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ABSTRACT

The main challenge of multiagent reinforcement learning is the difficulty of learning
useful policies in the presence of other simultaneously learning agents whose
changing behaviors jointly affect the environment’s transition and reward dynamics.
An effective approach that has recently emerged for addressing this non-stationarity
is for each agent to anticipate the learning of other interacting agents and influence
the evolution of their future policies towards desirable behavior for its own benefit.
Unfortunately, all previous approaches for achieving this suffer from myopic
evaluation, considering only a few or a finite number of updates to the policies of
other agents. In this paper, we propose a principled framework for considering the
limiting policies of other agents as the time approaches infinity. Specifically, we
develop a new optimization objective that maximizes each agent’s average reward
by directly accounting for the impact of its behavior on the limiting set of policies
that other agents will take on. Thanks to our farsighted evaluation, we demonstrate
better long-term performance than state-of-the-art baselines in various domains,
including the full spectrum of general-sum, competitive, and cooperative settings.

1 INTRODUCTION

Learning in multiagent reinforcement learning (MARL) is fundamentally difficult because an agent
interacts with other simultaneously learning agents in a shared environment (Buşoniu et al., 2010).
The joint learning of agents induces non-stationary environment dynamics from the perspective of
each agent, requiring an agent to adapt its behavior with respect to potentially unknown changes in
the policies of other interacting agents (Papoudakis et al., 2019). Notably, non-stationary policies will
converge to steady-state behaviors by the end of learning in which agents alternate through a recurrent
set of joint policies. In practice, this converged joint policy can correspond to a game-theoretic
solution concept, such as a Nash equilibrium (Nash, 1950) or more generally a cyclic correlated
equilibrium (Zinkevich et al., 2006), but this convergence relies on all agents behaving and updating
their policies rationally. Indeed, even when agents do act rationally, multiple equilibria can exist for
a single game with some of these Pareto dominating others (Nowé et al., 2012). Hence, a critical
question in addressing this non-stationarity is how individual agents should behave to influence
convergence of the recurrent set of joint policies towards desirable steady-state behavior.

Our key idea in answering this question is to consider the limiting policies of other agents as time
approaches infinity. Specifically, the converged behavior of this dynamic multiagent system is not due
to some arbitrary stochastic processes, but rather each agent’s underlying learning process, which also
depends on behaviors of other interacting agents. As such, effective agents should model how their
actions affect each other’s limiting behaviors and leverage these dependencies to converge jointly
to a preferred equilibrium. This farsighted perspective contrasts with other related works that also
consider the learning of other agents (Foerster et al., 2018a; Letcher et al., 2019; Xie et al., 2020; Kim
et al., 2021; Wang et al., 2021). While those frameworks show improved adaptation performance
over methods that neglect the learning of other agents (Lowe et al., 2017; Foerster et al., 2018b; Iqbal
& Sha, 2019), they suffer from myopic evaluation: an agent only considers a few anticipated updates
to the policies of other agents or optimizes for the discounted return, which only can consider a finite

1



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

horizon time of 1/(1 − γ) with the discount factor γ (Kearns & Singh, 2002). As a result of this
myopic view, we find that these methods often converge to an undesirable joint policy. However,
it is non-trivial to achieve farsighted evaluation in practice as increasing the number of anticipated
updates to the limit or mixing time is computationally intractable and setting the discount factor
γ→1 results in unstable learning (Naik et al., 2019).

Our contribution. With this insight, we provide a principled MARL framework, FUlly Reinforcing
acTive influence witH averagE Reward (FURTHER), that considers an agent’s impact on limiting
policies of other agents for improved converged performance. Specifically, we first introduce an
active Markov game formulation that extends the standard Markov game (Littman, 1994) by modeling
each agent’s impact on the future policies of other agents. Indeed, this setting is more general than
the standard formulation and addresses a large portion of realistic settings where it is unreasonable to
assume that other agents will keep their policies fixed or even ever truly stop updating their policies
in the presence of new information. We then develop a novel optimization objective that for the first
time maximizes an agent’s average reward per step within this new active Markov game setting. By
having each agent optimize this objective, we demonstrate the following benefits of our framework:

• Converged performance. We evaluate FURTHER across various general-sum, competitive, and
cooperative domains and settings, including self-play. We demonstrate that our method consistently
converges to a more desirable equilibrium than baseline methods that either neglect the learning of
others (Iqbal & Sha, 2019) or consider their learning with a myopic perspective (Xie et al., 2020).
• Decentralized learning. Several prior methods require white-box access to the learning algorithm
of other agents for adaptation (Foerster et al., 2018a; Letcher et al., 2019; Kim et al., 2021). Instead,
FURTHER employs variational inference for predicting both the unknown policies and learning
dynamics of other agents, providing a practical method for learning policies in a decentralized manner.

2 PROBLEM STATEMENT: ACTIVE MARKOV GAME

This work studies a general-sum and decentralized multiagent learning setting, where each agent
interacts with other independently learning agents in a shared environment. In MARL, each agent
updates its policy from recent experiences affected by the joint actions. As such, while an agent
cannot directly modify the future policies of other interacting agents, the agent can actively impact
them by changing its own actions. We formalize the presence of this causal influence in multiagent
interactions by introducing a new framework that formalizes the notion of an active Markov game.
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Figure 1: (Stationary Markov game) Each agent i assumes that other agents 9i have stationary
policies in the future. (Active Markov game) Each agent i considers that other agents have non-
stationary policies in which their policies are updated leveraging a Markovian policy update function.

