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Abstract

Retrieval-augmented generation (RAG) systems have shown promise in improving
task performance by leveraging external context, but realizing their full potential
depends on careful configuration. In this paper, we investigate how the choice of
retriever and reader models, context length, and context quality impact RAG per-
formance across different task types. Our findings reveal that while some readers
consistently benefit from additional context, others degrade when exposed to irrele-
vant information, highlighting the need for tuning based on reader sensitivity to
noise. Moreover, retriever improvements do not always translate into proportional
gains in reader results, particularly in open-domain questions. However, in spe-
cialized tasks, even small improvements in retrieval can significantly boost reader
results. These insights underscore the importance of optimizing RAG systems by
aligning configurations with task complexity and domain-specific needs. 2

1 Introduction
RAG [Chen et al., 2017, Lewis et al., 2020] is widely applied to enhance the performance of top-
performing LMs on knowledge-intensive generation tasks like DBQA [Karpukhin et al., 2020]. Given
a question, the retriever model retrieves multiple relevant passages from a corpus, which are then
included as context for the reader model to generate a grounded response.

Although using RAG supposedly helps LMs generate “more specific and factually accurate responses”
[Lewis et al., 2020], we show that, in practice, achieving the greatest benefits from RAG requires
careful configuration of all components in the RAG pipeline. Existing literature provides mixed, even
contradictory, suggestions for configuring RAG. While some early works suggest that providing more
retrieved passages results in strictly better outputs [Izacard and Grave, 2021], others find there is a
limit to that phenomenon as model performance saturates after some number of contexts [Liu et al.,
2023]. Others find that reader model performance declines [Cuconasu et al., 2024, Jiang et al., 2024]
as the number of contexts gets too large. The complexity of choosing the number of passages is only
one aspect of RAG configuration among many that we cover in our analysis framework.

To provide more concrete suggestions of the best practices under various cases, we introduce an
analysis framework, RAGGED,3 study RAG configurations on a suite of representative document-
based question-answering (DBQA) tasks, including open-domain datasets that are single-hop and
multi-hop questions [Kwiatkowski et al., 2019, Yang et al., 2018], and special-domain questions
from the biomedical domain. We cover a broad range of models to ensure a comprehensive analysis:
for retrievers, we incorporate both sparse and dense retrievers; for readers, we cover proprietary
API models such as GPT [Brown et al., 2020] and CLAUDE [Enis and Hopkins, 2024], as well as
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open-checkpoint models including FLAN [Chung et al., 2022, Tay et al., 2023], LLAMA [Touvron
et al., 2023b] families.

In this paper, we address the following key research questions:

R1: When does RAG improve performance over closed-book generation?(§3) We explore
whether RAG consistently enhances reader performance across different reader models and datasets.
This analysis seeks to identify the specific scenarios — such as particular readers or question types —
where RAG provides a clear advantage over closed-book generation, or whether its benefits are more
situational.
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Figure 1: Example insight from using RAGGED:
LLAMA and CLAUDE models are more sensitive to
noise in context, while FLAN and GPT models are
more robust to noise in context and can effectively
use a larger number of context passages.

R2: How do reader models respond to an in-
creasing number of context documents?(§4) We
investigate how reader performance is affected by
the amount of context provided. Specifically, we
examine whether adding more context passages im-
proves model accuracy, leads to diminishing returns,
or even degradation in performance due to too much
noisy information (Figure 1).

R3: How robust are reader models to irrele-
vant information when relevant information is
present or absent?(§5) We assess how reader mod-
els perform on data slices where relevant informa-
tion is present and on slices where it is absent. This
analysis is crucial for understanding model robustness to irrelevant information.

R4: How does retriever choice impact reader performance across question types and do-
mains?(§6) To understand the impact of context quality from another perspective, we evaluate the
effect of retriever model choice across different question types. This investigation aims to identify
the retriever-reader combinations that yield the best results depending on the task and domain.

In summary, our study provides actionable insights into when and how RAG can be effectively
applied, offering guidance for configuring RAG systems to maximize their advantages.

2 The RAGGED Framework
In our analysis, we vary three key aspects:

1. RAG system components: For retrievers, we use two approaches:(1) BM25 [Robertson et al.,
2009], a sparse retriever based on lexical information, and (2) ColBERT [Santhanam et al.,
2021], a dense retriever based on neural embeddings. For readers, we examine both closed-
source models from the GPT and CLAUDE families, and open-source models from the FLAN,
LLAMA2, and LLAMA3 families.

