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ABSTRACT

This paper introduces the Large Memory Model (LM2), a decoder-only Transformer
architecture enhanced with an auxiliary memory module that aims to address the
limitations of standard Transformers in multi-step reasoning, relational argumenta-
tion, and synthesizing information distributed over long contexts. The proposed
LM2 incorporates a memory module that acts as a contextual representation reposi-
tory, interacting with input tokens via cross attention and updating through gating
mechanisms. To preserve the Transformer’s general-purpose capabilities, LM2
maintains the original information flow while integrating a complementary mem-
ory pathway. Experimental results on the BABILong benchmark demonstrate that
the LM2model outperforms both the memory-augmented RMT model by 37.1%
and the baseline Llama-3.2 model by 86.3% on average across tasks. LM2 ex-
hibits exceptional capabilities in multi-hop inference, numerical reasoning, and
large-context question-answering. On the MMLU dataset, it achieves a 5.0% im-
provement over a pre-trained vanilla model, demonstrating that its memory module
does not degrade performance on general tasks. Further, in our analysis, we ex-
plore the memory interpretability, effectiveness of memory modules, and test-time
behavior. Our findings emphasize the importance of explicit memory in enhancing
Transformer architectures.

1 INTRODUCTION

Transformer-based models have achieved remarkable success. Landmark architectures such as GPT-3
Brown et al. (2020), BERT Kenton & Toutanova (2019), and Vision Transformers Dosovitskiy (2020)
have established state-of-the-art performance across a wide array of applications, including machine
translation Zhu et al. (2020), text summarization Liu & Lapata (2019), question-answering Li et al.
(2023), and image recognition Dosovitskiy (2020). As demonstrated by studies on large-scale models,
their generalization capabilities improve significantly with increased data and model size, leading
to emergent behaviors that extend beyond their original training objectives Kaplan et al. (2020);
Kang et al. (2024). Despite their significant contributions, current Transformer models encounter
critical limitations when applied to long context reasoning tasks Kuratov et al. (2024). For instance,
in the needle-in-a-haystack problem, models must answer questions that require reasoning across
facts scattered throughout exceedingly long documents. Effectively addressing tasks with extensive
context demands the model’s ability to discern essential information from vast amounts of irrelevant
data.

Recent memory-augmented architectures (e.g., Bulatov et al., 2022; Ko et al., 2024) attempt to
tackle these challenges by using recurrent prompts to track long context information. However,
these architectures primarily summarize previous answers into prompts without fully integrating
long-term information, leading to performance degradation over long contexts. For example, on Task
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2 (see appendix A), MemReasoner Ko et al. (2024) achieves a performance score of 60.6 for context
lengths under 8K, but drops significantly to 18.5 when the context length exceeds 16K. Additionally,
these models are specifically tailored for memory-based tasks, thereby sacrificing the generalization
capabilities inherent to large language models (LLMs).

To address these limitations, we propose the Large Memory Model (LM2), a novel architecture that
enhances the Transformer framework with a dedicated memory module. This module functions
as an auxiliary storage and retrieval mechanism, dynamically interacting with input embeddings
to improve performance. The memory module follows a structured process: initializing with a
memory bank, leveraging cross attention for efficient interaction with sequence embeddings, and
using gating mechanisms, such as forget and input gates, to selectively update stored information.
By decoupling memory storage and retrieval from immediate processing, LM2 provides a robust
solution for modeling long-term dependencies, overcoming the shortcomings of existing methods
while maintaining computational efficiency. This architecture is particularly well-suited for tasks
requiring long context and complex reasoning, offering a practical and scalable alternative to current
approaches.

Figure 1: Illustration of LM2 overall architecture.
It consists of a separate memory bank, which up-
dates the main information flow through cross at-
tention, and is updated using the input (I), output
(O), and forget (F ) gates. For the information flow
from one block to another, the gray curve shows
the normal attention flow and the pink curve shows
the extra memory flow.

Moreover, as illustrated in Figure 1, we main-
tain the original information flow—-namely, the
output embeddings passed from one block to the
next—-while introducing an additional, comple-
mentary memory information flow represented
by the memory embeddings. The memory in-
formation flow is controlled by a learnable out-
put gate, which uses cross attention to dynam-
ically regulate the amount of memory informa-
tion passed to subsequent layers. This design
ensures that the original attention information
flow remains intact while dynamically incorpo-
rating relevant memory information as needed.

We first evaluate the effectiveness of LM2 on
the BABILong dataset Kuratov et al. (2024), a
challenging benchmark specifically designed to
test memory-intensive reasoning capabilities. To
verify that our memory-based approach does
not undermine general performance, we also as-
sess LM2 on the MMLU benchmark Hendrycks
et al. (2021), which spans a broad array of aca-
demic subjects and difficulty levels. Across
both evaluations, LM2 outperforms state-of-the-
art (SOTA) memory model Recurrent Memory
Transformer (RMT) Bulatov et al. (2022) by up
to 80.4%, illustrating enhanced proficiency in
multi-hop inference, numerical reasoning, and
relational argumentation. These improvements
underscore the value of incorporating our ex-
plicit memory mechanisms within Transformer
architectures, enabling more robust handling of
extended contexts.

