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Abstract
Many works use diffusion generative modelling
for 3D Structure-based Drug Design. The data
these models are trained on are predominantly
sourced from the Protein Data Bank (PDB);
these datasets capture a severely constrained and
skewed subset of chemical space, heavily biasing
generated molecules to be non-drug like whilst
significantly narrowing the diversity of the chem-
ical landscapes generative models observe dur-
ing training. While there is some evidence these
methods can generate complimentary molecules,
this raises concerns about efficacy in novel hit
discovery compared to virtual screening of large
molecule libraries. Here, we introduce ensem-
ble guidance, a technique for composing learned
distributions from multiple diffusion models to
guide SBDD models to generate molecules with
more appropriate properties and higher diversity.
For example, ensemble guidance reduces the fre-
quency of highly polar phosphate groups from
0.32 per molecule to 0. Finally, we propose many
areas of future work and hope that ensemble guid-
ance can be fruitfully applied to a number of
other (bio)molecular design tasks in data-limited
regimes.

1. Introduction
Structure-based drug design (SBDD) is the task of design-
ing a small molecule compounds that binds a protein recep-
tor selectively (Blundell, 1996). This problem is difficult
due the large design space, estimated to be 1060 molecules
in size (Polishchuk et al., 2013). Traditionally, this de-
sign space has been searched by virtual screening of large
libraries for diverse compounds/scaffolds to find starting
points, called hits, which are further optimized to make
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suitable drugs (Keserű & Makara, 2006). Recently the ma-
chine learning community has proposed several methods
attempting to perform SBDD using 3D generative mod-
elling (Schneuing et al., 2022; Peng et al., 2022; Torge
et al., 2023; Drotár et al., 2021). These methods are usually
trained conditionally on paired data of protein-ligand com-
plexes from either experiments or docking calculations, and
then attempt to generate new hits for a given protein bind-
ing pocket. These methods are well-known to be far from
perfect, particularly demonstrating severe limitations in the
synthetic accessibility of designs (Gao & Coley, 2020) and
limited physical plausibility of the generated poses (Harris
et al., 2023a).

We suggest that these methods are, in part, significantly
limited by the diversity and quantity of crystallographic
training data. Plainly stated, the Protein Data Bank (PDB)
contains protein-ligand complexes for molecules that struc-
tural biologists have studied for purposes often unrelated
to drug discovery. Many of the ligands exhibit limited suit-
ability in drug discovery campaigns, which in turn results in
generated molecules unsuitable for drug discovery or devel-
opment (e.g. many polar groups). Meanwhile, ultra-large
chemical libraries offer an attractive alternative through the
diversity of the compounds present (Fig 1). Here, we pro-
pose ensemble guidance, a method for composing multiple
generative models to guide SBDD models to improve the
drug-likeness of designs. We summarise our contributions
as:

1. We show the ligands commonly used for training
SBDD models from paired protein-ligand complex
datasets are extremely biased, lack diversity, and over-
represent motifs/functional groups unsuitable for drug
discovery in comparison to larger screening libraries.

2. We introduce a method from composing the score func-
tions learned by an ensemble of separate diffusion mod-
els trained on different kinds and scales of datasets,
improving design diversity and drug-likeness, whist
maintaining protein-ligand complementary.
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PDB

ZINC

A B

Figure 1. (A) Disparity between ligands in the PDB and those found in larger chemical spaces. Numbers in Venn diagrams represent
the number of unique molecule clusters in that space. Molecular fingerprints were clustered to 50% Tanimoto similarity using Butina
clustering. (B) Cluster centroid molecules from the top five largest clusters for the PDB and ZINC 250K ligands. Note the poor
drug-likeness of molecules drawn from the PDB.

1.1. Background

Diffusion Score-based Models (DSMs) DSMs (Ho et al.,
2020) are a class of latent variable model that learn a data
distribution p(x) by approximating the score function, that
is the gradient of the log probability density ∇x log p(x).
This approach allows DSMs to iteratively refine samples,
guiding them towards high-probability regions of the data
distribution, following a process that can be modeled via a
Stochastic Differential Equation (Song & Ermon, 2019):

dx =
[
f(x, t)− g2(t)∇x log pt(x)

]
dt+ g(t)dW.

where dW is a Wiener process. Through a process akin
to reverse diffusion, these models gradually denoise data,
starting from a random noise distribution and progressively
converge to the data distribution. The training of DSMs
involves optimizing a denoising score matching objective,
which encourages the model’s estimated score to align with
the true score of the data at various noise levels.

3D SBDD with Generative Models 3D SBDD and
Pocket2Mol (Peng et al., 2022) build molecules by au-
toregressively generating molecules atom-by-atom, while
FLAG (Zhang et al., 2023) generates based on fragments.
DiffSBDD (Schneuing et al., 2022) and TargetDiff (Guan
et al., 2023) use a conditional diffusion models and can
been seen as an conditional extension of the Equivariant
Diffusion Model (EDM) (Hoogeboom et al., 2022). Dif-
fLinker (Igashov et al., 2022) and DiffHopp (Torge et al.,
2023) are specialised models for fragment linking and scaf-
fold hopping respectively while Harris et al. (2023b) showed
that a pretrained diffusion model can be adapted at sampling
time for accomplish a number of tasks.