2. Number of retrieved passages (k): We vary the number of retrieved passages from 1 to 50,
with most insightful variations occurring before k = 30.

3. Data slices based on retrieved passage quality: Passage quality refers to the presence of
"gold" passages in the top-k retrieved set.

For datasets, we adopt three DBQA datasets from two domains (Wikipedia and biomedical) and with
varying complexity (single-hop, multi-hop). These include Natural Questions (NQ) [Kwiatkowski
et al., 2019] for open-domain, single-hop questions; HotpotQA [Yang et al., 2018], a Wikipedia-
based dataset requiring reasoning across multiple passages; and BioASQ Task 11B [Krithara et al.,
2023], a single-hop PubMed-based biomedical dataset. Details about the corpus of passages used for
retrieval are in Table 4. More details about the models and datasets can be found in the subsection A.2.

For the metrics, we follow [Petroni et al., 2021] to evaluate retrieval performance using recall@k,
which measures the fraction of ground-truth passages among the top-k retrieved. Reader performance
is assessed using unigram F1, which measures the unigram overlap between the reader’s output and
the gold answer. For each query, the highest F1 score of the generated answer against the list of gold
answers is reported.

3 When Does RAG Surpass the No-Context Baseline?
While Lewis et al. [2020] achieve state-of-the-art results across several QA tasks by augmenting
T5 model with a fixed k number of documents, we find that the answer to RQ1: “When does RAG
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outperform no-context baseline” is more nuanced. Below, we share our findings: Some retriever-
reader combinations consistently benefit from RAG, while others only sometimes do for certain k’s,
and a few never do regardless of k.

Although GPT-3.5 generally performs better with RAG, the gains are small at around 1.1 F1 points
on average. In contrast, FLAN models consistently use contexts effectively and outperform their
no-context baseline across retrievers, k, and datasets. In fact, FLANT5 can use retrieved contexts so
well that even though it ranks among the bottom-3 readers in terms of no-context performance, it
ranks among the top-3 models in terms of optimal-k performance. Although LLAMA2 often benefit
from RAG, they usually do so only when k is small enough. Then, finally, LLAMA3 and CLAUDE
HAIKU struggle to benefit from RAG, often performing with context rather than without regardless
of retriever and k.

Key Takeaway: The effectiveness of RAG varies with reader choice and sensitivity to context
quantity and quality. The results suggest that while RAG can help specific models, the degree of
improvement varies, and in some cases, models perform worse with retrieved contexts.

4 Are More Contexts Always Better?
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Figure 2: Reader performance as we vary k, the number
of retrieved contexts provided by ColBERT, from 0 (no
context) to 20. Colored circles mark the reader perfor-
mance at optimal k∗.

To address RQ2, we evaluate whether adding
more retrieved passages consistently improves
reader model performance. While Liu et al.
[2023] report that reader performance saturates
as k increases, Cuconasu et al. [2024] and Jiang
et al. [2024] observe performance degradation
with increasing k. Although these findings ap-
pear contradictory, we argue that they are actu-
ally complementary, as each study focuses on a
limited range of retrievers, readers, and datasets.
Our experiments, which span a wider variety
of retrievers, readers, and datasets, demonstrate
that both saturation and degradation behaviors
can occur with the determining factor being the
choice of reader model.

Figure 2 reveals two typical trends in reader
performance as k, the number of context passages, increases. Some readers effectively identify and
use signals, thus displaying an improve-then-plateau trend as k increases. Such models include the
FLAN models and GPT-3.5, and they often peak at k ≥ 10 without noticeable decline afterward.

In contrast, other models are more easily distracted by “noise”, or irrelevant context, as the number of
contexts increases, thereby displaying a peak-then-decline behavior. Such models include LLAMA
and CLAUDE HAIKU, and they generally peak early at k < 5 before degrading in performance.

Key Takeaway: Optimizing RAG performance depends on selecting the suitable reader model
and adjusting k— while some models are more sensitive to signal, benefitting from larger k values,
others are more sensitive to noise, requiring smaller k.

5 Reader Response to Signal and Noise
To address RQ3, we study how the readers respond to noise under contexts with at least one “signal”
(gold) passage and without any “signal”. In the first scenario (§5.1), where sufficient information is
available to answer the question, we compare reader performance across three settings: (a) with the
top-k passages, (b) with only the gold passages among the top-k (top-gold), and (c) with no context.
We compare how big the gap between (a) and (b) is to see how close the top-k performance is to the
performance when it focuses only on the signal. We also compare (a) and (c) to see how detrimental
noise is — is the noise so distracting that (a) is even worse than the no-context baseline (c)?

