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Abstract

Large language models (LLMs) exhibit001
pronounced conservative bias in relation002
extraction tasks, frequently defaulting to003
NO_RELATION label when an appropriate op-004
tion is unavailable. While this behavior helps005
prevent incorrect relation assignments, our anal-006
ysis reveals that it also leads to significant in-007
formation loss when reasoning is not explic-008
itly included in the output. We systematically009
evaluate this trade-off across multiple prompts,010
datasets, and relation types, introducing the011
concept of Hobson’s choice to capture scenar-012
ios where models opt for safe but uninforma-013
tive labels over hallucinated ones. Our findings014
suggest that conservative bias occurs twice as015
often as hallucination. To quantify this effect,016
we use SBERT and LLM prompts to capture017
the semantic similarity between conservative018
bias behaviors in constrained prompts and la-019
bels generated from semi-constrained and open-020
ended prompts.021

1 Introduction022

Recent advancements in LLMs have shown im-023

pressive ability to capture rich semantic knowledge024

and excel in tasks like text generation and ques-025

tion answering (Wadhwa et al., 2023a). As these026

models are increasingly deployed for complex nat-027

ural language processing tasks, including relation028

extraction (Wadhwa et al., 2023b), distinct behav-029

ioral patterns have emerged that warrant careful030

examination.031

One such pattern is hallucination, where LLMs032

generate content (or relations) beyond the provided033

context (or available options). This phenomenon034

has attracted enormous attention within the LLM035

community (Sriramanan et al., 2024; Zhang et al.,036

2024), as it is often perceived as a limitation in037

most applications. However, hallucination also038

presents opportunities for innovation, particularly039

in domains that benefit from creative generation040

such as image synthesis and other generative AI 041

applications (Jiang et al., 2024). 042

Given the substantial research on hallucination 043

detection (Yehuda et al., 2024; Li et al., 2024), we 044

have observed a reduction in hallucination rates. 045

This reduction has led us to explore other emergent 046

behaviors of LLMs that may have significant down- 047

stream effects. We focused on relation extraction 048

tasks using LLMs, where we initially anticipated 049

some degree of hallucination. However, our find- 050

ings revealed minimal occurrences of such behav- 051

ior. Instead, we observed a distinct pattern where 052

LLMs consistently exhibit a systematic bias to- 053

wards classifying instances as NO_RELATION even 054

when a more appropriate relation is available, pre- 055

senting a “Hobson’s choice” scenario. We attribute 056

this behavior to alignment strategies designed to 057

reduce hallucinations by reinforcing contextual ad- 058

herence while suggesting external alternatives. We 059

define this preference for overly cautious responses 060

as Conservative Bias (CB). 061

In relation extraction tasks, LLMs exhibit a dis- 062

tinct CB, defaulting to the least incorrect classifi- 063

cation when faced with uncertainty. Unlike hal- 064

lucination, this bias leads to a unique form of in- 065

formation loss by creating “Hobson’s choice” sce- 066

narios, where models favor safe but uninformative 067

labels even when more suitable alternatives exist. 068

This work addresses three key research questions: 069

(1) How can we capture and quantify this CB? (2) 070

What is its relationship to hallucination prevention? 071

(3) How can we leverage this behavior to improve 072

relation extraction tasks? 073

2 Related Work 074

Recent studies highlight emergent LLM behaviors 075

like sycophancy and hallucination, which impact 076

reliability and trustworthiness in downstream ap- 077

plications (Rrv et al., 2024). Sycophancy, where 078

models tend to align responses with user views, ir- 079
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LLM Output Analysis: The sentence states that
"Mr. Billingsley owned approximately 22.2% of the
outstanding shares of Mentor Capital, Inc.’s Common
Stock". This indicates that Mr. Billingsley has a
stake or ownership in the company, but it does not
necessarily mean he is an employee, founder, or
member of the company. Therefore, none of the
options ’founder_of’, ’employee_of’, ’member_of’
accurately describe the relationship between Mr.
Billingsley and Mentor Capital, Inc. However, since
there is a clear relationship of ownership, the option
’no_relation’ would also be incorrect. Unfortunately,
the provided options do not include a relation class that
accurately reflects this relationship. Given the provided
options, the best choice would be ’no_relation’ as it is
the least incorrect. But please note, a more accurate
relation class would be ’owner_of’ or ’shareholder_of’,
if it was available in the options.

