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Abstract

Given n i.i.d.random matrices 4; € R%*4 that share common expectation X, the
objective of Differentially Private Stochastic PCA is to identify a subspace of
dimension k that captures the largest variance directions of ¥, while preserving
differential privacy (DP) of each individual A;. Existing methods either (i) require
the sample size n to scale super-linearly with dimension d, even under Gaussian
assumptions on the A;, or (ii) introduce excessive noise for DP even when the
intrinsic randomness within A; is small. [Liu et al|[2022al] addressed these issues
for sub-Gaussian data but only for estimating the top eigenvector (k = 1) using
their algorithm DP-PCA. We propose the first algorithm capable of estimating
the top k eigenvectors for arbitrary £ < d, whilst overcoming both limitations
above. For k& = 1, our algorithm matches the utility guarantees of DP-PCA,
achieving near-optimal statistical error even when n = O(d). We further provide
a lower bound for general £ > 1, matching our upper bound up to a factor of &,
and experimentally demonstrate the advantages of our algorithm over comparable
baselines.

1 Introduction

Principal Component Analysis (PCA) is a foundational statistical method widely utilized for dimen-
sionality reduction, data visualisation, and noise filtering. Given n data points {z;},_, , classical
PCA computes the top eigenvectors of the empirical covariance matrix X := >_" | z;z] € R4,
This problem of extracting the top k eigenvectors is commonly known as k-PCA. In this work,
we consider the problem of Stochastic k-PCA, which differs from the standard setting as follows:
instead of inputting a single matrix, we input a stream of matrices Ay,..., A,, that are sampled
independently from distributions that share the same expectation . Given this input, the goal of a
Stochastic k-PCA algorithm is to approximate the dominant k eigenvectors of 3.

Differential privacy (DP) [Dwork et al.,[2006] provides rigorous, quantifiable guarantees of individual
data privacy and has been widely adopted in sensitive data contexts, such as census reporting
[Abowd et al.,[2020]] and large-scale commercial analytics [Applel 2017]]. Despite extensive study of
differentially private PCA [Blum et al.,|2005| |Chaudhuri et al.| 2013} [Hardt and Roth} 2013} [Dwork
et al.| 2014b], existing methods in the stochastic setting suffer from sample complexity super-linear
in d or inject noise at a scale that ignores the underlying stochasticity in the data. When applied to the
stochastic setting, these works generally yield suboptimal error rates of O(\/dk/n + d*/?k/(en))
where ¢ is the DP parameter.

Example 1 (Spiked Covariance). In the spiked covariance model, we observe i.i.d. matrices
A; € R¥™? that contain both a deterministic (low-rank) signal and random noise, causing the
A; to be full-rank. As a concrete illustration, consider data points x; = s; + n;, composed of a signal
s; ~ Unif ({v, —v}) with v a unit vector and n; ~ N'(0,0°1,). Therefore A; := x;x] consists of a
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deterministic part vv! and noise terms that scale with 0. One would hope that the privacy noise
that is needed, shrinks as the noise variance o decreases. Instead, most differentially private PCA
methods employ non-adaptive clipping thresholds, so their added privacy noise scales only with that
threshold, resulting in unnecessarily large privacy noise for many distributions.

Recent advances by|Liu et al.|[2022a]] address these limitations for sub-Gaussian distributions, but only
for the top eigenvector case (k = 1). Cai et al.|[2024] achieve optimal performance specifically for the
k-dimensional spiked covariance model, yet their privacy guarantees only apply under distributional
assumptions on the data.

Our Contributions. In this work, we propose k-DP-PCA, the first DP algorithm for stochastic
PCA that simultaneously (1) achieves sample complexity n = O(d) under similar assumptions
as \Liu et al.| [2021], (2) adapts its privacy noise to the data’s inherent randomness, (3) generalizes
seamlessly to any target dimension k < d, and (4) is simple to implement.

For k = 1, k-DP-PCA matches the risk of |[Liu et al.|[2022a] under sub-Gaussian assumptions. For
general k, we prove a nearly matching lower bound up to a linear factor in k, precisely characterising
the cost of privacy in this general setting. Technically, we employ the deflation framework: iteratively
estimate the top eigenvector, project it out, and repeat. We extend the recent deflation analysis of
Jambulapati et al.|[2024] to the stochastic setting via a novel stochastic e-PCA oracle (Definition E]),
which may be of independent interest. We then adapt DP subroutines from |Liu et al.| [2022a]
based on Oja’s algorithm and finally, through a novel utility analysis of non-private Oja’s algorithm,
demonstrate that the adapted subroutines satisfy the oracle’s requirements, yielding a simple to
implement, memory-efficient method.

The remainder of this paper is structured as follows. We formally define our setting in Section [2]
state main results in Section[3] present technical analyses in Section [4] and empirical evaluations
demonstrating the effectiveness of our approach in Section[5] Finally, we end with a discussion and
open questions in Section[6]and conclusion in Section

2 Problem formulation

Let Ay, ..., A, € R4 be independent random matrices with common expectation . = | [A;]. We
assume Y is symmetric positive semi-definite (PSD) with eigenvalues A\ > Ay > --- > Ay > 0.
For a given k < d, we assume the eigengap Ar = A\, — A\g+1 > 0. The goal of Stochastic PCA is
to produce a U € R%** whose orthonormal columns approximate the top-k eigenspace of . We
measure the utility of U by comparing it to V}, the matrix containing the true top k eigenvectors
of ¥ as columns. Throughout, ||-||, denotes the operator norm, (-,-) the Frobenius inner product:
(A,B) =Tr (A" B), and 2 and O(-) hide polylogarithmic factors.

Definition 1 ((-approximate Utility). We say U € R***

columns and

is (-approximate if U has orthonormal

vty > 1 -y ).

Although several utility measures exist for PCA, our choice is motivated by the error measure used
in Jambulapati et al.| [2024]]. This is a natural measure of usefulness, as (UU ", X2) quantifies how
much of the original “energy” of X is retained when projecting onto the lower-dimensional subspace
spanned by U, and by the Eckart-Young Theorem we know V is the optimal rank-k approximation
of .

Further, we use the add/remove model of differential privacy, namely
Definition 2 (Differential Privacy ([Dwork et al., 2006]))). Given two multi-sets .S and .S, we say the
pair (S, S) is neighboring if |S'\ S’| +|S” \ S| < 1. We say a stochastic query g over a dataset S
satisfies (e, 9)-differential privacy for some e > 0 and 6 € (0,1) if

P(q(S)e A) <e*P(q(S") € A)+ 4
for all neighboring (.S, .5”) and all subsets A of the range of g.
Before discussing the main results of our work, we first formalize the assumptions on the data

in Assumption [A] Note that Assumption [A]is only required for our utility guarantee and is not
necessary for the privacy guarantee.



Assumption A (3, {\;}¢_,, M, V, K, k,a,v?)-model). Let Ay,..., A, € R be sampled inde-
pendently from distributions satisfying:

A.1 E[A;] =X, where X is PSD with eigenvalues Ay > --- > \g > 0, corresponding eigenvectors

V1,500, 0 <A = mingep) Ay and K = %1.

A2 ||A; — 2|y £ MM almost surely.

[

A.4 For all unit vectors u, v and projection matrices P,

luT P(4; — 2)Pu)*\
E |exp K232, < 1.

Define H,, = )\%E[(Ai —Y)uu' (4; — X)) and v* = max =1 [|Hull2-

Assumptions [A.T] to [A.3] are standard for matrix concentration (e.g., under the matrix Bernstein
inequality [Troppl 2012]]) and thus also required for the utility guarantees of Oja’s algorithm even in
the non-private setting. Assumption guarantees that for any unit vectors u, v, and projection P

|uT P(A; — 2)Pu|* < K2X\3y%log?*(1/9)

with probability 1 — 4, for some sufficiently large constant K. This bound, which controls the size
of the bilinear form, can be seen as a Gaussian-like tail bound, which tells us that the magnitude of
the projection of the A; along any direction is bounded with high probability. It is an extension of
the assumptions in [Liu et al.| 2022a]] to the higher dimensional case. Distributions that fulfill this
assumption include bounded matrices and (sub-)gaussian outer product matrices:

Example 2 (Gaussian Data, Remark 3.4 in|Liu et al.|[2022a]). Let A; = xzx;'— with x; ~ N(0,X),

then comparing to Assumption|Alwe have that M = O(dlog(n)), V = O(d), K =4, a = 1, and
2

7" =0(1)

Distributions that violate assumption 4 include heavy-tailed outer products, for example r ~
Pareto(a), z = ru, A; = xx |, or mixtures with rare but huge spikes:
Example 3. Ler A; = xiziT, with x; be sampled as follows:
Ik ~N(0,Iz) wpl—a
! z ~ Unif{a=4v, —a= 4} wp. «
where v is a unit vector and 0 < a < 1. Then the mean of this distribution is 0 and its covariance is

Y =(1—-a)ly+Vavw. Soforu=uvand P =14 ifr = +a~ /%

u' (A —D)u=v" (zz] —X)v=(v'z)> =0 S

—a VTS =a2-(1-a)+Va~al/?

and for o — 0 this term blows up, so for any fixed K, A1, the overall expectation will exceed 1, and
hence violate Assumption

3 Main Results

In this section, we first discuss our main proposed algorithm in Section[3.1] In Section[3.2] we then
discuss our main upper bounds and complement that with lower bounds in Section [3.3]

3.1 Our Algorithm

Our first proposed algorithm k-DP-PCA, defined in Algorithm [T} follows a classical deflation [Jam]
bulapati et al.| 2024] approach. The algorithm proceeds in k£ rounds and in each of the k£ rounds it
invokes the sub-routine MODIFIEDDP-PCA (Line[3), to identify the current top eigenvector. Then,
the algorithm removes its contribution by projecting out the direction of the eigenvector from the
remaining data (Line[d), on which it carries out the next round.



Algorithm 1 £-DP-PCA

Input: {4;,...,A,}, k € [d], privacy parameters (¢,d), B € Z., learning rates {nt}tLZ{BJ, and
T€(0,1)
m <+ n/k, Py < Iy
: for i € [k] do
u; <~ MODIFIEDDP-PCA({A,.(i—1)+5}je1, Pie1, (€,0), B, {ne},7)
P+ P_q— uiu;'—
end for
return U < {u; }ic[i)

A A

The MODIFIEDDP-PCA subroutine (Algorithm [2)) itself is based on Oja’s streaming Algorithm
[Jain et al., 2016], but importantly replaces the vanilla gradient update in Oja’s algorithm wr <—
wi—1 + NeAr_qwi—_1, with a two-stage algorithm: first, Line E] privately estimates the range of
a batch of {A;w;_1}, then Line {4] leverages that range to calibrate the added noise to privately
compute the batch’s mean. By tailoring the noise scale to the empirical spread of the data, we inject
significantly less (privacy) noise whenever the batch concentrates tightly around its mean. Thanks to
those additional steps the algorithm enjoys certain statistical benefits as discussed in the paragraph
below Corollary 2

Nevertheless, it is possible to replace the MODIFIEDDP-PCA subroutine with other simpler subrou-
tines that can privately estimate the top eigenvector. We present one such algorithm in Algorithm 3]
In Section [5] we present simulations with both of these algorithms highlighting their respective
advantages.

Algorithm 2 ModifiedDP-PCA

Input: {A;,..., A}, a projection P, privacy parameters (e, d), learning rates {nt}tLZ{BJ ,BelZy
and 7 € (0,1)
1: Choose wy, uniformly at random from the unit sphere, wy < Pwy,/ || Pwy||
2: fort=1,2,...,7 = |m/B]| do
3 A« PRIVRANGE ({PAp(_1)sPwr—1} 2™, (¢/2,6/2),7/(2T)) (Algorithm]g)
4 g+ PRIVMEAN ({PApq1y4: Pw1 } P[P A, (¢/2,8/2),7/(2T)) (Algorithm]7)
5: w; — w1+ ntpgt
6: wt + Pw;/||Pw|
7: end for
8: return wr

3.2 Upper Bound

We now state the main privacy and utility guarantees of k-DP-PCA (Algorithm [T)).

Theorem 1 (Main Theorem). Let £,6 € (0,0.9) and 1 < k < d. Then k-DP-PCA satisfies the
following:

Privacy: For any input sequence {A; € R¥* 1}, the algorithm is (¢, §)-differentially private.

Utility:  Suppose Ai,..., A, are iid. satisfying Assumption [A] with parameters
(27 M7 ‘/7 K7 /4//7 a’ ’}/2)' If

3/2
+ K)/M—f— H/2V + \/&(ln(i/é)) :

w2 dr v +/In(1/6)
e A Sl
€
n > Cmax{ A\ K2k V, ) (1)

K2y k?d+/In(1/9)
€

for a sufficiently large constant C, then with probability at least 0.99, the output U € R js
(—approximate with




ol

where O(-) hides factors polylogarithmic in n, d, 1/e,1n(1/8) and polynomial in K.

Remark. The proof of our main Theorem can be found in Appendix[E} For k = 1, Theorem|[I|recovers
the bound of |Liu et al.|[2022a] for DP-PCA. Moreover, the linear dependence on d in ( matches the
lower bound in [Liu et al.| [2022a]. On the other hand, the additional linear factor in £ may be an
artifact of our analysis: if one could reuse samples across deflation steps, this factor could potentially
be improved. Further, in ¢, the first term /V'k/n is the non-private statistical error of PCA, while
the second term (ydk+/In(1/8))/(en) is the cost of privacy. Lastly, the sample-size condition (T)
arises because (i) each batch must be large enough to accurately estimate the range in PRIVRANGE
in Algorithm 2] and (ii) errors accumulate across the k deflation steps (Line ).

