each other in a tournament. We compare agent
performance in zero-sum and non-zero-sum Markov games. We show that the
Stackelberg leader performs better in training under the same parameters. How-
ever, under the same parameters in the tournament setting, Stackelberg leaders and
followers performed similarly to the simultaneous player. Analytically, hierarchi-
cal training can potentially provide stronger guarantees for policy gradient.

1 INTRODUCTION

An emerging field of machine learning pits strategic agents against each other in competitive games.
A popular example of the success of competitive machine learning is Google’s AlphaZero vs. Stock-
fish in a zero-sum game of chess. (Dai & Song, 2018; Zhang et al., 2021) Although Stockfish cal-
culates roughly 1000 times more moves per second than AlphaZero, each agent is evenly matched.
AlphaZero uses reinforcement learning (RL) to determine the best moves to make given the state
of the environment. Motivated by the interest in RL and hierarchical learning, we aim to compare
the performance of agents trained via simultaneous and Stackelberg reinforcement learning in both
competitive (zero-sum) and general (non-zero-sum) environments.

An important application of RL and game theory involves a hierarchical order of play, which are set-
tings best modeled as Stackelberg games. The concept of the Stackelberg equilibrium (Von Stack-
elberg, 2010) generalizes the min-max solution to general-sum games. In the two-player scenario,
one player acts as the leader who selects an action given the knowledge that the other player (fol-
lower) plays a best-response. This viewpoint has long been researched from a control perspective
on games (Başar & Olsder, 1998) and in the bilevel optimization community (Danskin, 1966).

The current machine learning perspective on games with a hierarchical decision-making structure
mainly focuses on zero-sum games. Theoretical work relates that all stable critical points of simul-
taneous gradient descent with a timescale separation between players approaching infinity satisfy
sufficient conditions for a local Stackelberg equilibrium (Jin et al., 2019).

1.1 RELATED WORKS

The theoretical results of multi-agent reinforcement learning are reviewed in (Zhang et al., 2021).
The framework of Markov games (Shapley, 1953; Littman, 1994) has been used to develop learning
algorithms. Policy gradient with function approximation (Sutton et al., 1999) is used to implement
policies that map states to actions. It is known that the Nash equilibrium always exists for finite-
space infinite-horizon discounted competitive Markov games (Filar & Vrieze, 2012), but may not
be unique in general. Algorithms have been developed for general sum games (Hu & Wellman,
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2003). Reinforcement learning in games with asymmetry like hierarchy amongst agents are explored
in (Könönen, 2004; Pereira, 2020).

Our work exists in the context of other research on learning dynamics for multi-agent systems where
agents model the learning process of opponents. These models are used to derive various learning
updates using gradients (Foerster et al., 2017). Games involving a hierarchical order of play are
ubiquitous in nature but are a less explored area of RL. Where previous works focused on implicit
learning dynamics for improving the performance of learning algorithms (Fiez et al., 2020; Zheng
et al., 2021), we focus on comparing the performance of reinforcement learning agents that adopt a
leader or follower role against players trained without hierarchy. We conducted several experiments
with agents trained via simultaneous and Stackelberg policy gradient agents by varying learning
rates, batch sizes, and neural network hidden layers in zero-sum and non-zero-sum Markov games
to understand hierarchy of play dynamics in game type.

Contributions We show that hierarchical training has a benefit to agent performance. In a non-
zero-sum Markov game, the Stackelberg leader and follower generally performed better than the
simultaneous player. In the zero-sum Markov game, the same trend occurred, with the addition
that there was a guarantee that the leader performed better than the follower. In comparison, the
first or second player could interchange in performance with the simultaneous player. There is also
potential to guarantees for policy gradient. Our work is a preliminary investigation into evaluating
the performance of the Stackelberg policy gradient in two-player games. Future work is proposed in
the discussion section.

2 PRELIMINARIES

We provide standard mathematical preliminaries for multi-agent reinforcement learning. We con-
sider a two-player fully observable Markov game defined by tuple G = (S,A1,A2, P, r1, r2) where
S is the state space, s ∈ S is a state, player i ∈ {1, 2}, Ai is the player i’s action space with
ai ∈ Ai. The transition kernel is P : S ×A1 ×A2 → S such that P (s′|s, a1, a2) is the probability
of transitioning to state s′ given that the previous state was s and the agents took actions (a1, a2)
simultaneously in state s. The reward ri : S×A1×B2 → R is the reward function for player i. Note
that for zero-sum games, r1 ≡ −r2, and for non-zero-sum games, the rewards may be anti-aligned.
Each agent uses a stochastic policy πi

θi
parameterized by θi.