Classifier-free guidance Classifier-free guidance (Ho &
Salimans, 2022) is a technique for conditioning diffusion
models with certain labels without the need for an explicit
classifier. By interpolating between the gradients of the
log probabilities of the conditional and unconditional data
distributions, the model can be guided towards generating
samples that satisfy the desired conditions. The interpola-
tion is controlled by a parameter γ, which can be tuned to
adjust the strength of the conditioning. The equation below
formalizes this concept:

∇ log p(xt|y) = γ∇ log p(xt|y)︸ ︷︷ ︸
conditional score

+(1− γ) ∇ log p(xt)︸ ︷︷ ︸
unconditional score

This method allows biasing of the generation process to-
wards certain attributes, effectively guiding the diffusion
process.

2. Ensemble guidance
2.1. Datasets

PDB We use a subset of protein-ligands complexes in
the PDB as processed by Brocidiacono et al. (2023)1 As
they are experimental, these complexes can be seen as the
gold standard for training any structure-conditioned model.
Receptors are split based on pocket similarity using Pro-
BiS (Konc & Janežič, 2010); we use a subset of 100 proteins
from the test set due to computational limitations.

1Note these were originally processed in the Cross-
Docked (Francoeur et al., 2020) method but Brocidiacono et al.
(2023) only use experimentally-determined complexes and con-
tains no docked poses.
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Figure 2. Ensemble guidance. When sampling from the base SBDD model trained on crystallographic data, the generative process will
tend to be biased towards a small region of chemical space (orange). Ensemble guidance allows us to guide the structure-conditioned
denoising process to generate more diverse and bio-active ligands using ∇ log pZINC (blue).

ZINC ZINC is a database of over 230 million commer-
cially available compounds for virtual screening (Irwin &
Shoichet, 2005). A random subset of 250,000 molecules is
commonly used in machine learning (Gómez-Bombarelli
et al., 2018).

2.2. Ensemble guidance allows for a
‘mixture-of-chemists’ in molecule design

We first consider a conditional score model trained only
on protein-ligand complexes from the PDB distribution,
pPDB(xt|y), this model is functionally equivalent to to ex-
isting models like DiffSBDD (Schneuing et al., 2022). If
one was interested in biasing this model to produce more
bioactive compounds, we would first pretrain out model to
generate random molecules from ZINC. However, this is
likely to result in ‘forgetting’ novel scaffolds seen in the pre-
training dataset and the final outputs will again be heavily
biased towards the kinds of non-druglike ligands observed
in the PDB.

Instead, we propose an alternative approach that does that
lead to loss of information and is fully controllable at in-
ference time. The simplest case was originally inspired by
classifier-free guidance (Ho & Salimans, 2022), but can be
viewed as a general ‘mixture-of-chemists’ approach that
can be expended in number of ways. Namely, we augment
the diffusion model trained on the PDB distribution pPDB
by training a new model on ZINC250k. While generation
is unconditional, the molecules this model generates are
highly diverse and drug-like. We then use this model to
guide the structure-conditioned generation model:

∇ log p(xt|y) = γ∇ log pPDB(xt|y)︸ ︷︷ ︸
conditional but small

+(1− γ) ∇ log pZINC(xt)︸ ︷︷ ︸
unconditional but very large

where γ is a guidance term determining the weighting,
which we assume to be constant here but could evolve during
generation. While we implemented the simplest example
as a proof of concept, ensemble guidance can be viewed
as a general ‘mixture-of-chemists’ technique in molecule
design that could be further extended (see Section 4). See
Appendix A for details on implemenation.

3. Results
3.1. Interpolation between multiple chemists

We sample from our ‘mixture-of-chemists’ models using
ensemble guidance (γ ∈ [0 − 1]). For now, we assume γ
is a constant that does not evolve during training. We first
measure the distribution of QED values as we vary γ to
verify that we can effectively interpolate between the two
learnt distributions (Fig 3A). We also found that PDB gen-
erated molecules were highly biased towards a high oxygen
content (see Section 3.2), and that even minimal amount of
ensemble guidance brought the atom frequencies more in
line with ZINC (Fig 3B). To show the large differences in
the learnt distributions between the two expert models, we
perform t-SNE dimenionality reduction of the fingerprints
from the molecules generated by each model (Fig 3C)



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Ensemble Guidance: Towards Generative 3D SBDD in Bioactive Chemical Spaces

Figure 3. (A) Distribution of QED values for the ZINC and PDB datasets and molecules generated by varying ensemble guidance strength
γ. (B) Impact of ensemble guidance on the frequency of atom types. (C) t-SNE plot showing the difference in learned distributions
between the PDB and ZINC model.

3.2. Ensemble sampling guides generated molecules
towards more bioactive substructures

We observed that models trained on the PDB tended to mode
collapse on structures that were highly aliphatic (i.e. contain-
ing lots of branches rather than rings) and contained a large
number of polar hydroxyl groups, which would suggest that
these molecules are not suitably drug-like due to low mem-
brane permeability. We perform SMARTS-based substruc-
ture matching between commonly observed substructures
in ZINC and the PDB to determine their prevalence.