As a direct consequence of applying Theorem [I] to Examples [I] and 2] we obtain the following
Corollaries:

Corollary 1 (Upper bound, Gaussian distribution). Under the same setting as Theorem [I| let
A; = xz] with z; ~ N(0,%). Then with high probability the output is (-approximate with

(—6 (;4 <\/i>k+ dk,/lsi(l/a)»

where O(-) hides poly-logarithmic factors inn,d,1/e, and log(1/5).
Corollary 2 (Upper bound, Spiked Covariance). If A; follows the spiked covariance model from Ex-
ample then V = O(0?d), ¥ = 02 and K = 1. Hence, with high probability the output is

C-approximate with
C=O<U~/§/ (y/‘Z{erle;gL(l/é))) 3)

Adaptive noise: Our algorithm’s advantage is most pronounced when v and V' grow with the
data randomness, as in Corollary Since for ¢ = O(UK,/( dk/n + (dk«/ln(l/é))/(an))), the

approximation error decreases as the noise standard deviation o shrinks. Moreover, by comparison
with Corollary [3] this bound is tight up to a factor of k.

3.3 Lower Bounds

In this section, we derive an information-theoretic lower bound for differentially private PCA under
our setting. Formal proofs can be found in Appendix [F.I] Recall that our utility metric ¢ defined
in Definition[T|measures the relative loss in captured variance compared to the optimal top-k subspace
of X. By contrast, most classical lower bounds for PCA (e.g.,|Cai et al.|[[2024], Liu et al.| [2022a])
quantify error in terms of the squared Frobenius norm |[UU " — V;V,T||%. These two measures
are fundamentally different: the ratio of captured variance directly reflects variance explained in X,
whereas the Frobenius-norm loss measures subspace distance without respecting the eigenvalue gaps
in 2. To connect them, we first establish:

Lemma 1 (Reduction to Frobenius norm). Let > be a PSD d x d matrix with top-k eigenvectors
Vi € R¥** and eigenvalues \y > -+ > \g. Any U € R that satisfies |[UU T — Vi Vi |2 >,
must incur

YA

CQ > =k
2> i i

where Ay := A\, — Ag41-

Note that if all eigenvalues of X are equal, every subspace captures the same variance so ¢ = 0 for
any estimate, yet two such subspaces can be far apart in Frobenius norm. This gap in sensitivity to
eigengaps is precisely why our reduction from Frobenius error to ¢ incurs a factor of Ay. With this
reduction in hand, we prove the spiked-covariance lower bound by invoking standard Frobenius-norm
minimax rates [[Cai et al., [2024] for differentially private PCA in the spiked covariance model.



Corollary 3 (Lower bound, Spiked Covariance). Let the d X n data matrix X have i.i.d. columns sam-
ples from a distribution P = N'(0,UTAU " + 0%1;) € P(\, 02) where P(\, 0%) = {N(0,%),% =
UAUT +0%14,eA < A\ < - < A1 < CA}L. Suppose X < cjexp{es — co(ev/ndk + dk)} for
some small constants cg, ¢y > 0. Then, there exists an absolute constant ¢ > 0 such that

inf sup  E[(] > ¢ <<Uk)\1+02> ( Cff—&-ii) /\1)

Uel. s PEP(X,02) Yoic1(Ai 4+ 0?)

Comparing to our upper bound (Corollary [2), we see matching dependence on o, d, n, and €, up

to a multiplicative factor of k, v/A; + 02, and \/ log(1/6). The gap in k arises from our sequential
deflation approach, which currently requires independent batches at each step. Reusing samples
across rounds could remove this up to a vk factor

Special case £ = 1. When k = 1, k-DP-PCA reduces exactly to MODIFIEDDP-PCA. Theorem@]
guarantees that the sine of the angle between the privately estimated eigenvector of MODIFIEDDP-
PCA and the true top eigenvector is small, which is equivalent to being close in the Frobenius norm.
This matches the upper bound of Liu et al.|[2022a]] and thus also the lower bound up to a factor of
log(1/6) (restated in Theorem [11]in the Appendix).

4 Technical Results

We now sketch the proof of Theorem [I|by first proving a more general “meta-theorem” that applies
to any stochastic ePCA oracle (defined below in Definition [5)). At a high level, k-DP-PCA uses
the classical deflation strategy: 1. Extract the top eigenvector of the current residual using a 1-PCA
subroutine. 2. Project this vector out of the data. 3. Repeat until £ components are obtained.
In Theorem [I| we implement the 1-PCA step with MODIFIEDDP-PCA, but the same proof carries
through for any algorithm satisfying the following guarantee.

Definition 3 (stochastic ePCA oracle). An algorithm Ocpca is a (—approximate 1-ePCA oracle if
the following holds. On independent inputs Ay, ..., A, € R¥>*? with E[4;] = ¥ € S for all 4

and any orthogonal projector P € R?*?, O,pca returns a unit vector v € Im(P) such that, with
high probability,
(uu", PYP) > (1 — ¢} (vv', PLP)

where v is the top eigenvector of the projected matrix PXP.

This notion was inspired by Jambulapati et al.|[2024]], who analyzed deflation in the non-stochastic
setting. Their results do not extend the stochastic setting that we explore here.

Theorem 2 (Meta Theorem). Let ¥ € SE5% and Ay, ..., A, be n i.id. samples with E[A;] = ¥.

Suppose we replace each 1-PCA step in Line Blof Algorlthm %y a (—approximate stochastic ePCA
oracle O1pca. Then the deflation algorithm outputs U € R satisfying

(OU",%) > (1=
Further, for any € > 0,6 € (0,1), if O1pca is £, 5-DP then the entire algorithm remains (e, 0)-DP.
Remark. This Theorem is a consequence of the stochastic deflation method we prove in Appendix [C|
and Parallel Composition (Lemma [I5]).

One important thing we would like to highlight in this section is that this proof strategy is not unique
to MODIFIEDDP-PCA. In fact, our novel analysis of non-private Oja’s algorithm (Theorem [7)) shows
that Algorithm 3]is also a stochastic ePCA oracle. We highlight the two results below.

Theorem 3. Given Ay, ..., A, arei.i.d. and satisfy Assumption[A] MODIFIEDDP-PCA and DP-Ojas
as defined Algorithmsand are stochastic ePCA oracles with { = o} </~£’ ( A/ % + 2dy/los(1/0) W))

and ¢ = O (,4 ( % + % "nlog(l/é)>) respectively.

"Reusing will allow us to use all n samples every round (instead of n/k), however we will incur an additional
vk factor due to privacy composition, which is why it will only lead to a total improvement of v/k and not k.




Algorithm 3 DP-Ojas

Input: {A;,..., A,,}, a projection P, privacy parameters (e, §), learning rates {7, t@lj

1: Set DP noise multiplier: o <— C”"log(n/d)/(ev/n)

2: Set clipping threshold: 3 < CA1vd(K~log®(nd/¢) + 1)

3: Choose wy, uniformly at random from the unit sphere, wy < Pw /|| Pwy||
4: fort=1,2,...,mdo

5: Sample z; ~ N(0,1,)

6: wy — wi—1 +mP (clipﬁ(PAtht_l) + 2ﬁo¢zt)

7 wt < Pw;/||Pw||

8: end for

9: return wr

where clips(z) = x - min{1, ﬁ}

Remark. In Appendix [E| we establish that both MODIFIEDDP-PCA and k-DP-Ojas are valid ePCA
oracles, with each result stated and proved as a separate theorem.

Note that we cannot plug in the DP-PCA algorithm of |[Liu et al.[[2022a]] in Theorem [2} since it only
guarantees relative error on E[P]XE[P]:

(uu” E[PIZE[P]) > (1 - ¢)(vo ", E[P|SE[P]),
rather than on PX P, and E[P] need not be a projection matrix.

The proof of Theorem 3] follows directly from the utility proof of MODIFIEDDP-PCA (Theorem 9)
and of DP-Ojas (Theorem [I0). Combining this with Theorem [2]immediately gives us Theorem T]and
the following Corollary [}

To proof the utility of MODIFIEDDP-PCA we proceed in three steps: 1. Prove non-private Oja’s
algorithm is a stochastic ePCA oracle via a Novel analysis in Appendix [D]2. Show that with high
probability, the update step (Line[5]in Algorithm[2)) can be reduced to an update step of non-private
Oja’s algorithm with matrices PC; P, where C; := % > €[B] A; + B:G¢ and G, is a scaled Gaussian
matrix. 3. Bound the accumulated projection error across deflation steps (Lemma[23). Importantly, a
similar argument also shows that DP-Ojas Algorithm [3]satisfies the same property with a slightly
differently (.

Corollary 4 (k-DP-Ojas). Under Assumption[A] if n is sufficiently large then using Algorithm[3]in
each 1-PCA step returns U € R¥¥¥ that is (—approximate with

(—6 (AAl (\/?jL (v + 1)d€knlog(1/6)>>

hiding poly-logarithmic factors in n,d, 1/¢,1n(1/0) and polynomial factors in K.

Remark. This Corollary follows directly from Theorem [2]together with Theorem 3]

When comparing the utility bounds of MODIFIEDDP-PCA and k-DP-Ojas the difference is partic-
ularly apparent when considering Example (1] as for k-DP-Ojas when ¢ — 0 the bound becomes

O (%}Ll/é)) , as due to the second term of the utility bound containing the multiplicative factor of

(v + 1) (as opposed  as in MODIFIEDDP-PCA) it does not vanish. Therefore in the low-noise cases
MODIFIEDDP-PCA will outperform k-DP-Ojas. However, for other cases such as (sub-)Gaussian
data we expect them to perform similarly. In those cases it can be preferential to use k-DP-Ojas as
due to its simplicity it requires less hyperparamters to be set and is more stable to changes in learning
rates.

S Experiments

In our experiments, we compare k-DP-PCA and k-DP-Ojas against two modified versions of the DP-
Gauss algorithms of Dwork et al.|[2014b] and a modified version of the noisy power method [Hardt
and Price,2014]]. All of these works operate in a deterministic setting, and require some form of norm
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Figure 1: Comparison of k-DP-PCA vs DP-Gauss-1 (input perturbation), DP-Gauss-2 (output perturbation),
and DP-Power-Method on the spiked covariance model. We plot the mean over 50 trials, with shaded regions
representing 95% confidence intervals. We set k = 2, d = 200, Ay = 10, = 1, and § = 0.01.

bound on the matrices to ensure differential privacy. Dwork et al.|[2014b]| requires each row of the
data matrix X € R"*< to be bounded in £5-norm by 1 and they then estimate the top eigenvectors of
X T X. The original noisy power method given a matrix A € R?*9, allowed only single entry changes
by at most 1, however more recent analysis [Nicolas et al., 2024, Florina Balcan et al.,[2016|] showed
that it protects the privacy for changes of the form A’ = A 4+ C, with /Y. [|C;.|| < 1. By
contrast, our setting is stochastic: we draw independent matrices A;, without any norm constraint,
and we estimate the top eigenvectors of E[A;] = X. Thus, we first adapt these algorithms to also
guarantee privacy in our setting. Note that if we draw observations x; from a distribution with mean
zero and covariance 3, then X ' X = Z;”:l x;x; serves as an unbiased estimate of nY. A naive way
to enforce the bounded norm requirement of Dwork et al.|[2014b], is to define Z; = x;/ max{||x;||2}-
However, this non-private pre-processing step will violate privacy [Hu et al., 2024]: modifying a
single x; can potentially change the maximum norm and thus affect all of the ;. A natural next
attempt is to scale each vector exactly to unit norm, i.e., &; = x;/||z;||2. However, this will result in
a biased estimator as E [zz 7 //||z|?] # ¥ and thus does not enjoy meaningful utility guarantees.
Instead, we clip each x; at 5 so that with probability at least 1 — 9,5 ||2;||2 < /3. Then scaling the
Gaussian noise in the DP-Gauss mechanisms by 8 maintains (e, §)-DP guarantee. For the spiked

covariance model this would mean 3 = Cv/A; + o+/dlog(n/¥). Using this strategy we modify
Algorithm 1 and 2 in |[Dwork et al.| [2014b] and refer to them as DP-Gauss-1 and DP-Gauss-2
respectively. DP-Gauss-1 first clips each z;, adds appropriately scaled Gaussian noise to the sum
> i iiij, and then performs standard (non-private) PCA. DP-Gauss-2, on the other hand, begins
by privately estimating the eigengap of the clipped covariance matrix, runs non-private PCA on the
clipped data, and finally perturbs the resulting top-k eigenvectors with noise that scales with that
that privately computed eigengap. Similarly to what we do for the DP-Gauss algorithms, to enforce
the condition />, ||C;..[|? < 1 by Nicolas et al.[[2024] we define A’ = A + aa', meaning
C = aa', then the ith row of C is equal to |a;|||a| 1, which results in the requirement ||a||2||a|; < 1.
So we clip the matrices to ||al|; < a, and ||al|2 < B (same 3 as for DP-Gauss) and scale the privacy
noise accordingly. For the spiked covariance model we choose o = od + V\1d + o+/dlog(n/9),
to achieve ||2;||1 < « with probability 1 — ©J. This makes their algorithm comparable to DP-Gauss in
terms of utility guarantees with respect to k and d. However, as we will see, it is still outperformed by
the DP-Gauss algorithms. In the rest of this section, Figure[T|compares k-DP-PCA with DP-Gauss-1,
DP-Gauss-2 and DP-Power-Method across various noise levels o and dimensions d. Figure 2] also
incorporates the much simpler-to-implement k-DP-Ojas algorithm and shows that a simpler, more
scalable algorithm can match or even outperform k-DP-PCA in practice, despite its slightly weaker
theoretical guarantee.