Relation type: Person–Organization

LLM Conclusion: NO_RELATION
LLM Suggestion: OWNER_OF OR SHAREHOLDER_OF

Figure 1: Example: LLM Output from REFinD dataset.

respective of objective correctness. (Sharma et al.,080

2023). This behavior is mostly prevalent in models081

whose fine-tuning employs human feedback and082

which can be mitigated using synthetic data (Wei083

et al., 2024).084

Hallucinations have received much attention085

from the research community (Huang et al., 2025a;086

Sahoo et al., 2024; Huang et al., 2025b). Among087

proposed hallucination mitigation methods, Su088

et al. (2024) investigated LLM hallucinations in089

entity/relation extraction tasks proposing mitigat-090

ing techniques. Advances in prompt engineering091

(Wadhwa et al., 2023a) have also mitigated halluci-092

nations by constraining responses to given contexts093

(Sadat et al., 2023).094

As prompt engineering advances, new emergent095

behaviors in LLMs may arise. To the best of our096

knowledge, Conservative Bias behavior has not097

been explored in existing literature.098

3 Method099

Our research aims to analyze CB in LLMs. We100

investigate the frequency with which LLMs default101

to the least incorrect labels from a list of options, as102

opposed to generating hallucinated relations. We103

analyze the rates of hallucination and CB across104

multiple prompt iterations. We also explore practi-105

cal applications where CB can be utilized to refine106

relation classification, potentially expanding exist-107

ing relations.108

Formally, CB is detected in an output when: (i.) 109

the model recognizes that a valid relation exists. 110

(ii.) the correct relation type is not available in the 111

option set. (iii.) the model chooses to default to 112

NO_RELATION or selects the least incorrect (subop- 113

timal) option. (iv.) the model demonstrates aware- 114

ness of the correct relation through reasoning, sug- 115

gesting it when appropriate to preserve the integrity 116

of extracted relations. See example in Figure 1. 117

For evaluation purposes, we designed three types 118

of prompts: Constrained Prompt, Semi-constrained 119

Prompt, and Open-ended Prompt and assessed per- 120

formance using four measures: Hobson’s Choice 121

Rate (HCR), Conservative Bias Rate (CBR), Hallu- 122

cination Rate (HR) and New Relation Rate (NRR). 123

3.1 Prompting Design 124

Figure 2: Process Workflow.

We adopted a multi-tiered approach to prompt 125

design, where each level offers varying degrees of 126

specificity to the LLMs. This approach explores 127

how different levels of constraint affect the LLMs’ 128

ability to generate and select appropriate relations. 129

The prompt categories are defined as follows: 130

Open-ended Prompts: represent the least con- 131

strained interaction with LLMs. In this setup, no 132

predefined list of relation classes is provided. In- 133

stead, the LLMs are tasked with generating the 134

most suitable relation between subject and object 135

based on the input data. 136

Semi-Constrained Prompts: offer a moderate 137

level of guidance. Here, LLMs are provided with a 138

list of relations to choose from, which varies based 139

on entity-pair type. However, the models retain 140

the flexibility to propose a relation if none of the 141

provided options are deemed most appropriate. 142

Constrained Prompts: are the most restrictive, 143

requiring LLMs to select the best relation from a 144

predefined list of options (relation classes). These 145

prompts are designed to assess the LLMs’ judg- 146

ment and decision-making capabilities when faced 147

with a limited set of possibilities. 148

By employing this tiered prompting strategy, as 149

seen in Figure 2, we provide the LLMs with mul- 150

tiple perspectives before prompting them to select 151
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a final label, aiming to provide enough context for152