Figure 4 shows that there is a significantly higher prevalence
of hydroxyl, glycosyl and phosphate groups both from the
models trained on the PDB data as well as in the PDB train-
ing data itself. In all cases, we find that ensemble guidance
with γ = 0.5 significantly improves the composition of sub-
structures of the generative models and brings it in line with
ZINC. This is quite striking in the case of phosphates, here
ensemble guidance of only γ = 0.5, reduced the number
of molecules with phosphate groups to negligible quanti-
ties. This highlights the ability of ensemble guidance to
pull samples towards distributions of molecules with more
favourable properties, overcoming limitations imposed by
exclusive use of crystallographic data.

4. Discussion
Limitations So far our study has only examined the effect
of guidance on the intrinsic physicochemical properties of
generated molecules. It is likely that metrics assessing the
quality of the generated poses, such as those proposed by
Harris et al. (2023a), would suffer as the 3D-conditioned
model is pushed to generate molecules outside of its training
distribution. However, this does not necessarily preclude the
ability of the model to generate out of distribution binders
per se as these models already produce poses of dubious

quality which can, to some extent, be rescued by traditional
physics-based docking techniques. Furthermore, our use
of coarse Cα pocket representations is likely to exacerbate
this, though we expect embeddings from pre-trained pro-
tein structure encoders can be useful supplements (Zhang
et al., 2022). However, taking 3DSBDD models to generate
low-quality poses, we still believe we highlight meaning-
ful limitations in the datasets used by the community and
that ensemble guidance serves a useful purpose increasing
the diversity and drug-likeness of designs. Further work
will examine the influence of ensemble guidance on pose
generation in further detail.

Future Work While we have demonstrated preliminary
results suggesting the efficacy and viability of ensem-
ble guidance, we propose that scaling ensemble guidance
through composing additional generative models can enable
the incorporation of much greater quantities of data in a con-
trollable manner. We believe this effect will be synergistic,
as each model can be specialised to incorporate favourable
signal present in datasets of different scale and quality. For
example, CrossDocked can be seen as a silver-standard
dataset that can provide additional pose signal through a
structure-conditioned model though adds limited chemical
diversity, and an unconditional Enamine library can provide
greater diversity with limited pose signal in a manner similar
to ZINC.

∇ log p(xt|y) =α∇ log pPDB(xt|y)︸ ︷︷ ︸
gold standard but small

+β∇ log pCrossDocked(xt|y)︸ ︷︷ ︸
silver standard but large

+ γ ∇ log pZINC(xt)︸ ︷︷ ︸
unconditional but very large
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Figure 4. Increased guidance weight produces designs with interpolates substructure and motif occurrence between the different training
distributions for hydroxyl groups, glycosyl groups, phosphates and aromatic rings. X-axis indicates either the dataset or the guidance
weight that produced those molecules (effective training distribution placed below in brackets when appropriate).

Furthermore, explorations of more granular contributions to
the guidance process could enable further gains, by allowing
certain models to contribute more to different components
of the generative process, such as atom type and bond place-
ment.

5. Conclusion
In this work, we have demonstrated the drawbacks of exclu-
sively relying on the PDB for training generative models for
Structure-based Drug Design. Namely, the highly biased
nature and limited diversity of the dataset presents a signifi-
cant limitation to successful real-world application of these
models in drug discovery and development campaigns.

To help address this, we introduce ensemble guidance,
where we employ an ensemble of diffusion models trained
on a variety of datasets to guide a structure-conditioned
SBDD model to generate more diverse and bioactive com-
pounds. Future work will focus on scaling up this approach
to train models on millions of docked poses and billions of
compounds from ultra-large virtual screening libraries.
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A. Implementation
Base models We train unconditional equivariant diffu-
sion models as in Hoogeboom et al. (2022) and conditional
SBDD diffusion models in Schneuing et al. (2022). All
models use a Geometric Vector Preceptor (GVP) (Jing et al.,
2020; 2021) as the denoiser network, as this was found to
perform well in previous work (Torge et al., 2023). The
conditional model was trained on only Cα-level granularity
due to computational constraints. All models contain five
layers with 128 and 64 scalar and vector features respec-
tively. All models are trained on a single NVIDIA A100
GPU for seven days with a learning rate of 0.0001 using the
Adam optimizer (Kingma & Ba, 2014).

Using non-3D chemical libaries In the case of ZINC
250K, molecules are given as SMILES without 3D infor-
mation. Hence, we initialise conformers (without protein
context) using the MMFF forcefield (Halgren, 1999) imple-
mentation in RDKIT to train our unconditional model. This
is sufficient for our purposes as this data is to be used to
guide samples towards highly diverse scaffolds/chemotypes,
while the sample is guided to be a valid pose exhibit-
ing high pocket-complementarity by the model trained on
pPDB(xt|y).

Chemoinformatics analysis We use ECFP finger-
prints (Rogers & Hahn, 2010) with a maximum path length
of 2 and 2,048 bits and perform Butina clustering at 50%
Tanimoto similarity.


