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Summary
World models, which were originally developed for single-agent reinforcement learning,

have recently been extended to multi-agent settings. Due to unique challenges in multi-agent
reinforcement learning, agents’ independently training of their world models often leads to un-
derperforming policies, and therefore existing work has largely been limited to the centralized
training framework that requires excessive communication. As communication is key, we ask
the question of how the agents should communicate efficiently to train and learn policies from
their decentralized world models. We address this question progressively. We first allow the
agents to communicate with unlimited bandwidth to identify which algorithmic components
would benefit the most from what types of communication. Then, we restrict the inter-agent
communication with a predetermined bandwidth limit to challenge the agents to communicate
efficiently. Our algorithmic innovations develop a scheme that prioritizes important informa-
tion to share while respecting the bandwidth limit. The resulting method yields superior sample
efficiency, sometimes even over centralized training baselines, in a range of cooperative multi-
agent reinforcement learning benchmarks.

Contribution(s)
1. This paper proposes a model-based MARL method that explicitly considers communication

in both the world model and the actor-critic training stages, and analyzes the impact of
communication bandwidth on decentralized training.
Context: Previous work either bases on model-free MARL, discussing only experience
sharing under different bandwidths with limited model and information diversity, or extracts
shared agent information as features for centralized training, but omits these features during
decentralized execution (Gerstgrasser et al., 2023; Venugopal et al., 2023).

2. Our experiment comprehensively studies information sharing under bandwidth limitations,
and optimizes the efficiency of information transmission while guarantee the performance
under the decentralized framework.
Context: Existing method doesn’t to effectively deal with communication bandwidth
constraints, and rely on Euclidean distance constraints to filter communication neighbors
(Toledo & Prorok, 2024).
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Abstract
World models, which were originally developed for single-agent reinforcement learn-1
ing, have recently been extended to multi-agent settings. Due to unique challenges in2
multi-agent reinforcement learning, agents’ independently training of their world mod-3
els often leads to underperforming policies, and therefore existing work has largely been4
limited to the centralized training framework that requires excessive communication.5
As communication is key, we ask the question of how the agents should communicate6
efficiently to train and learn policies from their decentralized world models. We address7
this question progressively. We first allow the agents to communicate with unlimited8
bandwidth to identify which algorithmic components would benefit the most from what9
types of communication. Then, we restrict the inter-agent communication with a pre-10
determined bandwidth limit to challenge the agents to communicate efficiently. Our al-11
gorithmic innovations develop a scheme that prioritizes important information to share12
while respecting the bandwidth limit. The resulting method yields superior sample ef-13
ficiency, sometimes even over centralized training baselines, in a range of cooperative14
multi-agent reinforcement learning benchmarks.15

1 Introduction16

In model-based reinforcement learning (RL), the agent learns a world model that encode its raw17
observations to latent states in a way that effectively recovers/predicts the observations, rewards,18
and future latent state dynamics. This model-based framework has contributed algorithms that have19
been shown to greatly improve sample efficiency for single-agent RL (Hafner et al., 2019b;a; Schrit-20
twieser et al., 2020; Ye et al., 2021). In this paper, we are interested in extending the success of world21
models to the setting of cooperative multi-agent reinforcement learning (MARL) where a team of22
agents collectively interact an environment to achieve a shared goal, which finds a wide range of23
applications such as video games (Vinyals et al., 2019), traffic and vehicle control (Chu et al., 2019;24
Dinneweth et al., 2022), and multi-robot systems (Corke et al., 2005). Such scenarios introduce25
additional challenges on top of single-agent RL, such as partial observability when the agents only26
partially observe the environment (Oliehoek et al., 2016) and non-stationarity as all agents con-27
currently update their policies during training, causing the environment dynamics to continuously28
change from the perspective of any individual agent (Hernandez-Leal et al., 2017). Due to these29
challenges, existing success in learning multi-agent world models has been largely relying on the30
centralized training approach, where a single world model is trained and shared by all agents (Egorov31
& Shpilman, 2022; Venugopal et al., 2023).32