Active Markov game definition. We define an active Markov game as a tuple ⟨I,S,A, T ,R,
Θ,U⟩; I = {1, . . ., n} is the set of n agents; S is the state space; A = ×i∈IAi is the set of
action spaces for each agent; T : S ×A 7→ S is the state transition function; R = ×i∈IRi is
the set of reward functions; Θ = ×i∈IΘ

i is the set of policy parameter spaces for each agent;
and U = ×i∈IU i is the set of policy update functions for each agent. We typeset sets in bold
for clarity. Compared to the stationary Markov game that effectively represents MARL with a
stationary opponent assumption, the active Markov game considers how other agents’ underlying
policies change over time (see Figure 1). Specifically, at each timestep t, each agent i executes an
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action at a current state st ∈S and current policy parameters of other agents θ9i
t ∈Θ9i according

to its stochastic policy ait ∼ πi(·|st,θ9i
t ; θit) parameterized by θit, where the notation 9i indicates

all other agents except i. A joint action at = {ait,a9i
t } yields a transition from st to st+1 with

probability T (st+1|st, ait,a9i
t ). Agent i then obtains a reward according to its reward function

rit=Ri(st, a
i
t,a

9i
t ) and considers how policy parameters of other agents will be updated according

to probability U9i(θ9i
t+1|θ9i

t , st, a
i
t,a

9i
t , r

9i
t , st+1). Importantly, U9i are a function of ait, which

affects the state transition and rewards of other agents. Therefore, i can actively influence their future
policies by changing its own behavior. Modeling this influence rather than ignoring it is the main
advantage compared to the stationary Markov game formalism.

3 ACTIVE AVERAGE REWARD MARL

The active Markov game provides a principled framework for each agent to model its impact on
future policies of other agents. In this section, we develop a new multiagent optimization objective
by integrating the average reward formulation (Puterman, 1994; Sutton & Barto, 2018) with the
active Markov game framework to maximize the agent’s average reward per step while considering
its influence on the limiting behaviors of others. We first outline our new objective and derive its
policy gradient. We then detail our model-free implementation that builds on top of soft actor-
critic (Haarnoja et al., 2018) to learn policies that efficiently optimize for the average reward objective.
Our implementation also employs variational inference (Blei et al., 2017) to predict the hidden
policies and policy dynamics of other agents for partially observable settings, enabling each agent to
select actions and learn its policy in a decentralized manner.

3.1 FORMULATION OF ACTIVE AVERAGE REWARD MARL

Our key finding is that the average reward formulation, developed for single-agent learning (Puterman,
1994), synergizes with our goal of considering limiting behaviors of other interacting agents in multi-
agent learning. In particular, the average reward formulation maximizes the agent’s average reward
per step with equal weight given to immediate and delayed rewards, unlike the discounted return
objective. In MARL, once the joint policy arrives at a steady-state behavior, rewards experienced
by this recurrent set of policies govern each agent’s average reward under the limit of time. Thus,
optimizing the average reward in an active Markov game encourages agents to consider their impact
on the limiting policies of other agents, as we detail below.

Definition. (Active Average Reward Objective). Each agent i optimizes its policy parameters θi to
maximize its expected long-term average reward ρiθi ∈R at a state s and policy parameters of other
agents θ9i by considering their Markovian policy update functions U9i:

max
θi

ρiθi(s,θ9i) :=max
θi

lim
T→∞

E
[ 1
T

T∑
t=0

Ri(st, a
i
t,a

9i
t )

∣∣∣ s0=s, θ9i
0 =θ9i,

ai
0:T∼π(·|s0:T ,θ9i

0:T ;θi),

a9i
0:T ∼π(·|s0:T ;θ9i

0:T )

]
, (1)

where T denotes the time horizon. As T→∞, agent imaximizes its average reward while accounting
for the limiting behavior of others θ9i

∞. We represent θ9i
∞ as steady-state behavior of other agents

under the limit of time, in which they alternate through a recurrent set of policies. As such, the
combination of policies and update functions induces a particular type of non-stationary policy, called
a cyclic policy (Zinkevich et al., 2006). As a result, our average reward objective effectively considers
the converged behaviors of others at a cyclic correlated equilibrium (Zinkevich et al., 2006) under the
assumption that agents behave and update their policies rationally. It is important to note that this is a
strict generalization of the standard view of MARL: convergence to a fixed point is indeed a recurrent
set of size one and Nash equilibria convergence is a special case of a cyclic correlated equilibria.

The active average reward objective in Equation (1) contrasts with an alternative objective of maxi-
mizing the discounted return viθi in the active Markov game:

max
θi

viθi(s,θ9i) :=max
θi

E
[ ∞∑

t=0

γtRi(st, a
i
t,a

9i
t )

∣∣∣ s0=s, θi
0=θi,

ai
0:T∼π(·|s0:T ,θ9i

0:T ;θi),

a9i
0:T ∼π(·|s0:T ;θ9i

0:T )

]
. (2)

As pointed out in Naik et al. (2019), the discounted return objective is bounded by γ, and a learned
policy by optimizing the discounted value generally does not correspond to a policy that maximizes
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the average reward. Further, γ → 1 causes increasingly unstable learning (see Section 5), resulting in
the average reward formulation being a more desirable objective to optimize (Nota & Thomas, 2020).

To derive a policy gradient that optimizes Equation (1), we must account for the underlying structure
of the state transition T and policy dynamics U because the average reward generally depends on
the initial state and joint policy. Regarding the state transition T , we follow the single-agent average
reward literature (Mahadevan, 1996; Wei et al., 2019; Wan et al., 2021) and assume communicating
states: for every pair of states, there exists a joint policy that transitions from one state to the other
state in a finite number of steps with non-zero probability. Regarding the policy dynamics U , which
is a unique factor for multiagent learning settings, we focus on the unichain interactions:

Assumption. (Unichain policy dynamics). The policy dynamics of other agents U9i corresponding
to every agent i’s policy contain a single recurrent class of policies (i.e., policies of other agents that
are visited infinitely often) and a possibly empty set of transient policies (i.e., policies of other agents
that are visited only finitely often).

