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Abstract001

Large language models (LLMs) have demon-002
strated remarkable capabilities across multiple003
domains and fine-tuning is an essential step in004
adapting a pre-trained model to downstream005
tasks with user data. Given the sensitive na-006
ture of such private data, it is desirable to fine-007
tune these models on edge devices to improve008
user trust. However, fine-tuning on resource-009
constrained edge devices presents significant010
challenges due to substantial memory, com-011
putational demands, and limited infrastructure012
support for backpropagation. We observe that013
inference engines (e.g., ExecuTorch) can be re-014
purposed for fine-tuning by leveraging zeroth-015
order (ZO) optimization. Memory efficient ZO016
(MeZO) proposes to estimate gradient using017
only two forward passes, reducing the mem-018
ory cost to the same as inference. However,019
ZO methods require multiple queries of gradi-020
ent estimations at each training step to achieve021
good performance. Since multi-query gradi-022
ent estimation requires multiple independent023
forward passes, our key insight is that these024
can be executed in parallel. To this end, we025
propose parallelized randomized gradient es-026
timation (P-RGE), which employs a novel de-027
sign based on parameter-efficient fine-tuning028
techniques to achieve high-speed training while029
still harvesting the model performance boost,030
without increasing computational cost. More-031
over, it seamlessly extends inference engines032
without altering their underlying runtime code033
and only minimal server-side modifications are034
needed. Through extensive experiments, we035
demonstrate that P-RGE delivers substantial036
gains in fine-tuning efficiency and accuracy,037
thereby enabling real-time, on-device personal-038
ization of LLMs under strict memory and com-039
pute budgets. Code available at: anonymous.040
4open.science/r/PRGE-ARR-4FE5.041

1 Introduction042

Large Language Models (LLMs) have demon-043

strated strong performance across various appli-044

cations, including chatbots and image generation 045

(OpenAI et al., 2024; Chowdhery and et al., 2022; 046

Anil and et al., 2024). Fine-tuning is a crucial step 047

for adapting LLMs to specific tasks, but it demands 048

significant memory resources for storing model pa- 049

rameters, gradient, activation, and optimizer state 050

(Wan et al., 2024). This memory overhead makes 051

fine-tuning infeasible on resource-constrained de- 052

vices such as smartphones and edge platforms (Zhu 053

et al., 2023; Yin et al., 2024). Moreover, existing 054

on-device frameworks like ExecuTorch (Meta-AI, 055

2024a) and TensorFlow Lite (Google, 2020) primar- 056

ily optimize inference, leaving fine-tuning largely 057

unsupported. 058

Recent advancements in parameter-efficient fine- 059

tuning (PEFT) (Hu et al., 2022; Houlsby et al., 060

2019) and memory-efficient strategies (Dettmers 061

et al., 2023; Lv et al., 2024) reduce the memory 062

footprint of model weights and optimizer states. 063

However, the storage of activation during back- 064

propagation remains a bottleneck, particularly for 065

large models (Lv et al., 2024). Techniques such 066

as gradient checkpointing (Chen et al., 2016) and 067

mixed-precision training (Micikevicius et al., 2018) 068

help mitigate activations memory usage but still 069

rely on automatic differentiation, which is not well- 070

supported in edge environments. 071

Unlike conventional first-order (FO) optimiza- 072

tion methods, zeroth-order (ZO) methods do not re- 073

quire backpropagation to compute gradients (Duchi 074

et al., 2015; Nesterov and Spokoiny, 2017). The 075

memory-efficient ZO (MeZO) method is proposed 076

to further reduce memory overhead and relies on 077

only two forward passes to estimate the gradient 078

along one random direction (i.e., single-query gra- 079

dient estimation) (Malladi et al., 2023). Therefore, 080

ZO methods eliminate the need to store activations 081

and gradients, making them particularly attractive 082

for memory and computation-efficient LLM fine- 083

tuning (Zhang et al., 2024b). 084

However, models trained using ZO methods typ- 085
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ically exhibit lower accuracy than those using FO086