Experimental Results using Spiked Covariance Data We evaluate all methods on the spiked-
covariance model(see Example|[T). Figures [Ta] and [Ib] show utility as a function of sample size for
large and small noise levels, respectively. Our results show that across both regimes, k-DP-PCA
consistently outperforms the baselines, with the gap widening when the noise level is significantly
smaller than the signal strength (¢ < \p). Figure [Ic|examines the effect of increasing ambient
dimension d at fixed n. As d grows, the DP-Gauss methods’ and Power-Method’s utility degrades
faster than k-DP-PCA ’s, reflecting the fact that their theoretical utility scales like O(d®/2 /n), whereas
our guarantee only incurs a linear dependence on d .
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Figure 2: Comparison of k-DP-PCA and k-DP-Ojas in a higher noise regime (also including DP-Gauss-1 (input
perturbation), DP-Gauss-2 (object perturbation), and DP-Power-Method) on the spiked covariance model. We
plot the mean over 50 trials, with shaded regions representing 95% confidence intervals. We set k = 2, d = 200,
A1 =10,e =1,and § = 0.01.

In Figure we plot the utility against the eigengap (A — Ag41) for different algo-
rithms. DP-Gauss-2, which is designed with large eigen-gaps in mind steadily improves in utility
as the gap grows and nearly matches the utility of k-DP-PCA for very large eigengap. By contrast,
DP-Gauss-1 which offers better scalability with dimension d but is insensitive to the eigen-gap, main-
tains a nearly flat utility as the eigen-gap grows. Throughout, k-DP-PCA consistently outperforms
both DP-Gauss algorithms.

Next, in Figure 2] we compare k-DP-PCA against the much simpler k-DP-Ojas algorithm. As
predicted by Corollaries 2]and ] k-DP-PCA clearly outperforms k-DP-Ojas in the low-noise regime
(o < A1). Conversely, at larger noise levels k-DP-Ojas often matches or even exceeds k-DP-PCA
in practice, owing to its fewer hyperparameters and greater robustness to learning-rate choices
(see Figure [2bJand appendix [G). Although both algorithms require knowledge of the eigenvalues of %
to set optimal step sizes, these can be obtained privately via the Gaussian mechanism. Nevertheless,
it is interesting to note that k-DP-Ojas remains effective even when its step size is chosen without
any explicit eigenvalue estimates (see Appendix [G). Lastly, we want to note that in Appendix [G|we
present more comprehensive results, using different d and k. The results in this section are kept
simple for illustrative purposes.

6 Related Work and Open problems

Related Work Differentially private PCA has been studied extensively [Blum et al., 2005} |Chaudhuri
et al.;, 2013} [Hardt and Roth} 2013, |Dwork et al.| 2014b]]. However, when applied to the stochastic
setting, these methods typically suffer from sample complexity that scales super-linearly in d or inject
noise at a scale that ignores the underlying stochasticity in the data, resulting in suboptimal error
rates of O(+/dk/n + d*/?k/(en)). The first to address these limitations were [Liu et al.,[2022b| Cai
et al.| 2024]]; however the results by [Liu et al., 2022b]] only apply for £ = 1 and|Cai et al.|[[2024]
provide an algorithm whose privacy guarantee is conditional on distributional assumptions on the
data. In contrast, our algorithm applies to all £ < d, is private for all inputs, provides an error rate
that scales linearly with d, and the injected noise scales with the inherent stochasticity in the data.

A complimentary line of work, [Singhal and Steinke, 2021 |Tsfadia, 2024]] obtains sample com-
plexity that scales independently of the dimension d but requires a strong multiplicative eigengap
(Ax/Ak11) = O(V/d), which is a strictly stronger assumption than ours.

Open Problems Despite being a mild concentration requirement also seen in prior work [Liu et al.,
20224, Assumption[A.4]is perhaps the most non-standard assumption in Assumption[A] As observed
by [Liu et al.|[2022a], this can be relaxed to a bounded k-th moment condition, at which point the
second term in ([23) grows to O(d(log(1/8)/en)'~'/*). Further, empirical improvements may also
be possible from applying private robust mean estimation [Liu et al.l 2021} [Hopkins et al., [2022], as
opposed to clipping around the mean of the gradients. Lastly, the current PRIVRANGE is optimal for
spiked covariance data, however for other data distributions we expect different range estimators to
work better. We leave this to future work.



The sample size condition in Equation (T)) includes an exponential dependence on the spectral gap:
n > exp(k’). While this is relatively harmless as there is no such exponential dependence in the
utility guarantee Equation (2)), we show in Appendix [E.2Jhow to get rid of this exponential dependence
by incurring an additional O(yd?log(1/8)/(en)) term in the utility guarantee.

As already mentioned in Section our upper bounds are loose in their dependence in k and §.
We incur this additional k factor, because each deflation step must use a fresh batch of samples, so
that the projection matrices P remain independent of the data matrices in Line [f] of Algorithm 1] If
one could safely reuse the same A;’s across rounds, this could be improved to O(v/k) via adaptive
composition. We think it is interesting future work to see whether we can obtain a v/k factor using
the techniques from the robust PCA results in|Jambulapati et al.|[2024] or using our analysis but with
“slightly” correlated data. However, even if one theses approaches turn out to be viable, a gap still
remains between the resulting upper bound and our lower bound and it is an interesting question
to resolve this. Finally, although inspired by the streaming analysis of Oja’s method [Jain et al.|
2016, [Huang et al.,[2021]], our subroutines (MODIFIEDDP-PCA, PRIVRANGE, PRIVMEAN) are not
directly streaming-compatible. Adapting them to the streaming setting is an interesting avenue for
future work.

7 Conclusion

We have presented the first algorithm for stochastic k-PCA that is both differentially private and
computationally efficient, supports any k& < d, and achieves near-optimal error. Our analysis critically
relies on our adaptation of the DP-PCA algorithm [Liu et al.,[2022a], a stochastic deflation framework
inspired by [Jambulapati et al., 2024]], and our novel analysis of non-private Oja’s algorithm [Jain
et al,2016]. Along with our novel results in the Stochastic k-PCA problem, we believe the above
mentioned theoretical results are of independent interest, and may inspire the developement of new
algorithms for this and related problems.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes. Our main contributions are also detailed in Section[3]and Appendix [E]
contains the relevant mathematical proofs.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, see Section[6]for limitations. We also comment on the limitations of the
different algorithms in Section 5]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Yes, please see Appendix [E]for a detailed proof of the Main Theorem, and
Appendix [C| Appendix [D]for the more general novel results we developed in order to proof
the Main Theorem. Lastly in Appendix [F] we proof the lower bound.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our algorithm in Detail in Section [3]and state all the hyperparame-
ters used for the plots in Appendix [G]

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

14



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release the code publically after we have cleaned it.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: A detailed discussion can be found in Appendix|[G]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We ran a minimum of 50 trials for each experiment and included the variance
of results in the plots.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All experiments were run locally on a MacBook M3 Pro.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is mainly a theory result. The numerical experiments were run on
synthetic data and are therefore not related to any private or personal data, and there’s no
explicit negative social impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not foresee any high risk for misuse of this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We have not released any new assets as part of this work.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

The appendix is structured as follows. In Appendix [A] we provide a more detailed overview of related
work to complement the discussion in the main text. Appendix [B]introduces mathematical and privacy-
related preliminaries that lay the groundwork for our analysis. In Appendices[C|and [D] we present
novel technical contributions: in[C|we extend the recent deflation analysis of Jambulapati et al.| [2024]
to the stochastic setting and also prove Theorem [2]in the main text, and in[D|we provide a new utility
analysis of the non-private Oja’s algorithm. These results are then used to prove our main theorem
and establish the utility and privacy guarantees for our second proposed algorithm (Corollary [)),
k-DP-Ojas, in Appendix [E| In Appendix [F] we prove our lower bound result from Section[3.3] We
then provide additional experimental details in Appendix |G} and conclude by restating the subroutines
from [Liu et al.|[2022b], which are used in MODIFIEDDP-PCA, in Appendix

A Related Work

The problem of private k-PCA has been the subject of extensive research, with many works exploring
it under various constraints. Several works address k-PCA in the standard setting, while assuming
an additive eigengap [Blum et al., 2005, (Chaudhuri et al.l 2013} |Hardt and Roth, 2013} [Dwork
et al., [2014b, Nicolas et al., [2024]. These works operate in a deterministic setting where each
sample is assumed to be bounded (||z;|| < ). When applied to the stochastic setting, these
works generally yield suboptimal error rates. This is partially due to the fact that all of these
works assume a data independent bound (5 = 1), which we cannot easily enforce in the stochastic
setting (as discussed in Section . Considering Gaussian data with z; ~ N(0,X), we know
[lz:]] < B = O(y/A1dlog(n/() for all i with probability 1 — . [Blum et al., 2005, Dwork et al.,
2014b, Nicolas et al., 2024] use the Gaussian mechanism, so when scaling the privacy noise with a
factor 5 we ensure (&, 9)-DP in the stochastic setting. The tightest of the previous discussed result
then achieves

) ( dk/n + d3/2k/(sn)) .

More recent work has considered the multiplicative eigengap setting [Tsfadial 2024, |Singhal and
Steinkel |2021]], though this is a strictly stronger assumption. Finally, there is a set of results without
spectral gap assumptions [Chaudhuri et al., 2013| Kapralov and Talwar} |2013] [Liu et al.| [2022b].
However, these works either do not allow a tractable implementation or give utility bounds that are
super-linear in their dependence on d.

A widely used strategy in the non-private PCA literature to mitigate the complexity of designing algo-
rithms for k-PCA is to reduce the k-dimensional problem to a series of 1-dimensional problems using
a technique known as the deflation method [Mackeyl [2008| |Allen-Zhu and Lil 2016|). Jambulapati et al.
[2024] proved significantly sharper bounds on the degradation of the approximation parameter of
deflation methods for k-PCA. While their analysis only catered to the standard non-stochastic setting
and assumed access to the true covariance matrix X, their results serve as a conceptual foundation
for this work. We extend similar arguments to the stochastic setting, where only access to sample
matrices A; with shared expectation E [A;] = X is available.

Our 1-PCA method builds upon Oja’s algorithm [|Oja, |1982], (see Algorithm E]), one of the oldest and
most popular algorithms for streaming PCA. The first formal utility guarantees for Oja’s algorithm
in the k& = 1 case were established by Jain et al.| [2016], whose analysis inspired our proofs
in Appendix D] Subsequent extensions to the k£ > 1 case were provided by Huang et al|[2021]].

Lastly, our ePCA oracle MODIFIEDDP-PCA is largely inspired by the DP-PCA algorithm of|Liu et al.
[2022b]]. Their result builds upon a series of advances in private SGD [Kamath et al., 2022} Bassily
et al.,[2014} 2019, [Feldman et al.| 2020, [Kulkarni et al., 2021} [Wang et al., 2020, Hu et al.| [2022]],
and private mean estimation [Bun and Steinke}, 2019, |Karwa and Vadhan, 2017}, Kamath et al., 2019}
Biswas et al.,[2020, [Feldman and Steinkel 2018, Tzamos et al., 2020]]. In this work, we use some
of the techniques proposed by |[Liu et al.| [2022b]: specifically their PRIVMEAN and PRIVRANGE
algorithms. Replacing them with robust and private mean estimation [Liu et al.| 2021} [Kothari et al.|
2022] could relax Assumption but at the cost of sub-optimal sample complexity.
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B Preliminaries

In this section we list some mathematical and privacy preliminaries. A familiar reader is welcome to
skip this section.