Although effective, centralized training requires excessive inter-agent communication, limiting its33
applicability and scalability. On the other hand, as confirmed in prior work (Toledo & Prorok, 2024)34
and this paper, independent learning of multi-agent world models without explicit communication35
results in ineffective multi-agent policies after planning with the world models. This raises a critical36
question: How should the agents communicate efficiently to train and learn policies from their de-37
centralized world models? Addressing this question is particularly challenging, since world models38
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consist of intricate and inter-dependent components that involve various types of information for39
communication, which is further complicated by the bandwidth limit that often exists in practice.40
Adopting DreamerV2 (Hafner et al., 2020) as the architecture backbone of our decentralized world41
models, this work addresses the question with a two-stage study.42

In the first stage, we allow the agents with unlimited communication bandwidth so that we can focus43
on identifying which algorithmic components would benefit the most from what types of communi-44
cation. Specifically, we separately allow the information shared in an unlimited manner between the45
agents for the decentralized training of their local world models and actor-critic networks, respec-46
tively. Evaluated on the cooperative MARL benchmark of SMAC, both types of information sharing47
yield multi-agent policies that outperform 1) the no communication baseline by a large margin and48
2) the centralized training baseline some SMAC scenarios. This might be surprising as centralized49
training is widely considered as a performance upper bound. Encouraged by the results from the50
first stage, the second stage restricts the inter-agent communication with a predetermined bandwidth51
limit, which further challenges the agents to efficiently communicate with selective information. By52
experimenting with various bandwidths ranging from small to the largest (i.e., unlimited), our re-53
sults show that there exists a relatively small bandwidth that works well for both types of information54
sharing, the performance of which is comparable or even better than that with unlimited bandwidth.55

2 Related work56

Single- and multi-agent world models. One of the earliest model-based RL algorithms is Dyna57
(Sutton, 1991), in which the agent alternates between learning a world model of state dynamics with58
reward signals and planning with it to take an action. Dyna’s framework has been adopted in many59
recent model-based RL algorithms including the Dreamer family (Hafner et al., 2019a; 2020; 2023),60
which is known for their effectiveness in addressing partial observability and simplicity of training a61
policy from the learned world model. This paper and most recent works on multi-agent world models62
use Dreamer as the architecture backbone. Egorov & Shpilman (2022) develop MAMBA, a central-63
ized training and centralized execution framework where all agents share their local observations64
in both the global world model and the local policies. Adapting MAMBA, Venugopal et al. (2023)65
introduce MABL that employs a bi-level hierarchy to enhance the agents’ understanding of global66
information during centralized world model training, while enabling fully distributed local policies67
for execution. Xu et al. (2022) consider model-based cooperative MARL in the centralized training68
framework of value decomposition. Contrastive to these works, in this work each agent maintains a69
local world model and learns it in a decentralized manner with inter-agent communication.70

Decentralized MARL with communication. Due to challenges such as partial observability and71
non-stationarity, effective training of cooperative MARL agents requires either centralization like a72
centralized critic (Lowe et al., 2017; Chu et al., 2019; Rashid et al., 2020) and a global world model73
(Egorov & Shpilman, 2022; Venugopal et al., 2023) or inter-agent communication of learnable pa-74
rameters (Chen et al., 2022), experiences of local trajectories (Christianos et al., 2020; Gerstgrasser75
et al., 2023), intents (Kim et al., 2020), etc. Closest to our work is CoDreamer (Toledo & Prorok,76
2024) where the agents communicate over a graph to train a centralized world model that encodes77
and averages the agents’ observations and actions with a graph neural network, and therefore it falls78
into the centralized training framework. In contrast, our work trains decentralized world models79
where each agent maintains its local world model and policy. Moreover, CoDreamer operates on a80
predefined graph for communication while our work focuses on achieving efficient communication81
where agents selective choose what information to share.82

