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ABSTRACT

Multi-agent reinforcement learning (MARL) is employed to develop autonomous
agents that can learn to adopt cooperative or competitive strategies within complex
environments. However, the linear increase in the number of agents leads to a
combinatorial explosion of the action space, which may result in algorithmic insta-
bility, difficulty in convergence, or entrapment in local optima. While researchers
have designed a variety of effective algorithms to compress the action space, these
methods also introduce new challenges, such as the need for manually designed
prior knowledge or reliance on the structure of the problem, which diminishes the
applicability of these techniques. In this paper, we introduce Evolutionary action
SPAce Reduction with Knowledge (eSpark), an exploration function generation
framework driven by large language models (LLMs) to boost exploration and prune
unnecessary actions in MARL. Using just a basic prompt that outlines the overall
task and setting, eSpark is capable of generating exploration functions in a zero-
shot manner, identifying and pruning redundant or irrelevant state-action pairs, and
then achieving autonomous improvement from policy feedback. In reinforcement
learning tasks involving inventory management and traffic light control encompass-
ing a total of 15 scenarios, eSpark consistently outperforms the combined MARL
algorithm in all scenarios, achieving an average performance gain of 34.4% and
9.9% in the two types of tasks respectively. Additionally, eSpark has proven to
be capable of managing situations with a large number of agents, securing a 29.7%
improvement in scalability challenges that featured over 500 agents. The code can
be found in https://anonymous.4open.science/r/0CDH-0DF8/.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has emerged as a powerful paradigm for solving complex
and dynamic problems that involve multiple decision-makers Zhang et al. (2021); Wang et al. (2021).
However, the intricacies of agent interplay and the exponential expansion of state and action spaces
render the solution of MARL problems difficult. Researchers have proposed the Centralized Training
with Decentralized Execution (CTDE) framework Oliehoek et al. (2008) and parameter sharing
methods, decomposing the value or policy functions of a multi-agent system into individual agents
and sharing model parameters among all agents. As experimentally verified by many of the most
prominent MARL algorithms such as Multi-agent PPO (MAPPO) Yu et al. (2022), QMIX Rashid
et al. (2020), QPLEX Wang et al. (2021) or QTRAN Son et al. (2019), these methodologies have been
demonstrated to be robust strategies for surmounting the challenges posed by MARL. MARL methods
based on parameter sharing and CTDE have achieved notable success in a variety of well-established
tasks, including StarCraft Multi-Agent Challenge (SMAC) Li et al. (2023); Wang et al. (2020), the
Multi-Agent Particle Environment (MPE) Lowe et al. (2017), and Simulation of Urban MObility
(SUMO) Wei et al. (2019); Lu et al. (2023).

Despite the great success of parameter-sharing CTDE methods, their practicality dwindles in real-
world tasks involving large number of agents, such as large-scale traffic signal control Mousavi
et al. (2017), wireless communication networks Zocca (2019), and humanitarian assistance and
disaster response Meier (2015), where centralized training becomes impractical due to large problem
scale Munir et al. (2021). Fully Decentralized Training and Execution (DTDE) methods, such as
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Independent PPO (IPPO) de Witt et al. (2020), offer a scalable solution where resource consumption
does not escalate drastically with an increase in the number of agents. However, due to the lack
of consideration for agent interactions, they often struggle to find optimal solutions and fall into
local optima. Current strategies for addressing large-scale MARL tasks involve introducing task-
specific structures to model agent interactions or dividing agents into smaller, independently trained
groups Ying et al. (2023); Chen et al. (2020). These methods, however, are constrained by their
dependence on task-related structuring, limiting their applicability to a narrow range of problems.

Additionally, the "curse of dimensionality" presents a significant challenge in multi-agent systems Hao
et al. (2022b;a), where agents are required to navigate through an expansive action space saturated with
numerous actions that are either irrelevant or markedly suboptimal (relative to states). While humans
can deftly employ contextual cues and prior knowledge to sidestep such challenges, MARL algorithms
typically engage in the exploration of superfluous and extraneous suboptimal actions Zahavy et al.
(2018). Besides, prevailing parameter sharing can exacerbate this exploratory dilemma, as will be
elucidated in Proposition 2. The issue occurs primarily because agents with shared parameters often
prefer suboptimal policies that present short-term advantages, rather than exploring policies that may
potentially deliver higher long-term returns.

Exploration is crucial for overcoming local optima, as it encourages agents to discover potentially
better states thus refining their policies. While single-agent exploration techniques like the Upper
Confidence Bound (UCB) Auer (2002), entropy regularization Haarnoja et al. (2018), and curiosity-
based exploration Groth et al. (2021); Pathak et al. (2017) have shown promising results, they struggle
with the escalated complexity in MARL scenarios, compounded by issues like deceptive rewards
and the "Noisy-TV" problem Burda et al. (2018). Integrating domain knowledge into exploration
could significantly enhance exploration efficiency, by helping identify critical elements and problem
structures, thereby aiding in the selection of optimal actions Simon (1956). However, the integration
of this knowledge within a data-driven framework poses significant challenges, particularly when
manual input from domain experts is required, thus reducing its practicality.

Recently, Large Language Models (LLMs) such as GPT-4 Achiam et al. (2023) have shown formidable
skills in language comprehension, strategic planning, and logical reasoning across various tasks Yao
et al. (2023); Zhu et al. (2023). Although not always directly solving complex, dynamic problems,
their inferential and error-learning abilities facilitate progressively better solutions through iterative
feedback Ma et al. (2024). The integration of LLMs with MARL presents a promising new avenue
by facilitating exploration through the pruning of redundant actions. In this paper, we introduce
Evolutionary action SPAce Reduction with Knowledge (eSpark), a novel approach that utilizes
LLMs to improve MARL training via optimized exploration functions, which are used to prune the
action space. eSpark begins by using LLMs to generate exploration functions from task descriptions
and environmental rules in a zero-shot fashion. It then applies evolutionary search within MARL to
pinpoint the best performing policy. Finally, by analyzing the feedback on the performance of this
policy, eSpark reflects and proposes a set of new exploration functions, and iteratively optimizes
them according to the aforementioned steps. This process enhances the MARL policy by continuously
adapting and refining exploration. To summarize, our contributions are as follows:

1. We introduce the eSpark framework, which harnesses the intrinsic prior knowledge and
encoding capability of LLMs to design exploration functions for action space pruning, thus
guiding the exploration and learning process of MARL algorithms. eSpark requires no
complex prompt engineering and can be easily combined with MARL algorithms.

2. We validate the performance of eSpark across 15 different environments within the
inventory management task MABIM Yang et al. (2023) and the traffic signal control task
SUMO Behrisch et al. (2011). Combined with IPPO, eSpark outperforms IPPO in all
scenarios, realizing an average profit increase of 34.4% in the MABIM and improving
multiple metrics in SUMO by an average of 9.9%. Even in the face of scalability challenges
where the DTDE methods typically encounter limitations, eSpark elevates the performance
of IPPO by 29.7%.

3. We conduct controlled experiments and ablation studies to analyze the effectiveness of each
component within the eSpark framework. We first validate the advantages of knowledge-
based pruning. Subsequently, we conduct ablation studies to demonstrate that both retention
training and LLM pruning techniques contribute to the performance of eSpark. These
effects are even more pronounced in the more complex MABIM environment.
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2 RELATED WORKS

LLMs for code generation. LLMs have exhibited formidable capabilities in the domain of code
generation Roziere et al. (2023); Nejjar et al. (2023). More recently, LLM-based approaches to self-
improving code generation have been applied to address challenges in combinatorial optimization Liu
et al. (2024); Ye et al. (2024), robotic tasks Liang et al. (2023); Wang et al. (2024), reinforcement
learning (RL) reward design Ma et al. (2024), and code optimization Romera-Paredes et al. (2024).
For the first time, to the best of our knowledge, we propose the use of LLMs to generate code with
the aim of pruning the redundant action space in MARL environments, and through a process of
autonomous reflection and evolution, iteratively enhancing the quality of the generated output.

LLMs for RL and MARL. The integration of LLMs into RL and MARL has sparked considerable
research interest Sharma et al. (2022); Kwon et al. (2023); Li et al. (2024). Some works Hill et al.
(2020); Chan et al. (2019) incorporate the goal descriptions of language models that help in enhancing
the generalization capabilities of agents designed to follow instructions. Further studies have extended
this approach to complex tasks involving reasoning and planning Huang et al. (2023; 2022). Moreover,
LLMs have been employed to guide exploration and boost RL efficiency Du et al. (2023); Chang et al.
(2023); Hu & Sadigh (2023). However, scaling to high-complexity, real-time, multi-agent settings
remains a challenge. Our method mitigates this by generating exploration functions to navigate the
policy space, thus facilitating the application to complex MARL scenarios without direct LLM-agent
decision-making interaction.

Action space pruning in RL and MARL. Pruning the action space has been shown to be effective
in guiding agent behaviors in complex environments Lipton et al. (2016); Fulda et al. (2017).
Techniques include learning an elimination signal to discard unnecessary actions Zahavy et al. (2018),
and employing transfer learning that pre-trains agents to isolate useful experiences for later action
refinement Shirali et al. (2023); Lan et al. (2022); Ammanabrolu & Riedl (2018). Some approaches
use manually designed data structures based on prior knowledge to filter actions Dulac-Arnold et al.
(2015); Padullaparthi et al. (2022); Nagarathinam et al. (2020). However, training pruning signals or
applying transfer learning is inherently difficult with many agents, and the need for expert knowledge
in manual pruning rules hampers their transferability, limiting the applicability of current methods.
We harness the abundant knowledge embedded within LLMs for action space pruning, demonstrating
universal applicability across a multitude of scenarios.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION AND NOTATIONS

Markov game framework. In our study, we explore a Markov game framework, formally defined
by the tuple ⟨N,S,O,A, P,R, γ⟩. Here N represents the total number of participating agents, S
denotes a well-defined state space, and O =

∏N
k=1Ok constitutes the combined observation space,

A =
∏N

k=1Ak is the joint action space for all agents involved. The transition dynamics are captured
by the probability function P : S ×A × S → [0, 1], the reward function R : S ×A → R maps
state-action pairs to real-valued rewards. The discount factor is denoted by γ ∈ [0, 1].

At each discrete time step t, the environment is in state st ∈ S . Each agent k ∈ [1, 2, . . . , N ] receives
an observation okt ∈ Ok and draws an action from akt ∼ πk(· | okt ), where πk : Ok ×Ak → [0, 1]
denotes the policy of agent k, and

∑
ak∈Ak πk(ak | okt ) = 1. The joint actions of all agents

at = (a1t , a
2
t , . . . , a

N
t ) is drawn from the joint policy π(· | st) =

∏N
k=1 π

k(· | okt ). Subsequently,
a reward rt = R(st, at) is given based on the current state and joint action. The state transition is
determined by st+1 ∼ P (· | st, at).