B.1 Mathematics Preliminaries

Lemma 2. Let C, D € R¥*? be symmetric matrices and let A € R™*% be any conformable matrix.
ThenC <D = ACAT < ADAT

Proof. Since C' < D, we have C' — D < 0. Forany x € R, sety = ATz. Then
2T A(C — D)Az =y ' (C — D)y <0.
which shows ACAT < ADAT, O
Theorem 4 (Woodbury matrix identity). Let A € R"*™ and C' € R*** be invertible matrices, and
let U € R"** V € RF*", Then
(A+vcv)t=Aa"t A lyCct+vAatu)y-lva!
Theorem 5 (Pinsker’s Inequality). For P and QQ two probability distributions on a measurable space

then

TV(P.Q) <[ KL(P|Q)

Lemma 3 (Lemma F.2 in [Liu et al.| 2022a])). Let G € R4 be a random matrix whose entries G;
are i.i.d. N'(0,1). Then there exists a universal constant C' > 0 such that for all t > 0,

Pr [||G|\2 < C(\/g—kt)} >1- 2",

Lemma 4 (Lemma F.5 in [Liu et al.|[2022al]). Under Assumptions to with probability at
least1 — T

_ o( Vlog (¢7) AlMlog(d/T)>

1
B Z Ai=X B B
i€[B] 9

Lemma 5 (Adapted Version of Lemma F.3 in [Liu et al.,[2022a]). Let G € R%%¢ be a random matrix
where each entry Gj is i.i.d. sampled from standard Gaussian N'(0,1). Then we have

E[|GG 2] < Cd 4)

Proof.
E[|GGT||2] < E[|G][3]

= [T RUGIE > wau= [ RG> Vi
0 0

:/ PGl > r)2rdr
0

where we do the change of variable with r := /u,u = 72, du = 2rdr. Next we split the integral

into two parts using the "concentration radius" ro = C1V/d, as by Lemmathe exists a universal
constant C; > 0 such that

P(|G]| > C1(Vd +5)) < e™*" Vs > 0

this gives us
(oo}

To
E[|GGT ] ::/ P(|G] > r)27“dr+/ P(|Glls > r)2rdr
0

70

T0 0o
< / 2rdr +/ P(||G|l2 > r)2rdr
0

To

= cfd+/ P(||G|l2 > r)2rdr

To
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for the second integral we use again Lemma [3]or rather its equivalent form
o 2
PGl = 7) < e GV

which gives us

/ P(|G]2 >7“)2rdr:/ e—(é_\/g)zm‘dr

To T0

e}
:/ C’f(\/&—i—s)e_sts
0
:Cf\/&/ e_szds—f—Clz/ se™* ds
0 0

< CoVd+ Cs

where we used = C;(v/d + s) and dr = Cyds in the second step, which finishes our proof.
O

Lemma 6 (Weyl’s inequality [Horn and Johnson| [2012])). Let G1 and G2 be two symmetric matrices
with eigenvalues i1 > -+ > pqgand vy > - -+ > vg respectively, then

lvi — pil < [|G1 — Gal|2

Lemma 7 (Conditional Markov Inequality). Let F be a sigma-algebra, let X > 0 be a non negative
random variable, and let a > 0. Then

E[X|7]

P(X >a|F) <

Proof. Define the indicator

1, X>a
Tixczay = 0, o.w..

Then X, It x>q) = al{x>q}- Taking conditional expectation given F on both sides yields
E[XI{xsay | F] 2E[al{xsq; | F] =aPr(X >a|F).

E[X | F]

Hence, Pr(X > a ’ F) <
a

O

Lemma 8 (Conditional Chebyshev’s Inequality). Let F be a conditioning event (or a sigma-algebra),
then for a > 0

P(IX — EIX|F) 2 o F) < VX7

a

where Var[X |F| = E[(X — E[X|F])?|F].

Proof.
P(IX — E[X|F]| > a|F) = P((X - E[X|F])* > a®|F)

(X — E[X|F])? is a non negative random variable, so we can use conditional Markov (Lemma ,
which gives us

E[(X — E[X|F])?|F]

P((X — E[X|F])? 2 a®|F) <
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Lemma 9 (Distributional Equivalence). Let z ~ N (0,X) be a d-dimensional Gaussian with

covariance ¥ = 0. Let P € R be an orthogonal pr(}iection matrix, and fix any unit vector

w € Im (P). Then there exists a random matrix G = ¥Y/2Y, where each entry in Y € R*¥*? js
sampled i.i.d. from N (0, 1), such that

Pz < pGPw.

Proof. Since z ~ N(0,) and P is a projection matrix, we have Cov (Pz) = PXP'T = PYP. On
the other hand, let G = X'/2Y". Then for any fixed w € Im (P) with ||w| = 1,

Cov (Gw) = Y2Cov (Yw) B¥/2 = 12 31/2 = 53,

because Yw ~ N (0,1;) by rotational invariance of spherical gaussian (and |jw| = 1). Hence
Cov (PGPw) = PX.P = Cov (Pz). Since both Pz and PG Pw are mean-zero Gaussians with the
same covariance, we have

P2 < pGPw.

Lemma 10. For any matrix A € R*? and any projection matrix P,

[PAPl, < (Al

Proof. For any unit vector z, ||[PAPz|, = ||P (APz)|, < ||APz|, < ||A||Pz], < |4,
where the last inequality follows as projection matrices have eigenvalues in {0,1}. Taking ths
supremum over all z completes the proof.

Lemma 11. Let A € R**? be a random matrix and P a random projection matrix, independent of
A. Then

[E[PAPAT P> < |E[AAT][|2.
Proof. We first show that for any orthogonal projection P, we have PAPATP < PAAT P. Since
P is an orthogonal projection, P = P and P2 = P. Consider the difference:

PAATP — PAPATP = PA(I)ATP — PAPATP.
Using the identity I = P + (I — P), the expression becomes
PA(P+1—P)A"P—-PAPATP=PA(I - P)A"P - 0.
where the last step follows as I — P is also an orthogonal projection. This implies
PAPATP 2 PAATP.

Taking expectation (over both P and A) then yields

E [PAPATP] < E[PAATP]. (5)
As P is independent of A, one has

Epa [PAA"P] =Ep [E4 [PAATP | P]| =Ep [PE4 [AAT] P] = Ep [PMP]

where M :=E4 [AAT] . Combining with previous step, we get

Epa [PAPATP| X Ep[PMP]. (6)

Finally, we show
|Ep [PMP]||y < [[M]|,- O

Indeed, for any fixed projection P, the largest eigenvalue of PM P can be written as

Amax (PMP) = max ¢ (PMP)z = max (Pz)” M (Pz).

llzll=1 llzll=1
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Since || P z|| < 1 whenever ||z|| = 1, it follows

(Pz)" M (Pz) < e "My = || M||,.

Taking the maximum over all ||z|| = 1 shows ||[PM P||, < ||M||,. Hence Ep [||PMP||,] < || M|, .
Because the operator norm ||-||,, is convex,

[Ep [PMP]|ly < Ep[[[PMPlly] < [|M]|,,

which is Equation (7).
Now combine Equations (6 and (7)), we have
|E [PAPATP]|, < |[Ep [PMP]|, < M|, = |[E [44T]],.
This completes the proof. O

Lemma 12. Let A and B be independent random matrices in R** <, Then

E[ABAT] = |E[B]|l,E [AAT]

Proof. Since A and B are independent, we have E [ABAT| = E [AE[B]AT]. Then, using
E[B] =< ||E [B]||, I and Lemma 2 we obtain the wished inequality. O

Lemma 13. Fix any projection matrix P € R4¥9. Define, for each unit vector u € RY,

HP !

= rpsp B P A - D PuTP (A =9 Pl 3p = mox || HT,.
1

flull=1

where \1 and y are as defined in Assumption@] and )3 (PX.P) refers to the top eigenvalue of PY.P.
Then
A\ (PYP)~3 < Ay

Proof.
|E [P(A; = X)Puu' P(A; = Z)P] || = |Ep [PE[(A; — 2)Puu’ P(A; — %)|P]P] ||
< Ep [|PI[|E[(A; — Z)Puu’ P(4; — )| P]|[||P|]
< Ep [|E[(Ai - X)Puu’ P(4; — )| P]||]

and further

mas [E[(A; — S)Pun P(4; ~ )|PJ| < max, [B{(4; - Zjuu” (4; - DIP]| = Xo?
ul|=1 ul|l=1
as Puu' P < uu'. So, all together this proves the Lemma. O

Definition 4. Define Og4 4, to denote the set of d x k matrices satisfying U U =1,.
Remark. The Frobenius norm is equal to the Schatten-2 norm.

Lemma 14 (Lemma 3 in [Jambulapati et al., [2024]). Let ¥ € S‘éﬁd, keld. IfP e R>isa
rank-(d — k) orthogonal projection matrix, then ||PXP||, > Apy1(2).

B.2 Differential Privacy Preliminaries

Lemma 15 (Parallel composition, [Dwork et al.,2014all). Suppose we have K interactive queries
qi,---,qK, each acting on a disjoint subset Sy, of the database, and each query qi, individually
satisfies (g, 9)-DP on its subset Sy. Then the joint mechanism (q1(51), g2(S2), - - -, qx (SK)) is also
(€,0)-DP.

Lemma 16 (Advanced Composition, [Kairouz et al.L 2015]]). Lete < 0.9 and 0 < 6 < 1. Suppose
a database is accessed k times, each time using a (6/(2 2klog(2/9)), 5/(2k)> -DP mechanism.
Then the overall procedure satisfies (¢,0)-DP.
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Algorithm 4 BlackBoxPCA({A;}, k, O1pca) [Jambulapati et al.,|2024]

Input: n i.i.d. matrices Ay, ..., A, € R¥™*4 with E[4;] = ¥ = 0, targetrank k € {1,...,d}, and
O1pca a stochastic 1-ePCA oracle which, inputs a batch of samples A;, , ..., A;, and an orthogonal
projector P, and returns a unit vector u € Im(P).

P() — Id

B+ |n/k|

fori=1,2,...,kdo
Draw the next batch { Ai;_1)p11,- .., Aig}.
u; + Orpca (AG-1)B+1,- -+ Aip; Pi1)
P, « Py —uu;

end for

return U < {u;},;c

A R R T

C Meta Algorithm for stochastic k-PCA

In this section we prove that any stochastic 1-ePCA oracle, when passed into Algorithm[4] yields a
valid k-PCA algorithm. This is the basis for Theorem 2] as our argument applies to any randomized
stochastic 1-ePCA oracle (not necessarily private). In particular, it generalizes the utility analysis
of Jambulapati et al.|[2024] to the stochastic setting where each call to the oracle sees only a fresh
batch of i.i.d. matrices A;, and must approximate the top eigenvector of E[4;] = X.

Definition 5 (stochastic ePCA oracle). An algorithm Ogpca is a (—approximate 1-ePCA oracle it
the following holds. On independent inputs Ay, ..., A, € R4 with E[4;] =X € S%d for all ¢
and any orthogonal projector P € R4*4 O.pca returns a unit vector u € Im(P) such that, with
high probability,

(uu”, PEP) > (1 - ¢*)(vo", PLP)
where v is the top eigenvector of the projected matrix PXP.

Remark. The DP-PCA algorithm in |Liu et al|[2022a]) does not directly qualify as a stochastic
1-ePCA oracle, since it guarantees (uu ', E[P]SE[P]) > (1 — ¢?) (vv",E[P]SE[P]), rather than
comparing to PX P itself. It is not obvious in general how large E[P]XE[P] — PX P can be.

We will now show that for this type of approximation algorithm we can obtain a utility guarantee and
that it would be optimal for the spiked covariance setting. We now recall the energy formulation of
approximate k-PCA from Jambulapati et al.| [2024]], which is the utility metric we will use here.

Definition 6 (energy k-PCA, [Jambulapati et al.,[2024]]). Let M € S‘éf)d. A matrix U € R™F with
orthonormal columns is a (-approximate energy k-PCA of M if

(UUT, M) > (1-¢%)[|M],
where

M = max Tr (VV'TM).
|| H(k) VERXFk v Ty=r, ( )

The following lemma relates the angle between two unit vectors to the corresponding energy in .

Lemma 17. Let v,w € R be unit vectors, let 0 be the angle between them, and let ¥ > 0 be any
PSD matrix with top-eigenvector v. Then

(ww',2) > (1 —sin?(9)) (vo', %)
Proof. Observe

<wa, E> = <va, E> — <1}UT —ww', E> = (1 — <UU <U;:ju£:> ’ Z>> <UUT, E> ®)
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Note that since v is the top eigenvector of X, we have
<va, E> =Tr (UUTE) =0 'S =\

where A\; > --- > )4 denote the eigenvalues of 3 and v, v, . . . , v4 the corresponding eigenvectors.
Then, we can rewrite

(<E>) e [ et

A
i=2 !

Substituting this back in Equation (8) gives us
<wa, 2) > (1 —sin®(9)) <UUT, )

and completes the proof. O

We now prove that, if each O1pca call in Algorithm [ approximates the top eigenvector of
P;_1¥P;_1, then the final U is a (-approximate energy k-PCA of X.

Theorem 6 (Reduction from k-PCA to 1-ePCA). Let A, ..., A, be i.i.d. samples in R**? with
E[4;] =X = 0. Fix ¢ € (0,1). Suppose O1pca is a (-approximate stochastic 1-ePCA oracle as
defined in Definition 5] If we run Algorithm[@|with O1pca, then (with high probability) its output

U= {ui}le satisfies
(Ut ) > (1=¢3) 1180w -

Proof. Define U; := [uy,...,u;] € R¥ We claim by induction on i that
v (U SU;) Zu Su; > (1=) 120 -

Base case (i = 1) Since Py = 14, by definition of the oracle, the first call returns U; satisfying
Tr (Uy 2U1) = uf Zur = (wr], B) 2 (1= ¢2) Amax (B) = (1= ¢*) By
Inductive step. Suppose after i steps, Tr(U;" 2U;) > (1 — %) [|2]| ;). Let P; = Iy — U; U;. Then,
by definition of the oracle, the (i + 1)-th call returns u;11 € Im(P;) such that
(uitauir, PEP) > (1= C%) | PSP, .
Since <ui+1u;+1, E) > <ui+1uiT+1, PiEPZ->, it follows
’LL;F+1ZUZ'+1 Z <Ui+1u;r+1,P7;EPZ’> Z (]. — <2) HPZEP1||2 .

By Lemma 3 in|{Jambulapati et al.|[2024] (restated as Lemma , we know ||P; X Pi|[, > Air1(2).
Hence,

Tr (U1 SUi) = Tr (U SU;) + ulq S
> (1= [[Zll + (1= ¢ |PERl,
> (1=C) 126 + 1 =) A (B)
= (1 - CQ) HEH(iH),
completing the induction.
Therefore, after k steps, (UU ", %) = Tr(UTXU) > (1 —¢?) 120 k) - O
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Algorithm 5 Oja’s Algorithm

Input: {A;}] |, learning rates {n; }," LmJ
1: Choose wy uniformly at random from the unit sphere.