3 Preliminaries83

Coorperative multi-agent reinforcement learning. We formalize multi-agent reinforcement84
learning with a decentralized partially observable Markov decision process (Dec-POMDP), denoted85
as ⟨N ,S, {Ai}i∈N , P,R, {Oi}i∈N , γ⟩, where N := {1, . . . , N} represents the set of agents, S86
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the state space, Ai the action space of agent i. At each time step t, every agent i selects an action87
ait ∈ Ai to form an joint action at = (a1, · · · , aN ) ∈

∏n
i=1 Ai =: A. The next state follows the88

distribution given by the state transition function P : S ×A → ∆(S) as st+1 ∼ P (· | st, at), where89
∆(X ) is the set of probability distributions over set X . All agents receive the same reward according90
to the reward function R : S × A → R as rt := R(st, at). The observation function Oi : S → Oi91
generates an observation for agent i from its observation space Oi, denoted as oit := Oi(st). Each92
agent chooses actions by sampling from its (fully decentralized) policy πi(ait|τ it ) that is conditioned93
on its action-observation trajectory τ it := (oi0, a

i
0, o

i
1, a

i
1, ..., o

i
t). Agents’ individual policies form94

the joint policy, π := (π1, ..., πN ), and their goal is to find π that maximizes expected discounted95
cumulative rewards Eπ[

∑∞
r=0 γ

trt].96

Latent-space world models. Many recent works on world models rely on recurrent state-space97
models (RSSMs). We here review the core components of DreamerV2’s RSSMs in the single-agent98
case. Initializing the latent state as h0, an RSSM encodes the agent’s action-observation trajectory99
(o0, a0, ..., ot−1, at−1) into latent state ht with a recurrent model f as ht = f(ht−1, zt−1, at−1)100
where zt ∼ q(zt|ht, ot) is the encoded observation ot (conditioned on ht) by a (stochastic) represen-101
tation model q. Paired with a (stochastic) transition model ẑt ∼ p(ẑt|ht) and a (stochastic) observa-102
tion model ôt ∼ p(ôt|ht, zt), all models f , q, and p are parameterized by neural networks and trained103
by maximizing the evidence lower bound (ELBO) of the log probability of log p(o0:T |a0:T−1).104

4 Method105

4.1 Information sharing without bandwidth constraints106

In the decentralized training and decentralized execution framework, each agent operates indepen-107
dently and accumulating distinct experiences. However, the constantly changing policies of other108
agents in the environment lead to inherent instability in the agent’s learning process. To address109
this, we enable agents to exchange valuable experiences, so as to facilitate the optimization of their110
objective functions. Our approach first extends standard DreamerV2 to the MARL setting, then111
focusing on efficient information sharing and model optimization.112

Centralized training. We establish an upper bound for information sharing using a centralized113
training and decentralized execution paradigm, where all agents share the same world model and114
actor-critic network parameters ϕ and θ. This approach is based on DreamerV2 by incorporating a115
Recurrent State Space Model (RSSM), reconstruction models and prediction models based on latent116
variables.117

RSSM:


Recurrent model: hi

t = fϕ(h
i
t | hi

t−1, z
i
t−1, a

i
t−1)

Representation model: zit = qϕ(z
i
t | oit, hi

t)

Transition model: ẑit = pϕ(ẑ
i
t | hi

t)

where, the RSSM is a framework for learning latent dynamics, composed of a recurrent model main-118
tains historical dependencies, a representation model infers posterior distributions, and a transition119
model predicts future states, facilitating synthetic trajectory generation.120

In addition, we categorize the auxiliary components in the world model into two types: decoders121
and predictors. The decoders are responsible for decoding the latent representation back into actual122
behavior and perception, ensuring that the latent space contains sufficient environmental and agent-123
specific information. In contrast, predictors are used to infer future dynamics based on the current124
latent states.125