We note that this unichain assumption is valid for many cases of interest to MARL, including when
the policies of other agents satisfy the Greedy in the Limit with Infinite Exploration (GLIE) property
generally needed for RL algorithms to provably converge (Sutton & Barto, 2018): 1) all state-action
pairs are visited infinitely often and 2) as t → ∞, the behavior policy converges to the greedy
policy. More generally, a broad class of noisy update functions can lead to a notion of stochastic
stability (Foster & Young, 1990; Freidlin et al., 2012; Chasparis, 2019), where multiagent learning
with the perturbed learning dynamics has a unique stationary distribution. We refer to Appendix A
for a more in-depth discussion of this assumption as well as an analysis of a multi-chain case. A
convenient result under these assumptions is that the average reward becomes independent of the
initial state and latent strategies (Puterman, 1994):

ρiθi(s,θ9i) = ρiθi(s′,θ9i′) = ρiθi ∀s ̸=s′,θ9i ̸=θ9i′. (3)

Having defined the underlying structure of T and U , we now derive the Bellman equation in the
active Markov game that defines the relationship between the value function and average reward.

Proposition 1. (Active Differential Bellman Equation). The differential value function viθi (Sutton &
Barto, 2018) represents the expected total difference between the accumulated rewards from s and
θ9i and the average reward ρiθi . The differential value function inherently includes the recursive
relationship with respect to viθi at the next state s′ and the updated policies of other agents θ9i′:

viθi(s,θ9i) = lim
T→∞

E
[ T∑

t=0

(
Ri(st, a

i
t,a

9i
t )− ρiθi

)∣∣∣ s0=s, θ9i
0 =θ9i,

ai
0:T∼π(·|s0:T ,θ9i

0:T ;θi),

a9i
0:T ∼π(·|s0:T ;θ9i

0:T )

]
=
∑
ai

π(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)
∑
s′

T (s′|s, ai,a9i)
∑
θ9i′

U9i(θ9i′|θ9i, s, ai,a9i, r9i, s′)[
Ri(s, ai,a9i)− ρiθi + viθi(s′,θ9i′)

]
. (4)

Proof. See Appendix B for a derivation. □

Finally, we derive the policy gradient based on the differential Bellman equation in Equation (4):

Proposition 2. (Active Average Reward Policy Gradient Theorem). The gradient of active average
reward objective in Equation (1) with respect to agent i’s policy parameters θi is:

∇θiJ i
π(θ

i)=
∑
s,θ9i

µi
θi(s,θ

9i)
∑
ai

∇θiπ(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)qiθi(s,θ9i, ai,a9i),

with qiθi(s,θ9i, ai,a9i) =
∑
s′

T (s′|s, ai,a9i)
∑
zi′

U9i(θ9i′|θ9i, s, ai,a9i, r9i, s′)[
Ri(s, ai,a9i)− ρiθi + viθi(s′,θ9i′)

]
, (5)

where µi
θi denotes i’s steady distribution under θi with respect to s and θ9i.

Proof. See Appendix C for a derivation. □
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Figure 2: During execution, each agent infers the current hidden policies of other agents from previous
interactions and then selects its action. After collecting experiences, each agent updates its inference
and reinforcement learning modules in a decentralized manner.

3.2 PRACTICAL IMPLEMENTATION OF ACTIVE AVERAGE REWARD MARL

Algorithm overview. FURTHER broadly consists of inference and reinforcement learning modules
(see Figure 2). In practice, each agent has partial observations about others and cannot directly
observe their true policy parameters θ9i and policy dynamics U9i. The inference learning module
predicts this hidden information about other agents via the variational inference (Blei et al., 2017)
modified for sequential prediction. The inferred information becomes the input to the reinforcement
learning module, which extends the policy gradient theorem in Equation (5) and learns active average
reward policies sample efficiently by building on the multiagent soft actor-critic (MASAC) framework
for discrete action spaces (Haarnoja et al., 2018; Christodoulou, 2019; Iqbal & Sha, 2019). We note
that each agent interacts and learns these modules by only observing the actions of other agents, so our
implementation supports decentralized execution and training. We provide further implementation
details and psuedocode in Appendix D.

Inference learning module. This module aims to infer the current policies of other agents and
their learning dynamics. One approach to achieve this is model-based, where an agent fits an explicit
model of the learning strategies of other agents based on the observed data (Kim et al., 2021).
However, a model-based approach has difficulties in addressing the infinite recursion problem: if
an agent attempts to take into account its opponent’s model of the agent itself (Tesauro, 2004). As
a result, we study a model-free approach to predict the hidden information of other agents based
on an approximate variational inference (Blei et al., 2017). Specifically, we optimise a tractable
evidence lower bound (ELBO), defined together with an encoder p(ẑ9i

t |τ i0:t;ϕienc) and a decoder
p(a9i

t |st, ẑ9i
t ;ϕidec), parameterised by ϕienc and ϕidec, respectively:

J i
elbo=Ep(τ i

0:t),p(ẑ
9i
0:t|τ i

0:t;ϕ
i
enc)

[t−1∑
k=0

log p(a9i
k |sk, ẑ9i

k ;ϕidec)︸ ︷︷ ︸
Reconstruction loss

−DKL
(
p(ẑ9i

k+1|τ i0:k;ϕienc)||p(ẑ9i
k )

)︸ ︷︷ ︸
KL divergence

]
, (6)

where latent strategies ẑ9i
t represents inferred policy parameters of other agents θ9i

t and τ i0:t =
{s0, ai0,a9i

0 , r
i
0, ..., st}denotes i’s trajectories up to timestep t. We refer to Appendix E for a detailed

ELBO derivation. By optimizing the reconstruction term, the encoder aims to infer accurate latent
strategies of others. Further, by imposing the prior through the KL divergence, where we set the prior
to the previous posterior with initial prior p(ẑ9i

0 )=N (0, I), the inferred policies from the encoder
are encouraged to be sequentially consistent across time (i.e., no abrupt changes in policies of others).