2: fort=1,...,ndo

3 Wi = w1+ Arwiy
4w wi/[lwll2

5: end for

6: return w,,

Theorem 2 (Meta Theorem). Let Y € SdXd and Ay, ..., A, be ni.id. samples with E[A;] = 3.
Suppose we replace each 1-PCA step in Line Blof Algorlthm %y a (—approximate stochastic ePCA
oracle O1pca. Then the deflation algorithm outputs U € R satisfying

(UU",%) > (1=
Further, for any € > 0,6 € (0,1), if O1pc a is €,9-DP then the entire algorithm remains (¢, 0)-DP.

Proof. Apply Theorem|[6]to obtain the utility guarantee, and invoke Lemma|[I5]to conclude privacy
under parallel composition. O

D Novel Analysis of non private Oja’s Algorithm

Throughout this appendix, we condition on a fixed projection matrix P. All probability statements
refer to randomness over the i.i.d. samples {4;}, with P held fixed. Whenever we write “with
probability at least 1 — §”, it means Pr(- | P) > 1 — 4. At the end, we apply a union bound to obtain
an unconditional failure probability < 6.

Let Ay, ..., A, beii.d. in R4 with E[A;] = X. Denote the eigenvalues of 3 with \; > \y >
- > \g and corresponding eigenvectors v1, . . ., vg. Let P be a projection independent of {A;}7 .
Our goal is to approximate the top eigenvector of PXP.

When P is deterministic, Jain et al.|[2016] shows that Oja’s algorithm outputs a vector close to
the top eigenvector of PX P. However, in our setting P itself is random, where P is defined as
P =1 -3 ,u;u] where each u; is computed using a prior independent sample of {4;}. We
cannot directly apply their result, since it would only guarantee closeness to the top eigenvector of
E[P]XE[P], and E[P)] is generally not a projection matrix and may not preserve the spectral structure
of interest.

To address this, we analyze Oja’s algorithm on inputs { PA; P} and our main theorem shows that,
under suitable conditions, the output is still an accurate approximation to the top eigenvector of P> P,

even though P is random and data-dependent. From here on, we write A\;y > Ao > --- > )A; to denote
the eigenvalues of PY P, and v to denote its top eigenvector.

Assume scalars M, V satisfy
A4 — X[, < Mas. )
max{HE [ 4, - %) (Ai—E)THQ, E [(Ai—E)T(Ai—E }H } <y (10)

Remark. We 1ntent10na11y use different notations M, V here instead of M, V' than in Assumption [A]
to simplify the expressions. Here M = \; M and V = A2V under Assumptlon@

Next, define

=T+ n,PA,P)X+n,—1PA,_1P)----- (I+mPAP) (1D
an()
Wy, = 0 (12)
||an0”2
V=V + N\ (13)

where 7); refers to the learning rate of Oja’s Algorithm at step ¢, which in turn means w,, is the output
of Oja’s Algorithm after n steps given { PA; P} as input. We defined the variables like this in order
to apply the following Lemma from Jain et al.|[2016] to prove convergence of .
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Lemma 18 (One Step Power Method [Jain et al.l 2016]). Let B € R?*4, let v € R be a unit vector;
and let V| be a matrix whose columns form an orthonormal basis of the subspace orthogonal to v. If
w is sampled uniformly on the unit sphere then, with probability at least 1 — 0,

. Bw 2 log (1/8) Tr (VBBTV,)
2 1 (T <
sin <v, ||Bw||2> 1—(v'Bw) <C 5 BETe (14)

where C is an absolute constant.

Now we are ready to state the main theorem of this section.
Theorem 7 (Main theorem of this section). Fix any § > 0 and set n; = ( ) Sfora > 1/2,

(3
A1—Az2)(B+t
and define
_Ma Va?
()‘17)‘2) (5\175\2)2 log <1+%>
Suppose the number of iterations n > (. Then, with probability at least 1 — 0§, the output w,
of Algorithm 5 given inputs { P A; P} satisfies

C'log(1/9) B\ a?y 1
52 [d (n> 2 s )0n — n] '

Here C'is an absolute numerical constant.

B = 20 max

1 (w )

IN

Remark. Based on Lemma[I8]to show Oja’s algorithm (Algorithm [5)) succeeds for our inputs we
simply need that with high probability Tr (Vj B, B, VL) is relatively large and ¢ ' B, B,] ¥ is
relatively small, so that their ratio is large. Where v refers to the top eigenvector of PX P and Viisa
matrix whose columns form an orthonormal basis of the subspace orthogonal to v. As long as we
pick n; in Algorithm sufficiently small, i.e. 7; = O(1/ max M, A1) then I 4 n; PA; P is invertible,
so in turn B,, B, , which guarantees ¢ ' B,,B,] © > 0, so the RHS of the inequality will always be
finite. In order to explicitly bound the RHS we will utilize conditional Chebychev’s and Markov’s,
where the conditioning will serve to fix P.

Proof of Theorem[/] The proof is analogous to Theorem 4.1 in[Jain et al| [2016]], except we replace
their Theorem 3.1 by our Theorem [§]stated and proved below. O

Theorem 8. Given Ay, ..., A, that fulfill Assumptions to with parameters ¥, M,V k, a
projection matrix P independent of the A;, ¥ the top eigenvector of PX.P, and B,, as in Equation (IT)),
the output wy, resulting from non-private Oja’s Algorithm (Algorithm[3)) on inputs PA1 P, ..., PA, P
satisfies

B.w, 1 t B 3 3 t
sin (6, w) < —exp Z 577]2- 1% dexp | =2 ()\1 — )\2) an ,
||annH2 Q = =

where () = ﬁ(l/é) (1 - % exp (o1, 1817V) — 1) :

Proof of Theorem[8] By Lemmal(T8] applied after replacing B with B,,, v with ¢, and V| spanning
¥, we have with probability at least 1 — ¢

T (VBB
sin? (3 Bhw - Clog(1/5) r(E/L RNVL)
| Brw|l, 5 o' B,B

(15)

It now remains to upper bound the numerator Tr (VJ_T B, B} VL) and lower bound the denomina-
tor o' B, B, ¥ separately.

(i) Lower Bound the denominator Using Conditional Chebychev’s inequality (Lemma 8], we have

P [ﬁTBnBZf; >E[6 BB v | P] - %\/Var (68,85 | P]| <o. (16)
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Expand the variance expression as

E |(9B.B]5)” | P|

\/Var [6B,B]# | P] =E [0B,B 5 | P|VA 1, where A = A
E [0B,B,© | P

Then, we can rewrite Equation (T6) to

P [f;TBnBJ@ >E [0 B,B, 7| P] <1 - \%\/A - 1)] < 4. (17)

Now, we need to bound the conditional expectation term and A. Using Lemma [20] we bound the
conditional expectation by

E [ﬁTBnB;f) ’ P] > exp (Z (27%5\1 — 417?5&)) . (18)

i=1
Then, using both Lemmas [20|and 21| we bound A as
E[(57B.Bo)" | P

A= < exp (i n? (10V + 85&)) < exp (i 1877?]/) . (19)

E [@TB,LBIﬁ | P}Q i—1 i=1

Plugging Equations (I8)) and (I9) into Equation (I7), bounds the denominator

T T~ - I 272\ | @
3T BB > exp (Z (2m1 — )\1)> 5] <. (20)

i=1

P

where

J 1 - _
Q=——[1——,|exp 182V | —1
Clog(1/5) " Vs E
(i) Upper Bound the numerator Using Conditional Markov’s inequality (Lemma[7) we have
E|Te [V BB VL] | P
é

Pr |Tr [VanBJVL} > Pl <s Q1)

Using Lemma[22] we can bound the conditional expectation as

t
E {Tr [VIB,LBJVJ_} ’ P} < exp Z 277]»5\2 + 77]2‘]7 d+ VZmQ exp Z 2n; (5\1 — ;\2)
JElt] i=1 JEl]

< dexp Z 217j5\2 + 77?1_/
Jjelt

(iii) Applying Union Bound Using the above bounds, by applying a union bound over both the
numerator and the denominator we have with probability 1 — 2§, conditioned on P

Tr (VIBHBZ f/l)

3T BBl v

< Qdexp | 3020 (o = 1) 402 (V+043)
JE[t]

Substituting this into Equation completes the proof. O
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D.1 Supporting Lemmas

We now state and prove several lemmas that together with Lemmal[I8]will allow us to prove Theorem|g]
which in turn yields Theogem The terms M, V.V, B;, w,, are defined in Equations @b to (13).
Further A\; > Ay > - .- > )4 denote the eigenvalues of P P, and v to denotes its top eigenvector.

Lemma 19. |[E [B;B," | P]||, < exp(3;y 2n:h + 17 (AT + V)

Proof. We denote i = ||]E [BtB;r | P} 0 where By =
(I + UtPAtP) (I + ntflpAtfl.P) ce (I + 771PA1P)
E[B:B/ | P] =E [(I +mPAP)By_1B; I+, PAP)" | P}
< E [(I L PAP) (L +nPAP) | P] (by Lemma[T2)

= ;1 E[I+nPAP +nPA P+n]PAPA P|P]
=a;1 (I+20, PSP +nE [PAPA[ P | P]).
We bound PXP < 5\11. Further,
E[PA,PA[ P|P] = PSPSP+E [P (A~ )P (A, %) P| P}

— PSPSP + PE [(At )P4 -%)" | P} P
S MI+E[(4-9) (A, -5)7 | P
=NI+E [(Alt — %) (A, — z)T}
= {Xf + V} I

where the third step follows as | P||2 < 1, the 4th as P is independent of A; and the last step by
assumption on the A;. Hence,

o < ap_q (1 + 277,55\1 + nf (S\f + V)) .
Withag =1and 1+ z < €*,
oy < exp Z (27%5\1 + 771-2 (5@ + V)) . O
i€ [t]
Lemma 20. E [T B, B, | P] > exp (Zie[t] (27%&1 _ 477?5\%))
Proof. Let B, := E [ﬁTBtBtT U | P] , where v is the top eigenvector of PX. P with eigenvalue A1
Since By = (I+ n:PA;P) B;_1 and A, is independent of B;_; given P,
3, = <]E [Bi1B, | P],E [(I 4 PAP) 58T (L+nPAP) | P] > .
For the right hand side,
E [(1 + 1 PAP) 50" (I+m,PAP)T | P} — 0+, PSPT0 + 1,607 PSP
+n; E[PA P PA[ P | P]
=00 4 2m A 00,
because PXP @ = A\ 0. Hence 8; > (1 —|—217t5\1> Bi—1. With By = ||7]|3 = 1and 1 + = >
exp (z — 2?) forz > 0,

t
Bt > exp (Z (277@5\1 — 47735\%)) . O

i=1

30



Lemma 21. E {(f)TBtBtﬁ)Q | P} < exp (Z dnh + 1077?17)

Proof. We define v, := E[(0"W; W, 0)?|P] where Wy, := (I + nPAP) - ...(I+
Nt—s+1PAi—s+1P). So by this definition we see Wy, = B; and v, = E[(0" B,B, 9)?|P]. As
the trace of a scalar is the scalar itself, we can exploit the cyclic permutation properties of the trace:

v = Te(E[W, 00T Wy W, 00T Wy | P])
= Tr(E[(T+mA] )Geo1(T+mA) T +mA] )G (T+ A1) P))

where G;_1 := WtTt—ﬂ’l'UlT Wi,+—1. We first bound for an arbitrary Gy = G, and then take the
expectation over only A; and finally over G;_.

Tr(E[(I +mPA] P)G(I+ m PAP)I+mPA{ P)G(I+m PA,P)|P])
=Tr(E[(G +mPA] PG +mGPAP +n;PA] PGPA,P)?P))
=Tr(G?) + 4m Tr(PEPG?) + 2ni Tr(E[PA; PA{ P|P]G?)
+ i Te(E[PA] PGPA,PG|P]) + niTr(E[PA] PGPA] PG|P])
+ ¥ Tr(E[GPA, PGPA, P|P]) + n}Tr(E[GPA] PGPA, P|P])
+ 43 Tr(E[PA] PGPA] PGPA,P|P))
+niTr(E[PA] PGPA,PA] PGPA,P|P)))
Let’s begin with the first order term:
Tr(PLPG?) < |PSP||2Tr(G?) = M\ Tr(G?)
then let’s consider:
Tr(E[PA, PA] P|P|G?) < (|[E[P(A1 — B)P(A] = 5)P]|l2 + | PEPEP||o)Tr(G?) < (V + M) Tr(G?)
where the last inequality follows by Lemma@ Next we have 4 remaining second order terms:
Tr(E[PA] PGPA,PG|P]) = Tr(E[PA] PGPA[ PG|P])
=Tr(E[GPA, PGPA, P|P]) = Tr(E[GPA] PGPA, P|P])
<SEIIPAT PG} + |PA, PGP
:%Tr(G]E[PAlPAlTHP]G + GE[PAPA] P|P|G)) < (V + X2)Tr(G2)
Third order terms we can bound as follows:
Tr(E[PA] PGPA] PGPA,P|P]) < |[PA] P|Tx(E[PA] PGGPA,P)|P]
< (I[P(A1 = Z)P|2 + | PEP|2) T (GE[P A, PA{ P|P)G)
< (M+A)(V+ M) Tr(G?)
Finally the fourth order term
Tr(E[PA] PGPA,PA] PGPA,P|P))) < |[E[PA, PA{ P]||,Tr(GE[PA, PA] P|P]G)
< M+ M)V + M) Tr(G?)

all of this together gives us
Tr(E[(I+ m PA{ P)G(I+n PA, P)(I+m PA] P)G(I1+n PA, P)|P])
<Tr(G?) + 4m M Te(G?) + 52 VTr(G?) + 4nd (M + X)) VTe(G?) + nH M + A1)V Tr(G?)
=(1+4mA + 503V + 43 (M + M)V + 0 (M + A)2V)Te(G?)
<(1+4mA +1093V)Te(G?)
<exp(dm A + 10n2V) Tr(G2)

where we used 7; and 1 + x < exp(x). All of this give us

1
< 4max{A,M}
Ye < exp(dmiAr + 100PV)E[Tr(G71)|P] = exp(4m i + 1097 V)ye-1

then using o = 1 gives us the wished result. O
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Lemma 22.