Decoders:

{
Observation decoder: ôit = pϕ(ô

i
t | hi

t, z
i
t)

Action decoder: âit = pϕ(â
i
t | hi

t, z
i
t)
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Predictors:


Reward predictor: r̂it = pϕ(r̂

i
t | hi

t, z
i
t)

Termination predictor: γ̂i
t = pϕ(γ̂

i
t | hi

t, z
i
t)

Available action predictor: Âi
t = pϕ(Â

i
t | hi

t, z
i
t)

To generate more effective synthetic trajectories for policy optimization, the predictors assist training126
by providing important feedback signals, including a reward predictor outputs a continuous reward127
value r̂it, while the termination predictor outputs a binary variable γ̂i

t to indicate whether the current128
state is terminal. The available action predictor outputs a vector Âi

t of size A, where each element129
indicates whether the corresponding action is available at time step t. Thus, both the termination130
and available action predictors use Bernoulli distributions.131

As described in previous section, we optimize the decoders and predictors using supervised learning,132
and optimize the RSSM model by maximizing the ELBO. For a trajectory of length T from agent133
i, the loss LELBO = Lôt + DKL is computed as the expectation with respect to the posterior134
distribution qϕ(z

i
1:T | oi1:T , ai1:T ), so as to maximize the reconstruction accuracy and align the prior135

distribution pϕ with the posterior distribution qϕ. The loss functions are:136

Lôt =−
∑

i

∑
t log pϕ

(
ôit | hi

t, z
i
t

)
, Lât

= −
∑

i

∑
t log pϕ

(
âit | hi

t, z
i
t

)
(1)

Lr̂t =−
∑

i

∑
t log pϕ

(
r̂it | hi

t, z
i
t

)
, Lγ̂t

= −
∑

i

∑
t log pϕ

(
γ̂i
t | hi

t, z
i
t

)
(2)

LÂt
=−

∑
i

∑
t log pϕ(Â

i
t | hi

t, z
i
t), DKL =

∑
i

∑
t KL[qϕ(z

i
t | oit, hi

t) ∥ pϕ(ẑ
i
t | hi

t)]. (3)

The model-based approach effectively decouples model learning from policy learning in MARL.137
Once the world model is trained, it generates imagined trajectories for policy optimization. We138
employ an actor-critic framework to enhance agents’ decision-making and coordination. Each agent139
utilizes the shared parameter policy network πθ, and the objective is to maximize the cumulative140
MARL returns, thereby learning an optimal policy. Specifically, at time step t, the agent selects an141
action based on the following:142

ait ∼ πθ(a
i
t | ẑit, hi

t). (4)

Here, the agent performs policy inference based on its own hidden state vector hi
t and the inferred143

prior distribution ẑit. And the shared critic Vϕ estimates each agent’s value function to guide policy144
optimization based on:145

V̂ i
t ∼ Vϕ(ẑ

i
t, h

i
t). (5)

In this centralized training method, all agents share the parameters of the world models, actor and146
critic networks, enabling efficient learning and coordination for multi-agent systems.147

Independent training. In order to verify the impact of information sharing in fully decentralized148
MARL, we introduce a lower bound method, which follows an independent training paradigm.149
Initially, all agents have the identical architectures and optimizers of world model and the actor-150
critic models, along with the same parameters ϕi

0 and θi0. During training, each agent treats other151
agents as part of their environment, builds its own world model and optimizes policy without sharing152
parameters or information, and follows the previously introduced loss functions but iterating solely153
over time steps.154