Reinforcement learning module. This module aims to learn a policy that can maximize the
agent’s average reward based on the inferred information about other agents. Each agent main-
tains its policy π(·|s, ẑ9i; θi) parameterized by θi, two q-functions qiθi(s, ẑ9i, ai,a9i;ψi

1) and
qiθi(s, ẑ9i, ai,a9i;ψi

2) parameterized by ψi
1, ψ

i
2, and learnable average reward ρiθi ∈R. We train the

q-functions and ρiθi by minimizing the soft Bellman residual:

J i
q(ψ

i
β , ρ

i
θi) = E(s,ẑ9i,ai,a9i,ri,s′,ẑ9i′)∼Di

[(
y − qiθi(s, ẑ9i, ai,a9i;ψi

β)
)2]

,

with y = ri − ρiθi + viθi(s′, ẑ9i′; ψ̄i
β),

(7)
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where β=1, 2, Di denotes i’s replay buffer, and ψ̄i
β denotes the target q-network parameters. The

soft value function viθi calculates the state value with the policy entropy H and entropy weight α:

viθi(s, ẑ9i;ψi)=
∑
ai

π(·|s, ẑ9i; θi)
∑
a9i

π(·|s; ẑ9i)min
β=1,2

qiθi(s, ẑ9i, ai,a9i;ψi
β)+αH(π(·|s, ẑ9i; θi)). (8)

Finally, the policy is trained to maximize:

J i
π(θ

i)=E(s,ẑ9i,a9i)∼Di

[∑
ai

π(·|s, ẑ9i; θi)min
β=1,2

qiθi(s, ẑ9i, ai,a9i;ψi
β)+αH(π(·|s, ẑ9i; θi))

]
. (9)

4 RELATED WORK

Stationary MARL. The standard approach for addressing the non-stationarity problem in MARL is
to consider information about other agents and reason about joint action effects (Hernandez-Leal et al.,
2017). Example frameworks include the studies regarding centralized training with decentralized
execution, which account for other agents’ actions through centralized critics (Lowe et al., 2017;
Foerster et al., 2018b; Yang et al., 2018; Omidshafiei et al., 2019; Iqbal & Sha, 2019; Kim et al.,
2020). Other related works are the opponent modeling frameworks that infer opponents’ policies
and condition an agent’s policy on the inferred information about others (He et al., 2016; Raileanu
et al., 2018; Grover et al., 2018; Wen et al., 2019). While these works alleviate non-stationarity,
each agent learns its policy by assuming that other agents will have stationary policies in the future.
This assumption is incorrect because other agents can have different behaviors in the future due to
their learning (Foerster et al., 2018a), resulting in improper adaptation with respect to their changing
behaviors. In contrast, FURTHER models the learning processes of other agents and considers how
to actively influence their limiting behaviors.

Learning-aware MARL. Our framework is closely related to prior works that consider the learning
of other agents in the environment. The framework by Zhang & Lesser (2010), for instance, learns
the best response adaptation to the other agent’s anticipated updated policy. Notably, LOLA (Foerster
et al., 2018a) and its more recent improvements (Foerster et al., 2018c; Letcher et al., 2019) study the
impact of behavior on one or a few of another agent’s policy updates. Our work is also related to
frameworks that leverage the inferred policy dynamics of other agents to impact their future policies
by maximizing the discounted return objective (Jaques et al., 2019; Xie et al., 2020; Wang et al.,
2021). Lastly, meta-learning frameworks are related that directly account for the non-stationary policy
dynamics in multiagent settings based on the inner-loop and outer-loop optimization (Al-Shedivat
et al., 2018; Kim et al., 2021; Balaguer et al., 2022). However, all of these approaches only account
for a finite number of updates to the policies of other agents, so we observe that these methods can
converge to a less desirable equilibrium. FURTHER addresses this issue in these related methods by
optimizing for the average reward objective in a novel active Markov game setting.

Game-theoretic MARL. Another effective approach to addressing the non-stationarity is learning
equilibrium policies that correspond to game-theoretic solution concepts (Littman, 1994; 2001; Wang
& Sandholm, 2002; Greenwald & Hall, 2003; Zinkevich et al., 2006). These frameworks predict
stationary joint action values by the end of learning and can guarantee convergence to Nash (Nash,
1950) or correlated (Aumann, 1987) equilibrium values under certain assumptions. However, as noted
in Bowling (2005), this convergence is guaranteed only while ignoring the actual learning dynamics
of other agents, and each agent assumes all agents will play the same joint equilibrium strategy. As
such, equilibrium learners can fail to learn best-response policies when other agents choose to play
different equilibrium strategies in the future as a result of their learning. By contrast, FURTHER
considers convergence to a recurrent set of joint policies by inferring the true policy dynamics of
other agents. We note that this recurrent set of joint policies can arrive at more general game theoretic
concepts than Nash equilibria such as cyclic correlated equilibria (Zinkevich et al., 2006) in the case
that all agents behave and update their policies rationally.

5 EVALUATION

We demonstrate FURTHER’s efficacy on a diverse suite of domains, including general-sum, competi-
tive, and cooperative settings. We refer to appendix F for hyperparameters used in experiments. Each
figure shows the mean and 95% confidence interval computed across 20 random seeds.
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Figure 3: (a) Convergence in a general-sum game of IBS. The FURTHER agent achieves convergence
to its optimal pure strategy Nash equilibrium. (b) Convergence in a cooperative game of IC with
self-play. The FURTHER team shows better converged performance than baselines. (c) A competitive
play between FURTHER and LILI in IMP. FURTHER receives higher rewards than LILI over time.

Baselines. We compare our method with the following baseline adaptation strategies:

• LILI (Xie et al., 2020): An approach that considers the learning dynamics of other agents but
suffers from myopic evaluation bias by optimizing the discounted return objective in Equation (2).

• MASAC (Iqbal & Sha, 2019): An approach that extends SAC (Haarnoja et al., 2018) to a
multiagent learning setting by having centralized critics (Lowe et al., 2017). This baseline assumes
other agents will have stationary policies in the future and thus neglects their learning.

Question 1. How do methods perform when playing against a q-learning agent?

Agent j

A
ge

nt
i B S

B (2, 1) (0, 0)
S (0, 0) (1, 2)

Table 1: Bach or Stravinsky
game payoff matrix.