<

t
E |Te(V/] BB/ V.)|P] < exp Z2nj)\2 + 77]2 V d+ Z n?V exp Z 2n; (/\1 — )\2)
Jj=1 i€[t] JE]

Proof. Let ap := E {Tr (VIBtBtT VL) | P] By cyclicity of trace and V. being fixed under
E[-[ P,

o= (E[BB] | P, V.V )

- <IE [B1B, | P],E {(I + e PAP) VLV (T+nPAP)T | P} >

For the right-hand matrix,

VLV +nPSPVLV] + ViV PSP 42 E [ PAP VLV PAP| P|

< (14 2mdo +02V) ViV 4 n2venT,
using V orthogonal to the top eigenvector © of PLP, and V| ‘N/I =< I. Therefore,

o < (1 2mde +0PV) oy + w2V (B [BiaBLy | P, 507).

Using 1 + 2 < exp (x) and (X, 90 ") < || X2,

or < exp (200 +77V) vy + nV [E BB | P,

t—1

< exp (%Jz + nff?) a1 + n;V exp (Z (2mi1 + W?V)> :
i=1

by Lemma [T9] Unrolling the recursion,

t t

t 7
a; < exp Z (2nj5\2 + 77?9) ag + anV exp Z <2nj5\1 + 77?17) exp Z (277]»;\2 + 77?17)
=1

j=1 Jj=1 Jj=i+1

t t i
= exp Z (27]j>\2 + n??) ag + Z n7V exp 2n; (/\1 — )\2)
j=1 i=1 j=1
Since ag = Tr (fo@) = d — 1 < d, the claim follows. O

E Proof of Main Theorem

Theorem 1 (Main Theorem). Let e,0 € (0,0.9) and 1 < k < d. Then k-DP-PCA satisfies the
following:

Privacy: For any input sequence {A; € R¥ Y}, the algorithm is (¢, §)-differentially private.

Utility:  Suppose Ai,...,A, are iid. satisfying Assumption [A| with parameters
(27 M7 V’ K7 H’? a, 72)' I«f‘

3/2
+ k' M+ 2V + —\/g (In(1/6)) ,
€

e drK'v+/In(1/9)
e er TV IR
€
n > Cmax { N rZ K3V,

K2y k*d+/In(1/6)
£
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for a sufficiently large constant C, then with probability at least 0.99, the output U € R js

(—approximate with
(—6 (H, ( /% . vdk\/;gu/é))) | ®

where O(-) hides factors polylogarithmic in n, d, 1/<,1n(1/8) and polynomial in K.

Proof of Theorem[I] The privacy proof of Algorithm [I]follows straight away from using Advanced
Composition (Lemma[I6) together with the privacy of MODIFIEDDP-PCA, which in turn follows
by [Liu et al., [2022al]. For the utility proof we note that by Theorem 9] we know that when passing
m = n/k matrices A; at every step of our deflation method we obtain a vector w; fulfilling

. ~ M (PXP) Vk  ~dk+/log(1/0)
sin(us, v5) < O <)\1(P2}i) — X (PEP) (\/7 + en >>

where v; is the top eigenvector of P;_1 X F;_;. Which by Lemma give us

(uu] , P1SP1) > (1= ¢F) (v, P_1SPi_y)

with (; = o} <)\1(P§113()1i§f()132p) < VT’“ + 2die/los(1/9) W)). By our choice of n we know by

Lemma 23] that
(<0 (Al ( /ﬁ+ ydk,/log(l/(;)))
A n en

where we used that (A — §)d is maximized by 6 = A /2. So finally Theorem [6] gives us that
T2y > 1 -V, ) (22)

where V}, is the matrix obtained by non private k-PCA. O

For the above utility proof we could not apply DP-PCA straight away, as this would only give us a
guarantee that the vector ¥ we obtain is a good approximation of the top eigenvector of E[P|ZE[P].
This is not sufficient for the deflation method, as we require © to be a good approximation of P> P.
We show that for MODIFIEDDP-PCA this is indeed the case in Theorem[9). We proof Theorem [9] by
first showing that with high likelihood we can reduce the update step to an update step of non private
Oja’s Algorithm with matrices PC;P. We then apply a novel result we establish in Appendix [D}
which shows that the non-private Oja’s algorithm, when run on the projected matrices { PC;P}+,
produces a good approximation of the top eigenvector of PE[C}| P, under certain assumptions on the
sequence {C}}. Lastly, we need to control the error we accumulate through approximate projections

P=1- 22:1 ujujT, which we do in Lemma
Theorem 9 (MODIFIEDDP-PCA). Lete,é € (0,0.9), then

Privacy: For any input sequence { A; € R%*?} and projection matrix P independent of the { A;} the
algorithm is (g, §)-differentially private.

Utility: Suppose Ai, . .., A, are i.i.d. satisfying Assumption[A.I}-Assumption with parameters
(Ev Mv Vv K7 "<‘./I7 a, 72)) lf

» dr'y(log(1/9))'/?
€

+K:/M+K:/2

1/2 3/2
nzo (o v ¢ LB

for a large enough constant C, where k' = AI(PZIQ\;E%\l(PEP), 0 <1/nand

0 < A\ (PEP) — A\(PSP)
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then there exists a learning rate 1 that depends on (t, M,V K a,\(X),\{(PXP) —
A2(PXP),n,de,d) such that T = |n/B] steps of ModifiedDP-PCA with choices of T = 0.01
and B = cin/(logn)? output wr that with probability 0.99 fulfills

sin(wy, 0) < 0) </<L/ <\/Z+ @)) (23)

where v is the top eigenvector of PX.P and O() hides poly-logarithmic factors in n,d,1/e, and
log(1/6) and polynomial factors in K.
Remark. For readability we omitted the advanced composition details. If we choose T = O(log?n),

we can simply set (¢/,9") = (e/( 2\/2 log®(n)log(2/6))),d/(21og?(n))) in every step and then by

advanced composition we get. And in our utility guarantee we would only occur additional logQ(n)
factors which we omit. We also want to comment on why the utility bound only depends on P in the
parameter x': We can see the the utility bound of MODIFIEDDP-PCA depends on several constants
originating from constraints on the data:

A1
A1— A2

l. k=
2. M sothat ||A; — 3|2 < A1 M almost surely
3. V so that max{||E[(A; — X)(Ai — )" ]ll2, [, [E[(A; = 2) T (A; = D)2} < AV

4. 7% = maxy| =1 | Hull2

lu” (AT —2)v]?\1/(24
5. K SO that maXHuH:L”vH:l E |:eXp ((W) /( )>:| S 1
now if we replace {4;}, the input to MODIFIEDDP-PCA, with {PA; P} (which is exactly what
happens at iteration ¢ of Algorithm where P is a projection matrix, the constants M, V, \?+? and
K will still remain upper bounds (see Lemma|[I0} Lemma[TT} Lemma|T3).

Proof. We choose the batch size B = ©(n/log® n) such that we access the dataset only 7' =
@(log3 n) times. Hence we do not need to rely on amplification by shuffling. To add Gaussian noise
that scales as the standard deviation of the gradients in each minibatch (as opposed to potentially
excessively large mean of the gradients), DP-PCA first gets a private and accurate estimate of the
range. Using this estimate PRIVMEAN returns an unbiased estimate of the empirical mean of the
gradients, as long as no truncation has been applied. As we choose the truncation threshold so that
with high probability there will be no truncation the update step will look as follows:

wt<—wt 1—|—77tP ZPAPwt 1+6tzt)
zE[B]

where z; ~ N(0,I) and 8; = SKV2A, log” (Bd/ 7)y 2d10g(2.5/6) . The privacy follows by the privacy

of the subroutlnes private eigenvalue and prlvate mean estimation [Liu et al.,[2022a]]. So all that is
left to do is show the utility guarantee. We will do that by showing we can reduce it the accuracy of
the non private case. First we note that P? = P so we get

wy = w1 + (5 Z PA;Pwi—1 + BiPz)
un[B]

Using rotation invariance of the spherical Gaussian random vectors and the fact that ||w;_; || = 1 and
wi—1 € Im(P) (for details see Lemma E]), we can reformulate it as

1
Wy 4= W1+ 1 B Z PA;P + PGP | wi
1€[B]
we can further pull out the projection matrices to obtain

1
Wy w1+ P B Z A + BiGy | Pwi—
1€[B]
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Where G is a matrix whose entries are i.i.d. A (0, 1) distributed. So we have a matrix

:% Z A + Gy

i€[B]

and we will now proof that C; fulfills all requirements for Theorem [7] (our version of the non private
Oja’s Algorithm utility guarantee), which will directly give us the wished utility guarantee. It is easy
to see that E[C}] = ¥ as z is a zero mean random variable and hence so is G;. Next we show the

upper bound of max { HIE {(Ct - 3)(Cy — Z)T} E [(Ct ) I (o Z)} Hz}

[elc-ne-oT)| =[e|( 5 X a+s0-2) (53 a+ac -9

2

i€[B] i€[B] 2
T
1 1
<lEl{3 T a-3) (52 a-x + 87 [E[G: G/,
i€[B) 1€[B] )
V
— A E[GG],
V)\2 9
<G A=V

where the first inequality holds due to G; being independent to A4;, and E[G;] = 0. The second
{(AZ- — E)—r (A; — Z)] H2 and Assumption 3.

And the last inequality holds with high probability due to G having i.i.d. Gaussian entries (Lemma[3)),
and by choosing

inequality follows due to having B elements of %

16 Ky log®(Bd/T)+/2d1og(2.5/6)
Bi=
eB
we have 5 > [, for all ¢ as by Theorem 6.1 in [Liu et al.,[2022a]] and Assumption 4
A< VAN | H)l, < V2N

Lastly let us consider ||C; — |2. By Lemma [3]and Lemma] we know with proabability 1 — 7 for
all ¢ € [T

1
1C: =X, = B Z A+ BGy —

ie[B]
< (MM kﬁ @) YA log(dT/T> +8 (x/&+ \/W)) =

so by Theoremwith stepsize 1t =y 5oy T

Ma (\7—1— )\%) a?

~ ~ ) ~ - 2
(A = %) (M= 22) 1og (14 555)
with probability 1 — ¢

., . _ Clog(1/d) e\ a2V
sin”(wr, 7) < — 5 (d <T> + (20— 1)(5\1 - 5\2)2T>

so if we fill in M, V, and /3 into & and use n = BT we get

after 7" steps with

T > 20 max =¢ (24)

{ AlMlog(dT/'ra + Vlog(dT/T Mo K~yA1 log® (nd/TT\/Qlog(2.5/6)\/log(T/7—da
S (A1— Az)n nT (A1—A2) en(A—Az2 ’
7 = 20max VaZa? K222 logza(Bd/Td log(25/6)a® )

n(X—A2)2 log(14155) £2n? (A1 —A2)2 log(1+ 155) (A1 =X2)2 log (14 155) T
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in order for Theorem [7] to hold we need to force {/T < 1. Noting 7 = O(1), K = O(1) and
selecting = clogn, T = ¢/(logn)3 we get that

AlMlog(dlog(n)) logn + / V1og(dlog(n)) A + yA1 log?(nd/ log(n))4/log(1/6) log(log(n)) log(n)d

Xi—A2)n X %
S 20C max VA?(lo(grll) & ’yZ)\? logzu(nd/ lqg(n))log(l/é)r(izixz 2) )\Q(IOg‘n)2 “C 2

’I’L(j\lfsz) 62712(/\175\2)2 ()\1 /\2)2T

= lCax

% < 1 will be trivially fulfilled if each of the summand is smaller than 1/3. For the last term we
need

_Xi(logn)® <1/3 (25)
(A1 = A2)2T
as T = ¢/(log(n))? this means
logn > 3#
(A1 = A2)?
for the remaining terms we need
n o 3 721y/log(1/6)d
log®(n/logn)log(n) — " (A — Ay)
n >3 V)\i
(10g( )? T (A - /\2)2

log(log > V3V log(d
n < A1 M log(d)

log(n)log(log(n)) = = (A; — X2)

We note that to obtain n/log(n) > a,n =~ alog(a) + aloglog(a). So
M\ VA2 dyA1/log(1 /5))

(A1 —X2) (AL —Ag)? (AL — Ao)e
with large enough constant suffices (where = is hiding log terms) to obtain £ /7" < 1 and d(¢/T)%* <
1/n?. And we get

n>C’ <exp()\§/(5\1 —X2)?) +

v (V/\% N Y22 d? log(1/6)>
(A1 — A2) ~ n En

(where < is hiding log terms), so plugging this in our bound for sin(wy, ¥) we get

sin(wp, 7) < O ( <\/Z+ @))

which finishes the proof. O

Lemma 23. If we are given matrices {A; € R\ fulfilling Assumption E with parameters
(2, M,V,K, K a,7?), afixedk < d,0 < A = min;er) \i — Aip1 where \; refers to the ith
eigenvalue of Z, 5 sothat 0 < 6 < A, and a sufficiently large constant C > 1 so that

(A —6)d
B <=7
k=T oA
then
gi < (Sl n/k
where

o)

and &; refers to the utility of the vector u; returned at iteration i € [k] ofAlgOrithm
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Proof. We will denote
A (Pio1XP )
M(Pio1XPiy) = M (P XPiy)

R 1=

Then by Theorem [0] we obtain
& < ki By

Lemma will give us a utility bound independent of P for k = 2, as it bounds k5. However, we
want to obtain a utility guarantee for arbitrary £ < d, so the goal is to upper bound ; for general i.