In this paper, we focus on a fully cooperative scenario where all agents share a common reward signal.
The collective objective is to maximize the expected cumulative reward, starting from an initial state
distribution ρ0. This collaborative approach emphasizes the alignment of individual agent strategies
towards maximizing a unified reward J(π):

J(π) = Es0∼ρ0,a0:∞∼π,s1:∞∼P

[ ∞∑
t=0

γtrt

]
.
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Policy with exploration function. In the configuration of our study, we introduce the exploration
function E : Ok ×Ak → {0, 1}, indicating whether an action is selectable by agent k. For a given
policy πk of agent k and an exploration function E, we define a new policy πk

E as follows:

πk
E(· | okt ) =

πk(· | okt ) · E(okt , ·)∑
ak∈Ak πk(ak | okt ) · E(okt , a

k)

if
∑

ak∈Ak πk(ak | okt ) · E(okt , a
k) > 0; otherwise, πk

E(· | okt ) = πk(· | okt ). Consequently, the joint
policy for all agents under the guidance of E is defined as:

πE(· | st) =
N∏

k=1

πk
E(· | okt ).

We define the set of all joint policies as {π} and the set of all exploration functions as {E}. Let {πE}
denote the set of joint policies when subjected to an exploration function E ∈ {E}. An exploration
function E is non-trivial if it assigns a zero probability to at least one observation-action pair. The
following proposition naturally arises from the definition:
Proposition 1.

1. For any E ∈ {E}, {πE} ⊆ {π}. If E is non-trivial, then {πE} ⊂ {π}.

2. For any π ∈ {π}, there exists a non-trivial E ∈ {E} such that J(πE) ≥ J(π).

An intelligent choice of exploration functions does not diminish our ability to discover optimal
policies; instead, it allows us to refine the policy space, thereby enhancing the efficiency of the
learning process. The proof of this proposition can be found in Appendix A.

3.2 CHALLENGES AND MOTIVATIONS

The intricate relationships among multiple agents make it extremely difficult to search for the optimal
solution in MARL. Without powerful exploration methods, it is nearly impossible to avoid suboptimal
outcomes. We will elaborate on this with an example from the following proposition:
Proposition 2. Let’s consider a fully cooperative game with N agents, one state, and the joint action
space {0, 1}N , where the reward is given by r(00,1N ) = r1 and r(0N−m,1m) = −mr2 for all
m ̸= N , r1, r2 are positive real numbers. We suppose the initial policy is randomly and uniformly
initialized, and the policy is optimized in the form of gradient descent. Let p be the probability that
the shared policy converges to the best policy, then:

p = 1− N−1

√
r2

r1 +Nr2
.

Detailed proof is provided in Appendix A. In the above example, we show that the increase in
the number of agents makes it more difficult for MARL algorithms to reach the optimal solution.
However, based on the problem context, humans can understand problems from a high-level semantic
perspective, and quickly find optimal solutions. As LLMs have demonstrated surprising abilities in
semantic understanding, reasoning, and planning across various tasks Yuan et al. (2023); Wang et al.
(2023), we conduct a simple experiment to test GPT-4’s capability for the issue in Proposition 2, and
here is GPT-4’s response:

In a fully cooperative game, all agents work together to maximize the
total reward. There are two distinct reward conditions:

1. When all agents choose action 1, the reward is r1, a positive real
number.

2. When there is any number of agents m (where 0 < m < N) choosing
action 1, the reward is −mr2, where r2 is a positive real number.

All agents should act in a way that avoids the negative reward scenario.
The negative reward scenario happens anytime there is a mix of 0’s and
1’s in the action space, which means some agents are choosing 1 and
others are choosing 0. Therefore, the optimal joint action for all
agents is to all choose 1.

4
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GPT-4 exhibits reasoning abilities on par with those of humans and directly solves the problem in
Proposition 2. Propositions 1 has already shown that an intelligent exploration function can not
only reduce the searching space but also improve the final performance. This makes us think about
applying the powerful LLMs to prune the redundant action space and thereby guide the exploration
in MARL. In the following sections, we propose the eSpark framework, which integrates the prior
knowledge and inferential capability of LLMs to boost the exploration in MARL.

4 METHOD

In this section, we introduce a novel framework, eSpark, which integrates robust prior knowledge
encapsulated in LLMs. It improves iteratively through a cycle of trial and error, leveraging the
capability of LLMs. Figure 1 illustrates the overall training procedure. eSpark is composed of
three components: (i) zero-shot generation of exploration functions, (ii) evolutionary search for best
performing MARL policy, and (iii) detailed feedback on the performance of the policy to improve
the generation of exploration functions. We show the pseudocode of eSpark in Appendix B.

4.1 EXPLORATION FUNCTION GENERATION

LLMs have been demonstrated to possess exceptional capabilities in both code comprehension and
generation. To this end, we employ a LLM as LLM code generator, denoted as LLMg, whose
task is to understand the objectives of the current environment, and output an exploration function:

1. Exploration function generation

Exploration 
function 1

Exploration 
function 2

Exploration 
function K

…

2. Evolutionary search

…

… Performance i
(best)

Feedback i

Performance 1

Feedback 1

Performance K

Feedback K

…

LLMc

LLMg

3. Reflection

Generate

Exploration
functions

Feedback

Environment

…

Binary action mask

RL policy

state

state

action

Figure 1: eSpark firstly generates K exploration functions
via zero-shot creation. Each exploration function is then used
to guide an independent policy, and the evolutionary search is
performed to find the best-performing policy. Finally, eSpark
reflects on the feedback from the best performance policy, re-
fines and regenerates the exploration functions for the next
iteration.

E1, . . . , EK ∼ LLMg(prom),
(1)

where prom is the prompt for
LLMg , and the generation of K ex-
ploration functions is to circum-
vent the suboptimality that may
arise from single-sample genera-
tion. The initial prom includes
an RL formulation describing the
reward system, state items, transi-
tions, and the action space, along-
side a task description that speci-
fies the task objectives, expected
outputs, and formatting rules. De-
tails on the initial prom are pro-
vided in Appendix I. We use code
for the RL formulation as it effec-
tively captures the physical transi-
tion dynamics crucial to RL prob-
lems, which are always difficult to
express precisely through the text
alone, especially when environ-
mental complexity increases. Code
contexts also improve code gener-
ation and clarify environmental se-
mantics and variable roles Ma et al.
(2024). In Appendix F, we discuss the impact of different forms of RL formulation on the final
performance of eSpark when the environment code is unavailable.

During the code generation, however, LLMg may incorrectly interpret variables and produce logically
flawed code. This kind of flawed logic could persist if it is added to the prompt context for the
next generation. As research has shown that collaboration among multiple LLMs can enhance the
quality and efficacy of the generated contents Chen et al. (2023); Zhang et al. (2023), we introduce
the LLM checker denoted as LLMc, which reviews LLMg’s output to pursue an enhanced generation.
LLMc uses the same prompt as LLMg but is prompted to focus on verifying the accuracy of code
relative to environmental transitions and variable specifications. If inconsistencies are found, LLMc

5
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signals the error, prompting LLMg to regenerate the code. The reasons for introducing LLMc are
further discussed in Section 5.5. Finally, exploration functions are generated by:

E1, . . . , EK ∼ LLMc (prom,LLMg(prom)) . (2)

Exploration functions are applied only during the training phase to guide the exploration of MARL.
During the execution phase, all exploration functions are removed.

4.2 EVOLUTIONARY SEARCH

During the generation, however, it should be noted that the initially generated exploration function
may not always guarantee executability and effectiveness. To address this, eSpark performs an
evolutionary search paradigm that selects the best-performing policy in one iteration and uses its
feedback for subsequent generation Ma et al. (2024). Specifically, eSpark samples a batch of K
exploration functions in each generation to ensure there are enough candidates for successful code
execution. Performance is assessed at regular checkpoints within an iteration, with the final evaluation
based on the average of the last few checkpoints. The policy achieving the highest performance
is selected, and the feedback obtained from this policy is integrated to optimize the exploration
functions in the following steps.

Due to the dynamic nature of exploration, the exploration function generated based on feedback from
the best-performing policy may not be applicable to other policies. As the proof of Proposition 1
demonstrates, when an exploration function is incapable of intelligently pruning, it may even impair
the performance of the policy. To this end, we utilize retention training to maintain continuity of
exploration. Let ϕi−1

best represent best-performing policy from the (i − 1)-th iteration. For the i-th
iteration except for the first, at the start of the iteration, we set:

ϕi
1, ϕ

i
2, . . . , ϕ

i
K ← ϕi−1

best . (3)

This allows us to match exploration functions with their corresponding policies, subsequently refining
performance incrementally. We will verify the impact of retention training in Section 5.4.

4.3 REFLECTION AND FEEDBACK

Feedback from the environment can significantly enhance the quality of the generated output by
LLMs Nascimento et al. (2023); Du et al. (2023). In eSpark, we leverage policy feedback, which
contains the evaluation of policy performance from various aspects, to enhance the generation of
LLMs. This policy feedback may either come from experts or be automatically constructed from
the environment, as long as it encompasses insights into the aspects where the current algorithm
performs well and areas where it requires improvement. As illustrated in Equation 4, by correlating
the best-performing policy feedback Fbest and the most effective exploration function Ebest, LLMs
introspect, update the prompt prom, and gear up for the ensuing evolutionary cycle.

prom← prom : Reflection(Ebest, Fbest). (4)

In our experiments, we generate automated policy feedback from environmental reward signals, as
domain experts in relevant fields are not available. We acknowledge that obtaining feedback from
human experts can be expensive. Nevertheless, it is important to note that within our framework,
the number of rounds for feedback collection is specified by a predefined hyperparameter, which is
typically kept low (in our experiments, it is set to 10). Therefore, in scenarios where human experts
are accessible, incorporating their insights is feasible and can potentially enhance performance.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

For a comprehensive evaluation of eSpark’s capabilities, we perform detailed validations within
two distinct industrial environments: the inventory management environment MABIM and the traffic
signal control environment SUMO.

6
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• MABIM setting: MABIM simulates multi-echelon inventory management by modeling
each stock-keeping unit (SKU) as an agent, mirroring real-world operations and profits
within the MARL framework. The total reward is composed of multiple reward components.
We utilize the total reward to identify the best-performing policy, while those components
evaluate the policy’s multifaceted performance to generate policy feedback. We focus on
three key challenges within inventory management: multiple echelons, capacity constraints
and scalability, selecting corresponding scenarios for experiments.

• SUMO setting: SUMO is a traffic signal control environment in which each intersection is
represented as an agent. It offers a variety of reward functions, and we use "the number of
stopped vehicles" as the reward for evolutionary search, while other rewards are for policy
feedback. The Average Delay, Average Trip Time, and Average Waiting Time metrics are
chosen for evaluation Lu et al. (2023). We employ GESA Jiang et al. (2024) to standardize
intersections into 4-arm configurations. Each simulation spans 3600 seconds, with decisions
at 15-second intervals.

• Model setting: We use IPPO as the base MARL framework for eSpark due to its DTDE
structure, which is suitable for large-scale challenges. But note that our approach can also
be applied as a plugin in other MARL methods. We select GPT-4 for the LLMc and LLMg

due to its superior comprehension and generation abilities. For each scenario, we conduct
three runs with a batch size of K = 16. eSpark has the same number of training steps as
the compared MARL baselines, with 10 iterations evenly selected throughout the training
process for feedback, reflection, and exploration function editing.