The cumulative rewards of agent i given a trajectory τ = (s0, a
1
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2
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2
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[
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1
t , a

2
t )]. Agents aim

to maximize their expected return.

3 TRAINING AGENTS USING POLICY GRADIENT

We train agents using policy gradient algorithms based on simultaneous and Stackelberg updates. In
this section, we provide descriptions of the two policy gradient updates. Algorithm 1 summarizes
the training procedures.

3.1 SIMULTANEOUS POLICY GRADIENT

For the simultaneous policy gradient algorithm (simgrad), players compute their gradient without
extra information of the other players. Each player optimizes its objective

max
θi∈Θi

Ji(θi, θ−i), i ∈ {1, 2}

by descending individual policy gradients

∇θiJi(θ) = E[∇θi log π
i
θi(s, a

i) ·Qθ(s, a)]. (1)

We direct the readers to the review paper (Zhang et al., 2021) for details about running policy
gradient for two players in the mixed (non-zero-sum) setting.

2



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

+1/-1 -1/+1

B

P1

P2

(a) Markov Soccer (zero-sum)

P1

P2

+1

(b) Grid Hunter (non-zero-sum)

Figure 1: Experiment setup. In the grid world environments, agents observe the full state of the
environment and choose individual actions. A: In Markov Soccer, players start on opposite ends
of the center, with a randomized initial position and possession of the ball. A reward is given when
an agent reaches the opponent’s goal and minor rewards for ball possession. The available actions
to the agents is to move in the four cardinal directions. If an agent without possession of the ball
chooses to move where the agent with possession of the ball, the ball possession transfers. The
agent that stole the ball is now where the previous agent is and the other agent moves to whichever
location they decided. B: In Grid Hunter, two pursuers start in a corner of the grid with random
placement of the prey. The prey moves to avoid the two hunters while the hunters move to catch the
prey. The prey and hunters is able to move in the four cardinal directions. The prey movement is
random while the hunter movement is learned. A reward is given to the agent who first reaches the
prey.

Algorithm 1 Simultaneous or Stackelberg policy gradient (simgrad or stackgrad)

Require: Markov game G, parameters T,K, γ1, γ2 > 0 and (θ01, θ
0
2).

1: for t = 0; t < T do
2: Sample a batch of K trajectories from G using policies π1

θt
1
, π2

θt
2

3: if simgrad then
4: θt+1

1 = θt1 + γ1∇θ1J1(θ
t
1, θ

t
2) Equation (1)

5: else if stackgrad then
6: θt+1

1 = θt1 + γ1∇θ1J1(θ
t
1, r

∗(θt1)) Equation (2)
7: end if
8: θt+1

2 = θt2 + γ2∇θ2J2(θ
t
1, θ

t
2) Equation (1)

9: end for

3.2 STACKELBERG POLICY GRADIENT

For the Stackelberg policy gradient algorithm (stackgrad), the leader of the game knows the other
player’s response and incorporates this response in its gradient update. In a Stackelberg game, the
leader and follower aim to solve the following optimization problems

max
θ1∈Θ1

{J1(θ1, θ2)|θ2 ∈ arg max
y∈Θ2

J2(θ1, y)}, max
x2∈X2

J2(x1, x2)

where the leader uses its total derivative

∇θ1J1(θ1, r
∗(θ1)) =

(
∇θ1J1(θ)−∇θ1∇θ2J2(θ)

[
∇2

θ2J2(θ)
]−1 ∇θ2J1(θ)

)
(2)

and the follower has response r∗ : Θ1 → Θ2 and uses its individual policy gradient. We direct the
readers to the papers (Fiez et al., 2020; Yang et al., 2022) for more details on how to compute the
leader’s update using the chain rule and compute the inverse operation by conjugate gradient.