If we iteratively apply Lemma[235|we get

MN(E) + A
Ai(Z) = hia(B) =230 A
where A; = c)\l( i—135P;j_1)&; (A := 0 for completeness). Now the problem is that A; still
depends on previous projections and it’s not even clear in general if {; > ;4 or the other way

around. Ultimately we want to have an upper bound for all £;, to get a utility bound for U = {u,}. A
natural approach is to try and choose n big enough so that

M(PXP;) < )\ (26)
M(PXP;) — M (PXF;) > 0 27
for some 6 > 0. If we achieve this we are done, as this will guarantee that

A1
< Mp
& < 5 Pn

We will proof that at every step Equation and Equation (27) are fulfilled by induction. For k = 1
we have Py = I which straightaway gives us equation |26} And as § is smaller then the minium
eigengap equation [27] directly follows as well. For k + 1 we start with showing equation[26] By
Lemma 24]

Ki >

k
M(PLEP) < Mot () + Y A

j=1
first let’s upper bound Z?Zl A;. By definition we have
A =C- )\1( i— 1EPJ 1)§

for some constant c. By induction assumption this gives us :

(P] 1555 1)
A = c Bn
Z Z NP, (PSP

so equation [26] will be implied by
)

Bp < (M —Aet1) - =3
ckA?

which is surely fulfilled as by assumption
< (A =6) .
— kX2
To show equation [27] we see that

k
A (PeEPy) = Ao (PSPr) > Ay (E) — Miga(D) —2) A
k
>A-2) A
j=1
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where the first inequality follows by Lemma and the second by definition of A := min;c) A; —
Ai+1. Using the upper bound on Z?Zl A we established before we obtain

kB, \?
M (PLEP) — Xo(PyXPy) > A —2¢ 5 L
so if we choose
(A —6)6
B, < ——
- ck)\%
this shows equation 27| will be fulfilled. [

We need Lemma 23] as the utility result for MODIFIEDDP-PCA depends on the eigenvalues of the
input. After the first step of k-DP-PCA our input is of the form PA; P,..., PA, P, so our utility
bound depends on the eigenvalues of PYXP. In general A;(PXP) — A\o(PXP) can be arbitrarily
much smaller than the actual eigengap of 3, and therefore it is not a sufficient utility bound as is, to
proof Theorem [I] However, as we iteratively apply projection matrices of the form

P=T7—uu'

where u is a unit vector, and further u is e-close to the top eigenvector of the matrix we apply it to,
we can actually relate the eigengap of PX P to the one of X using Weyl’s Theorem.

Lemma 24. Given sin® (0) < & where 0 refers to the angle between vy, the top eigenvector of ¥
(psd), and the unit vector u, then we have

i > N1 — A
Ai <A1 +A
where \; is the ith eigenvector of PL.P, with P = Iy — uu', \; the ith eigenvector of ¥, and

A = 8\ VE(1 + %)

Proof. We will use Weyl’s Theorem (Lemmal6)) to proof this, by defining

Gi1=(I—vv] ) (I —vv])

Go=T—uu ST —uu')
t~hen for Wi the eigenvalues of (31, and v; the eigenvalues of G5 we know Ay = p1, A3 = o, ... and
A1 = V1, Ay = Vo, ... etc. Now we can use this as follows:

Xi = N1+ (N — A1)

< A1+ A = X

<A1+ Gl - G|
where the last inequality follows by Weyl’s Theorem. Next we will bound |G — G2||

|G — G| = [|(v1] & —uu" ) + (Sviv] — Zuu') + (uu' Suu' — viv] Svgv] )|
< Aflorvf —uu’ 2] 22
where the last step follows as (uu ' Suu ' — viv] Sopv] = (uvu’ —viv] ) Suu’ +vo] S(uu’ —
viv] and |lv1v] ||2 = |luuT ||z = 1. Further it turns out that we can bound ||v;v; — uu' |2 using
sin?(v1,u) < €: First we note that as u and v; are unit vectors we can write
u = cos Qv + sin fvi-

so this means

uu' = cos® Qviv] 4 cosB(vivi " +viv]) + sin® Qvio T
and also gives us
luu" —viv] |2 = ||(cos® 6 — D)vyv] + cos@sinB(vivi " + vitv] ) + sin® Qufoi ||,

= || — sin? Gvyv] + cosO(vyvi T 4+ viv) ) + sin? Gvivt o
< |sin? ]||lvyv] || + | cos O sin | ||vrvis T + viv] ||2 + | sin? 0]||vf o Tl

< 2|sin2 0] + 2| sin ] < 2/E(1 + \/€)
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We can now use Lemma [24]to lowerbound the eigengap of PX.P.

Lemma 25. For ¥ € R**? g matrix with eigenvalues \y > Mg > - > Ag, P=1— wu', with
u € Im(X), and A > Ao > > Mgy the eigenvalues of PY. P

M= A2 > Ao — A3 —2A

where A = 8\1/E(1 + /€) and € > sin®(0) with 0 the angle between u and vy, the top eigenvector
of X

E.1 Proof of Utility of DP-Ojas

Theorem 3. Given Ay, ..., A, arei.i.d. and satisfy Assumption[A] MODIFIEDDP-PCA and DP-Ojas
as defined Algorithms|2|and|3|are stochastic ePCA oracles with { = o} ( ( \/ =+ dy/los(1/9) log 1/9) ))

and = 9] (;{’ (, /% + % anog(l/é)>) respectively.

Proof. The proof follows by the utility proofs of MODIFIEDDP-PCA and DP-Ojas (Theorem [9]
and Theorem[T0) and Lemma[T7} O

Theorem 10 (DP-Ojas). Privacy: If ¢ = O(+/log(n/d)/n) then Algorithmis (¢,0)-DP.

Utility: Given n iid. samples {A; € R¥N"_ satisfying Assumption E with parameters
(E? M’ V? K7 H,7 a” 72)’ l_f‘

! 1) log(1
nZC<H12+I€M+f€/2V+dK/(’Y+ )Og( /6)>

g

with a large enough constant C, then there exists a choice of learning rate 1, such that Algorithm 3]
with a choice of ( = 0.01 outputs w,, that with probability 0.99 fulfills

sin(wy, v1) < O (H/ (\/Z+ (v + 1)i:10g(1/5)>>

A1 ()
X (PEP)—23(PSP)
and polynomial factors in K.

where k' =

and O(-) hides poly-logarithmic factors in n,d,1/e, and log(1/8)

Proof. Privacy: The privacy proof follows by Lemma 3.1 in [Liu et al., | 2022b].

Utility: By Assumption [A.4]it follows analogously to Lemma 3.2 in [Liu et al.| 2022b]] that with
probability 1 — O(¢) Algorithm [3|does not have any clipping. Under this event, the update rule
becomes

wy < wy—q + N P(PAPwi_1 + 2Baz)
wy = P /|| P
where 8 = CA\Vd(K~log?(nd/¢) + 1) and z; ~ N(0,T). Just like in the proof of Theorem@we
use that P2 = P and Lemma[9lto rewrite this as
wz — Wwi—1 + T]tP (At + 2ﬁaGt) Pwt_l
where G is a matrix whose entries are i.i.d. A/(0, 1) distributed. So if we define
At = At + 250[Gt

this becomes ~
wy < w1 + P A Pw;_y

s0 if we can show the A,’s fulfill all requirements for Theorem we will directly obtain the wished
utility guarantee. Equivalently to the proof of Theorem 9] we can show

IE[(A; — £)(Ay =) Tlla < VA2 +4023%Cod =: V
1A; — Slla < MA + 2Cs08(Vd + \/log(nj¢) =: V
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Under the event that ||A;, — || < M for all t € [n], we apply Theorem [7| with a learning rate
h

M= =) &0 where

€ — 20 max < Mh (V + A\ )2h2 )

()\1 - )\2)7 ()\1 — /\2)2 10g(1 + WCO)
which tells us that with probability 1 — (, forn > £

. Clos1/0) (, (€Y v
sin”(wy, v1) < 2 (d <n) + (2h — 1)(M\1 — )\2>2”>

for some positive constant C'. If we plug in a = C/lzgi\/(g/é) (as defined in Algorithm , set { = O(1),
K = O(1), select h = clog(n) and assume

MXilog(n) = VX3(log(n))? (Kvlog®(nd/¢) + 1)A log(n/d) log(n)d — A21og?(n)
" Z ¢ ( )\1 — )\2 + ()\1 — )\2)2 ()\1 — )\2)5 + ()\1 - )\2)2)

we are guaranteed n > ¢ and d(¢/n)?* < 1/n?, so we will obtain the wished bound. O

Remark. An analogue to Lemma[23]holds as well for k-DP-Ojas, by simply setting

5, O( V+(7+1)dlog(1/6)>.

n en

E.2 Sample Size requirements
The sample size condition in Theorem|T}
w2 dr v +/In(1/9)
e VR
€
n > Cmax{ M K2E3V,

K2y k?d+/In(1/9)
€

3/2
+ K'/M—'- KZ/QV + \/gan(i/(s)) )

includes an exponential dependence on the spectral gap: n > exp(x’). While this is relatively
harmless as there is no such exponential dependence in the utility guarantee of the Theorem, we
are able to get rid of this exponential dependency in exchange for an additional term in the utility
guarantee. When looking at the utility proof of MODIFIEDDP-PCA (Theorem[J) we see this term
arises as we choose 7" and n so that (£/T") < 1, as this is one of the requirements of Theorem|[7} The
specific inequality that arose from bounding (£/7") and that lead to this exponential dependency is

A2 (logn)? <
(A1 — A2)2T —
(see Equation ). As we selected T = ¢/(logn)3, we required log(n) > A\1/(A1 — A2). By

selecting a slightly larger T = cx log® n, we would get rid of this exponential dependence, however
at the cost of getting an extra term of O(k"v2d? log(1/3)/(en)?) in the utility guarantee.

1/3 (28)

F Proof of Lower Bound

Corollary 3 (Lower bound, Spiked Covariance). Let the d X n data matrix X have i.i.d. columns sam-
ples from a distribution P = N'(0,UTAU " + 0%1,) € P(\, 02) where P(\, 0%) = {N(0,%),% =
UAUT +0%14,eA < A\ < - < A1 < CA}. Suppose X < cjexp{es — co(evVndk + dk)} for
some small constants cy, c{) > 0. Then, there exists an absolute constant ¢; > 0 such that

2
R R e  EAC Rty i pYLLSLA R
Uel.,s PEP(X,02) Yoici(Ni+0?) n. ne
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Proof. Combining Lemma [26] with Theorem [I3] we obtain the lower bound in Corollary [3] O

Lemma 26 (Reduction to Frobenius norm). Let Y. be a PSD d X d matrix with top-k eigenvectors
Vi € RYF and eigenvalues \y > -+ > \g. Any U € R that satisfies |[UUT — Vi Vi ||% > 7,
must incur

YA

¢ > Py —
2 iz i

where Ay := A\, — Ag41-

Proof. As

(U, X)
<Vkvk—raX>
_ Tr(UUTX)
- Tr(VV, X)

U’ X) = ViV, X)

ViV, X)

this implies that

TH(UUT X) )
X)L 2

Tr(UU " X)
Tr (Vi V, X)

|00~ VVIRAL _
: <

So any upper bound on will give us a lower bound on ¢2. By Lemma 27| we know

Tr(VV'TX) - Tr(UU T X)
which gives us that
TI‘(UUTX) <1— ||UUT - VkaH%Ak
Tr(ViV, X) — 2Tr(Vi V,[ X)
By equation 29]this gives us

\vUuT — VkaH%Ak
221 1

< ¢
m

Lemma 27. For an orthonormal matrix U € R and a psd matrix X € R¥? with eigengap
A = A\ — A1 and top k eigenvectors V € R4%k we have

JUUT — VVIEAL
. <

Tr(VV'X) - Tr(UU T X)

Proof. We will proof this by proving the following two (in)equalities:
Apllsin®U, V)||2 < Tr(VV ' X) = Tr(UU T X) (30)
I0UT = vV Tp = V2l|sinOU. V)||r (31)
Equation (30): We first note that
Te(VVTX) - Te(UUTX) =Te(VVT = UUT)(X = Xpg1)La)

* Te(VVT = UU T ky1) = Aegr (Ti(VVT) = Te(UUT)) = 0

where the last equality follows as Tr(UU ") = k = Tr(VV ). Now
Tr(VVT —UU (X = My )Ig) = Te(VVT + (Ig = VVINVVT —UU (X — Xpy1)1a)
=Tr(VVT(VV'T - UUT)
>Tr(VV (VYT —UUT)

(
(X = Meq11a))
> ARTe((ViV, —UUT),)
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where (A). is obtained by replacing each eigenvalue of the matrix A with max{y;,0}. Now we
note that