All training jobs are executed with an Intel(R) Xeon(R) Gold 6348 CPU and 4 NVIDIA RTX A6000
GPUs. In Appendix C, we provide a detailed introduction and setting for the environments and model.
In Appendix D, we give hyperparameter configurations and descriptions of each baseline method.

5.2 EXPERIMENT RESULTS

In this section, we present the key findings for eSpark in the MABIM and SUMO, highlighting the
best and second best results in bold and underline. More detailed results and computational costs are
presented in Appendix E.

5.2.1 PERFORMANCE ON MABIM

Table 1 shows the results in the 100 SKUs scenarios in terms of capability constraints and multiple
echelon challenges. With IPPO as the base MARL algorithm, eSpark not only outperforms IPPO in
all scenarios but also exceeds the performance of all compared baselines in 4 out of 5 scenarios. For
an in-depth analysis, we discuss the policy differences between IPPO and eSpark in Appendix G,
along with eSpark’s reflective mechanism and exploration function adjustments in Appendix J.
While IPPO struggles to learn the intricate interplay among SKUs, eSpark excels particularly in
navigating cooperation among SKUs and refining its search in a broad space, leading to marked
improvements in managing capacity constraints and multi-echelon coordination.

Table 1: Performance in MABIM, a higher profit indicates a better performance. The "Standard"
scenario features a single echelon with sufficient capacity. The "2/3 echelons" involves challenges of
multi-echelon cooperation. The "Lower/Lowest" scenarios are the challenges where SKUs compete
for insufficient capacity, while "500 SKUs scenarios" assess scalability. The ‘-’ indicates CTDE
algorithms are not researched in the scalability challenges.

Method
Avg. profits (K)

100 SKUs scenarios 500 SKUs scenarios
Standard 2 echelons 3 echelons Lower Lowest Standard 2 echelons 3 echelons Lower Lowest

IPPO 690.6 1412.5 1502.9 431.1 287.6 3021.2 7052.0 7945.7 3535.9 2347.4
QTRAN 529.6 1595.3 2012.2 70.1 19.5 - - - - -
QPLEX 358.9 1580.7 704.2 379.8 259.3 - - - - -
MAPPO 719.8 1513.8 1905.4 478.3 265.8 - - - - -

BS static 563.7 1666.6 2338.9 390.7 -1757.5 3818.5 8151.2 11926.3 3115.1 -9063.8
BS dynamic 684.2 1554.2 2378.2 660.6 -97.1 4015.7 8399.3 11611.1 3957.5 2008.6

(S, s) 737.8 1660.8 1725.2 556.9 203.7 4439.4 9952.1 10935.7 3769.3 2212.4

eSpark 823.7 1811.4 2598.7 579.5 405.0 4468.6 9437.3 12134.2 3775.7 2519.5
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In Table 1, we also present the performance outcomes of the eSpark algorithm in the scaling-up
500 SKUs scenarios. Due to the centralized nature of the CTDE methods, they struggle to scale to
large-scale problems and therefore are not presented in the table. Despite IPPO’s markedly inferior
performance on scenarios when problems scale up, eSpark exhibits significant enhancements and
consistently achieves optimal results across multiple scenarios. We attribute this improvement to
eSpark’s action space pruning strategy, which effectively addresses the heightened exploration
needs in scenarios with many agents, providing a clear advantage in such complex environments.

5.2.2 PERFORMANCE ON SUMO

To further assess eSpark’s capabilities across different tasks, we have compiled a summary of
results in Table 2 based on the SUMO environment. Similar to the outcomes in MABIM, eSpark
consistently enhances the performance of the IPPO in all scenarios, and it has outperformed the CTDE
baselines as well as domain-specific MARL baselines to achieve the best performance. Notably, even
when IPPO alone is capable of good results (as seen in scenarios such as Grid 4×4 and Cologne8),
the pruning method designed in eSpark does not compromise the effectiveness of IPPO. We will
delve further into the analysis of exploration functions produced by eSpark in Section 5.3.

Table 2: Performance in SUMO, including the mean and standard deviation (in parentheses). A lower
time indicates a better performance.

Method Avg. delay (seconds) Avg. trip time (seconds)
Grid 4×4 Arterial 4×4 Grid 5×5 Cologne8 Ingolstadt21 Grid 4×4 Arterial 4×4 Grid 5×5 Cologne8 Ingolstadt21

FTC 161.14 (3.77) 1229.68 (16.79) 820.88 (24.36) 85.27 (1.21) 224.96 (11.91) 291.48 (4.45) 676.77 (13.70) 584.54 (24.17) 145.93 (0.84) 352.06 (9.29)

MaxPressure 63.39 (1.34) 995.23 (77.02) 242.85 (16.04) 31.63 (0.61) 228.64 (15.83) 174.68 (2.05) 702.09 (23.61) 269.35 (9.62) 95.67 (0.62) 352.30 (15.06)

IPPO 48.40 (0.45) 884.73 (38.94) 228.78 (11.59) 27.60 (1.70) 342.97 (43.61) 160.12 (0.60) 506.18 (10.39) 238.03 (7.10) 91.41 (1.60) 464.50 (43.30)

MAPPO 51.25 (0.58) 958.43 (181.72) 958.43 (181.72) 32.55 (4.66) 347.59 (47.59) 160.01 (0.54) 757.40 (242.00) 247.56 (3.71) 94.31 (1.77) 480.66 (49.46)

CoLight 53.40 (1.89) 820.67 (58.65) 339.66 (48.55) 27.48 (1.30) 296.47 (106.82) 165.77 (1.89) 470.33 (12.34) 305.41 (44.43) 91.66 (1.29) 410.59 (97.29)

MPLight 63.51 (0.64) 1142.98 (79.65) 223.44 (16.18) 37.93 (0.45) 196.74 (9.88) 172.47 (0.89) 583.21 (45.84) 255.49 (6.26) 110.56 (1.18) 331.42 (11.79)

eSpark 48.36 (0.32) 854.22 (68.21) 209.49 (13.98) 25.39 (1.27) 243.92 (15.81) 159.74 (0.44) 484.87 (58.21) 235.20 (6.80) 89.50 (1.36) 367.57 (15.03)

5.3 ESPARK LEARNS INTELLIGENT PRUNING METHODS

Given that eSpark employs the prior knowledge of the LLMs to craft its exploration function, our
study aimed to investigate two critical aspects: (1) the validity of action space pruning via prior
knowledge, and (2) the potential advantages of this method over rule-based heuristic pruning.

To address the questions raised, we devise two pruning strategies. First, we implement a random
pruning method, wherein agents randomly exclude a portion of actions during decision-making to
test the validity of knowledge-based pruning. Secondly, we utilize domain-related OR algorithms to
implement heuristic pruning methods. For MABIM, actions are pruned using the (S, s) policy and
unbound limit, while for SUMO, pruning relies on MaxPressure to keep only a few actions with the
highest pressure. The details of these methods are presented in Appendix D.3. Just like eSpark,
these pruning strategies are integrated with IPPO during training but not execution. We conducted
experiments under the same setting in Section 5.1, with results presented in Tables 3 and Table 4.

Table 3: Average performance changes on
MABIM. All changes are relative to IPPO.

Method Avg. profits change ratio (%)
100 SKUs 500 SKUs

Random pruning 2.1 -0.5
(S, s) pruning -25.9 15.5

Upbound pruning -23.2 -32.7
eSpark 39.1 29.7

Table 4: Average performance changes on
SUMO. All changes are relative to IPPO.

Method Avg. time change ratio (%)
Delay Trip time Wait time

Random pruning -0.1 2.2 -2.5
MaxPressure pruning -0.5 1.5 -0.1

eSpark -9.7 -5.7 -14.3

As shown in the tables, random pruning marginally affects performance by merely altering exploration
rates without providing new insights. Heuristic pruning’s impact varies with its design and context. In
MABIM, (S, s) pruning is less effective in the 100 SKUs scenario, as it restricts the already effective
IPPO’s exploration in smaller scales. However, it proves beneficial in the 500 SKUs scenario, where it
guides the exploration and leads to better results. Upbound pruning consistently underperforms due to
its overly simplistic heuristic. For SUMO, pressure-based pruning does not offer significant benefits.
Nevertheless, eSpark demonstrates remarkable adaptability across all testing tasks, adeptly selecting
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pruning methods that substantially enhance results. Its knowledge-based generative technique and
evolution capability enable it to master intelligent pruning strategies.

0 0.5 1
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Figure 2: Action selection frequency for IPPO and various pruning methods on the 100 SKUs Lowest
scenario. "Actions" represents the replenishment quantity is a multiple of the mean demand within
the sliding window. eSpark learns not only to minimize restocking but also to diversify with small
purchases below the mean demand, balancing demand fulfillment and overflow prevention.

Figure 2 presents a frequency heatmap of action selection for IPPO and various pruning methods
in the 100 SKUs Lowest scenario. IPPO learns a minimally restocking strategy, risking unmet
demand. Random pruning chooses actions more uniformly yet mirrors IPPO’s pattern. (S, s) pruning
excessively exceeds mean demand, ignoring no-restock actions and leading to significant overflow.
Upbound pruning typically avoids restocking, but prefers to purchase near the mean demand, which
could result in overflow costs. In contrast, eSpark adopts a balanced policy, avoiding overstocking
while diversifying its minor restocking strategies to meet demand without causing overflow.

5.4 ESPARK BENEFITS FROM RETENTION TRAINING AND ACTION SPACE REDUCTION

Extensive research has underscored the importance of reflection in LLM-driven content generation Ma
et al. (2024); Nascimento et al. (2023). Herein, we focus on the effects of retention training and
action pruning on eSpark’s performance.

We first design an ablation experiment, which we refer to as the eSpark w/o retention. The model
parameters are initialized when an iteration is finished, and the newly generated exploration functions
are equipped, after which the training starts from scratch. Given that the initialized model needs a
more extensive number of steps to converge, we accordingly triple the training steps per iteration in
comparison to the standard eSpark. Another ablation retains the retention training, while the only
difference is that the LLMs and reflection are removed. We name this experiment eSpark w/o LLM.
The comparative analysis of these two ablations is delineated in Table 5 and Table 6.

Table 5: Average performance change across
100 SKU scenarios in the MABIM environ-
ment. All changes are relative to IPPO.

Method Avg. profits change ratio (%)
eSpark 39.1

eSpark w/o retention 24.0
eSpark w/o LLM -2.8

Table 6: Average performance change in the
SUMO environment. All changes are relative
to IPPO.