detecting relations between subject and object that153

might be missed by a human labeler.154

3.2 Metrics155

HCR represents a scenario where a model selects156

the least incorrect option due to absence of a157

truly correct one, with CBR measuring how of-158

ten LLM defaults to a conservative choice (e.g.,159

NO_RELATION) despite recognizing a more appro-160

priate but unavailable relation.161

HCR =
NHC

N total
, CBR =

NCB

N total
(1)162

where NHC = Number of instances where model163

selects NO_RELATION (or suboptimal option) de-164

spite recognizing a valid relation, NCB = Number165

of instances where model exhibits CB, meaning it166

chooses NO_RELATION (or least incorrect option)167

despite recognizing a valid relation.168

The HR quantifies how often an LLM generates169

an unsupported or non-existent relation, while the170

NRR measures how often the model proposes a171

valid relation not present in the provided options,172

helping detect meaningful relations and justifying173

the correctness of CB.174

HR =
NH

N total
, NRR =

NNR

N total
(2)175

where NH = Number of instances where the model176

hallucinates (i.e., generates a relation that is factu-177

ally incorrect or not supported by the input data),178

where NNR = Number of instances where the179

model suggests a valid relation that is not present180

in the predefined option set. Ntotal = Total number181

of relation extraction cases evaluated.182

4 Experiments and Results183

Data For our experiment, we focus on two184

datasets: REFinD (Kaur et al., 2023) (financial185

domain) and TACRED (Zhang et al., 2017) (gen-186

eral domain).1 For our analysis, we focus on subset187

of data where gold_relation is labeled as ‘no/other188

relation’ or ‘no_relation’ and constitutes 45% of189

the REFinD and 79.5% of the TACRED dataset190

(statistics shown in App A.2).191

Models We leveraged GPT-4 as our main LLM.192

We utilized two reduced temperature settings,193

specifically 0.2 and 0.5, and captured models’ out-194

put consistency by conducting multiple iterations195

1Dataset statistics can be obtained in their original papers.

of each prompt by temperature settings. We also 196

performed further analysis to see the behaviors in 197

other LLMs, specifically Llama3.1-8B-Instruct. 198

Prompt Setup Prompts are structured in a hierar- 199

chical manner, allowing us to evaluate how varying 200

level of constraints can affect LLMs’ responses. 201

While all prompts share the same basic structure, 202

they differ in their option list setup. Among these, 203

only the constrained prompt is prone to halluci- 204

nation. Outputs from semi-constrained and open- 205

ended prompts will be used to validate the CB 206

behavior in the constrained prompt. 207

4.1 Results 208

4.1.1 Model Performance 209

Across different temperature settings and prompt 210

configurations, we observe a range of outcomes 211

when using the “step-by-step” instruction (Light- 212

man et al., 2023). We analyze the outputs and 213

categorize responses into ‘conclusions’ and ‘sug- 214

gestions’ for both constrained and semi-constrained 215

prompt responses. The results reveal distinct pat- 216

terns in hallucination mitigation and the manifesta- 217

tion of CB. 218

On the REFinD dataset, GPT-4 outperformed 219

Llama3.1, exhibiting a notably low HR of 0.02- 220

0.04% and CBR of 1-1.33% for the constrained 221

prompt. This pattern persists with the semi- 222

constrained prompt, where we observe NRR of 223

7-10% and CBR of 37-41%. 224

Our analysis, summarized in Table 1, shows 225

that the CBR can be more prevalent than the 226

HR in relation extraction tasks. While GPT-4 227

demonstrated strong hallucination resistance un- 228

der constrained prompting, the transition to semi- 229

constrained prompt yielded interesting dynamics: 230

although models showed an increased tendency to 231

suggest novel relations when explicitly allowed, we 232

observed a concurrent quadrupling (4x) of the CBR 233

compared to NRR. In the semi-constrained scenar- 234

ios, GPT-4 frequently generated novel relation sug- 235

gestions but exhibited reluctance in conclusively 236

asserting them (avoiding hallucinations), often de- 237

faulting to NO_RELATION or selecting from other 238

predefined options. 239

To assess the semantic validity of CB labels iden- 240

tified in the constrained prompt, we conducted a 241

semantic similarity analysis using outputs from 242

semi-constrained and open-ended prompts. Focus- 243

ing on instances flagged for CB, we found that 244

over 57% of CB-flagged instances in the REFinD 245
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dataset defaulted to Hobson’s choice, as detailed246