The contributions of this work are summarized as follows: (1) We propose a novel memory-augmented
Transformer architecture that incorporates a dynamic memory module capable of capturing and
leveraging long-term dependencies in sequential data. (2) We introduce an additional memory
information flow within the decoder block that complements the existing attention mechanism,
enabling the integration of enriched memory information while preserving the original attention
information. (3) Through extensive experiments on long context reasoning tasks (up to a context of
128K tokens), LM2 outperforms SOTA memory-augmented model RMT and non-memory baseline
Llama-3.2 on average 37.1% and 86.3%, respectively, demonstrating the practical benefits of our
approach.
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2 LARGE MEMORY MODEL (LM2)

We present Large Memory Model (LM2), a memory-augmented Transformer model designed to
enhance its long-term memory capabilities. LM2 consists of multiple Transformer decoder blocks,
augmented with a memory module that dynamically stores and updates intermediate sequences of
representations. The decoder block processes input sequences using positional embeddings, while
the memory module interacts with these embeddings via cross attention mechanisms. We use a
skip connection between the multi-head attention and the memory modules to facilitate learning
and maintain the original intermediate embeddings of the Transformer. The memory updates are
controlled by learnable control gates, denoted as F , I, and O, which correspond to the forget, input,
and output gates, respectively. The memory module operates through two primary stages: memory
information flow, and memory updates. Each of these stages is elaborated on in the following sections.

2.1 MEMORY INFORMATION FLOW

As depicted in Figure 1, we introduce an explicit memory module, named the memory bank M ∈
RN×d×d, designed to store long-term memory. Here, N denotes the number of memory slots, while
d represents the hidden dimension of each slot. For simplicity, each memory slot is initialized as an
identity matrix: Mr = Id×d, where r ∈ {1, . . . , N} and Id×d is the identity matrix.

We use a cross attention-based mechanism between the memory bank and input embeddings to locate
memory slots that contain relevant information. This approach is based on the idea that humans
tend to store and group related information together (e.g., in Documentation Science and Archival
Science (Dooley, 2007)). Note that the input embeddings E are encoded by the positional encoder,
which embeds the input tokens and persists the temporal correlations between states and actions.
Concretely, each input embedding E acts as the query, while the memory bank M serves as both the
key and the value store. Intuitively, this means we look up “where” (via the key) in M to find relevant
information and then retrieve it (via the value). To enable cross attention, the input embeddings
E ∈ RT×d (where T is the sequence length) and memory bank M are projected into query (Q), key
(K), and value (V) spaces:

Q = EtW
Q, K = MtW

K , V = MtW
V , (1)

where WQ,WK ,WV ∈ Rd×d are learnable projection matrices, and t stands for decoder block t.

The attention scores are computed as the scaled dot product of the query and key matrices: A =

softmax
(

QK⊤
√
d

)
, where A ∈ RT×N represents the alignment between the input sequence and

memory slots. The resultant attention output is Emem = AV, where Emem ∈ RT×d integrates
information from the input and memory. To ensure temporal consistency, causal masking is applied,
and optionally, top-k attention is used to retain only the most relevant memory interactions.

To regulate the influence of the memory information (gray path in Figure 1) on the existing attention
information flow (pink path in Figure 1), an output gate is introduced. The output gate dynamically
controls the contribution of the memory retrieval based on the cross attention output Emem:

gout = σ (EmemWout) , (2)

where Wout ∈ Rd×d is a learnable parameter matrix, and σ is the sigmoid activation function. The
gated memory output is then computed as:

Egated = gout ·Mt. (3)

The gated memory output is integrated into the standard attention flow of the Transformer decoder
through a skip connection. Specifically, the output of the self-attention mechanism, Eattn, is combined
with the gated memory output as Enext = Eattn+Egated. This skip connection ensures that the standard
attention output and the memory-augmented features jointly contribute to the next decoder layer. By
dynamically gating the memory retrieval and integrating it with the attention flow, LM2 effectively
balances the use of memory and contextual information, enhancing its ability to model long-term
dependencies while preserving the core Transformer operations.
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2.2 MEMORY UPDATES

As illustrated in Figure 2, the update process is divided into three distinct phases: the input, forget,
and output (previously described). By gating how much new information is introduced and how much
old information is discarded, the memory module avoids overwriting crucial long-term facts while
also eliminating irrelevant or outdated content when processing long context sequences.

Figure 2: Illustration of how memory module
works inside of each decoding block, where blue,
green, and red box corresponds to forget, input,
and output phase.