Method Avg. time change ratio (%)
Delay Trip time Wait time

eSpark -9.7 -5.7 -14.3
eSpark w/o retention -9.6 -4.6 -11.2

eSpark w/o LLM -9.1 -5.0 -12.8

The removal of retention training and LLMs both result in a decline in the performance of the
eSpark. In the SUMO scenario, the performance gap between the two ablations and the complete
eSpark is relatively small, whereas it is more pronounced in the MABIM scenarios. This can
be attributed to the fact that MABIM involves a greater number of agents and a more complex
observation space action space, where a superior pruning can significantly enhance the performance
of MARL methods. Additionally, we observe that the lack of LLMs leads to a significant decrease
in performance on MABIM, emphasizing the central role of knowledge-based action space pruning
within the eSpark.

5.5 LLM CHECKER AND DETAILED REWARD FEEDBACK PROMOTES THE PERFORMANCE OF
ESPARK

We go deeper to investigate the impact of feedback prompt design and the LLM checker on the
performance of eSpark. eSpark utilizes detailed reward factors to evaluate policy performance

9
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comprehensively. To elaborate on the significance of this design, we perform an ablation experiment,
eSpark w/o r factors, in which the reward factors are removed, leaving only the total reward.

The introduction of LLM checker comes from the following observations: LLM code generator
occasionally produces flawed exploration functions (e.g., variable misuse, misaligned task logic).
Although these are usually eliminated during evolutionary search, when the pool of executable
exploration functions is small, flawed yet executable functions may still be selected as editing
templates, thus hindering further refinement. We conduct the second ablation eSpark w/o checker
by removing the LLM checker. Both ablations are performed in the MABIM (100 SKUs) and SUMO
environments, with the performance averaged in respective environments and presented in Table 7
and Table 8.

Table 7: Average performance change across
100 SKU scenarios in the MABIM environ-
ment. All changes are relative to IPPO.

Method Avg. profits change ratio (%)
eSpark 39.1

eSpark w/o r factors 17.8
eSpark w/o checker 26.2

Table 8: Average performance change in the
SUMO environment. All changes are relative
to IPPO.

Method Avg. time change ratio (%)
Delay Trip time Wait time

eSpark -9.7 -5.7 -14.3
eSpark w/o r factors -9.4 -4.8 -13.5
eSpark w/o checker -8.1 -3.1 -10.8

After removing detailed reward information, eSpark showed a significant performance decline
in both the MABIM and SUMO environments, particularly in MABIM, where complex transition
logic and variable usage exacerbated the impact. Without detailed reward factors, eSpark struggled
to analyze policy performance and propose targeted improvements, leading to a diminished ability
to refine the action space. We provide examples of eSpark’s responses with and without reward
factors in Appendix H to offer more insights into these results. Additionally, the ablation experiment
on the LLM checker revealed its critical role in preventing flawed exploration functions from being
selected as editing templates, further demonstrating the importance of both detailed reward feedback
and the LLM checker in maintaining eSpark’s overall performance.

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

We present eSpark, a novel framework for generating exploration functions, leveraging the advanced
capabilities of LLMs to integrate prior knowledge, generate code and reflect, thereby refining the
exploration in MARL. eSpark has surpassed its base MARL algorithm across all scenarios in
both MABIM and SUMO environments. In terms of pruning strategies, pruning based on the prior
knowledge from LLMs outshines both random and heuristic approaches. Ablation experiments
demonstrate the indispensable role of retention training in accurately improving exploration functions
based on policy flaws and enhancing sample efficiency. The LLM checker and detailed policy
feedback prompt design together ensure the superior performance of eSpark.

Nevertheless, eSpark also has certain limitations. First, currently eSpark is only applicable to
tasks involving homogeneous agents. For heterogeneous agents, a potential method could be to
generate distinct exploration functions for each agent; however, this approach becomes impractical
when the number of agents is too large. Moreover, eSpark benefits from policy feedback to refine
the exploration functions. When feedback is not informative regarding how to modify the exploration
(e.g., in tasks with sparse rewards, end-of-episode feedback alone is too limited to develop automated
feedback), eSpark may struggle to improve and need extra expert input for effective reflection.

Future work encompasses numerous potential directions. Existing research advocates for assigning
different roles or categories to agents Christianos et al. (2021); Wang et al. (2020), which could offer
a compromise for the application of eSpark in heterogeneous multi-agent systems. Furthermore,
state-specific feedback for more granular improvement represents an intriguing avenue Subramanian
et al. (2016). Our future endeavors will investigate these questions, striving to develop algorithms
that are robust and exhibit strong generalizability.
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A PROOFS

Proposition 1.

1. For any E ∈ {E}, {πE} ⊆ {π}. If E is non-trivial, then {πE} ⊂ {π}.

2. For any π ∈ {π}, there exists a non-trivial E ∈ {E} such that J(πE) ≥ J(π).

Proof. We begin by offering the proof of the first statement in Proposition 1. We denote {πk} as the
set of all possible policies for agent k, with each πk satisfying the following two conditions:{

πk : Ok ×Ak → [0, 1]∑
ak∈Ak πk(ak | ok) = 1

(5)

Let {πk
E} be the set of policies under an exploration function E. For every element in πk

E ∈ {πk
E},

one of the two situations exists:

1. If E is trivial, then πk
E(· | ok) = πk(· | ok), hence πk

E ∈ {πk}.

2. If E is non-trivial, then πk
E(· | ok) =

πk(·|ok)·E(ok,·)∑
ak∈Ak πk(ak|ok)·E(ok,ak)

. It is clear that 0 ≤ πk
E(· |

ok) ≤ 1 and
∑

ak∈Ak πk
E(a

k | ok) = 1, thus πk
E ∈ {πk}.

Therefore, we know that:
{πk

E} ⊆ {πk}. (6)

Given that for ∀π(· | st) =
∏N

k=1 π
k(· | ok), we have π ∈ {π}, where each πk belongs to {πk}.

According to Formula 6, it is known that for ∀πE(· | st) =
∏N

k=1 π
k
E(· | ok), it belongs to {π}.

Then:
{πE} ⊆ {π}. (7)

When E is non-trivial, πk
E ∈ {πk} still holds, but πk ∈ {πk

E} may not be true (i.e., when πk(ak |
ok) > 0 for ∀ak ∈ A, πk /∈ {πk

E}). Hence we can get:

{πk
E} ⊂ {πk}. (8)

In a similar manner, we can deduce that if there exists a k ∈ [1, 2, . . . , N ] such that πk /∈ {πk
E}, then

π /∈ {πE}, which means:
{πE} ⊂ {π}. (9)

Therefore, we finish the proof of the first statement.

To proof the second statement, it is necessary to introduce a series of variables. We define the value
function and state-action function for π as follows: Vπ(s) = Ea0:∞∼π,s1:∞∼P [

∑∞
t=0 γ

trt | s0 = s]
and Qπ(s, a) = Ea1:∞∼π,s1:∞∼P [

∑∞
t=0 γ

trt | s0 = s, a0 = a]. The advantage function is defined
as Aπ(s, a) = Qπ(s, a) − Vπ(s). The joint exploration function is introduced as E(s, ·) =∏N

k=1 E(ok, ·). The relationship between Vπ(s) and Qπ(s, a) can be formulated as:

Vπ(s) =
∑

a∈Ak

π(a | s)Qπ(s, a) (10)

For a non-trivial E, the value function of πE can be written as:

VπE
(s) =

∑
a∈Ak

E(s, a)π(a | s)∑
a∈Ak E(s, a)π(a | s)

Qπ(s, a)

=
1∑

a∈Ak E(s, a)π(a | s)
∑

a∈Ak

E(s, a)π(a | s)Qπ(s, a)

=
1∑

a∈Ak E(s, a)π(a | s)

Vπ(s)−
∑

a∈Ak

(1− E(s, a))π(a | s)Qπ(s, a)

 .

(11)
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Thus, we have:

VπE
(s)− Vπ(s) =

Vπ(s)−
∑

a∈Ak (1− E(s, a))π(a | s)Qπ(s, a)∑
a∈Ak E(s, a)π(a | s)

− Vπ(s)

=

(
1−

∑
a∈Ak E(s, a)π(a | s)

)
Vπ(s)−

∑
a∈Ak (1− E(s, a))π(a | s)Qπ(s, a)∑

a∈Ak E(s, a)π(a | s)

=

∑
a∈Ak (1− E(s, a))π(a | s)Vπ(s)−

∑
a∈Ak (1− E(s, a))π(a | s)Qπ(s, a)∑

a∈Ak E(s, a)π(a | s)

= −
∑

a∈Ak (1− E(s, a))π(a | s)Aπ(s, a)∑
a∈Ak E(s, a)π(a | s)

.

(12)
When −

∑
a∈Ak (1− E(s, a))π(a | s)Aπ(s, a) ≥ 0, which means the expectation of the advantage

value for the pruned actions is less than or equal to 0, then VπE
(s) ≥ Vπ(s). Because for every

s ∈ S ,
∑

a∈Ak Aπ(s, a) =
∑

a∈Ak Qπ(s, a)− Vπ(s) = 0, there always exist actions for which the
advantage function values are less than or equal to zero.

As J(πE) − J(π) = Es0∼ρ0 [VπE
(s0)− Vπ(s0)], if an exploration function E can satisfy the

condition that for all states s ∈ S, the inequality −
∑

a∈Ak (1− E(s, a))π(a | s)Aπ(s, a) ≥ 0
holds, then it can be guaranteed that J(πE) ≥ J(π).

Therefore, we finish the proof of the second statement.

Proposition 2. Let’s consider a fully cooperative game with N agents, one state, and the joint action
space {0, 1}N , where the reward is given by r(00,1N ) = r1 and r(0N−m,1m) = −mr2 for all
m ̸= N , r1, r2 are positive real numbers. We suppose the initial policy is randomly and uniformly
initialized, and the policy is optimized in the form of gradient descent. Let p be the probability that
the shared policy converges to the best policy, then:

p = 1− N−1

√
r2

r1 +Nr2
. (13)

Proof. Clearly, the best policy is the deterministic policy with joint action (00,1N ).

Now, let the shared policy be (1− θ, θ), where θ is the probability that an agent takes action 1. The
expected reward can be written as:

J(θ) = Pr
(
a1:N = (00,1N )

)
· r1 −

N−1∑
t=0

Pr
(
a1:N = (0N−t,1t)

)
· t · r2

= θN · r1 −
N−1∑
t=0

t · Ct
Nθt(1− θ)N−t · r2

= θN · r1 −
N∑
t=0

t · Ct
Nθt(1− θ)N−t · r2 +N · θN · r2,

(14)

where Ct
N is a combinatorial number. We need to simplify

∑N
t=0 t · Ct

Nθt(1 − θ)N−t for further
analysis. Notice the structural similarity between the results and the binomial theorem:

((1− θ) + θ)
N

=

N∑
t=0

Ct
Nθt(1− θ)N−t. (15)
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We take the derivative of θ on both sides of Formula 15. Because the left side is constant, its derivative
is 0. Then:

0 =
d
∑N

t=0 C
t
Nθt(1− θ)N−t

dθ

=

N∑
t=0

Ct
N t · θt−1 · (1− θ)N−t + Ct

N (N − t) · (−1) · (1− θ)N−t−1 · θt

=

N∑
t=0

Ct
N (1− θ)N−t−1θt−1 ((1− θ)t− (N − t)θ)

=

N∑
t=0

Ct
N (1− θ)N−t−1θt−1(t−Nθ).