in Table 1. These findings provide quantitative in-247

sights into the detection and measurement of CB in248

LLMs, addressing our primary research question249

regarding the characterization and quantification of250

this CB phenomenon.251

Prompt Dataset Temp CBR% HR% NRR% HCR%
GPT-4

Const.
REFinD

0.2 1.14 0.04 - 57.72
0.5 1.33 0.06 - 64.37

TACRED
0.2 7.99 15.47 - 1.23
0.5 7.11 13.87 - 4.86

Semi
REFinD

0.2 37.67 - 9.75 69.15
0.5 40.68 - 7.27 67.29

TACRED
0.2 9.70 - 28.08 2.80
0.5 9.20 - 27.04 10.46

Open
REFinD

0.2 - - 81.66 -
0.5 - - 81.78 -

TACRED
0.2 - - 82.46 -
0.5 - - 76.96 -

Llama3.1

Const. REFinD
0.2 0.29 8.18 - 2.63
0.5 1.07 4.67 - 1.44

Semi REFinD
0.2 0.61 - 7.89 5.06
0.5 3.78 - 10.83 4.26

Open REFinD
0.2 - - 66.19 -
0.5 - - 76.81 -

Table 1: Results for Constrained and Semi-Constrained
prompt types on GPT-4 and Llama3.1-8B-Instruct.

4.1.2 Quality of LLM-Generated Relations252

To evaluate the semantic quality of LLM-generated253

relations, we employ two methods: SBERT and254

GPT-4, employing a prompt instruction for LLM-255

based similarity assessment. All semantic similar-256

ity scores range from 0 to 1. We set our similarity257

threshold to 0.7 to align with established bench-258

marks (Okazaki and Tsujii, 2010)259

Model Dataset κ ρ

GPT-4 REFinD 0.65-0.77 0.66-0.79
TACRED 0.30-0.53 0.33-0.54

Llama3.1 REFinD 0.31-1.0 0.32-1.0

Table 2: Inter Annotator Agreement Scores. Metrics: Cohen’s
Kappa (κ) and Spearman’s Correlation Coefficient (ρ) on
dataset per model for multiple runs.