Input Phase During the input phase, the
model decides how much of the newly com-
puted embeddings (Emem) to incorporate into
the memory. To achieve this, first an input gate
is computed:

gin = σ
(
EtWin

)
, (4)

where Win ∈ Rd×d is a learnable parameter
matrix, Et is the current input representation,
and σ is the sigmoid activation function. This
gating mechanism serves as a filter, deciding
which relevant information should be “written”
into memory, while also preventing the influx of
noise or redundant details.

Forgetting Phase Once new information is made available during the input phase, the memory
must also decide which parts of its existing content to discard. This is governed by the forget gate:

gforget = σ
(
EmemWforget

)
, (5)

where Wforget ∈ Rd×d. By outputting values less than one, the forget gate selectively “erases”
memory slots that are no longer relevant, allowing the model to focus on more recent or salient
information.

Memory Update Combining these two gating mechanisms leads to the updated memory state:

Mt+1 = gin · tanh(Emem) + gforget ·Mt, (6)

where a tanh function is applied to keep the new memory content bounded. Through these regulated
phases, the memory module memorizes the most relevant information and removes outdated details,
ensuring that it remains both concise and informative over time.

3 PRE-TRAINING LM2

We base our work on the Llama-3 model framework Dubey et al. (2024), employing it as the
foundation for our Transformer architecture. Its architecture comprises 16 decoder blocks, each with
a model dimension of 2,048. The feed-forward networks within these blocks have an inner dimension
of 8,192. The model utilizes 32 attention heads, with 8 dedicated key/value heads.

Our memory module extends this architecture, consisting of 2,048 memory slots, each with a
dimension of 2,048. Memory modules are integrated into all 16 decoder blocks, as this configuration
empirically achieves the best performance (see Section 4.3 for detailed results). The Llama-3
framework comprises approximately 1.2 billion parameters, with an additional 0.5 billion parameters
introduced by the memory module, resulting in a total of 1.7 billion parameters for the LM2 model.

For pre-training, we leverage a high-quality dataset sourced from the SmolLM-Corpus Loubna
et al. (2023). The dataset is structured into three distinct sections: synthetic test-books and stories,
educational web content, and python codes. To ensure a focused evaluation on language tasks, we
exclude Python sample training data from this process. The specific details of the training dataset
are outlined as follows: Synthetic Textbooks and Stories: Generated using advanced language
models to cover a wide range of topics, providing 28 billion tokens of diverse educational content.
Educational Web Content: Filtered and deduplicated web pages from FineWeb-Edu Penedo et al.
(2024), contributing 220 billion tokens of high-quality educational material.
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Table 1: Performance on the BABILong dataset: All models are evaluated on various context lengths
ranging from 0K, 1K, 2K, and 4K to an aggregated average length of ≥ 8K. Qa stands for various
subsets. Due to page limits, we aggregate the results for 8K, 16K, 32K, 64K, and 128K into a single
metric, with detailed results provided in Appendix B.

model qa1 qa2 qa3 qa4 qa5 qa6 qa7 qa8 qa9 qa10 Avg.
0K

Llama-3.2-1.2B 54.0 25.0 29.0 62.0 59.0 49.0 14.0 52.0 41.0 22.0 40.7
vanilla-Llama-1.7B 86.0 57.0 46.0 59.0 85.0 83.0 95.0 79.0 83.0 77.0 75.0

RMT-1.7B 85.0 49.0 49.0 81.0 95.0 84.0 82.0 78.0 85.0 76.0 76.4
LM2-1.7B 99.0 89.0 70.0 88.0 98.0 95.0 96.0 97.0 99.0 94.0 92.5

1K
Llama-3.2-1.2B 48.0 22.0 24.0 55.0 69.0 49.0 9.0 31.0 55.0 33.0 39.5

Llama-3.2-1.2B-RAG 51.0 14.0 19.0 59.0 80.0 49.0 10.0 38.0 40.0 46.0 40.6
vanilla-Llama-1.7B 31.0 21.0 44.0 43.0 71.0 60.0 71.0 40.0 67.0 58.0 50.6

RMT-1.7B 35.0 26.0 29.0 33.0 61.0 50.0 83.0 41.0 68.0 53.0 47.9
LM2-1.7B 85.0 59.0 72.0 68.0 91.0 84.0 96.0 69.0 82.0 77.0 78.3

2K
Llama-3.2-1.2B 44.0 18.0 19.0 50.0 64.0 52.0 18.0 24.0 55.0 42.0 38.6

Llama-3.2-1.2B-RAG 52.0 11.0 12.0 49.0 75.0 48.0 5.0 33.0 50.0 43.0 37.8
vanilla-Llama-1.7B 25.0 22.0 37.0 34.0 58.0 60.0 65.0 38.0 66.0 58.0 46.3

RMT-1.7B 44.0 21.0 43.0 41.0 79.0 47.0 78.0 41.0 69.0 51.0 51.4
LM2-1.7B 58.0 43.0 64.0 43.0 87.0 73.0 93.0 53.0 75.0 69.0 65.8