(16)

Thus, we have:

Nθ

N∑
t=0

Ct
N (1− θ)N−t−1θt−1 =

N∑
t=0

tCt
N (1− θ)N−t−1θt−1

Nθ

N∑
t=0

Ct
N (1− θ)N−tθt =

N∑
t=0

tCt
N (1− θ)N−tθt.

(17)

Notice that the left side of the equation is the expansion form of Formula 15, and the right side of the
equation is the desired Formula, we can get:

N∑
t=0

tCt
N (1− θ)N−tθt = Nθ. (18)

Bring Formula 18 back to Formula 14, we get:

J(θ) = θN · r1 −Nθr2 +N · θN · r2. (19)

In order to maximise J(θ), we must maximise θN ·(r1+Nr2)−Nθr2. Since the policy optimization
usually adopts a gradient manner, we calculate the derivative of Formula 19 with respect to θ as:

dJ(θ)

dθ
= NθN−1(r1 +Nr2)−Nr2. (20)

the point θ∗ = N−1

√
r2

r1+Nr2
is the only zero of dJ(θ)

dθ . When θ ≤ θ∗, dJ(θ)
dθ ≤ 0; θ ≥ θ∗, dJ(θ)

dθ ≥ 0.

Remember we are trying to maximize J(θ) through a gradient way, and then the policy improves the
parameters in the direction of the gradient. As the initial policy is randomly and uniformly initialized,
the θ is uniformly distributed in the interval [0,1], then the probability that the shared policy converges
to the best policy is:

p = 1− N−1

√
r2

r1 +Nr2
. (21)

Therefore, we finish the proof of Proposition 2.

B PSEUDOCODE

In this Section, we give the pseudocode of our proposed eSpark. We denote the performance of
policy i as Gi, and the pseudocode of eSpark is shown in Algorithm 1.

C DETAILED SETTINGS

C.1 MABIM DETAILS

MABIM is a simulation environment dedicated to leveraging MARL to tackle the challenges inherent
in inventory management problems. Within MABIM, each stock SKU at every echelon is represented
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Algorithm 1 eSpark
1: Input: Initial prompt prom, LLM checker LLMc, LLM code generator LLMg, the evolution

iteration number N , and sample batch size K
2: Initialize: policies ϕ1

1, ϕ
1
2, . . . , ϕ

1
K

3: for i = 1 to N do
4: // Exploration Function Generation
5: E1, . . . , EK ∼ LLMc(prom,LLMg(prom))
6: // Retention training
7: if i ̸= 1 then
8: ϕi

1, ϕ
i
2, . . . , ϕ

i
K ← ϕi−1

best
9: end if

10: // Evolutionary search
11: G1, F1 = ϕ(E1), . . . , GK , FK = ϕ(EK)
12: // Reflection and Feedback
13: best← argmaxk(G1, G2, . . . , GK)
14: prom← prom : Reflection(Ebest, Fbest)
15: end for
16: Output: ϕN

best

Product
... ...

Replenishment

Factory Warehouse Customer
Product

Replenishment

Figure 3: MABIM inventory model.

as an autonomous agent. The decision-making process of each agent reflects the procurement
requirements for the specific SKU at its corresponding echelon.

Each time step involves the agent making decisions regarding replenishment quantities for SKUs
and subsequently transitioning the environment to a new state. Let M ∈ Z+ be the total warehouses,
with the first one being closest to customers, and N ∈ Z+ the total SKUs. Given a variable
X ∈ {D,S,L . . .}, Xt

i,j represents its value for the j-th SKU in the i-th echelon at step t, with
0 ≤ i < M and 0 ≤ j < N . Given the above notations, the main progression of a step can be
described as follows:

Dt+1
i+1,j = Rt

i,j (Replenish)

St
i,j = min(Dt

i,j , I
t
i,j) (Sell)

At
i,j =

t−1∑
k=0

I(k + Lk
i,j == t) · St

i+1,j (Arrive)

γt
i = min

(
Wi −

∑
j I

t
i,j∑

j A
t
i,j

, 1

)
, Bt

i,j = ⌊At
i,j · γt

i⌋ (Receive)

It+1
i,j = Iti,j − St

i,j +Bt
i,j (Update)

Here, D,R, S, I, A,B ∈ Z+ and I(condition) is an indicator function that returns 1 if the condition
is true, and 0 otherwise. For the topmost echelon, orders are channeled to a super vendor capable of
fulfilling all order demands at that level. Orders from other echelons are directed to their immediate
upstream echelons, where the demands are satisfied based on the inventory levels of the upper
echelons. The demand at the bottom echelon is derived from actual customer orders captured within
real-world data sets. The reward function within MABIM is meticulously calibrated based on the
economic realities of inventory management, integrating five fundamental elements: sales profit,
order cost, holding cost, backlog cost, and excess cost. The summation of these elements constitutes
the reward value, thereby incentivizing agents to optimize inventory control for enhanced profitability
and operational efficacy.
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MABIM incorporates challenges across five key categories: Scaling up, Cooperation, Competition,
Generalization, and Robustness. We concentrate on the challenges associated with Scaling up,
Cooperation, and Competition, as these challenges not only manifest in inventory management
problems but also exist in a broad range of MARL tasks. We catalog the number of agents, challenges
and degrees of difficulty within all the experimental scenarios in Table 9. The specific setting of each
scenario is given in Table 10:

Table 9: Tasks and corresponding challenges. ‘+’ denotes the extent of the challenges.

Task name Agents number Challenge
Scaling up Cooperation Competition

Standard (100 SKUs) 100
2 echelons (100 SKUs) 200 +
3 echelons (100 SKUs) 300 ++

Lower capacity(100 SKUs) 100 +
Lowest capacity (100 SKUs) 100 ++

Standard (500 SKUs) 500 +
2 echelons (500 SKUs) 1000 + +
3 echelons (500 SKUs) 1500 + ++

Lower capacity (500 SKUs) 500 + +
Lowest capacity (500 SKUs) 500 + ++

Table 10: Experiments settings. "#SKU * N" indicates N times the number of SKUs.
Task name #Echelon #SKU Capacity per echelon

Standard (100 SKUs) 1 100 #SKU*100
2 echelons (100 SKUs) 2 100 #SKU*100
3 echelons (100 SKUs) 3 100 #SKU*100

Lower capacity(100 SKUs) 1 100 #SKU*50
Lowest capacity (100 SKUs) 1 100 #SKU*25

Standard (500 SKUs) 1 500 #SKU*100
2 echelons (500 SKUs) 2 500 #SKU*100
3 echelons (500 SKUs) 3 500 #SKU*100

Lower capacity (500 SKUs) 1 500 #SKU*50
Lowest capacity (500 SKUs) 1 500 #SKU*25

For each scenario, we carry out three independent runs. Performance is reported as average test set
profits from the top model in each run.

C.2 SUMO DETAILS

SUMO is an open-source, highly portable, microscopic and continuous road traffic simulation package
designed to handle large road networks. In the SUMO simulation environment, each intersection is
conceptualized as an autonomous agent equipped with an array of predefined traffic signal phases.
These phases orchestrate the traffic flow across the intersection’s multiple approaches. The selection
of these phases, driven by the assessment of live traffic conditions, is aimed at attenuating road
congestion and enhancing the fluidity of vehicular movement through the network, thus contributing
to the overall efficiency of urban traffic management.

To conduct a thorough evaluation of each algorithm, we select a total of five scenarios from both
synthetic and real-world datasets. These datasets encompass a diverse array of intersections, varying
in number and type. The intersections are classified according to their configuration into three
categories: bi-directional (2-arm), tri-directional (3-arm), and quadri-directional (4-arm), indicating
the number of exit points at each junction. We summarize the type of each dataset, the number of
intersections included, and the classification of these intersections in Table 11.
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Table 11: The categories of each SUMO dataset, along with the number and types of intersections
included.

Dataset Category Intersections number 2-arm 3-arm 4-arm

Grid 4×4 synthesis 16 0 0 16
Arterial 4×4 synthesis 16 0 0 16

Grid 5×5 Lu et al. (2023) synthesis 25 0 0 25
Cologne8 real-world 8 1 3 4

Ingolstadt21 real-world 21 0 17 4

To facilitate a homogeneous observation and action space conducive to the deployment of various
MARL algorithms, we employ the GEneral Scenario-Agnostic (GESA) framework to parse each
intersection into a standardized 4-arm intersection with eight potential actions.

C.3 MODEL DETAILS

We employ IPPO as the base MARL algorithm for eSpark due to its ability to scale to large-
scale MARL challenges. We select GPT-4 as our LLMc and LLMg, specifically opting for the
2023-09-01-preview version. The temperature of GPT-4 is set to 0.7, with no frequency
penalty and presence penalty. For each scenario, we conduct three runs, setting the batch size for each
generation of exploration functions to K = 16. This batch size is chosen because it guarantees that
the initial generation contains at least one executable exploration function for our environment. We
limit the number of training iterations to 10, as we observe that the performance for most scenarios
tends to converge within this number of iterations.

D BASELINE DETAILS

In our experiments, we employed three categories of baselines: OR baselines, MARL baselines
and pruning baselines. In Table D, we list the characteristics and environment of all the baselines
utilized in our study. In the rest of this section, we will elucidate the underlying principles of each
OR baseline, articulate the design of the pruning baselines, and present the hyperparameter for the
MARL baselines.

Table 12: All the baselines used in the experiments

Algorithm name OR baseline MARL baseline Pruning baseline Used environment
CTDE DTDE MABIM SUMO

Base stock (BS) Arrow et al. (1951) ✓ ✓
(S, s) Blinder (1990) ✓ ✓

FTC Roess et al. (2004) ✓ ✓
MaxPressure Kouvelas et al. (2014) ✓ ✓

IPPO ✓ ✓ ✓
QTRAN ✓ ✓
QPLEX ✓ ✓
MAPPO ✓ ✓ ✓

MPLight Chen et al. (2020) ✓ ✓
CoLight Wei et al. (2019) ✓ ✓

Ramdom pruning ✓ ✓ ✓
(S, s) pruning ✓ ✓

Upbound pruning ✓ ✓
MaxPressure pruning ✓ ✓
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D.1 OR BASELINES

D.1.1 BASE STOCK ALGORITHM

The base stock algorithm constitutes a streamlined and efficacious approach for inventory control,
whereby replenishment orders are initiated upon inventory below a predefined threshold level. This
policy is traditionally acknowledged as a fundamental benchmark, favored for its straightforward-
ness and rapid implementation. The computation of the base stock level is facilitated through a
programmatic methodology, as explicated in Equation 22:

max oti,j = p̄i,j · St
i,j − c̄i,j · St

i+1,j − h̄i,j · It+1
i,j − c̄i,j · T 0

i,j − c̄i,j · I0i,j
s.t It+1

i,j = Iti,j + S
t−L̄i,j

i+1,j − St
i,j

T t+1
i,j = T t

i,j − S
t−L̄i,j

i+1,j + St
i+1,j

St
i,j = min(Iti,j , R

t
i,j)

T 0
i,j =

−1∑
t=−L̄i,j

St
i+1,j

zi,j = It+1
i,j + St

i+1,j + T t
i,j

zi,j ∈ R+.