3.3 TRAINING RESULTS

We perform a grid search over learning rates γ1, γ2 ∈ {10−1, 10−2, 10−3}, batch sizes
K ∈ {1000, 5000}, and feed-forward neural network hidden layers using one-layer with
32, 64, 128 neurons per layer and one three-layer parameter, [128, 64, 32]. These parameters total
24 different agent configurations per policy gradient. We run both policy gradient methods for a
total of 100 epochs.
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Figure 2: Training performance. The leader trained using the Stackelberg policy gradient receives
a higher average reward than the follower in the zero-sum game (bold outline). We ran with one
seed for each of the 24 different parameter configurations. We plot the agents’ average rewards and
losses during training. The shaded regions show the 95% standard deviation bound of results. The
x-axis represents the number of epochs. A: simgrad average rewards (larger is better) B: simgrad
average loss (smaller is better) C: stackgrad average rewards D: stackgrad average loss.

The Stackelberg leader performs better in Markov Soccer than the follower during training, as shown
in Figure 2(a)C. The average magnitude of return for the Stackelberg leader was 488. In contrast,
the performance of simgrad seems to oscillate randomly as shown in Figure 2(a)A, with a smaller
average magnitude of return of 96.4. This shows that the Stackelberg leader is capable of anticipating
the follower’s response during training to achieve a higher reward.

We see a similar reward and loss behavior in Grid Hunter for both algorithms. As shown in Figure
2(b). For simgrad player 1, the average return was 51.1, and for simgrad player 2, the average
return was 41.3. Similarly, for Stackelberg player 1, the average return was 48.5, and for simgrad
player 2, the average return was 38.6. This trend continues with the losses as shown in Figure 2bb
and Figure 2bd. For simgrad player 1, the average loss was 39.7, and for simgrad player 2, the
average loss was 39.1. For Stackelberg player 1, we saw an average loss of 37.4, and for Stackelberg
player 2, 38.6. Because Grid Hunter is a general sum game, there may be no strong guarantees of
convergence. Furthermore, the learning dynamics exhibit some behaviors of cycling.

4 TESTING AGENTS USING TOURNAMENTS

We test the agents’ performance against each other by fixing the parameters of the agent’s policies
and running a tournament-style competition. The competition allows us to compare agents with
different parameters and neural network models. It also allows us to compare leaders and followers.

The motivation for running tournaments is to determine how well the agents perform relative to each
other. The resulting “test matrix” can be further analyzed to determine the agent rankings. In this
preliminary work, we report the average results from the tournament. Future work will involve how
to better understand the output of the test matrix.

4.1 PLAYING AGAINST A LEADER OR FOLLOWER

To test the leader’s performance, we pit player 1 trained with stackgrad against player 2 trained
with simgrad. Futhurmore, to test the follower’s performance, we pit player 2 trained with
stackgrad against player 1 trained with simgrad. Finally, to test all agents’ performance, we pit all
agents against an agent performing random actions. The agents’ relative performance in the game
(i.e. which agent achieves a higher reward) is used to evaluate the agent’s performance relative to
other agents trained with different parameters or algorithms.
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P2
P1 simgrad leader random

simgrad 52.3% 48.9% 31.6%
follower 48.8% 45.0% 31.9%
random 66.4% 66.5% 50.0%

(a) Markov Soccer

P2
P1 simgrad leader random

simgrad 70.1% 53.3% 40.5%
follower 67.5% 52.8% 40.4%
random 74.5% 74.5% 50.0%

(b) Grid Hunter

Table 1: Tournament results. Percentage of games where player 1 achieves a higher reward than
player 2. A: In Markov Soccer, we see similar performance between simgrad and Stackelberg
agents. With similar results against random agents, and similar results when competing against each
other. The simgrad player 1 performed better than its player 2 counterpart. In contrast, the Stack-
elberg follower performed better than the Stackelberg leader counterpart. B: In Grid Hunter, we
see dominant performance of the simgrad player 1 against simgrad player 2 and the Stackelberg
follower. The Stackelberg leader had slightly better performance than the simgrad player 2 and its
Stackelberg follower counterpart. Similar to Markov Soccer, both algorithms had similar perfor-
mance against the random agent.