4K
Llama-3.2-1.2B 37.0 16.0 25.0 56.0 56.0 50.0 14.0 27.0 55.0 32.0 36.8

Llama-3.2-1.2B-RAG 47.0 3.0 16.0 58.0 68.0 58.0 3.0 36.0 45.0 39.0 37.3
vanilla-Llama-1.7B 21.0 18.0 38.0 28.0 55.0 61.0 64.0 35.0 49.0 53.0 42.2

RMT-1.7B 24.0 20.0 22.0 24.0 28.0 46.0 75.0 35.0 65.0 45.0 38.4
LM2-1.7B 46.0 37.0 48.0 34.0 78.0 66.0 93.0 45.0 62.0 50.0 55.9

AVG. Length ≥8K
Llama-3.2-1.2B 19.0 8.0 17.8 27.3 36.5 49 21.3 12.8 48.0 41.8 28.2

Llama-3.2-1.2B-RAG 29.3 1.0 5.0 55.8 72.0 49.8 4.8 22.8 46.3 36.8 32.3
vanilla-Llama-1.7B 11.3 15.0 21.3 14.5 31.0 44.0 63.0 33.5 42.0 36.3 31.2

RMT-1.7B 17.5 14.5 20.5 22.5 20.3 47.0 73.3 34.5 62.5 43.0 35.5
LM2-1.7B 23.8 15.0 24.5 24.0 38.8 47.3 92.8 37.0 53.8 42.0 39.9

4 EXPERIMENTS

We design our experiments to answer the following questions: Q1: How does LM2 perform in
memory tasks? Q2: Does LM2 harm the performance in general tasks? Q3: Do we need to include
the memory module in all decoder blocks? Q4: What is stored in the memory bank? Q5: How is the
memory module updated at test-time?

To evaluate LM2, we compare its performance against the following baselines: vanilla-Llama-1.7B:
The Llama 3.2 architecture, pre-trained from scratch on the same datasets as LM2. We scale this
model to 1.7 billion parameters for a fair comparison. RMT-1.7B: Recurrent Memory Transformer
(RMT) Bulatov et al. (2022) is a memory-augmented framework that generates memory tokens,
serving as an additional module built on top of existing LLMs. We use the LLaMA-1.7B model
as the backbone and fine-tune it on the bAbI training dataset Weston et al. (2016), following the
methodology outlined in Kuratov et al. (2024) and Ko et al. (2024). Llama-3.2-1.2B: To show
case the effectiveness of LM2 we also compared the model against the original model trained by
Meta, with the same total number of pure Transformer parameters (1.2B), but trained on far more
high-quality tokens. Llama-3.2-1.2B-RAG: Lastly, we compare with a version of Llama with
retrieval-augmented generation (RAG) to better handle long context problems.

4.1 PERFORMANCE ON MEMORY TASKS

BABILong The BABILong dataset Kuratov et al. (2024) extends bAbI benchmark Weston et al.
(2016) by incorporating significantly longer contexts and more intricate queries, thus demanding
advanced memory capabilities and multi-step reasoning. By increasing both contextual and computa-
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tional challenges, BABILong offers a rigorous evaluation benchmark for testing memory-augmented
models.

Table 1 presents a comparison of our model against the baselines on the BABILong dataset. We
report results across multiple context lengths, from 0K context-length, which is identical to bAbI
dataset, to the maximum context length of 128K, which is the target context-length of the backbone
Llama-3.2 model. From this table, we observe several key findings as follows:

Single Step
Reasoning

Multi-step
Reasoning

Relation
Tracking

Basic
Query

Negation &
Uncertainty

10
20
30
40
50
60
70

Llama-3.2-1.2B
LM2-1.7B
vanilla-Llama-1.7B

RMT-1.7B
Llama-3.2-1.2B-RAG

Figure 3: Performance on BABILong benchmark
with different capabilities.

Performance at bAbI benchmark (0K).
Without additional context, LM2-1.7B achieves
the highest average accuracy of 92.5%, surpass-
ing Llama-3.2-1.2B, vanilla-LLama-1.7B, and
RMT-1.7B, which average results are 40.7%,
75.0% and 76.4%, respectively. Because
Llama-3.2-1.2B-RAG is designed for retrieval-
augmented generation and evaluated only at
longer contexts, it is not included in the 0K set-
ting. This suggests that LM2’s underlying mod-
eling improvements enhance its core reasoning
ability.

Performance at Long Context Lengths (1K–
4K). As context length increases, performance
generally degrades for all models, but LM2-1.7B
maintains a noticeable improvement over both
standard and retrieval-augmented Llama vari-
ants and RMT. For instance, at 4K, LM2-1.7B’s
average accuracy (55.9%) is higher than Llama-
3.2-1.2B, vanilla-LLama-1.7B, and RMT-1.7B,
which average results are 36.8%, 42.2% and 48.4%, respectively. This gap underscores LM2’s
effectiveness for long-term memory ranging from 1K to 4K.