(22)

In the above equations, i, j, and t are indexes for the warehouse, SKU, and discrete time, respectively.
The indicators p̄, c̄, h̄, and L̄ represent the average selling price, cost of procurement, cost of holding,
and lead time. The variables S, R, I , and T denote the quantities associated with sales, orders for
replenishment, inventory in stock and inventory in transit. oti,j describes the profit objective, while
zi,j is indicative of the base stock level.

We utilize two approaches for computing stock levels. The first approach, named BS static, involves
calculating all base stock levels with historical data from the training set, which are then applied
consistently to the test set. The levels remain unchanged during the test period. The second approach,
termed as BS dynamic, computes stock levels directly on the test set relying on historical data and
updates on a regular basis.

D.1.2 (S, s) ALGORITHM

The (S, s) inventory policy serves as a robust framework for managing stock levels. Under this
policy, a restocking order is triggered once the inventory count falls below a predefined threshold,
identified as s. The objective of this replenishment is to elevate the stock to its upper limit, designated
as S. Empirical analyses have substantiated the efficacy of this protocol in optimizing inventory
control processes. As a result, it is adopted as a benchmark heuristic, with the aim of algorithmically
ascertaining the most efficacious (S, s) parameter for each discrete SKU in the given inventory
dataset. In our implementation, we conduct a search on the training set to identify the optimal values
of s and S, after which we apply these values consistently to the test set.

D.1.3 FIXED-TIME CONTROL ALGORITHM

The Fixed-Time Control (FTC) algorithm is a traditional traffic signal control strategy predicated on
predefined signal plans. These plans are typically designed based on historical traffic flow patterns
and do not adapt to real-time traffic conditions. The FTC operates on a static schedule where the
signal phases at intersections change at fixed intervals. This approach is straightforward and easy to
implement but may not be optimal under variable traffic conditions due to its lack of responsiveness
to dynamic traffic demands.

In our implementation, the FTC follows a fixed sequence of signal phases: ’WT-ET’, ’NT-ST’,
’WL-EL’, ’NL-SL’, ’WL-WT’, ’EL-ET’, ’SL-ST’, ’NL-NT’. Here, ’W’, ’E’, ’N’, and ’S’ denote
westbound, eastbound, northbound, and southbound traffic, respectively, while ’T’ indicates through
movement, and ’L’ signifies a left turn. Each phase has a duration of 30 seconds
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D.1.4 MAXPRESSURE ALGORITHM

The MaxPressure algorithm represents a more advanced traffic signal control strategy that dynamically
adjusts signal phases in response to real-time traffic conditions. It calculates the "pressure" at each
intersection, defined as the difference between the number of vehicles on the incoming and outgoing
lanes. The algorithm aims to optimize traffic flow by selecting signal phases that reduce the maximum
pressure across the network, thus alleviating congestion and enhancing network throughput. Unlike
FTC, MaxPressure is adaptive and can continuously optimize signal timing based on the current
traffic state, making it more suitable for managing fluctuating traffic volumes.

D.2 HYPERPARAMETERS SETTINGS FOR MARL BASELINES

The following table enumerates the hyperparameters employed during the training process for all
MARL baselines. For all test scenarios, training is performed with a uniform suite of hyperparameters
that have not undergone specialized fine-tuning.

Table 13: Hyperparameters of MARL Algorithms Used in MABIM and SUMO Environments. ‘-’
indicates that the algorithm is not set or does not contain this hyperparameter.

Hyperparameter MABIM environment SUMO environment
IPPO QTRAN QPLEX MAPPO IPPO CoLight MPLight

Training steps 5020000 5020000 5020000 5020000 2400000 2400000 2400000
Discount rate 0.985 0.985 0.985 0.985 0.985 0.9 0.9

Optimizer Adam Adam Adam Adam Adam RMSProp RMSProp
Optimizer alpha 0.99 0.99 0.99 0.99 0.99 0.95 0.95
Optimizer eps 1e-5 1e-5 1e-5 1e-5 1e-5 1e-7 1e-7
Learning rate 5e-4 5e-4 5e-4 5e-4 5e-4 1e-3 1e-3

Grad norm clip 10 10 10 10 10 - -
Eps clip 0.2 - - 0.2 0.2 - -

Critic coef 0.5 - - 0.5 0.5 - -
Entropy coef 0 - - 0 0 - -

Accumulated episodes 4 8 8 4 4 10 10
Number of neighbors - - - - - 5 -

D.3 PRUNING BASELINES

D.3.1 RANDOM PRUNING

Random pruning is implemented by randomly masking a certain percentage of the available actions.
During the action selection process, each agent will have p percent of its available actions randomly
masked. To balance the observability of the pruning’s impact with the preservation of the algorithm’s
capacity to utilize prior experience, we set p = 0.3.

D.3.2 (S, s) PRUNING

According to the (S, s) algorithm, for a given SKU, a replenishment quantity of ∆ = S − s is
ordered when the current inventory level falls below the threshold s; otherwise, no order is placed.
We extend the reference replenishment quantity ∆ to a range [r1 ×∆, r2 ×∆], where r1, r2 are both
real numbers and 0 ≤ r1 ≤ 1 and r2 ≥ 1. Actions within this interval are deemed available, while
those outside of this range are masked. In our implementation, we select r1 = 0.5 and r2 = 2.

D.3.3 MAXPRESSURE PRUNING

The MaxPressure pruning method utilizes the heuristic concept of "pressure" at an intersection to
prune actions. We calculate the pressure associated with each action, and these pressures are then
ranked. The actions with the top-k highest pressures are rendered available for selection. Actions not
meeting this threshold are subsequently masked.

A standardized intersection warped through the GESA is modeled as a four-arm intersection compris-
ing eight potential actions. We empirically set k = 4 to ensure effective pruning while maintaining a
sufficient number of available actions.
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E ADDITIONAL RESULTS

E.1 ADDITIONAL MAIN RESULTS

In this section, we present the complete main experimental results for SUMO in Section 5.2, and give
the consumption of GPT tokens here.

Table 14: Detailed performance in SUMO, includes the mean and standard deviation.
Method Metric Grid 4×4 Arterial 4×4 Grid 5×5 Cologne8 Ingolstadt21

FTC
Delay 161.14± 3.77 1229.68±16.79 820.88±24.36 85.27±1.21 224.96±11.91

Trip time 291.48±4.45 676.77±13.70 584.54±24.17 145.93±0.84 352.06±9.29
Wait time 155.66±3.42 521.86±13.33 441.63±21.13 58.92±0.68 161.22±7.88

MaxPressure
Delay 63.39±1.34 995.23±77.02 242.85±16.04 31.63 ± 0.61 228.64±15.83

Trip time 174.68±2.05 702.09±23.61 269.35±9.62 95.67±0.62 352.30 ± 15.06
Wait time 37.37±1.06 511.06±22.55 114.36±6.48 11.03± 0.28 159.44±13.34

IPPO
Delay 48.40±0.45 884.73±38.94 228.78±11.59 27.60±1.70 342.97±43.61

Trip time 160.12±0.60 506.18±10.39 238.03±7.10 91.41±1.60 464.50±43.30
Wait time 22.69±0.38 435.44±77.54 91.84±6.31 7.70±0.82 267.51±40.53

MAPPO
Delay 51.25±0.58 958.43±181.72 221.62±20.73 32.55±4.66 347.59±47.59

Trip time 160.01±0.54 757.40±242.00 247.56±3.71 94.31±1.77 480.66±49.46
Wait time 25.41±0.54 609.80±255.22 97.10±5.22 9.39±1.53 283.59±43.20

MPLight
Delay 63.51±0.64 1142.98±79.65 223.44±16.18 37.93±0.45 196.74±9.88

Trip time 172.47±0.89 583.21±45.84 255.49±6.26 110.56±1.18 331.42±11.79
Wait time 40.32±0.96 366.27±58.03 126.42±5.31 12.98±0.57 126.09±13.60

CoLight
Delay 53.40±1.89 820.67±58.65 339.66±48.55 27.48±1.30 296.47±106.82

Trip time 165.77±1.89 470.33±12.34 305.41±44.43 91.66±1.29 410.59±97.29
Wait time 27.25±1.64 312.47±16.63 157.65±35.69 9.35±1.09 215.98±90.62

eSpark
Delay 48.36±0.32 854.22±68.21 209.49 ±13.98 25.39±1.27 243.92±15.81

Trip time 159.74±0.44 484.87±58.21 235.20±6.80 89.50±1.36 367.57±15.03
Wait time 22.58±0.29 328.82±61.70 88.38±4.41 6.94±0.38 180.09±13.84

Since we do not design specific prompts for different scenario tasks within the same environment, we
calculate the average token consumption for all scenarios with each environment and display it in
Table 15.

Table 15: Average token assumption for MABIM and SUMO.
Environment Token assumption (M)

MABIM 3.0
SUMO 2.6

The training time and GPU memory usage for eSpark and the baselines across different scenarios
are presented in Table 16 and Table 17.

Table 16: GPU memory usage of eSpark and
MARL baselines.

Method GPU memory usage (G)
Standard 2 echelons 3 echelons

eSpark 27.2 33.9 42.4
IPPO 2.3 3.4 4.4

QTRAN 4.2 6.5 8.7

Table 17: Running time of eSpark and MARL
baselines.

Method Running time (h)
Standard 2 echelons 3 echelons

eSpark 18 25 30
IPPO 6 8 12

QTRAN 9 15 21
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E.2 DETAILED RESULTS OF THE PRUNING METHODS

In this section, we provide the detailed results for multiple pruning baselines as discussed in Sec-
tion 5.3, along with results of eSpark for comparison.

Table 18: Detailed performance of various pruning methods in MABIM.

Method
Avg. profits (K)

100 SKUs scenarios 500 SKUs scenarios
Standard 2 echelons 3 echelons Lower Lowest Standard 2 echelons 3 echelons Lower Lowest

Random pruning 733.0 1407.6 1426.6 511.6 262.0 2718.0 8667.4 9464.1 2535.5 2202.1
(S, s) pruning 394.4 832.3 933.4 441.1 258.3 3884.3 9248.3 10282.1 3517.9 2085.6

Upbound pruning 745.0 630.2 -2.2 557.7 294.7 3261.3 2473.6 1657.6 2833.0 2167.7
eSpark 823.7 1811.4 2598.7 579.5 405.0 4468.6 9437.3 12134.2 3775.7 2519.5

Table 19: Detailed performance of various pruning methods in SUMO, includes the mean and
standard deviation.