Sharing experiences across the RSSMs and predictors. We first propose the RSSM+Predictors155
method, in which part of the world models share experiences while others remain independent.156
Specifically, the RSSM and predictors are trained by sampling from a shared experience replay157
buffer used by all agents. This global perspective allows each agent to not only rely on its own158
experience for training, but also capture global dynamics and environmental features across agents,159
thereby enhancing the understanding of environmental patterns. On the other hand, each agent’s de-160
coders depend entirely on its own independent experience, ensuring that each agent can optimize its161
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decoders based on its own perspective and behavioral patterns, thus preventing a decline in decod-162
ing accuracy due to differences in experiences. Through this design, the RSSM and predictors focus163
on learning general latent-space representations and predicting accurate environmental dynamics,164
while the decoders focus on generating predictions of observations and actions based on the agent’s165
own experience.166

Algorithm 1 illustrates how experiences are shared for training the RSSM and predictor models. The167
method contains two types of buffers: one shared experience buffer and N independent experience168
buffers. During the experience collection phase, each agent stores its observations, actions, rewards,169
and other feedback information into the shared buffer and its independent buffer. During training,170
the RSSM and predictors update using samples from the shared buffer, while decoders optimize only171
with agent-specific buffer.

Algorithm 1 Training World Model with Shared and Individual Experience Buffers

1: Initialize SharedReplayBuffer
2: Initialize N IndividualReplayBuffers
3: for t = 1 to T do
4: for each agent i = 1 to N do
5: SharedReplayBuffer.Add((oit, a

i
t, r

i
t, γ

i
t , A

i
t))

6: IndividualReplayBuffers[i].Add((oit, a
i
t, r

i
t, γ

i
t , A

i
t))

7: end for
8: for each agent i = 1 to N do
9: Train RSSM and predictors using shared experience:

10: GradientStep(ϕi,Eq 1) on samples from SharedReplayBuffer
11: Train individual decoders using agent-specific experience:
12: GradientStep(ϕi,Equation 2 to 3) on samples from IndividualReplayBuffers[i]
13: Train individual actor and critic using agent-specific experience:
14: IndividualReplayBuffers[i].Sample(batch_size)
15: âi1:H , Âi

1:H , logiti1:H , r̂i1:H , hi
1:H , zi1, ẑ

i
2:H = ImaginationRollout(oit, a

i
t, γ

i
t)

16: GradientStep[(θi,Equation 4), (ϕi,Equation 5)]
17: end for
18: end for

172

Sharing rollouts across the actor-critic networks. In this method, the optimization of the actor173
and critic networks is achieved through rollouts sharing. Specifically, each agent trains its indepen-174
dent world model based on its own experience and generates synthetic trajectories over a certain175
horizon with length H . As shown in Algorithm 2, these trajectories include not only sequences of176
actions âi1:H and rewards r̂i1:H , but also incorporate latent state information hi

1:H , zi1, and ẑi2:H , and177
auxiliary information Âi

1:H and logiti1:H , where the logitih denotes the logits corresponding to âih,178
ensuring differentiability. Subsequently, all agents share their generated synthetic trajectories and179
the aggregated multi-source trajectory data is used for training their actor-critic networks.180

On one hand, fully utilizing model-generated data alleviates the issue of high interaction costs,181
improving sample efficiency and exploration capability. On the other hand, this sharing mechanism182
enables agents to perform policy learning on a wider data distribution, thereby enhancing decision-183
making effects and accelerating the convergence of the training process.184

4.2 Information sharing with bandwidth constraints185

Even though communication between agents can be unlimited, considering communication effi-186
ciency and information priority, we focus on adjusting the priority of information transmission to187
avoid redundant information that may delay or hinder model training. In the previous section, we188
investigated the effectiveness of information sharing in model-based MARL. In this section, we fur-189
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Algorithm 2 Training Actor-Critic with Shared Imagination Buffers

1: Initialize N IndividualReplayBuffers
2: Initialize SharedImaginationBuffer
3: for t = 1 to T do
4: for each agent i = 1 to N do
5: Train individual world model using agent-specific experience:
6: IndividualReplayBuffers[i].Sample(batch_size)
7: GradientStep(ϕi)
8: end for
9: for each agent i = 1 to N do