Performance at Long Contexts (8K–128K). Although all models exhibit some accuracy decline
at these extreme long context lengths, LM2-1.7B remains robust. RMT-1.7B shows reasonable
robustness, yet still falls short of LM2-1.7B on most tasks. RAG methods demonstrate some
improvements over the baseline Llama, but still falls behind memory-based methods. These results
highlight LM2’s ability to handle long context problems where Transformer-based models struggle.

Table 2: Performance on MMLU dataset. For bet-
ter visualization, the dataset is categorized on two
criteria - subject and difficulty.

vanilla
Llama RMT LM2

Subject
Category

STEM 27.2 25.7 28.1
Humanities 28.7 26.7 32.2

Social Sciences 29.2 27.0 31.6
Others 27.7 27.1 28.0

Difficulty
Level

High School 28.8 26.5 30.4
College 27.7 27.1 29.0

Professional 27.5 26.6 27.6
General

Knowledge 27.2 25.6 28.5

Average 28.0 26.5 29.4

Performance at Different Reasoning Types
To further understand how LM2 performs in
different reasoning scenarios, we group the BA-
BILong dataset into five categories: (1) Single-
step Reasoning (qa1), (2) Multi-step Reasoning
(qa2–3), (3) Relation Tracking (qa4–5), (iv) Ba-
sic Queries (qa6–8), and (v) Negation & Un-
certainty (qa9–10). Figure 3 depicts the results
in a radar chart, where higher values indicate
better performance. Across nearly all task cate-
gories except for Relation Tracking, LM2-1.7B
demonstrates the best performance. Notably,
LM2 outperforms the other methods on both sin-
gle and multi-step reasoning, indicating that it
can handle more complex, multi-hop inferences
and direct fact retrieval with fewer errors. The
improvement margin is larger for Basic Queries,
Single-Step Reasoning, and Multi-step Reason-
ing, suggesting that LM2 has strong abilities to retrieve long-term facts and apply them in complex
reasoning tasks. The marginally lower performance on Relation Tracking can be attributed to RAG’s
approach of chunking the context into smaller, more focused “documents” and retrieving only the
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most relevant pieces at inference time. RAG makes it much easier to precisely identify which facts
are associated with the queried relationship, thus serving as an extremely strong baseline for this task
category.

4.2 PERFORMANCE ON GENERAL BENCHMARKS

To further evaluate if introducing an extra memory module affects LLMs’ general performance, we
evaluate the proposed memory-based model, LM2, on the MMLU benchmark Hendrycks et al. (2021),
which tests a broad spectrum of subject areas—STEM, Humanities, Social Sciences, and Others—as
well as varied difficulty levels—High School, College, Professional, and General Knowledge. Table
2 presents the results of LM2 in comparison to vanilla-Llama and RMT.

Overall, LM2 demonstrates a clear performance gain, improving the average accuracy of vanilla-
Llama from 28.0% to 29.4%. On the contrary, despite sharing the same pre-trained model, RMT
degrades the performance of vanilla-Llama to 26.5%. Notably, LM2 achieves substantial gains in
Humanities and Social Sciences, where LM2 surpasses vanilla-Llama by 3.5% and 2.4%, respectively.
These categories often involve context-rich questions, suggesting that LM2’s memory-based approach
is advantageous for retaining and leveraging more nuanced and interconnected information. Mean-
while, LM2 also sustains competitive performance in STEM and Others, indicating its robustness
beyond highly specialized domains.

These results illustrate that LM2 overcomes the drawback associated with memory-augmented
models: performance degradation on more general tasks. Current memory-based architectures are
carefully designed for memory tasks, weakening their ability to general LLM tasks. However, LM2’s
performance on all categories of MMLU dataset indicates that the proposed memory mechanism
does not impede its general applicability.

4.3 IMPACT OF MEMORY MODULES

0B 25B 50B 75B 100B 125B 150B 175B
Number of tokens (B)

101

102

pe
rp

le
xi

ty

vanilla
1 block
6 blocks
12 blocks
16 blocks

Figure 4: We evaluate variations of integrating
memory within the decoder blocks. The number
indicates how many of the initial decoder blocks
include the memory module, as we found that the
order of implementing memory modules does not
affect performance.

We evaluate the effectiveness of proposed mem-
ory modules using perplexity as the primary met-
ric across varying numbers of training tokens
(measured in billions). Figure 4 illustrates the
perplexity trends for the baseline vanilla-Llama
and LM2 with varying degrees of memory in-
tegration (i.e., 1, 6, 12, and 16 blocks), where
16 is the maximum number of blocks used in
Llama-3.2-1B.