Method Metric Grid 4×4 Arterial 4×4 Grid 5×5 Cologne8 Ingolstadt21

Ramdom pruning
Delay 49.07±0.36 858.33±48.20 238.57±9.45 25.89±1.34 353.38±24.39

Trip time 160.13±0.58 548.08±61.84 241.92±9.60 89.75±1.26 478.53±22.54
Wait time 22.66±0.14 387.25±43.93 93.49±8.09 7.03±0.37 281.97±21.90

MaxPressure pruning
Delay 48.78±0.37 890.04±121.50 234.27±14.28 26.26±0.36 337.02±62.18

Trip time 160.72±0.17 533.36±78.08 253.68±17.68 90.36±0.88 448.11±65.32
Wait time 23.03±0.56 391.96±78.34 102.29±10.34 7.33±0.12 257.98±61.91

eSpark
Delay 48.36±0.32 854.22±68.21 209.49 ±13.98 25.39±1.27 243.92±15.81

Trip time 159.74±0.44 484.87±58.21 235.20±6.80 89.50±1.36 367.57±15.03
Wait time 22.58±0.29 328.82±61.70 88.38±4.41 6.94±0.38 180.09±13.84

E.3 DETAILED RESULTS OF THE ABLATIONS

In this section, we provide the detailed results for ablations in Table 20 and Table 21, along with
results of eSpark for comparison.

Table 20: Detailed performance of ablations in MABIM.

Method Avg. profits (K)
Standard 2 echelons 3 echelons Lower Lowest

eSpark w/o retention 719.0 1806.1 2388.6 547.7 294.1
eSpark w/o LLM 754.7 1538.9 1109.9 536.7 198.5

eSpark w/o checker 780.7 1741.6 2037.6 494 295.3
eSpark w/o r factors 758.2 1688.1 2375.1 498.6 368.9

eSpark 823.7 1811.4 2598.7 579.5 405.0

F ESPARK’S PERFORMANCE WITH DIFFERENT RL FORMULATION

When the environment code is unavailable, we consider manually adding descriptions for transitions
and rewards. We first introduce the ablation eSpark w/ lang, which replaces the environment
codes with natural language descriptions. We conduct experiments on selected scenarios in MABIM
with 100 SKUs, and the results are shown in Table 22 and Table 23. While the SUMO tasks remain
largely unaffected, the MABIM tasks experience noticeable performance declines. This is because
the transition logic and variable usage in SUMO are relatively simple, whereas MABIM involves
more complex environment transitions and variable interactions. While environment codes provide
precise transition dynamics and variable meanings, natural language often lacks this level of detail.

To further explore effective representation for improving performance in complex environments,
we also adopt a strategy similar to Text2reward Xie et al. (2023), where experts create a simplified
Python-style representation, referred to as eSpark w/ pyrep. As shown in Table 22, the kind
of representation obtain performance on par with eSpark, which indicates that as long as accurate
details and sufficient information are included, the language model can effectively understand the
environment and eSpark can work well.
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Table 21: Detailed performance of ablations in SUMO, includes the mean and standard deviation.
Method Metric Grid 4×4 Arterial 4×4 Grid 5×5 Cologne8 Ingolstadt21

eSpark w/o retention
Delay 48.75±0.49 851.56±37.98 211.07±22.01 25.18±0.51 246.05±14.88

Trip time 160.42±0.54 487.05±65.66 248.96±15.04 89.23±0.49 363.28±14.83
Wait time 22.97±0.39 338.64±67.07 97.77±10.25 7.14±0.15 175.79±12.47

eSpark w/o LLM
Delay 48.67±0.48 854.10±63.38 212.25±16.13 24.70±0.56 257.14±40.50

Trip time 159.90±0.56 491.49±67.52 238.33±9.41 88.57±0.60 376.46±40.01
Wait time 22.99±0.43 342.62±73.88 90.89±6.60 6.69±0.23 188.14±37.03

eSpark w/o checker
Delay 48.29±0.53 872.6±94.89 215.58±11.29 25.22±0.69 258.39±14.44

Trip time 159.62±0.48 511.45±79.67 246.56±9.38 89.20±0.68 383.33±17.07
Wait time 22.59±0.48 347.43±68.39 95.95±6.33 6.92±0.28 192.96±15.37

eSpark w/o r factors
Delay 48.54±0.41 849.82±44.81 216.27±20.01 25.29±0.61 240.47±19.69

Trip time 159.89±0.63 479.29±57.12 247.28±8.30 89.25±0.62 373.32±21.19
Wait time 22.85±0.36 331.69±74.99 90.14±6.95 6.88±0.19 180.90±13.42

eSpark
Delay 48.36±0.32 854.22±68.21 209.49 ±13.98 25.39±1.27 243.92±15.81

Trip time 159.74±0.44 484.87±58.21 235.20±6.80 89.50±1.36 367.57±15.03
Wait time 22.58±0.29 328.82±61.70 88.38±4.41 6.94±0.38 180.09±13.84

Table 22: Performance of eSpark and its ablations in the 100 SKUs setting of the MABIM environ-
ment.

Method Profits (K)
Standard 3 echelons Lowest

eSpark 823.7 2598.7 405.0
eSpark w/ lang 777.5 752.7 347.0

eSpark w/ pyrep 817.4 2522.2 409.7

G POLICY PERFORMANCE ANALYSIS

To gain a deeper understanding of the policy difference between eSpark and IPPO, we select the
capacity limit and multiple echelons challenges within the 100 SKUs scenario as representative cases,
presenting in Figure 4 the daily profit of eSpark and IPPO on the test dataset challenged with
capacity limit and multiple echelons. In the capacity limit challenges, a high daily overflow ratio and
low fulfillment ratio suggest that IPPO falls short in mastering the adjustment of restocking quantities
for individual agents when capacity is limited, leading to overstocking and substantial overflow.
Concurrently, this prevents SKUs required by consumers from being accommodated, culminating
in an exceedingly low fulfillment ratio. In multiple echelon challenges, the fulfillment ratio at each
echelon gradually decreases over time, indicating that IPPO struggles to comprehend and learn the
intricate interplay required for cooperation among various echelons, thereby inadequately fulfilling
the demands of each echelon. Such shortcomings not only diminish potential profits but also subject
the system to considerable backlog expenses. However, through action space pruning, evolutionary
search, and reflection, eSpark manages to reduce the search within the vast space, selecting the
most effective exploration functions and continuously improving. This approach significantly reduces
overflow in the capacity limit scenario and successfully learns suitable cooperation methods for
multiple echelons.

Table 23: Performance of eSpark and its ablations in SUMO, includes the mean and standard
deviation.

Method Metric Time usage (s)
Arterial 4×4 Ingolstadt21

eSpark
Delay 851.56±37.98 246.05±14.88

Trip time 484.84±58.21 367.57±15.03
Wait time 328.82±61.70 180.09±13.84

eSpark w/ lang
Delay 830.05±75.95 243.32±19.43

Trip time 495.18±18.60 365.65±21.48
Wait time 351.32±27.07 178.31±19.31

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 20 40 600
20
40
60
80

100

Ra
tio

(%
)

Lower capacity
eSpark

Fulfillment Overflow

0 20 40 600
20
40
60
80

100 IPPO

0 20 40 600
20
40
60
80

100

2 echelons
eSpark

Downstream fulfillment Upstream fulfillment

0 20 40 600
20
40
60
80

100 IPPO

0 20 40 60
Days

0
20
40
60
80

100

Ra
tio

(%
)

Lowest capacity
Fulfillment Overflow

0 20 40 60
Days

0
20
40
60
80

100

0 20 40 60
Days

0
20
40
60
80

100

3 echelons
Downstream fulfillment Midstream fulfillment Upstream fulfillment

0 20 40 60
Days

0
20
40
60
80

100

Figure 4: The performance comparison between eSpark and IPPO in 100 SKUs scenarios. In
capacity-limited scenarios, eSpark strives to meet the demands while minimizing overflow costs,
boasting a lower overflow ratio and a higher fulfillment ratio. In the multiple-echelon challenge,
eSpark achieves nuanced collaboration across different echelons, ensuring high fulfillment ratios.

H ESPARK’S RESPONSE WITH AND WITHOUT REWARD FACTORS

We select the policy feedback from one iteration in the Lower scenario of the MABIM environment
with 100 SKUs as an example. The complete policy feedback is shown in Figure 5. In the ablation
experiment, all reward factors (highlighted in red) are removed. Figure 6 and Figure 7 illustrate
the differences in GPT-4’s reflections with and without the reward components. After removing the
reward feedback, GPT-4 struggles to identify the reasons for poor performance and to thoroughly
analyze ways to improve it.

We trained a RL policy using the provided exploration function code and tracked the values of the individual 
components of the reward function as well as global policy metrics. We also compute the maximum, mean in the early 
training stage, mean in the late training stage, mean in all the training stage, minimum values for reward and its 
components after every {epoch_freq} epochs. Each element is a one-dimensional array of length n_warehouse, 
representing the value of that component on different warehouses: 

Please carefully analyze the policy feedback and provide a new, improved exploration function that can better solve 
the task. Some helpful tips for analyzing the policy feedback:

(1) You can start with "let's think step by step", and then look at each reward individually and think about how 
can you improve it

(2) If the total reward maintains in the same level or even reduce, then you must rewrite the entire exploration 
function

(3) If the values for a certain reward component are near identical throughout, then this means RL is not able 
to optimize this component as it is written. You may consider:

(a) Changing the temperature scale or value of the related mask component so that more action can be 
explored

(b) Re-writing the related mask component 
(c) Discarding the mask component or add a new mask component 

metric_name: reward, Max: [435592.087], Min: [-1331893.335], Mean in the early training stage: [-212101.5832], Mean 
in the late training stage: [338683.3766], Mean in all the training stage: [71512.5884375]
metric_name: profit, Max: [587080.], Min: [430897.], Mean in the early training stage: [493648.], Mean in the late training 
stage: [564756.2], Mean in all the training stage: [527295.125]
metric_name: excess_cost, Max: [1648683.5], Min: [17213.5], Mean in the early training stage: [596130.9], Mean in the late 
training stage: [123902.4], Mean in all the training stage: [349431.25]
metric_name: order_cost, Max: [60580.], Min: [56490.], Mean in the early training stage: [58864.], Mean in the late training 
stage: [58758.], Mean in all the training stage: [58650.625]
metric_name: holding_cost, Max: [456.135], Min: [272.157], Mean in the early training stage: [390.6432], Mean in the late 
training stage: [399.6234], Mean in all the training stage: [394.1803125]
metric_name: backlog_cost, Max: [56796.1], Min: [40408.7], Mean in the early training stage: [50364.04], Mean in the late 
training stage: [43012.8], Mean in all the training stage: [47306.48125]

Figure 5: Policy feedback from last iteration in MABIM 100 SKUs Lower scenario.

From the policy feedback, we can identify a few key issues:

1. The total reward is negative in the early training stage and only becomes positive in the later training stages. 
This suggests that the agent is not learning effective strategies early on, potentially due to a lack of exploration.
2. The excess cost is quite high, especially in the early training stages. This suggests that the agent is 
overstocking the warehouse.
3. The holding cost remains high throughout the training, indicating that the agent is holding onto inventory for 
too long.