(a) Markov Soccer (b) Grid Hunter

Figure 3: Test performance. The test matrix of agents after playing a tournament in each envi-
ronment. The horizontal and vertical axes are indices for players 1 and 2, respectively. The color
represents the probability of player 1 receiving a higher score than player 2 when sampled from
500 episodes. A: In Markov Soccer, performance was similar between all agents. Most players are
equally likely to win, although some choices of parameters performed worse or better. B: In Grid
Hunter, agents with certain parameters performed better than all other agents.

4.2 PLAYING AGAINST RANDOM AGENTS

We employed agents performing random moves to test agent performance against a baseline. Gen-
erally, the simgrad and Stackelberg agents performed similarly better than the random agents. This
comparison against a baseline also revealed agent parameters that were not as strong or hyper per-
formers. As well as this, to test the validity of our environments and sample size, we competed two
random agents. As shown in Table 1, the results in both environments, the random agents player 1
had a 50.0% win percentage, proving symmetry of the environment.

4.3 TEST RESULTS

Competitive tournaments revealed the relative performance between agents. As shown in Table 1,
simgrad and Stackelberg performance as either player 1 or 2 against random agents was almost
identical. While against each other, player 2 of simgrad and Stackelberg performed similarly bet-
ter than the player 1. Interestingly, where simgrad player 1 performed better than the player 2,
Stackelberg was the opposite with a better performing follower than the leader.
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In Markov Soccer, performance was similar between all agents. However, one Stackelberg agent did
notably worst than the rest (batch size = 5000, learning rate = 0.1, neural net of size [128,64,32])
as shown as the distinct streak in Figure 3a. The best performing agents were simgrad with batch
sizes = 1000 or 5000, learning rate = 0.001 and neural net of size 128. Similar parameters for the
Stackelberg agents were close behind.

In Grid Hunter, agents with either policy gradient with a high batch size of 5000, learning rate of
0.01, and a neural net of size [64] highly performed against all other agents, likely due to the high-
dimensionality of the environment. Close behind were agents with batch size of 5000, learning rate
of 0.001, and neural net of size [128], as shown as the distinctly bright regions of Figure 3b. The
worst performing agents similarly had a learning rate of 0.1.

5 DISCUSSION

In this paper, we study the simultaneous and Stackelberg policy gradient algorithms and the perfor-
mance of agents trained with them. Our preliminary experiments show that leaders achieve a larger
average reward than followers for zero-sum games during training. On the other hand, in general
sum games, the leader did not show a significant advantage over the follower. More future work is
needed to examine the leader and followers’ learned strategies in general-sum games. For example,
we can perform analyses not only of their average rewards, but also of their trajectories through
the environment. In addition, we can compare these learned strategies to that of a fully-cooperative
general-sum game with team based reward setting.

A further investigation into how the Stackelberg learning dynamics affect the quality of the solutions
is needed. Other experiments can be devised to determine whether hierarchical training is beneficial
for particular types of environments and agent reward structures. Although our results found good
parameters for each environment, we can extend our work to find more suitable hyper parameters.
In particular, the learning rate ratio γ2/γ1 is a important parameter to tune, as it represents the
timescale separation between the agents. We want the follower to be attracted to its equilibrium at a
faster timescale than the leader.

In future work, we will test these learning updates on a wider range of environments. Currently, our
simple experiments serve as a testing ground for the algorithm. We plan to expand the domain of
environments and test our algorithm on other developed multi-agent gym packages.

Finally, we can further quantify the difference between agent performance under different hyper
parameters using a method for calcuating ELO scores (Gosiewska, 2019). Other works in RL has
utilized ELO scores in comparing agent models (Wang, 2021) as well as the addition of a Bayesian
algorithm to understand opponent behavior more (Yang, 2019). These extensions could provide a
new lens to evaluate the performance of agents trained using the Stackelberg policy gradient algo-
rithm.

6 CONCLUSION

Understanding the dynamics of Stackelberg games is an essential step for translating RL to more
comprehensive applications. An important aspect of this understanding is the performance between
simultaneous and Stackelberg players. In training the agents, we saw that the Stackelberg leader
rewards tend to be higher than the Stackelberg follower. Furthermore, in competitive tournaments in
zero-sum games, we saw similar performance between simgrad and Stackelberg agents. In contrast
to non-zero-sum games, we saw stronger performing player 1’s than player 2’s. In conclusion, we
show that agents that undergo hierarchical training can be beneficial to its performance when playing
against other agents.
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