The results demonstrate that integrating mem-
ory information more extensively throughout the
decoder leads to improved model performance.
Specifically, implementing the memory module
in only the first block achieves similar results to
the vanilla Llama, but with slower convergence.
This suggests that introducing a single memory
flow does not degrade overall performance but
may slow down training because of extra memory optimization. In contrast, incorporating more
memory flows, such as in the 6-block configuration, leads to lower perplexity, highlighting the effec-
tiveness of the proposed memory flow design. The 16-block configuration significantly outperforms
the limited 1-block integration, validating that the proposed memory flow is highly advantageous for
reducing perplexity and enhancing the overall capabilities of the model.

4.4 ANALYSIS OF MEMORY REPRESENTATIONS

To gain deeper insights into the information encoded within the memory module, we utilize the Neuron
Explainer method Bills et al. (2023). It generates natural language explanations of neuron behavior,
simulates activations using these descriptions, and evaluates their accuracy through predictive scoring.
We utilize this approach to explain the latent representations of specific memory slots, which helps
understand how these slots process and retain task-relevant information. By analyzing activations
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within the memory module, the Neuron Explainer identifies patterns in latent representations of each
memory slot, mapping them to specific elements of the input text.

Figure 5: We sample a question from MMLU to
test the LM2 in a few-shot fashion. To study how
the memory module focuses on relevant informa-
tion, we place useful information inside one of the
few-shot examples.

We evaluate LM2 using the input text illustrated
in Figure 5. Subsequently, we identify and rank
the most relevant memory slots, selecting two
for sampling (slots 1679 and 1684) along with
one of the least relevant memory slot (slot 1).
Utilizing the neuron explainer, we investigate
the relevance rationales.

Explanation 4.1: Memory Slot 1679

This memory slot’s representations for this
specific input text suggest that the memory
module’s focus is likely on detecting factual
information, question and answer structures.

These observations suggest that Memory Slot
1679 specializes in retrieving and synthesiz-
ing factual information for the target question,
functioning as a repository for domain-specific
knowledge and structured reasoning.

Explanation 4.2: Memory Slot 1684

This representations in this memory slot is
designed to focus on specific elements within
the input text, as evidenced by the pattern in
the memory bank.

Memory Slot 1684, in contrast, demonstrated
a focus on structural elements within the input text. Its activations aligned closely with linguistic
markers and contextual cues, such as “Options:” or “Answer:”. This behavior implies that Memory
Slot 1684 facilitates the model’s comprehension of input organization, enabling effective parsing of
complex instruction formats and multi-part structures.

Explanation 4.3: Memory Slot 1

The representations in this memory slot for the provided input text are primarily negative. This
suggests that the module is not detecting the specific aspects it was designed to recognize in the
input text.

Memory Slot 1, on the other hand, showed predominantly negative activations across the input text,
indicating minimal engagement with the task-specific content.

These findings underline the importance of memory modules in gathering information for the
generation tasks.

4.5 TEST-TIME MEMORY ADAPTATIONS

We further investigate how memory updates influence model generation during test time. To explore
this, we analyze the example illustrated in Figure 5. Cross attention heatmaps, presented in Figure 6,
provide key insights into these memory updates.

Figure 6a shows the cross attention heatmap prior to memory updates. In this figure, tokens such as
“France” and “Paris” strongly engage with the memory. These tokens do not pertain specifically to
the target question about photosynthesis. Instead, on the first pass, memory initially focuses on the
structure of question as well as identifying factual information.

Next, we examine the memory heatmap after various inference update steps (one inference step
corresponds to a single forward pass for one token). As depicted in Figure 6b, the tokens attended
to by the memory slots shift toward those relevant to the target question. Since cross attention
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exclusively computes the relationships between input tokens and memory, this shift reflects the
influence of test-time memory updates. These changes highlight the adaptive nature of memory
during inference.
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(a) Heatmaps before memory update.
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(b) Heatmaps after memory update.

Figure 6: Cross-attention heatmaps between input tokens and memory. The x-axis shows the memory
slots sorted by slot number. The y-axis shows the most attended tokens. Diagonal attentions are
marked with “+”.

5 RELATED WORK

Various methods have been proposed to augment Transformers with memory. One direction is to
optimize the attention mechanisms and use some global representations acting as memory points to
ensure input coverage. Models like Longformer Beltagy et al. (2020), Big Bird Zaheer et al. (2020),
GMAT Gupta & Berant (2020) and Extended Transformer Construction Ainslie et al. (2020) all
proposed some sparse attention mechanisms to reduce the quadratic dependency of self-attention to
linear and introduced global tokens to encode the information from the entire sequence. Another
line of work introduces memorization capabilities to Transformers through recurrence. Transformer-
XL Dai et al. (2019) addresses the limitation of fixed-length context by introducing segment-level
recurrence and relative position encodings. However, during training, gradients are restricted to
individual segments, limiting the model’s ability to capture long-term temporal dependencies. Recur-
rent Memory Transformer (RMT) Bulatov et al. (2022) mitigates these limitations by introducing a
more efficient memory mechanism. It adds recurrence to Transformers via a small number of special
overlapping memory tokens between segments of long sequences, enabling gradients to propagate
across them while significantly reducing memory usage. RMT outperforms Transformer-XL for
sequence processing tasks and is on par with Transformer-XL on language modeling, but requires less
memory. Associative RMT (ARMT) Rodkin et al. (2024) is a follow-up to RMT that addresses its
time complexity issues. Similarly, MemReasoner Ko et al. (2024) introduces a memory-augmented
LLM architecture designed for temporal reasoning. However, as demonstrated by Kuratov et al.
(2024) and Ko et al. (2024), RMT continues to outperform these subsequent models, maintaining its
status as the state-of-the-art (SOTA) method. Therefore, we primarily consider RMT as the SOTA
memory-based model and compare LM2 against it.