In the second scenario (§5.2), where there is insufficient context to answer the question, we assess
the model’s ability to filter out noise and rely on its pre-trained knowledge.

5.1 With Gold Passages
Reader models with only gold passages expectedly serve as an upper bound for their top-k perfor-
mance (Figure 3). However, it is notable that the no-context performance does not always represent
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a lower bound for RAG. Whether it is a lower bound depends on the reader’s ability to filter out
irrelevant information while leveraging helpful context information.
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Figure 3: NQ results when there is sufficient
information (at least one gold passage) in the
top-k passages to answer the question. Top-gold
means the context only includes the gold pas-
sages in the top-k passages.

For NQ instances with signal in the top-k passages,
GPT-3.5 and FLAN models effectively identify and
use relevant information, consistently outperforming
no-context baselines (Figure 3). In contrast, the rest
of the models struggle more with noise, with their top-
k performance falling below their no-context results
at k ≤ 5. This shows that suboptimal configurations
can lead to worse performance with RAG, even when
sufficient information is available.

In HotpotQA, the LLAMA2 models maintain perfor-
mance above the no-context baseline longer than in NQ,
with LLAMA2 7B dipping below at k = 25 instead
of at k = 15 and LLAMA2 70B dropping below the
no-context baseline at k ≥ 30 instead of at k = 25
(Figure 6). Similarly, CLAUDE drops below the base-
line at k > 5 instead of k ≤ 5. This could suggest that
tasks requiring multiple signal passages provide more

“anchor points” for the model, helping it withstand more
noise(Figure E).

For BioASQ, all readers’ gaps between their top-pos and top-k performances are smaller than
their gaps on open-domain datasets (Figure 7), indicating better signal extraction likely due to the
specialized domain jargon making relevant documents more distinct. We attribute the smaller gap
primarily to the reader instead of the retriever since the retrieval quality for BioASQ is strictly worse
than NQ (Table 5). Also of note is that CLAUDE HAIKU and LLAMA3 70B still fall below their
no-context baselines even with gold passages, showing that they struggle particularly with specialized
domains. In these cases, the models often generate nonsensical outputs as k increases.

5.2 Without Gold Passages
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Figure 4: NQ results with no gold passages.

We conduct a similar analysis with examples retrieved
with only non-gold passages. For NQ (Figure 4) and
HotpotQA (Figure 8), most models perform worse with
RAG than without. This is expected since these slices
the models are prompted to rely on do not contain any
signal (i.e., gold passages).

In contrast, FLAN models consistently outperform their
no-context baselines even with non-gold contexts. One
potential explanation is that the non-gold passages may
still provide partially relevant information despite in-
sufficient information.

For BioASQ, a key difference is that GPT’s top-k per-
formance exceeds its no-context baseline for k ≥ 5, and
LLAMA2 7B’s performance does so for all k, unlike
their consistently lower performance in other datasets.
This suggests that for specialized-domain questions,
these models may have stronger guardrails against ir-
relevant information and can rely on their pre-trained knowledge when needed. Full results for other
models are in Figure 9

Key Takeaway: Practitioners can ensure stable performance in noisy environments by using robust
models or applying noise-filtering techniques when models are sensitive to irrelevant information.

6 Impact of Retriever Choice

To address RQ4, we compare BM25 and Colbert retrieval performance (Table 5) and analyze their
impact on reader model performance (Figure 2, Figure 5b).
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Neural retrievers like ColBERT generally outperform lexical retrievers such as BM25, but the extent
of this advantage on reader performance varies by domain and question complexity.

Model NQ HotpotQA BioASQ

GPT−3.5 8.6 2.0 1.1
Claude Haiku 3.9 4.0 2.4
FlanT5 12.6 10.5 4.2
FlanUL2 12.9 2.0 1.9
LLaMa2 7B 3.6 0.9 −0.3
LLaMa2 70B 2.6 0.7 −0.2
LLaMa3 8B −0.7 −2.2 1.4
LLaMa3 70B −1.9 −2.7 1.5

Average 5.2 1.9 1.5

Table 1: Difference in reader performance (F1
score) when using ColBERT vs. BM25, averaged
over k = 1 to 50.