We consider playing the iterated Bach or Stravinsky game (IBS;
see Table 1). This general-sum game involves conflicting elements
with two pure strategy Nash equilibria, where convergence to (A,A)
and (B,B) equilibrium are more preferable from i’s and j’s perspec-
tive, respectively. Suppose agent i plays against a naive learner j,
such as q-learner (Watkins & Dayan, 1992), whose initial q-values
are set to prefer action (B). In this experimental setting, it is ideal
for agent i to change j’s influence behavior to select (A) such that they converge to i’s optimal pure
strategy Nash equilibrium of (A,A). As in Foerster et al. (2018a), we model the state space as s0=∅
and st=at−1 for t ≥ 1.

The average reward performance when an agent i, trained with either FURTHER or the baseline
methods, interacts with the q-learner j is shown in Figure 3a. There are two notable observations.
First, the FURTHER agent i consistently converges to its optimal equilibrium of (A,A), while the
LILI agent often converges to the sub-optimal equilibrium of (B,B). The FURTHER agent i learns to
select (A) while j selects (B), receive the worst rewards of zero, and wait until j’s q-value for (B) is
updated to be lower than the q-value for (A). With the limiting view, i learns that the waiting process
is only temporary, and receiving the eventual rewards of two by converging to (A,A) is optimal. By
contrast, LILI suffers from myopic evaluation and shows decreased convergence performance because
the agent prefers simply converging to the sub-optimal equilibrium rather than waiting indefinitely.
Second, FURTHER and LILI outperform the other approach of MASAC, showing the benefit of
considering active influence on future policies of other agents.

Question 2. Which equilibrium do methods converge to when there are multiple equilibria in a
self-play setting?

Agent j

A
ge

nt
i A B

A (4, 4) (0, 0)
B (0, 0) (8, 8)

Table 2: Cooperative game
payoff matrix.

We now experiment with a self-play setting, where all agents learn
with the same algorithm. We consider evaluation in an iterated
cooperative (IC) game with identical payoffs (see Table 2). Note
that this game has two pure strategy Nash equilibria of (A,A) and
(B,B), in which the (B,B) equilibrium Pareto dominates the other.
For the experimental setting, we compare when both agents are
trained with either ours or the baseline methods. Figure 3b shows
the average reward performance as the train iteration increases. Similar to the IBS results, we observe
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Figure 4: Convergence performance and corresponding TD errors with varying γ in LILI when agent
i interacts with a q-learner j.

that FURTHER consistently converges to the best equilibrium of (B,B) while the baseline methods
can converge to the sub-optimal equilibrium, and LILI performs better than MASAC.

Question 3. How does FURTHER’s limiting optimization perform against LILI’s myopic discounted
optimization?

Agent j

A
ge

nt
i H T

H (1, 91) (91, 1)
T (91, 1) (1, 91)

Table 3: Matching pennies
game payoff matrix.

To answer this question, we consider the FURTHER agent i directly
competing against the LILI opponent j in the iterated matching
pennies (IMP) game (see Table 3). We observe that showing the
average reward is noisy and hard to interpret in this zero-sum game,
so we show an alternative metric of i’s accumulated reward summed
up to the current timestep. Figure 3c shows that the accumulated
reward for i is positive, meaning that FURTHER achieves higher
rewards than LILI over time. This result concludes that FURTHER
is more effective than LILI by employing the limiting view via the average reward formulation.

Question 4. Is it beneficial to set the discount factor γ close to one?

In Section 3, we noted that the discounted return objective does not maximize the average reward and
has unstable learning when γ→1 (Naik et al., 2019). We empirically validate this statement in this
question. In particular, we evaluate with varying discount factors γ∈{0.9, 0.95, 0.99, 0.9999} for
LILI in the IBS scenario (see Question 1). Figure 4 shows the converged performance at the end of
learning and corresponding temporal different (TD) errors in the q updates, respectively. We observe
a slight increase in the converged performance when γ increases from 0.9 to higher values, but the
performance with the discounted return is still much less than the performance by the average reward
objective. Notably, the TD error increases exponentially with higher γ and causes unstable learning,
which makes optimizing the average reward objective more desirable than the discounted return.

6 CONCLUSION

In this paper, we have introduced FURTHER, a principled algorithm to address non-stationarity by
considering each agent’s impact on the converged policies of other agents. The key idea is to consider
the limiting policies of other agents through the average reward formulation in a newly proposed
active Markov game framework, and we have developed a practical model-free and decentralized
approach to address this setting. We evaluated our method on various multiagent settings and showed
that FURTHER consistently converges to more desirable long-term behavior for agents that use it
than state-of-the-art baseline approaches.
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M.I. Freidlin, J. Szücs, and A.D. Wentzell. Random Perturbations of Dynamical Systems. Grundlehren
der mathematischen Wissenschaften. Springer, 2012. ISBN 9783642258473. URL http://books.
google.de/books?id=p8LFMILAiMEC.

Amy Greenwald and Keith Hall. Correlated-Q learning. In International Conference on Machine
Learning (ICML), pp. 242–249. AAAI Press, 2003. ISBN 1577351894.

Aditya Grover, Maruan Al-Shedivat, Jayesh Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In International Conference on Machine Learning
(ICML), volume 80, pp. 1802–1811, 10–15 Jul 2018. URL http://proceedings.mlr.press/v80/
grover18a.html.

9

https://openreview.net/forum?id=Sk2u1g-0-
https://openreview.net/forum?id=Sk2u1g-0-
http://www.jstor.org/stable/1911154
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773
http://papers.nips.cc/paper/2673-convergence-and-no-regret-in-multiagent-learning.pdf
http://papers.nips.cc/paper/2673-convergence-and-no-regret-in-multiagent-learning.pdf
https://doi.org/10.1007/978-3-642-14435-6_7
https://doi.org/10.1007/978-3-642-14435-6_7
http://arxiv.org/abs/1910.07207
https://ojs.aaai.org/index.php/AAAI/article/view/11794
https://ojs.aaai.org/index.php/AAAI/article/view/11794
http://proceedings.mlr.press/v80/foerster18a.html
https://www.sciencedirect.com/science/article/pii/004058099090011J
http://books.google.de/books?id=p8LFMILAiMEC
http://books.google.de/books?id=p8LFMILAiMEC
http://proceedings.mlr.press/v80/grover18a.html
http://proceedings.mlr.press/v80/grover18a.html


Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning (ICML), volume 80, pp. 1861–1870. PMLR, 10–15 Jul 2018. URL http:
//proceedings.mlr.press/v80/haarnoja18b.html.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep rein-
forcement learning. In International Conference on Machine Learning (ICML), volume 48, pp.
1804–1813, 20–22 Jun 2016. URL http://proceedings.mlr.press/v48/he16.html.

Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de Cote. A survey of
learning in multiagent environments: Dealing with non-stationarity. CoRR, abs/1707.09183, 2017.
URL http://arxiv.org/abs/1707.09183.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In Interna-
tional Conference on Machine Learning (ICML), volume 97, pp. 2961–2970. PMLR, 09–15 Jun
2019. URL http://proceedings.mlr.press/v97/iqbal19a.html.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, Dj Strouse,
Joel Z. Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
reinforcement learning. In International Conference on Machine Learning (ICML), volume 97,
pp. 3040–3049. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/jaques19a.
html.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2), 2002.

Dong-Ki Kim, Miao Liu, Shayegan Omidshafiei, Sebastian Lopez-Cot, Matthew Riemer, Golnaz
Habibi, Gerald Tesauro, Sami Mourad, Murray Campbell, and Jonathan P. How. Learning hierar-
chical teaching policies for cooperative agents. In International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS), AAMAS ’20, pp. 620–628, Richland, SC, 2020. International
Foundation for Autonomous Agents and Multiagent Systems. ISBN 9781450375184.

Dong Ki Kim, Miao Liu, Matthew D Riemer, Chuangchuang Sun, Marwa Abdulhai, Golnaz Habibi,
Sebastian Lopez-Cot, Gerald Tesauro, and Jonathan How. A policy gradient algorithm for learning
to learn in multiagent reinforcement learning. In International Conference on Machine Learning
(ICML), volume 139, pp. 5541–5550. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/kim21g.html.

Alistair Letcher, Jakob Foerster, David Balduzzi, Tim Rocktäschel, and Shimon Whiteson. Stable
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A DISCUSSION: UNICHAIN POLICY DYNAMICS ASSUMPTION
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Figure 5: (a) A policy iteration analysis in IPD when agent j has a greedy learning algorithm.
Depending on θ9i

0 , i’s possible maximum average reward is affected. (b) A policy iteration analysis
in IPD when agent j has a GLIE learning algorithm. The possible maximum average reward for
agent i is independent to j’s initial policy θ9i

0 .

In Section 3, we assumed the unichain assumption on policy dynamics, resulting in the average
reward independent of initial policies of other agents. We note that this unichain assumption is valid
for many cases of interest to MARL, including when the policies of other agents satisfy the Greedy in
the Limit with Infinite Exploration (GLIE) property (Sutton & Barto, 2018): 1) all state-action pairs
are visited infinitely often and 2) as t→∞, the behavior policy converges to the greedy policy. In
particular, the exploration in GLIE adds noise to the learning dynamics of agents, and agents arrive
at the concept of stochastic stability (Foster & Young, 1990; Freidlin et al., 2012; Chasparis, 2019),
where multiagent learning with the perturbed learning dynamics has a unique stationary distribution.
Because most MARL algorithms have exploration in choosing actions, GLIE is satisfied in many
practical settings, so the unichain assumption is a reasonable assumption to make.

Agent j

A
ge

nt
i C D

C (91, 91) (93, 0)
D (0, 93) (92, 92)

Table 4: Prisoner’s dilemma
game payoff matrix.

For example, consider playing the iterated prisoner’s dilemma (IPD)
game (see Table 4), where agent i plays against a q-learning agent
j. We perform a policy iteration analysis (Puterman, 1994) with
respect to j’s varying initial q-values for each action θ9i

0 . Figure 5a
and Figure 5b show i’s maximum average reward with respect to
θ9i
0 when j trains with a greedy and GLIE algorithm, respectively.

Interestingly, the analysis with the greedy algorithm shows that i’s
average reward depends on θ9i

0 in IPD, where there is a set of j’s
initial policies that i can achieve the high average reward, but there is the other set of initial policies
that can result in the worst average reward of 92. By contrast, Figure 5b shows that i’s average reward
is independent of θ9i

0 when j’s learning satisfies GLIE.

B DERIVATION OF ACTIVE DIFFERENTIAL BELLMAN EQUATION

Proposition 1. (Active Differential Bellman Equation). The differential value function viθi (Sutton &
Barto, 2018) represents the expected total difference between the accumulated rewards from s and
θ9i and the average reward ρiθi . The differential value function inherently includes the recursive
relationship with respect to viθi at the next state s′ and the updated policies of other agents θ9i′:

viθi(s,θ9i) = lim
T→∞

E
[ T∑

t=0

(
Ri(st, a

i
t,a

9i
t )− ρiθi

)∣∣∣ s0=s, θ9i
0 =θ9i,

ai
0:T∼π(·|s0:T ,θ9i

0:T ;θi),

a9i
0:T ∼π(·|s0:T ;θ9i

0:T )

]
=
∑
ai

π(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)
∑
s′

T (s′|s, ai,a9i)
∑
θ9i′

U9i(θ9i′|θ9i, s, ai,a9i, r9i, s′)[
Ri(s, ai,a9i)− ρiθi + viθi(s′,θ9i′)

]
.