6 CONCLUSION

In this paper, we introduced Large Memory Model (LM2), a memory-augmented Transformer
architecture designed to address long context reasoning challenges. The key innovation is the memory
module, integrated inside the decoder blocks, which augments the model with additional memory
information while also updating itself. Empirical results on the BABILong benchmark highlights
LM2’s advantages on various long context tasks. On average across tasks, LM2 outperforms the
SOTA memory-augmented RMT model by 37.1%, and a non-memory baseline Llama-3.2 model
by 86.3%. Furthermore, LM2 achieves improvement over baselines on the MMLU benchmark,
evidencing that its memory module does not degrade performance on general tasks. Overall, these
findings underscore the importance of explicit memory mechanisms, and lay a foundation for further
research on integrating long-term memory into large language models.
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A BABILONG DATASET

This section provides an overview of the tasks in BABILong. Each task targets a specific aspect of
language understanding and reasoning, forming a core benchmark for assessing model performance
on retrieve factors from long context.

• Task 1: Single Supporting Fact
Goal: Identify and use exactly one piece of relevant information from the text to answer a
question.
Key Challenge: Pinpointing the specific sentence or fact that directly yields the correct
answer.

• Task 2: Two Supporting Facts
Goal: Answer questions using two pieces of interconnected information.
Key Challenge: Linking separate facts and understanding how they combine to produce the
correct answer.

• Task 3: Three Supporting Facts
Goal: Extend the reasoning chain to three distinct pieces of information.
Key Challenge: Maintaining accuracy over longer inference chains and managing multiple
pieces of related text.

• Task 4: Two Argument Relations
Goal: Understand relationships involving two entities (arguments) to answer questions.
Key Challenge: Correctly interpreting and manipulating relational information (e.g., who
gave what to whom) with two entities.

• Task 5: Three Argument Relations
Goal: Similar to Task 4 but introduces a third entity in the relationship.
Key Challenge: Tracking more complex interactions among three entities while maintaining
clarity and correctness.

• Task 6: Yes/No Questions
Goal: Provide binary (yes/no) answers based on the facts.
Key Challenge: Determining whether sufficient evidence exists in the text to affirm or deny
the query.

• Task 7: Counting
Goal: Count the number of times or entities that meet certain conditions.
Key Challenge: Performing numerical reasoning and accurately tracking quantities within
the text.

• Task 8: Lists/Sets
Goal: Gather all items satisfying specific criteria into a list or set.
Key Challenge: Aggregating multiple elements from different parts of the text into a cohesive
list/set.

• Task 9: Simple Negation
Goal: Handle statements containing negation.
Key Challenge: Understanding how negative statements (e.g., “John did not pick up the
apple”) alter the truth value and impact the answer.

• Task 10: Indefinite Knowledge
Goal: Work with statements that contain incomplete or uncertain information.
Key Challenge: Managing and expressing knowledge not explicitly stated (e.g., “Someone
picked up the apple, but we don’t know who”).

B BABILONG BENCHMARK RESULTS

In Table 3, we present the whole expeirments of compared models on BABILong benchmark.
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Table 3: Detailed performance of BABILong benchmark

model qa1 qa2 qa3 qa4 qa5 qa6 qa7 qa8 qa9 qa10
0K

Llama-3.2-1.2B 54.0 25.0 29.0 62.0 59.0 49.0 14.0 52.0 41.0 22.0
Llama-3.2-3.2B 62.0 37.0 29.0 64.0 82.0 53.0 25.0 53.0 65.0 56.0

vanilla-Llama-1.7B 86.0 57.0 46.0 59.0 85.0 83.0 95.0 79.0 83.0 77.0
RMT-1.7B 85.0 49.0 49.0 81.0 95.0 84.0 82.0 78.0 85.0 76.0
LM2-1.7B 99.0 89.0 70.0 88.0 98.0 95.0 96.0 97.0 99.0 94.0

1K
Llama-3.2-1.2B 48.0 22.0 24.0 55.0 69.0 49.0 9.0 31.0 55.0 33.0

Llama-3.2-1.2B-RAG 51.0 14.0 19.0 59.0 80.0 49.0 10.0 38.0 40.0 46.0
vanilla-Llama-1.7B 31.0 21.0 44.0 43.0 71.0 60.0 71.0 40.0 67.0 58.0