We evaluate the average difference, which is the
mean difference between F1 scores when the reader
is paired with top-k documents from ColBERT v.
BM25, averaged across k = 1 to 50 (Table 2). Al-
though ColBERT offers significant retriever recall
gains over BM25 for open-domain datasets (21.3 for
NQ and 14.6 for HotpotQA Table 5), the correspond-
ing average reader performance gains are modest
(5.2 and 1.9 F1 points, respectively). In contrast,
for BioASQ, despite a smaller recall gain (0.7), the
reader performance gain is relatively larger (1.5 F1
points). This suggests that in specialized domains,
even a small improvement in retriever performance
can have an outsized impact on reader results.

Given how 1) ColBERT only results in small optimal
reader gains for HotpotQA and BioASQ and 2) BM25
is less computationally expensive to use, it may be
tempting to claim BM25 is the obvious pick for RAG, computationally speaking. However, another
important factor to consider is the difference in optimal k — the optimal k with BM25 performance
is 2 to 3 times that of the optimal k for ColBERT (Table 6). This means BM25’s higher k shifts the
computational burden from the retriever to the reader, where the cost of inference is scaled with k.

Retriever NQ HotpotQA BioASQ

BM25 10.95 36.94 23.03
Colbert 28.0 50.68 23.83
Difference 17.05 13.74 0.7

Table 2: Retriever recall (recall@k) across
different datasets averaged over k = 1 to 50.

Key Takeaway: Retriever improvements do not always
lead to better reader performance. Practitioners should
carefully evaluate both components together, especially for
complex open-domain questions, where significant gains
in retriever recall may not yield proportional benefits for
the reader. In contrast, even minor retriever improvements
can significantly improve reader performance for domain-
specific tasks.

7 Conclusion
We propose RAGGED, a framework designed to assist
researchers and practitioners in making informed decisions about designing RAG systems, focusing
on three key aspects: the number of contexts, the reader model, and the retriever model. Our findings
show that RAG systems’ effectiveness depends on careful configuration—some readers benefit from
additional context, while others degrade with irrelevant information. Retriever improvements don’t
always translate to better reader performance, especially in open-domain tasks, though small gains
can significantly impact specialized tasks. These results emphasize the need for task-specific RAG
tuning and further research on enhancing retriever-reader interactions and noise robustness. We hope
our framework will help the community better understand how to customize RAG systems to unlock
its full potential.
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A Related Work

A.1 Prompt

We use the following prompt, and provide more details at §B.

A.2 Setup details

BM25 BM25 is a probabilistic retrieval model [Robertson et al., 2009] that estimates passage
relevance via term weighting and passage length normalization. BM25 relies on term-matching, and
thus is supposed to be proficient at identifying lexical similarity especially in special domains.

ColBERT One of the best-performing neural-based retrievers is ColBERT [Santhanam et al., 2021],
i.e., contextualized late interaction over BERT. ColBERT uses contextualized embeddings instead of
term-matching as in BM25, thus is supposed to be better at identifying semantic similarities between
queries and passages.

FLAN The FLAN models are encoder-decoder models. We use the FLANT5-XXL [Chung et al.,
2022] with 11B parameters and FLAN-UL2 [Tay et al., 2023] with 20B parameters, both with a
context length of 2k tokens. FLANT5-XXL is an instruction-tuned variant of the T5 model [Raffel
et al., 2023].

LLAMA We use 7B and 70B LLAMA2 models [Touvron et al., 2023a,b] and the 8B and 70B
LLAMA3 models. The LLAMA2 models have a context length of 4k tokens while LLAMA3 models
have double the context length at 8k tokens.

GPT We use GPT-3.5-turbo model [Brown et al., 2020]. This model has a context length of 16k
tokens, and is a closed source model, so further details about model size are unknown.

CLAUDE We use CLAUDE HAIKU, which is Anthropic’s fastest and most compact model [Enis and
Hopkins, 2024]. The context window of 200k tokens is the largest of all the models we compare in
this paper, but the model size is unknown since the model is closed-source.

B Implementation Details

Reader model We truncate the Context to make sure the the rest of the prompt still fits within a
reader’s context limit. Specifically, when using FLANT5 and FLANUL2 readers, we use T5Tokenizer
to truncate sequences to up to 2k tokens; when using LLAMA models, we apply the LlamaTokenizer
and truncate sequences by 4k tokens for LLAMA2 and 8k for LLAMA3. For closed-source models,
we spent around $300. Subsequently, we incorporate a concise question-and-answer format that
segments the query using "Question:" and cues the model’s response with "Answer:", ensuring precise
and targeted answers.