Moreover, we calculated the inter-annotator260

agreement (IAA) to assess reliability, using Co-261

hen’s Kappa (κ) across multiple model runs at con-262

sistent temperature settings. Our results demon-263

strated substantial agreement (κ = 0.65-0.80), in-264

dicating significant reliability (McHugh, 2012) of265

our generated relations (particularly for GPT-4 rela-266

tion extraction). Both Spearman’s rank correlation267

and Cohen’s Kappa lead to the same conclusion268

- higher reliability for GPT-4 relation extractions269

and lower for Llama3.1. When comparing both 270

methods of similarity assessment in figure 2, the 271

semantic similarity score from SBERT and GPT-4, 272

the GPT-4 similarity scores appear to be higher. 273

5 Discussion 274

Our findings confirm the presence of CB tendencies 275

in LLMsduring relation extraction. While GPT-4 276

demonstrates strong hallucination resistance under 277

constrained conditions (0.02-0.04% HR), it also 278

shows a much higher frequency of conservatism. 279

This pattern persists in the semi-constrained design, 280

suggesting a fundamental tension between innova- 281

tion and accuracy in LLM behavior. In contrast, 282

Llama3.1 shows less CB but a higher HR. This 283

indicates that as models become more resistant to 284

hallucinations, they tend to exhibit increased CB, 285

presenting a crucial trade-off in model behavior 286

that requires careful consideration in application 287

design. 288

There are significant differences in output quality 289

between GPT-4 and Llama3.1 when using identi- 290

cal prompts. Llama3.1 generated noisier outputs, 291

often returning meta-responses such as “Please 292

specify title example”, resulting in substantial data 293

loss during the cleanup process. This disparity in 294

output quality highlights the importance of model 295

selection and prompt engineering in relation extrac- 296

tion tasks. To mitigate this limitation, our research 297

indicates that detailed prompting strategies incor- 298

porating step-by-step reasoning are essential. This 299

finding is particularly relevant in specialized pro- 300

fessional contexts; for example - A boutique law 301

firm employing AI for litigation analysis. Without 302

structured reasoning steps in the prompting strat- 303

egy, these systems risk returning conclusions that 304

may be either overly conservative or inappropri- 305

ately broad, potentially missing crucial legal nu- 306

ances within the established constraints. 307

6 Conclusion & Future Work 308

This study explored the CB in LLMs during 309

relation extraction, where models default to 310

NO_RELATION when a correct option is unavail- 311

able. Our experiment confirmed an inverse relation- 312

ship between CBR and HR, highlighting a trade-off 313

between accuracy and innovation. Future research 314

should focus on developing prompting strategies 315

that balance CB with the need for novel relation 316

identification, potentially by refining prompt de- 317

signs and integrating external knowledge bases. 318
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7 Limitations319

While our work provides novel insights into CB320

detection in relation extraction tasks using LLMs,321

we acknowledge some limitations. We focused322

on two LLMs (GPT-4 and Llama3.1-8B-Instruct),323

limiting the generalizability of our findings across324

other models. Although we introduced metrics to325

quantify CB occurrences, there is a need for more326

robust evaluation frameworks to capture nuanced327

aspects of CB. Additionally, the quality of datasets328

used can significantly impact the results.329

The study primarily relied on automated metrics330

for evaluation. Incorporating human evaluation331

could provide a more nuanced understanding of332

the quality and relevance of the extracted relations.333

Finally, as LLMs and their training data evolve, the334

behavior of models regarding CB and hallucination335

might change. The findings may need to be revis-336

ited with newer versions of models and updated337

datasets.338

As this work represents one of the first system-339

atic investigations of CB in relation extraction, our340

findings should be considered initial benchmarks341

rather than definitive measurements. We hope this342

paper will spur further research into CB detection343

and mitigation strategies in LLMs, extending be-344

yond relation extraction tasks.345

8 Ethics Statement346

This research was conducted with a focus on eth-347

ical standards, particularly in addressing the CB348

in LLMs for relation extraction tasks. We used349

publicly available datasets, REFinD and TACRED,350

acknowledging potential biases inherent in them.351

Our study does not involve human subjects or per-352

sonal data, minimizing privacy concerns. Our find-353

ings serve as initial benchmarks, and we encourage354

further research to explore ethical implications and355

enhance the social benefits of LLMs.356
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A Appendix 493

A.1 Semantic Similarity Scores 494

Figure A.3: REFinD: Difference in Semantic Similarity Scores (GPT4 vs SBERT).

Figure A.4: REFinD: Difference in Semantic Similarity Scores (GPT4 vs SBERT).

Description Semantic
Similarity

REFinD Semi REFinD Open TACRED Semi Tacred Open

>0.7 µ >0.7 µ >0.7 µ >0.7 µ

Constrained Prompt
Temp - 0.2

SBERT 34% 0.54±0.30 21% 0.46±0.25 4% 0.30±0.22 5% 0.26±0.22

GPT-4 Prompt 62% 0.44±0.35 59% 0.71±0.22 11% 0.35±0.26 10% 0.31±0.25

Constrained Prompt
Temp - 0.5

SBERT 41% 0.55±0.33 18% 0.45±0.25 5% 0.25±0.22 3% 0.24±0.20

GPT-4 Prompt 59% 0.65±0.36 54% 0.68±0.24 8% 0.30±0.24 11% 0.31±0.25

Table A.4: Various semantic similarity scores from REFinD and TACRED based on prompt type.

A.2 Dataset Statistics 495

Dataset Train Dev Test Total
REFinD 9128 1965 1953 13046
TACRED 55112 17195 12184 84491

Table A.4: Datasets:No_Relation set
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