RMT-1.7B 35.0 26.0 29.0 33.0 61.0 50.0 83.0 41.0 68.0 53.0
LM2-1.7B 85.0 59.0 72.0 68.0 91.0 84.0 96.0 69.0 82.0 77.0

2K
Llama-3.2-1.2B 44.0 18.0 19.0 50.0 64.0 52.0 18.0 24.0 55.0 42.0

Llama-3.2-1.2B-RAG 52.0 11.0 12.0 49.0 75.0 48.0 5.0 33.0 50.0 43.0
LM2-1.7B 58.0 43.0 64.0 43.0 87.0 73.0 93.0 53.0 75.0 69.0
RMT-1.7B 44.0 21.0 43.0 41.0 79.0 47.0 78.0 41.0 69.0 51.0

vanilla-Llama-1.7B 25.0 22.0 37.0 34.0 58.0 60.0 65.0 38.0 66.0 58.0
4K

Llama-3.2-1.2B 37.0 16.0 25.0 56.0 56.0 50.0 14.0 27.0 55.0 32.0
Llama-3.2-1.2B-RAG 47.0 3.0 16.0 58.0 68.0 58.0 3.0 36.0 45.0 39.0

LM2-1.7B 46.0 37.0 48.0 34.0 78.0 66.0 93.0 45.0 62.0 50.0
RMT-1.7B 24.0 20.0 22.0 24.0 28.0 46.0 75.0 35.0 65.0 45.0

vanilla-Llama-1.7B 21.0 18.0 38.0 28.0 55.0 61.0 64.0 35.0 49.0 53.0
8K

Llama-3.2-1.2B 26.0 11.0 24.0 40.0 52.0 44.0 25.0 19.0 44.0 40.0
Llama-3.2-1.2B-RAG 36.0 1.0 5.0 57.0 72.0 49.0 8.0 28.0 44.0 35.0

LM2-1.7B 34.0 12.0 31.0 26.0 63.0 53.0 95.0 40.0 57.0 49.0
RMT-1.7B 14.0 15.0 25.0 28.0 25.0 47.0 74.0 38.0 65.0 46.0

vanilla-Llama-1.7B 17.0 19.0 26.0 20.0 41.0 51.0 60.0 37.0 42.0 45.0
16K

Llama-3.2-1.2B 24.0 6.0 19.0 33.0 46.0 55.0 20.0 13.0 47.0 48.0
Llama-3.2-1.2B-RAG 26.0 2.0 9.0 59.0 76.0 45.0 5.0 29.0 52.0 36.0

LM2-1.7B 23.0 17.0 28.0 28.0 39.0 44.0 93.0 38.0 48.0 42.0
RMT-1.7B 23.0 9.0 18.0 23.0 19.0 47.0 75.0 33.0 62.0 42.0

vanilla-Llama-1.7B 10.0 11.0 21.0 11.0 37.0 59.0 61.0 34.0 46.0 46.0
32K

Llama-3.2-1.2B 15.0 7.0 15.0 24.0 46.0 54.0 23.0 13.0 53.0 46.0
Llama-3.2-1.2B-RAG 28.0 1.0 2.0 51.0 74.0 51.0 2.0 19.0 41.0 32.0

LM2-1.7B 19.0 13.0 20.0 23.0 31.0 50.0 92.0 35.0 59.0 39.0
RMT-1.7B 12.0 16.0 20.0 18.0 22.0 46.0 74.0 34.0 62.0 43.0

vanilla-Llama-1.7B 10.0 17.0 24.0 13.0 30.0 54.0 71.0 33.0 39.0 53.0
64K

Llama-3.2-1.2B 11.0 8.0 13.0 12.0 42.0 43.0 17.0 6.0 48.0 33.0
Llama-3.2-1.2B-RAG 27.0 0.0 4.0 56.0 66.0 54.0 4.0 15.0 48.0 44.0

LM2-1.7B 19.0 18.0 19.0 19.0 22.0 42.0 91.0 35.0 51.0 38.0
RMT-1.7B 21.0 18.0 19.0 21.0 15.0 48.0 70.0 33.0 61.0 41.0

vanilla-Llama-1.7B 8.0 13.0 14.0 14.0 16.0 52.0 60.0 30.0 41.0 41.0
128K

Llama-3.2-1.2B-RAG 17.0 0.0 3.0 51.0 73.0 49.0 5.0 11.0 46.0 39.0
LM2-1.7B 15.0 16.0 12.0 19.0 23.0 48.0 91.0 34.0 54.0 38.0
RMT-1.7B 17.0 13.0 20.0 21.0 18.0 47.0 72.0 35.0 64.0 42.0

vanilla-Llama-1.7B 7.0 14.0 19.0 12.0 13.0 52.0 63.0 28.0 46.0 42.0
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