10: Aggregate imagination rollouts from all agents:
11: IndividualReplayBuffers[i].Sample(batch_size)
12: âi1:H , Âi

1:H , logiti1:H , r̂i1:H , hi
1:H , zi1, ẑ

i
2:H = ImaginationRollout(oit, a

i
t, γ

i
t)

13: SharedImaginationBuffer.Add(âi1:H , Âi
1:H , logiti1:H , r̂i1:H , hi

1:H , zi1, ẑ
i
2:H)

14: end for
15: for each agent i = 1 to N do
16: Train actor and critic using shared imagination:
17: SharedImaginationBuffer.Sample(batch_size)
18: GradientStep[(θi,Equation 4), (ϕi,Equation 5)]
19: end for
20: end for

ther consider information selection under bandwidth constraints to enhance data-sharing efficiency190
and optimize communication resource utilization.191

During world model training, experience sharing involves four key component models. However,192
due to significant variations in the loss distribution and scale across different models, applying a193
unified standard directly would lead to imbalanced sharing criteria. Therefore, we first use a multi-194
model loss normalization and aggregation strategy, ensuring fair and stable sample selection. At each195
training step, we first compute the loss values for the four models:LÂt

, Lγ̂t
, Lr̂t , DKL. Then we196

maintain historical statistics for each loss function within a sliding window with length K, incuding197
the mean and standard deviation:198

µm =
1

K

K∑
k=0

Lk, σm =

√
1

K

∑K
k=0 (Lk − µm)

2
.

Each loss is normalized as L′
m = Lm−µm

σm+ϵ where ϵ is a small constant to prevent division by zero.199

After normalization, we aggregate the four loss values into a single composite loss LM for sample200
selection: LM = max(L′

Ât
, L′

γ̂t
, L′

r̂t
, D′

KL). This strategy ensures that if any single model exhibits201
an abnormally high loss, the corresponding sample is selected for sharing, reducing the risk of202
selection being dominated by a single model’s loss and ensuring balanced multi-model learning. To203
adaptively control the number of shared samples, we apply the deterministic Gaussian experience204
selection based on a sliding window (Gerstgrasser et al., 2023). Specifically, we maintain the most205
recent K samples to track the distribution of the composite loss LM , including its mean µM and206
standard deviation σM , then share the experience when:207

LM ≥ µM + c · σM

where c is a constant determined based on the target bandwidth β, satisfying 1− cdfN(c) = β.208

Experimental results (Figure 3) demonstrate that critic loss exhibits significant variation across dif-209
ferent methods (Actor-Critic, Centralized Training, Independent Training), indicating that training210
strategies mainly impact the critic network. Therefore, critic loss is a reliable indicator of agent211
learning progress and policy evaluation accuracy. In contrast, actor loss exhibits less variation in212
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both magnitude and trend across different methods. Based on these observations, we adopt a critic213
loss based selection method in actor-critic training process. During training, we apply a similar214
strategy as used for the world model but exclusively utilize critic loss for selecting high informative215
samples. The statistics of critic loss in the sliding window are calculated as:216

µcritic =
1

K

K∑
k=0

Lk, σcritic =

√
1

K

∑K
k=0 (Lk − µcritic)

2
.

Then it applies sample sharing based on:217

Lcritic ≥ µcritic + c · σcritic.

5 Experiments218

To evaluate decentralized cooperation in multi-agent systems with experience and imagination roll-219
out sharing, we use the StarCraft Multi-Agent Challenge (SMAC) benchmark, based on StarCraft II220
(Vinyals et al., 2017; Samvelyan et al., 2019). Each agent independently executes its policy while221
coordinating with other agents to defeat enemy units. Specifically, we conduct experiments on two222
micro-trick scenarios in which two agents face a single enemy (2s_vs_1sc and 2m_vs_1z), a ho-223
mogeneous and symmetric scenario where both armies consist of three Marines (3m), and a hetero-224
geneous and symmetric scenario where the allied team consists of two Stalkers and three Zealots,225
matching the enemy composition (2s3z). In each scenario, we perform ten independent runs for226
each method with an equal number of training steps. To ensure fair comparison, we ensure that the227
architecture and setup of all models are identical across all methods.228