For our reader decoding strategy, we used greedy decoding with a beam size of 1 and temperature
of 1, selecting the most probable next word at each step without sampling. The output generation
was configured to produce responses with 10 tokens. The experiments were conducted on NVIDIA
A6000 GPUs, supported by an environment with 60GB RAM. The average response time was ∼1.1s
per query when processing with a batch size of 50.

C Dataset Details

Corpus # of par # of doc Avg # of doc

Wikipedia 111M 5M 18.9
Medline 58M 34M 1.7

Table 3: Retrieval corpus information

All corpus and datasets use English.

For NQ and HotpotQA datasets in the open domain, we
use the Wikipedia paragraphs corpus provided by the KILT
benchmark [Petroni et al., 2021].

For BioASQ, we use the PubMed Annual Baseline Repos-
itory for 2023 [of Medicine, 2023], where each passage
is either a title or an abstract of PubMed papers. Dataset
sizes are in Table 4.
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Dataset # of Queries

NQ 2837
HotpotQA 5600
BioASQ 3837

Table 4: Dataset information

The Medline Corpus is from of Medicine [2023] provided by the
National Library of Medicine.

For NQ and HotpotQA, we use KILT’s dev set versions of the
datasets, allowed under the MIT License [Petroni et al., 2021]. For
BioASQ [Krithara et al., 2023], we use Task 11B, distributed under
CC BY 2.5 license.

D Retriever Performance

Retriever Recall@k
1 2 5 10 20 50

NQ

BM25 2.7 4.4 8.0 11.5 16.3 22.8
10.3 16.3 27.8 36.8 47.7 53.2

ColBERT 12.3 18.0 25.7 32.1 38.1 41.8
27.2 38.8 54.4 65.0 72.9 77.2

HotpotQA

BM25 19.1 25.9 34.6 41.1 46.8 54.2
23.3 31.2 42.7 52.1 59.1 62.8

ColBERT 31.1 40.1 49.9 56.2 61.9 64.9
34.2 44.7 56.3 63.6 69.9 73.1

BioASQ

BM25 8.8 12.9 19.6 25.8 33.3 37.8
12.4 16.4 23.9 30.6 38.7 43.6

ColBERT 8.8 13.5 20.7 27.1 34.3 38.6
14.2 18.2 25.6 32.2 39.8 44.2

Table 5: For the Wikipedia-based dataset, the top row indicates recall@k at the retrieval unit of Wikipedia
paragraph and the bottom row for the unit of Wikipedia page. For BioASQ, the top row indicates recall@k at the
unit of title or abstract of a PubMed article and the bottom row at the unit of the article itself.

E Additional Reader Results

Re
ad

er
 P

er
fo

rm
an

ce
 (F

1) NQ

ColBERT

k (# of context passages)

HotpotQA BioASQ

FlanT5 FlanUL2 LLaMa3 8B LLaMa3 70BGPT-3.5 Claude 
Haiku

LLaMa2 7B LLaMa2 70B

(a) Performance when top-k passages are from ColBERT.
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(b) Performance when top-k passages are from BM25.

Figure 5: Top-k performance on NQ, HotpotQA, and BioASQ. Colored circles mark the reader performance at
optimal k∗. We find similar reader trends to increasing context regardless of the retriever choice.
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Figure 6: HotpotQA results when there is sufficient information (all gold passages) included in the top-k
passages to answer the question. For multi-hop questions, we select examples retrieved with all gold passages
within the top-k passages since all passages are necessary to answer the question.
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Figure 7: BioASQ results when there is sufficient information (at least one gold passage) included in the top-k
passages to answer the question.

Model NQ HotpotQA BioASQ Average (per reader)
BM25 ColBERT BM25 ColBERT BM25 ColBERT BM25 ColBERT

GPT-3.5 50 20 50 20 20 20 40 20
Claude Haiku 1 1 1 1 1 1 1 1
FlanT5 50 20 10 10 50 1 36.67 10.33
FlanUL2 50 10 20 10 2 1 24 7
LLaMa2 7B 1 1 2 2 2 1 1.67 1.33
LLaMa2 70B 10 5 10 2 5 5 8.33 4
LLaMa3 8B 1 1 1 1 1 1 1 1
LLaMa3 70B 1 1 1 1 1 1 1 1
Average (per dataset) 20.5 7.38 11.88 5.88 10.25 3.88 14.21 5.71

Table 6: Optimal k∗ for BM25 and ColBERT (NQ, HotpotQA, and BioASQ).
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Figure 8: HotpotQA results when there are no gold passages included in the top-k passages to answer the
question.
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Figure 9: BioASQ results when there are no gold passages included in the top-k passages to answer the question.
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