Tr((ViV, —UUT)4) > [|sin®(U, V)|

Hence, since the sin 6; are nonnegative (as the principal angles ¢; lie in [0, 7/2]) we have Tr((V;.V,| —
UUT),) =Y | sin6;. Further, by definition we have

k
[sin®U, V)| = sin®6;.

i=1
So by noticing that for any angle 6 € [0, /2], sin § > sin® § we have proved the first inequality.
Equation : |UUT —VV T2 =Tr((UUT — VV T)2). By expanding (UU T — VV )2 we see
Ut —-vvh2=vuT —vuTvvT —vviuUuT +vvT
which gives us
T(UU T —VV )2 =2k —2Tr(UUTVVT)

=2k -Te(V'UUV)

=2k~ |UTV|%
Lastly, utilizing

k k
UTV]Z = QZCOS2 0; = 22(1 —sin? 6;)
i=1 i=1

the proof follows. O

F.1 Existing Lower Bounds

Theorem 11 (Lower bound, Gaussian distribution, Theorem 5.3 in|Liu et al.|[2022a]]). Let M, be
a class of (¢,0)-DP estimators that map n i.i.d. samples to an estimate © € R%. A set of Gaussian
distributions with (A1, A2) as the first and second eigenvalues of the covariance matrix is denoted by
P(a; 2o)- There exists a universal constant C' > 0 such that

d d Ao
inf 5 Eg..pn[sin(9(S), > C'mi — 4+ — |4/
oot PG;?EM s~pr[sin(0(S),v1)] > C min (m( - + m) N )

Theorem 12 (Lower bound without Assumption 4, Theorem 5.4 in|Liu et al.|[2022a]). Let M. be a

class of (g,9)-DP estimators that map n i. lfl' samples to an estimate 0 € RY. A set of distributions
satisfying 1.-3. ofAssumption@with M = 0O(d + \/ne/d), V. = O(d) and v = O(1) is denoted by

P. For d > 2, there exists a universal constant C > 0 such that

dAlog((1—e#)/d) 1)

En

_inf sup Eg.pn[sin(0(5),v1)] > Ck min \/
vinMe Pep

Theorem 13 (Theorem 4.2 in (Cai et al.| [2024]). Let the d x n data matrix X have i.i.d. columns
samples from a distribution P = N'(0,U"AUT + 021;) € P(\,02). Suppose X < c)exp{es —
co(evndk + dk)} for some small constants cy,cy > 0. Then, there exists an absolute constant
c1 > 0 such that

i T T )
it sy EITOT-UU |F>Cl<(0\/>\+o>< d+d\/E>/\1>

Uel. s PEP(X,02) VE - A n ' ne

where the infimum is taken over all the possible (g,8)-DP algorithms, denoted by U, s and the
expectation is taken with respect to both U and P and

P\, 0?) = {N(0,%) : % = UNU " +0%14,U € Ogp, A = diag(M1, ..., M), col < M\ < A\ < CoA}
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Algorithm Performance vs Sample Size for All (d, k) Combinations
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Figure 3: Comparison of k-DP-PCA and k-DP-Ojas for varying k and d (also including DP-Gauss-
1 (input perturbation), DP-Gauss-2 (object perturbation), and DP-Power-Method) on the spiked
covariance model. We plot the mean over 50 trials, with the bars representing the standard deviation.

G Experiments

In Section [5] we compare the performance of k-DP-PCA and k-DP-Ojas to two modified versions
of the DP-Gauss algorithms of Dwork et al.|[2014b], we refer to as DP-Gauss-1 and DP-Gauss-2
respectively, and a modified version of the noisy power method [Hardt and Price, 2014]).

Given a stream of matrices {4;} and a clipping threshold S (that is chosen based on the distri-
bution of the input data), DP-Gauss-1 first clips each matrix to have trace at most 3 A; =
A; -min{1, 8%/Tr(A;)}. In a second step it computes the sum of the A;: X = 3", A; and then per-
forms the gaussian mechanism: X’ = X + F, where E is a symmetric matrix with their upper triangle
values (including its diagonal) i.i.d. sampled from N'(0, A?I;) and A; = 32,/21og(1.25/9)/e.
Lastly, it performs an eigenvalue decomposition on X', and releases the top k eigenvectors.

DP-Gauss-2 just like DP-Gauss-1 clips the matrices and sums them up to obtain X. Next it
extracts V}, the top k eigenvectors of X via an eigenvalue decomposition and privatizes its eigengap:
gk = Ak — Ag+1 + 2, where z ~ Lap (2/¢). It then applies the Gaussian mechanism to V:
V) = Vi + E, where E is a symmetric matrix with their upper triangle values (including its diagonal)
i.i.d. sampled from N(0, A2I,) and

_ ,6’2(1+\/210g(1/6)/5
27 gk — 2(1 + log(1/0) /e)|

Finally, an additional eigenvalue decomposition is performed on V}/, as the introduction of noise may
result in a matrix whose columns are no longer orthogonal. The top k eigenvectors obtained from
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this decomposition are then released. It is important to note that if gj, is not positive, the procedure is
no longer differentially private, despite adherence to the algorithm described in the original paper
(see Algorithm 2 in [Dwork et al 2014b])). A fully compliant implementation—also discussed in
the paper—would employ the PTR mechanism, albeit at the expense of increased privacy loss. For
simplicity and to allow greater flexibility, we instead opt to resample fresh noise whenever g < 0.

DP-Power-Method clips the matrices with respect to the square root of the trace and the trace of the
square root of the diagonal. For A = aa " with a € R? the first corresponds to clipping with respect
to ||alj2 < B, whereas the second to clipping with respect to ||a||; < a, where the clipping threshold
B is the same as we choose for the DP-Gauss algorithms. In a second step it then also computes the
sum of the clipped matrices and then performs the noisy power method (find algorithm in [Nicolas
et al.l 2024]]) where the gaussian noise that is being added at every iteration of the power method is
scaled with an additional 3 - « factor.

G.1 Synthetic Data

We sample data from the spiked covariance model, meaning each matrix A; € R%*¢ consists of
a deterministic rank-k component, plus random noise that ensures A; is full-rank. For the case
k = 1, we generate samples via x; = s; + n;, where s; ~ Unif ({\jv, —A\jv}), with v € R? a
unit vector and \; € R a scalar. The noise term is sampled as n; ~ N(0,021,;). We then define
A; = z;z; . Here, \; and o are inputs to the sampling function, while v is obtained by sampling a
standard Gaussian vector of dimension d and normalizing it to unit length. For £ > 1, we proceed
differently: we first sample a random matrix V' € R4*¥ with i.i.d. standard normal entries, then apply
the Gram—Schmidt process to obtain V}, € RI*k  a matrix with & orthonormal columns. We construct
A; = VkAVkT + 22, , where z; ~ N(0,021,;), and A € R¥** is a diagonal matrix whose entries
are user-specified eigenvalues. We note that this construction for k£ > 1 is not a direct extension of
the k£ = 1 case. In particular, independently sampling k vectors as in the £ = 1 case and summing
their outer products would result in a mixture of Gaussians rather than a single spiked covariance
structure. To avoid this and retain a well-defined rank-k£ component, we instead fix the subspace and
apply deterministic structure through VkAVkT.

We set 3 = Cy/A1 + oy/dlog(n/() for DP-Gauss-1 and DP-Gauss-2, where n is the number of
samples, 1 — ( is the probability of not clipping. We set ( = 0.01 uniformly across all methods,
including our algorithms (MODIFIEDDP-PCA and k-DP-Ojas) as well as both Gauss baselines. For
both k-DP-PCA and k-DP-Ojas, the parameters K and a (as defined in Assumption [A) must be
provided as inputs. In the case of data generated as described above, we have a = 1 and K = O(1),
and thus we set @ = 1 and K = 1 for our experiments. Additionally, k-DP-PCA requires specifying
a batch size B, which is used in the PRIVMEAN algorithm. While the theoretical analysis suggests
that the optimal choice is B = n/ log® (n), where n is the sample size, we found empirically that
setting B = +/n yielded improved performance in practice. Lastly, we need to set a learning rate for
k-DP-PCA and k-DP-Ojas. For k-DP-PCA we set the learning rates to be

where ¢ refers to the tth update step inside of MODIFIEDDP-PCA (¢ € [T] where T' = |n/B])
and ¢ to the ¢th iteration of k-DP-PCA. For k-DP-Ojas we empirically found that simply choosing a
decreasing learning rate (independent of eigenvalues) resulted in good performance, so we set the

learning rate to be
nj = 1/(1+7)
for j € [n] for all k iterations of k-DP-Ojas.

G.2 Gaussian Data

For more general data distributions—that is, those not exhibiting a clean signal-plus-noise decompo-
sition—Corollary [I]indicates that k-DP-PCA can still outperform existing state-of-the-art methods,
primarily due to its favorable scaling with the ambient dimension d. However, our second algorithm,
k-DP-Ojas, offers comparable utility guarantees in such settings (see Corollary [4).

While k-DP-PCA has strong theoretical properties, it requires careful tuning of the learning rate,
which can be challenging in practice. Specifically, it depends on a step size parameter that must be
adapted to the signal-to-noise ratio and spectrum of the data. In regimes where the noise level is
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Figure 4: Comparison of k-DP-PCA vs DP-Gauss-1 (input perturbation) and DP-Gauss-2 (output perturbation)
on gaussian data. We plot the mean over 50 trials, with shaded regions representing 95% confidence intervals.
Wesetk =2,d =200, \; =10, =1, and 6 = 0.01.

moderate or high, the theoretical gains of k-DP-PCA do not clearly outweigh the practical overhead
of hyperparameter tuning and range estimation.

In contrast, k-DP-Ojas is simpler to deploy: it requires no hyperparameter tuning and exhibits
robust performance across a range of learning rates. As shown in Figure 4] k-DP-Ojas consistently
outperforms other state-of-the-art methods on data of the form 4; = z;z; with 2; ~ N(0,X). For
these reasons, we recommend k-DP-Ojas as the preferred method in practical settings involving
general data distributions.

G.3 Further comments

Lastly, we comment on a potential modification to our algorithm. The subroutine PRIVRANGE is
used to privately estimate a suitable truncation threshold around the mean for PRIVMEAN. In certain
scenarios, however, it may be preferable to fix this threshold in advance or determine it through an
alternative (non-private) mechanism. Doing so would eliminate the need to estimate the threshold
from the data under differential privacy, thereby avoiding the substantial sample complexity that this
estimation typically requires.

This consideration directly explains the lower bound on sample size in k-DP-PCA: a sufficient number
of samples is necessary to ensure that the truncation threshold can be estimated both meaningfully and
in a privacy-preserving manner. Interestingly, this also sheds light on why the algorithm may perform
better in practice than its theoretical utility bounds suggest. In particular, even when using fewer
samples than required for formal utility guarantees—i.e., below the threshold for reliable private
estimation of the truncation point—k-DP-PCA can still exhibit strong empirical performance. In such
cases, the algorithm retains its privacy guarantees, but the formal utility guarantees no longer apply.

More broadly, while our algorithm is provably asymptotically optimal, the choice of range finder
or mean estimation method can significantly impact empirical performance depending on the data
distribution. One of the key advantages of our iterative framework is its modularity. As demonstrated
by k-DP-Ojas in Sectionf4] the algorithm can be viewed as a plug-and-play template: the private mean
estimation subroutine can be replaced with alternative methods tailored to specific data characteristics.
Crucially, Theorem [2]ensures that any such substitution carries over a corresponding utility guarantee,
enabling both flexibility and theoretical rigor.

H Algorithms used in Modified DP-PCA

Below we describe the two subroutines that estimate the range and mean of the gradients in
MODIFIEDDP-PCA.
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Algorithm 6 Top-Eigenvalue-Estimation, Algorithm 4 in [Liu et al.| [2022a]

Input: S = {g;}Z, , privacy parameters (¢, ), failure probability 7 € (0, 1)

: §i<_g2i_92i—1 fori € 1,2,...,|_B/2J

§ = {g.p5
Partition S into k = C log(1/(57)/e subsets and denote each dataset as G; € R?*® (where
b = | B/2k] is the size of the dataset)

AP« top eigenvalue of (1/6)G,;G for allj € [k
1 p €12 74
partition [0, 00) into  « {...,[272/4,271/4) [1,2Y/4), ...}
run (e, §)-DP histogram learner on {\Y )}?:1 over {2
if all bins are empty then
return L
else
for [I, r] the bin with the maximum number of points in the DP histogram
return A = |/
: end if

Algorithm 7 Private-Mean-Estimation, Algorithm 5 in [Liu et al.| |2022al]

Input: S = {g;}2, , privacy parameters (g, d), target error «, failure probability 7 € (0, 1),
approximate top eigenvalue A

1:
2:
3:

10:

let v = 2V/4 K /A log?(25)
forj=1,2,....,ddo

e Sy i Ry —

Run (4 NI ~)-DP histogram learner of Lemma on {g;;};cp over €
{-..,(=2v,—v], (=0, 0], (0,v], (v,2v],... }

Let [, h] be the bucket that contains maximum number of points in the private histogram

gj —

Truncate the j-th coordinate of gradient {g;};c[p) by [7; — 3K VA log*(BD/T),g; +
3KV Alog(BD/7)).

Let g; be the truncated version of g;
end for

Compute empirical mean of truncated gradients i = (1/B) 2?:1 g; and add Gaussian noise:

e (12Kmog“<BD/wm)21d

eB

return [
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