Given these issues, we need to revise the exploration function to encourage the agent to explore actions that would 
result in less overstocking. Here's an improved exploration function:

Figure 6: eSpark’s reflection with reward factors.
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From the policy feedback, we can identify a few key issues:

1. The policy feedback indicates that the reward function has a wide range, with the minimum values being 
significantly negative and the maximum being positive. The mean reward in the early stage is negative, while it 
becomes positive in the late stage. This suggests that the policy improves over time but has considerable variability 
in outcomes.
2. The high variance in reward components suggests that the exploration may be too aggressive, leading to 
overstocking (incurring high holding costs and overflow costs) or understocking (incurring backlog costs).
3. The exploration function may be too restrictive or lenient, preventing the RL agent from effectively learning the 
optimal policy.

We will modify the mask to include a temperature parameter, which will initially be set high to allow for broader 
exploration and gradually decrease it as the training progresses. This change will help the agent explore a wider 
range of actions early on and focus more on promising actions as it learns.

Figure 7: eSpark’s reflection without reward factors.

I FULL PROMPTS

We reference the prompt design outlined in the Eureka Ma et al. (2024) and adapt it specifically for
exploration function generation. Our prompt provides general guidance on the design of exploration
functions, specific code formatting suggestions, feedback, and recommendations for improvement.
We present our prompts for MABIM below.

You are an expert in both inventory management learning and reinforcement learning. You will get some exploration 
functions, which help mask some actions that are logically unlikely to be selected, to help the exploration in 
reinforcement learning tasks as effective as possible.
Your goal is to evaluate whether the given exploration function matches the task description and whether it contains 
any illogical errors in the code content, and evaluate whether it's possible to avoid some unreasonable actions, 
help the exploration of reinforcement learning. You need to pay special attention to the meaning of each state item 
and the logic of the task, making sure to detect 
(1) All incorrect use of variables in code 
(2) All the parts that don't follow logic.

The exploration function signature can be: 
{task_exploration_signature_string}

Your advice can be text or snippets of code, but it should not be the full exploration function code. Most 
importantly, remember that your response must begin with either "Code passes check." or "Code fails to pass check.". 
Under no circumstance can you begin your answer with other content.

Figure 8: System prompt for LLMc.

Your goal is to write a exploration function for the agent that will mask the actions that's almost impossible to be 
chosen in the task described in text. 

The exploration function signature can be: 
{task_exploration_signature_string}

Your exploration function should only use the variables from the argument list.
Please just give only the exploration function and don't put it in a class. Please make sure that the code is 
compatible with numpy (e.g., use numpy array instead of torch tensor). 

                  
                 

       

You are an expert in both inventory management learning and reinforcement learning. You are trying to write some 
exploration functions, which helps mask some actions that are logically unlikely to be selected, to help exploration 
in reinforcement learning tasks as effective as possible.

Figure 9: System prompt for LLMg .

Write a exploration function for the following task : 
{task_introduction}

The definition of environment and transition are : 
{transition_definition}

The agent and state definition is : 
{state_definition}

The reward definition is :
{reward_definition}

Figure 10: Initial prompt for LLMg .
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Please carefully check the exploration function for the following task : 
{task_introduction}

The definition of environment and transition are : 
{transition_definition}

The agent and state definition is : 
{state_definition}

The reward definition is :
{reward_definition}

The requirements of code : 
{code_output_tip}

Figure 11: Initial prompt for LLMc.

Here is the latest exploration function and it's description:
{gpt_response}

Please carefully review this code, check whether it matches the task description and whether it contains any 
illogical errors in the code content, and evaluate whether it's possible to improve the exploration and the 
performance.

Figure 12: LLMg’s feedback to LLMc.

We discuss this code with experts, and the code is not approved by experts, and the comments of experts on this code 
are as follows:

{checker_feedback}

Please refer to expert advice and combine your own knowledge, fix the problems and provide a new, improved 
exploration function!

Figure 13: LLMc’s feedback to LLMg .

def compute_mask(agent_states: AgentStates, supply_chain: SupplyChain, action_space: list):
# Here are some code you can refer to when you generate your exploration function.
...
return total_mask, {}

Figure 14: Signature of exploration function.

Please carefully analyze the policy feedback and provide a new, improved exploration function that can better solve 
the task. Some helpful tips for analyzing the policy feedback:

(1) You can start with "let's think step by step", and then look at each reward individually and think about how 
can you improve it

(2) If the total reward maintains in the same level or even reduce, then you must rewrite the entire exploration 
function

(3) If the values for a certain reward component are near identical throughout, then this means RL is not able 
to optimize this component as it is written. You may consider:

(a) Changing the temperature scale or value of the related mask component so that more action can be 
explored

(b) Re-writing the related mask component 
(c) Discarding the mask component or add a new mask component 

Figure 15: Output and improvement tips for LLMg .
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The output of the exploration function should be a total mask (1 denote action is not masked and 0 otherwise). The 
code output should be formatted as a python code string: "```python ... ```".

Some helpful tips for writing the exploration function code:
(1) Your total mask and its component should be a 3-D numpy array in [warehouse_name, sku_type, action_mask]. 

The masks of the actions that are available are set to 1, otherwise 0. No other elements are allowed to appear in 
total mask.

(2) If you choose to transform a component mask, then you must also introduce a temperature parameter inside the 
transformation function; this parameter must be a named variable in the mask function and it must not be an input 
variable. Each transformed mask component should have its own temperature variable

(3) Make sure the type of each input variable is correctly specified; For example, a float input variable should 
not be specified as torch.Tensor

(4) Most importantly, the exploration code's can only use variables defined in its arguments. Under no 
circumstance can you introduce new input variables. You only need to give the definition of exploration function and 
no other function or class should be defined.

Figure 16: Output format for LLMg .

Your output should contain two parts:
(1) Your response must begin with either "Code passes check." or "Code fails to pass check.". "Code passes 

check." means you believe that there are no logical errors in the code and the variables are taken in accordance 
with the description of the task. "Code fails to pass check." indicates the provided exploration function contains 
logical errors, or you think the code is obviously flawed and you can point out how to facilitate more effective 
exploration.

(2) If you begin with "Code fails to pass check.", you have to explain why the code fails to pass the check and 
give your advice on fixing the problems; If you begin with "Code passes check.", you also have to state why each 
part is logical and reasonable.

Some common logical errors include:
(1) Misunderstanding the meaning of the state items, or including syntax errors when using variables
(2) Illogically handling the state items
(3) Using multiple unrelated state items to calculate mask component
(4) The way of combining mask components into total mask is unreasonable

Figure 17: Output format for LLMc.

We trained a RL policy using the provided exploration function code and tracked the values of the individual 
components of the reward function as well as global policy metrics. We also compute the maximum, mean in the early 
training stage, mean in the late training stage, mean in all the training stage, minimum values for reward and its 
components after every {epoch_freq} epochs. Each element is a one-dimensional array of length n_warehouse, 
representing the value of that component on different warehouses: 

<Reward Feedback Here>

Figure 18: Reward feedback and action feedback.
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J ESPARK’S EXPLORATION FUNCTION EDITING

In this section, we demonstrate the reward editing capabilities of eSpark. eSpark is capable of
reflecting upon feedback to optimize the exploration for subsequent iterations.

We trained a RL policy using the provided exploration function code and tracked the values of the individual 
components of the reward function as well as global policy metrics. We also compute the maximum, mean in the early 
training stage, mean in the late training stage, mean in all the training stage, minimum values for reward and its 
components after every {epoch_freq} epochs. Each element is a one-dimensional array of length n_warehouse, 
representing the value of that component on different warehouses: 
metric_name: reward, Max: [435592.087], Min: [-1331893.335], Mean in the early training stage: [-212101.5832], Mean 
in the late training stage: [338683.3766], Mean in all the training stage: [71512.5884375]
metric_name: profit, Max: [587080.], Min: [430897.], Mean in the early training stage: [493648.], Mean in the late 
training stage: [564756.2], Mean in all the training stage: [527295.125]
metric_name: excess_cost, Max: [1648683.5], Min: [17213.5], Mean in the early training stage: [596130.9], Mean in 
the late training stage: [123902.4], Mean in all the training stage: [349431.25]
metric_name: order_cost, Max: [60580.], Min: [56490.], Mean in the early training stage: [58864.], Mean in the late 
training stage: [58758.], Mean in all the training stage: [58650.625]
metric_name: holding_cost, Max: [456.135], Min: [272.157], Mean in the early training stage: [390.6432], Mean in the 
late training stage: [399.6234], Mean in all the training stage: [394.1803125]
metric_name: backlog_cost, Max: [56796.1], Min: [40408.7], Mean in the early training stage: [50364.04], Mean in the 
late training stage: [43012.8], Mean in all the training stage: [47306.48125]

Please carefully analyze the policy feedback and provide a new, improved exploration function that can better solve 
the task. Some helpful tips for analyzing the policy feedback:

(1) You can start with "let's think step by step", and then look at each reward individually and think about how 
can you improve it

(2) If the total reward maintains in the same level or even reduce, then you must rewrite the entire exploration 
function

(3) If the values for a certain reward component are near identical throughout, then this means RL is not able 
to optimize this component as it is written. You may consider:

(a) Changing the temperature scale or value of the related mask component so that more action can be 
explored

(b) Re-writing the related mask component 
(c) Discarding the mask component or add a new mask component 

Figure 19: Policy feedback from the last iteration.

From the policy feedback, we can identify a few key issues:

1. The total reward is negative in the early training stage and only becomes positive in the later training stages. 
This suggests that the agent is not learning effective strategies early on, potentially due to a lack of exploration.
2. The excess cost is quite high, especially in the early training stages. This suggests that the agent is 
overstocking the warehouse.
3. The holding cost remains high throughout the training, indicating that the agent is holding onto inventory for 
too long.

Given these issues, we need to revise the exploration function to encourage the agent to explore actions that would 
result in less overstocking. Here's an improved exploration function:

Figure 20: eSpark reflects upon the policy feedback and proposes the modification.

Figure 21: Comparison of exploration functions before and after editing.

30


	Introduction
	Related works
	Preliminaries
	Problem formulation and notations
	Challenges and motivations

	Method
	Exploration function generation
	Evolutionary search
	Reflection and feedback

	Experiments
	Experiment settings
	Experiment results
	Performance on MABIM
	Performance on SUMO

	eSpark learns intelligent pruning methods
	eSpark benefits from retention training and action space reduction
	LLM checker and Detailed reward feedback promotes the performance of eSpark

	Conclusions, limitations and future work
	Proofs
	Pseudocode
	Detailed settings
	MABIM details
	SUMO details
	Model details

	Baseline details
	OR baselines
	Base stock algorithm
	(S,s) algorithm
	Fixed-time control algorithm
	MaxPressure algorithm

	Hyperparameters settings for MARL baselines
	Pruning baselines
	Random pruning
	(S,s) pruning
	MaxPressure pruning


	Additional results
	Additional main results
	Detailed results of the pruning methods
	Detailed results of the ablations

	eSpark's performance with different RL formulation
	Policy performance analysis
	eSpark's response with and without reward factors
	Full prompts
	eSpark's exploration function editing