Proof. We seek to derive the recursive relationship between viθi(s,θ9i) and viθi(s′,θ9i′). We leverage
the general derivation outlined in Sutton & Barto (2018) (page 59) and extend it to our active Markov
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game formulation:

viθi(s,θ9i)= lim
T→∞

E
[ T∑

t=0

(
Ri(st, a

i
t,a

9i
t )− ρiθi

)∣∣∣ s0=s, θ9i
0 =θ9i,

ai
0:T∼π(·|s0:T ,θ9i

0:T ;θi),

a9i
0:T ∼π(·|s0:T ;θ9i

0:T )

]
= lim

T→∞
E
[
Ri(s0, a

i
0,a

9i
0 )− ρiθi +

T∑
t=1

(
Ri(st, a

i
t,a

9i
t )− ρiθi

)∣∣∣ s0=s, θ9i
0 =θ9i,

ai
0:T∼π(·|s0:T ,θ9i

0:T ;θi),

a9i
0:T ∼π(·|s0:T ;θ9i

0:T )

]
=

∑
ai

π(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)
∑
s′

T (s′|s, ai,a9i)
∑
θ9i′

U9i(θ9i′|θ9i, s, ai,a9i, r9i, s′)

[
Ri(s, ai,a9i)−ρiθi+ lim

T→∞
E
[ T∑
t=0

(
Ri(st+1, a

i
t+1,a

9i
t+1)−ρiθi

)∣∣∣ s1=s′, θ9i
1 =θ9i′,

ai
1:T∼π(·|s1:T ,θ9i

1:T ;θi),

a9i
1:T ∼π(·|s1:T ;θ9i

1:T )

]]
=

∑
ai

π(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)
∑
s′

T (s′|s, ai,a9i)
∑
θ9i′

U9i(θ9i′|θ9i, s, ai,a9i, r9i, s′)[
Ri(s, ai,a9i)− ρiθi + viθi(s′,θ9i′)

]
.

(10)

□

C DERIVATION OF ACTIVE AVERAGE REWARD POLICY GRADIENT

Proposition 2. (Active Average Reward Policy Gradient Theorem). The gradient of active average
reward objective in Equation (1) with respect to agent i’s policy parameters θi is:

∇θiJ i
π(θ

i)=
∑
s,θ9i

µi
θi(s,θ

9i)
∑
ai

∇θiπ(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)qiθi(s,θ9i, ai,a9i),

with qiθi(s,θ9i, ai,a9i) =
∑
s′

T (s′|s, ai,a9i)
∑
zi′

U9i(θ9i′|θ9i, s, ai,a9i, r9i, s′)[
Ri(s, ai,a9i)− ρiθi + viθi(s′,θ9i′)

]
,

where µi
θi denotes i’s steady distribution under θi with respect to s and θ9i.

Proof. We seek to derive an expression for optimizing the active average reward objective in Equation
(1) with respect to agent i’s policy parameters θi. Our derivation leverages the general policy gradient
theorem proof for the continuing case in Sutton & Barto (2018) (page 334). We begin by expressing
the gradient of the differential value function viθi(s,θ9i) for any s and θ9i:

∇θiviθi(s,θ9i) = ∇θi

[∑
ai

π(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)qiθi(s,θ9i, ai,a9i)
]

=
[∑

ai

∇θiπ(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)qiθi(s,θ9i, ai,a9i)+∑
ai

π(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)∇θiqiθi(s,θ9i, ai,a9i)︸ ︷︷ ︸
Term A

]
.

(11)

We continue to derive the Term A in Equation (11):

∇θiqiθi(s,θ9i, ai,a9i)= ∇θi

[∑
s′

T (s′|s, ai,a9i)
∑
zi′

U9i(θ9i′|θ9i, s, ai,a9i, s′)[
Ri(s, ai,a9i)− ρiθi + viθi(s′,θ9i′)

]]
= −∇θiρiθi +

∑
s′
T (s′|s, ai,a9i)

∑
θ9i′

U9i(θ9i′|θ9i, s, ai,a9i, r9i, s′)×

∇θiviθi(s′,θ9i′).

(12)
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Then, we summarize Equation (11) and Equation (12) together and re-arrange terms to obtain:

∇θiρiθi =
[∑

ai

∇θiπ(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)qiθi(s,θ9i, ai,a9i)+∑
ai

π(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)
∑
s′

T (s′|s, ai,a9i)×∑
θ9i′

U9i(θ9i′|θ9i, s, ai,a9i, r9i, s′)∇θiviθi(s′,θ9i′)
]
−∇θiviθi(s,θ9i),

(13)

where ∇θiρiθi = ∇θiJ i
π(θ

i). We define agent i’s steady distribution µi
θi under θi with respect to s

and θ9i as the special distribution that satisfies:

µi
θi(s

′,θ9i′) =
∑
s,θ9i

µi
θi(s,θ

9i)
∑
ai

π(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)
∑
s′

T (s′|s, ai,a9i)×∑
θ9i′

U9i(θ9i′|θ9i, s, ai,a9i, r9i, s′),
(14)

which exists under the communicating and unichain assumptions on T and U , respectively (Puterman,
1994). We now apply the steady distribution to Equation (13) and derive the final expression for
policy gradient:

∇θiJ i
π(θ

i) =
∑
s,θ9i

µi
θi(s,θ

9i)
([∑

ai

∇θiπ(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)qiθi(s,θ9i, ai,a9i)+∑
ai

π(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)
∑
s′

T (s′|s, ai,a9i)×∑
θ9i′

U9i(θ9i′|θ9i, s, ai,a9i, r9i, s′)∇θiviθi(s′,θ9i′)
]
−∇θiviθi(s,θ9i)

)
=

∑
s,θ9i

µi
θi(s,θ

9i)
∑
ai

∇θiπ(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)qiθi(s,θ9i, ai,a9i)+∑
s,θ9i

µi
θi(s,θ

9i)
∑
ai

π(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)
∑
s′

T (s′|s, ai,a9i)×∑
θ9i′

U9i(θ9i′|θ9i, s, ai,a9i, r9i, s′)∇θiviθi(s′,θ9i′)−∑
s,θ9i

µi
θi(s,θ

9i)∇θiviθi(s,θ9i)

=
∑
s,θ9i

µi
θi(s,θ

9i)
∑
ai

∇θiπ(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)qiθi(s,θ9i, ai,a9i)+∑
s′,θ9i′

µi
θi(s

′,θ9i′)∇θiviθi(s′,θ9i′)− ∑
s,θ9i

µi
θi(s,θ

9i)∇θiviθi(s,θ9i)

=
∑
s,θ9i

µi
θi(s,θ

9i)
∑
ai

∇θiπ(·|s,θ9i; θi)
∑
a9i

π(·|s;θ9i)qiθi(s,θ9i, ai,a9i)

(15)

□

D ADDITIONAL IMPLEMENTATION DETAILS

Our neural networks for the policy, q-functions consist of 3 fully-connected (FC) layers. Regarding
the inference module, the encoder consists of a FC input layer followed by a single-layer LSTM and a
FC output layer. The encoder outputs the mean and standard deviation for the Gaussian distribution of
p(ẑ9i

t |τ i0:t−1;ϕ
i
enc), in which we sample ẑ9i

t . Because it is impractical to input the entire interactions
from the beginning of the game to the encoder, we limit τ i0:t−1 to be recent 100 interactions. The
decoder consists of 3 FC layers and outputs a probability for the categorical distribution of another
agent.