Baselines: In our experiments, we compare the proposed method with the independent training229
baseline to assess the impact of information sharing in decentralized cooperation and also to find out230
how it compares to the centralized training baseline.231

5.1 Performance comparison without bandwidth constraints232

To evaluate the effectiveness of two information sharing strategies, we first compare the performance233
of different methods across four SMAC scenarios without considering bandwidth constraints. Fig-234
ure 1 presents the win rate curves of these four methods over training steps in different scenarios.235
To further analyze the underlying factors contributing to performance improvements, Figure 2 and236
Figure 3 present the loss curves for RSSM+Predictors and Actor-Critic models of different methods,237
respectively, in the 2s_vs_1sc scenario. And we choose to discuss only the loss curves of Agent-0238
for the RSSM+Predictor models, as all agents exhibit similar patterns in the allied team.
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Figure 1: Win rate curves.
239

As shown in Figure 1, we can see that RSSM+Predictors (experience-sharing) and Actor-Critic240
(imagination rollouts sharing) methods consistently outperform Independent Training across all sce-241
narios, achieving higher win rates and faster convergence. This improvement highlights the effec-242
tiveness of information sharing in facilitating superior coordination strategies, whereas Independent243
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Figure 2: Loss curves of an agent on 2s_vs_1sc of different methods for RSSM+Predictor models.
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Figure 3: Loss curves on SMAC of different methods for Actor-Critic models.

Training struggles to achieve high win rates under fully decentralized learning. In the micro-trick244
asymmetric scenarios (2s_vs_1sc and 2m_vs_1z), agents need precise coordination to attack fewer245
enemies than themselves. Centralized Training enables all agents to learn and perform best through246
parameter sharing, thus shows excellent performance. However, in RSSM+Predictors and Actor-247
Critic methods, agents only share information and still optimize strategies independently, which is248
difficult to fully match the overall collaboration ability of Centralized Training, resulting in sub-249
optimal performance. Independent Training, due to its complete decentralization, agents cannot250
learn to cooperate effectively, resulting in the lowest win rate. For the homogeneous and hetero-251
geneous symmetric scenarios (3m and 2s3z), we conjecture that Centralized Training may lead to252
unnecessary synchronous behavior due to parameter sharing. This could result in all agents at-253
tacking the same target simultaneously or retreating at the same time, potentially reducing combat254
efficiency. In contrast, RSSM+Predictors and Actor-Critics methods allow agents share information255
while independently optimize their policies, this might make them more adaptable when executed in256
a decentralized manner, thus surpassing Centralized Training. As shown in Figure 2, in 2s_vs_1sc257
scenario, the loss curves for the available action model, termination model, reward model and the KL258
divergence curves maintain lower loss values throughout training compared to Independent Train-259
ing, even approaching the loss levels of Centralized Training. This indicates that experience-sharing260
strategy enhances the stability of the learning process and the accuracy of the prediction. Specifi-261
cally, the KL divergence results show that RSSM+Predictors achieves better latent space alignment,262
demonstrating the effectiveness of experience sharing in approximating centralized training.263

The actor-critic loss curves shown in Figure 3 provide another insight into the training dynamics264
of our method. For 2s_vs_1sc scenario, the critic loss curves for both Agent-0 and Agent-1 show265
distinct trends, whereas the actor loss curves remain similar in magnitude and trend across all meth-266
ods. Specifically, the Independent Training method maintains a relatively lower critic loss while267
Centralized Training method exhibits a rising critic loss over time, indicating potential instability268
in value estimation due to indiscriminate sharing of imagination rollouts. And our Actor-Critic269
method shows an intermediate performance between Centralized Training and Independent Train-270
ing methods that aligns with the win rate trends shown in Figure 1. For the actor, the loss curves271
show negligible differences across methods and maintain relatively stable training trends. This sug-272
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gests that behavior learning is less affected by the of rollouts sharing compared to value function273
estimation.274

Overall, these results indicate that both experience and imagination rollouts sharing can benefit the275
multi-agent coordination in decentralized training.276

5.2 Performance comparison with bandwidth constraints277

In this section, we further investigate the impact of information sharing under different bandwidth278
constraints. And we compare the performance of RSSM+Predictors and Actor-Critic methods across279
various target bandwidths in the 2s_vs_1sc and 3m scenarios. As shown in Figure 4, the Central-280
ized Training method achieves the highest performance, as it benefits from parameter sharing. In281
comparison, Independent Training performs as a lower bound, emphasizing the necessity of com-282
munication in multi-agent system. In particular, considering the limited bandwidth, we can observe283
a clear peak in RSSM+Predictors and Actor-Critic methods around the target bandwidth of 0.01 and284
0.05 respectively for 2s_vs_1sc scenario. The results indicate that selective experience sharing can285
significantly promote learning process compare to Independent Training. Particularly, the ShareAll286
setting, where all information is shared without selection, does not necessarily lead to better per-287
formance compared to intermediate bandwidth values. This suggests that excessive communication288
may introduce redundant information, potentially hindering learning efficiency.289
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Figure 4: Comparison of RSSM+Predictors and Actor-Critic with different bandwidths.
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Figure 5: Comparison of RSSM+Predictors and Actor-Critic with optimal target bandwidths.

Figure 5 further shows the performance of different methods in 2s_vs_1sc and 3m scenarios.290
Specifically, based on Figure 4a and Figure 4b, we adopt the optimal target bandwidth of 0.05291
and 0.01 for the 2s_vs_1sc and 3m scenarios, respectively. In 2s_vs_1sc, RSSM+Predictors-0.05292
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and Actor-Critic-0.05 outperform Independent Training, demonstrating the benefits of decentral-293
ized experience sharing, although they are still inferior to Centralized Training. The combination294
of RSSM+Predictors-0.05 and Actor-Critic-0.05 only provides similar performance, indicating an295
overlap of strengths rather than complementarity. In 3m scenario, RSSM+Predictors-0.01 and Actor-296
Critic-0.01 surpass Independent Training, with Actor-Critic-0.01 achieving the highest win rate, in-297
dicating that imagination rollouts sharing are particularly effective in symmetric multi-agent system.298

Overall, our results demonstrate that Gaussian information selection significantly enhances perfor-299
mance compared to Independent Training, even under bandwidth constraints. Moreover, the pres-300
ence of a pronounced peak suggests that excessive experience sharing does not always yield better301
performances, and an optimal balance between communication and independent learning is crucial302
for effective multi-agent coordination.303

6 Conclusion304

In this paper, we investigate information-sharing strategies in model-based MARL. Under a de-305
centralized training and decentralized execution framework, we explore the effectiveness of se-306
lective communication in both the world model and actor-critic training process. Our methods307
first decompose the world model, where the RSSM and predictors leverage shared experiences308
for training, while decoders learn agent-specific features. Then we examine the performance of309
RSSM+Predictors and Actor-Critic methods under varying target bandwidths. Experimental results310
in four SMAC scenarios demonstrate that, compared to independent training, both RSSM+Predictors311
and Actor-Critic achieve superior performance across different bandwidth settings. Notably, in312
2s_vs_1sc and 3m scenarios, the peak performance is observed at target bandwidths of 0.05 and313
0.01 respectively, showing that full sharing is not always optimal. Moreover, applying both314
RSSM+Predictors and Actor-Critic with optimal bandwidth simultaneously does not simply lead315
to additive improvements but instead results in an overlapping. Our experiments highlight that se-316
lective information sharing can effectively enhance decentralized multi-agent cooperation.317
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