Pseudocode. Algorithm for FURTHER is provided below:
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Algorithm 1 FURTHER Pseudocode
Require: Learning rates αq, απ, αϕ, Soft q-target update rate τq
1: # Agent initialization
2: for each agent i do
3: Initialize RL module θi, ψi

1, ψ
i
2, ψ̄

i
1, ψ̄

i
2, ρ

i
θi ,D

i

4: Initialize inference module ϕi
enc, ϕ

i
dec

5: Initialize other agents’ latent strategies ẑ9i
0

6: end for
7: for each timestep t do
8: # Decentralized execution
9: For each agent i, select ait ∼ π(·|st, ẑ9i

t ; θi)
10: Execute joint action at and receive next state st+1 and joint rewards rt

11: For each agent i, infer next updated policies of other agents ẑ9i
t+1 ∼ p(·|τ i0:t+1;ϕ

i
enc)

12: For each agent i, add a transition to its replay memory Di←Di∪{st, ẑ9i
t , a

i
t,a

9i
t , r

i
t, st+1, ẑ

9i
t+1}

13: # Decentralized training
14: for each agent i do
15: {ψi

β , ρ
i
θi} ← {ψ

i
β , ρ

i
θi} − αqJ

i
q(ψ

i
β , ρ

i
θi) for β = 1, 2

16: θi ← θi + απJ
i
π(θ

i)
17: {ϕi

enc, ϕ
i
dec} ← {ϕi

enc, ϕ
i
dec} − αϕJ

i
elbo(ϕ

i
enc, ϕ

i
dec)

18: ψ̄i
β ← τqψ

i
β + (1− τq)ψ̄i

β for β = 1, 2
19: end for
20: end for

E ELBO DERIVATION

We derive our ELBO optimization in Equation (6) for the inference module. In particular, we follow
the ELBO derivation in Zintgraf et al. (2020) (Appendix A) and modify it for our multiagent setting:

Ep(τ i
0:t)

[
log p(τ i0:t;ϕ

i
dec)

]
= Ep(τ i

0:t)

[
log

∫
p(τ i0:t, ẑ

9i
0:t−1;ϕ

i
dec)dẑ

9i
0:t−1

]
= Ep(τ i

0:t)

[
log

∫
p(τ i0:t, ẑ

9i
0:t−1;ϕ

i
dec)

p(ẑ9i
0:t|τ i0:t;ϕienc)

p(ẑ9i
0:t|τ i0:t;ϕienc)

dẑ9i
0:t−1

]
= Ep(τ i

0:t)

[
logEp(ẑ9i

0:t|τ i
0:t;ϕ

i
enc)

[p(τ i0:t, ẑ9i
0:t−1;ϕ

i
dec)

p(ẑ9i
0:t|τ i0:t;ϕienc)

]]
≥ Ep(τ i

0:t),p(ẑ
9i
0:t|τ i

0:t;ϕ
i
enc)

[
log

p(τ i0:t, ẑ
9i
0:t−1;ϕ

i
dec)

p(ẑ9i
0:t|τ i0:t;ϕienc)

]
= Ep(τ i

0:t),p(ẑ
9i
0:t|τ i

0:t;ϕ
i
enc)

[
log p(τ i0:t, ẑ

9i
0:t−1;ϕ

i
dec)− log p(ẑ9i

0:t|τ i0:t;ϕienc)
]

= Ep(τ i
0:t),p(ẑ

9i
0:t|τ i

0:t;ϕ
i
enc)

[ t−1∑
k=0

log p(a9i
k |sk, ẑ9i

k ;ϕidec) +
t−1∑
k=0

log p(ẑ9i
k )−

t∑
k=1

log p(ẑ9i
k |τ i0:k−1;ϕ

i
enc)

]
. (16)

Finally, we summarize terms to obtain Equation (6):

Ep(τ i
0:t),p(ẑ

9i
0:t|τ i

0:t;ϕ
i
enc)

[ t−1∑
k=0

log p(a9i
k |sk, ẑ9i

k ;ϕidec)︸ ︷︷ ︸
Reconstruction loss

−DKL
(
p(ẑ9i

k+1|τ i0:k;ϕienc)||p(ẑ9i
k )

)︸ ︷︷ ︸
KL divergence

]
.

16



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

F HYPERPARAMETER DETAILS

Hyperparameter Value
Critic learning rate αq 2e-3
Actor learning rate απ 7.5e-4
Inference learning rate αϕ 2e-3
Entropy weight α 0.1
Dimension of latent space |z9i| 3
Discount factor γ 0.99
Number of hidden units in FC 16
Number of hidden units in LSTM 16

Table 5: IBS Experiment

Hyperparameter Value
Critic learning rate αq 1e-4
Actor learning rate απ 1.5e-4
Inference learning rate αϕ 1e-4
Entropy weight α 0.1
Dimension of latent space |z9i| 10
Discount factor γ 0.99
Number of hidden units in FC 16
Number of hidden units in LSTM 16

Table 6: IC Experiment

Hyperparameter Value
Critic learning rate αq 1.5e-4
Actor learning rate απ 1e-4
Inference learning rate αϕ 1.5e-4
Entropy weight α 0.5
Dimension of latent space |z9i| 10
Discount factor γ 0.99
Number of hidden units in FC 16
Number of hidden units in LSTM 16

Table 7: IMP Experiment

17
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