methods. To bridge this gap, gradient estimation087

at each training step can be improved by incorpo-088

rating multiple queries (i.e., averaging the gradi-089

ent estimations along multiple random directions)090

(Zhang et al., 2024b). In a multi-query setting,091

each query is executed sequentially. Given a fixed092

computational budget (i.e., fixed total FLOPs), ZO093

methods like MeZO attempt to scale up the num-094

ber of queries while proportionally reducing the095

number of training steps and find that this trade-off096

of using multi-query does not necessarily lead to097

better final model performance or reduction in total098

wall-clock training time (Malladi et al., 2023).099

In this work, we aim to leverage multi-query100

gradient estimation to boost model performance101

while still achieving speedups under a fixed com-102

putational budget by enhancing computational ef-103

ficiency, particularly in resource-constrained sce-104

narios. We observe that reducing batch size while105

keeping the number of training steps unchanged106

improves final model performance in a multi-query107

setting, yet it also prolongs training because each108

query is processed sequentially. To address this, we109

eliminate serial processing and maximize parallel110

execution of forward passes, both across queries111

and within each query at every training step. Our112

key contributions are as follows:113

• We introduce a parallelized randomized gradient114

estimation (P-RGE) technique that achieves high115

parallel efficiency by leveraging both outer-loop116

and inner-loop parallelization. By executing117

multiple forward passes in parallel, P-RGE effec-118

tively amortizes the memory access cost of load-119

ing model parameters, thereby reducing training120

time while improving model performance.121

• We implement a P-RGE PEFT module that seam-122

lessly integrates P-RGE into ExecuTorch with-123

out requiring any modifications to its runtime124

code. Our approach is realized through minimal125

server-side code changes only, making it practi-126

cal for on-device fine-tuning.127

• We demonstrate that our method achieves sub-128

stantial wall-clock time speedups and memory129

savings while improving model performance.130

Our approach results in up to 4.3× end-to-end131

training speedups and up to 9.87% improvement132

in accuracy.133

2 Background and Related Work 134

Low-Rank Adaptation. To reduce the resource 135

demands of LLM fine-tuning, parameter-efficient 136

fine-tuning methods update only a small subset of 137

parameters. LoRA (Hu et al., 2022) introduces 138

trainable low-rank matrices A ∈ Rkin×r and B ∈ 139

Rr×kout while freezing the original weight matrix 140

W. Since r ≪ min(kin, kout), the number of train- 141

able parameters is significantly reduced. The for- 142

ward pass is computed as y = xW+xAB, where 143

A is initialized randomly and B starts at zero, 144

ensuring no initial deviation from the pre-trained 145

model. Variations such as LoRA-FA (Zhang et al., 146

2023) further reduce trainable parameters by freez- 147

ing A and updating only B. 148

Zeroth-Order Optimization. ZO optimization 149

methods have been widely applied across various 150

machine learning applications (Chen et al., 2017; 151

Sun et al., 2022; Wang et al., 2022; Liu et al., 152

2024c). Among ZO gradient estimators, the ran- 153

domized gradient estimator (RGE) is particularly 154

effective, especially for fine-tuning LLMs (Malladi 155

et al., 2023). Given a labeled datasetD and a model 156

with parameters θ ∈ Rd, let the loss function on a 157

minibatch B ⊂ D of size B be denoted as L(θ;B). 158

The RGE estimates the gradient of the loss L with 159

respect to the parameters θ on a minibatch B via: 160

∇̂L(θ;B) =
1

q

q∑
i=1

[
L(θ + ϵzi;B)− L(θ − ϵzi;B)

2ϵ
zi

]
, 161

where zi ∼ N (0, Id), q is the query number, and ϵ 162

is the perturbation scale. The choice of q balances 163

the variance of the ZO gradient estimate and the 164

computational cost. According to (Zhang et al., 165

2024b), the variance of the RGE is approximately 166

O(d/q). 167

ZO-SGD replaces FO gradients with ZO gra- 168

dient estimates: θt+1 = θt − η∇̂L(θ;Bt), with 169

learning rate η at timestpe t. The choice of op- 170

timizer (SGD) is orthogonal to ZO optimization 171

methods, but in our preliminary experiments we 172

find adaptive optimizers such as Adam would not 173

necessarily improve LLM fine-tuning performance. 174

ZO LLM Fine-Tuning. Conventional RGE 175

training requires storing perturbation noise z, effec- 176

tively doubling inference memory. MeZO (Malladi 177

et al., 2023) eliminates this overhead by storing 178

only the random seed and regenerating z on de- 179

mand. While MeZO also considers q > 1, it com- 180

pensates for the increased computation per step by 181
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proportionally reducing the total number of training182

steps (e.g., halving the steps when q = 2). Under183

this fixed computational budget, they observe that184

larger q does not improve accuracy compared to185

q = 1, prompting MeZO to adopt q = 1 as the de-186

fault setting. In contrast, Zhang et al. benchmarked187

various ZO optimization methods, including RGE188

with q > 1, and confirmed that when computa-189

tional constraints are lifted, larger q can indeed190

enhance performance.191

Sparse-MeZO (Liu et al., 2024b) selectively up-192

dates parameters but is sensitive to hyperparam-193

eters. Extreme-sparse-MeZO (Guo et al., 2025)194

integrates first-order Fisher-based sparse train-195

ing. MeZO-SVRG (Gautam et al., 2024) im-196

proves variance reduction but occasionally requires197

full-dataset gradient estimation, increasing cost.198

AdaZeta (Yang et al., 2024) adaptively schedules199

queries but still relies on sequential gradient esti-200

mations.201

On-device LLM Training. Several methods202

address the memory and compute constraints of203

on-device LLM training. PockEngine (Zhu et al.,204

2023) updates only select layers, skipping gradient205

calculations for less critical parameters. FwdLLM206

(Xu et al., 2024) applies numerical differentiation207

to approximate gradients, lowering communica-208

tion costs in federated learning but is limited to209

CUDA environment. HETLORA (Cho et al., 2024)210

enables federated LoRA training across heteroge-211

neous devices but requires further real-world test-212

ing due to high activation memory costs. Pock-213

etLLM (Peng et al., 2024) evaluates MeZO for214

on-device fine-tuning but does so in a simulated215

Linux environment rather than mobile devices.216

3 Method217

Query Batch size Training steps Performance Wall-clock time
1 B T ✗ ✓

q B T/q ✗ ✓

q B/q T ✓ ✗

Table 1: Different trade-offs for RGE.

Table 1 summarizes different trade-offs in RGE218

under a fixed computational budget. One strategy219

(Row 2) suggested by MeZO compensates for the220

increased number of queries by reducing the total221

number of training steps. Here, we introduce an222

alternative trade-off: increasing the query count223

while decreasing the batch size, rather than reduc-224

ing training steps. We later demonstrate that this225

Algorithm 1 Parallelized Randomized Gradient
Estimation (P-RGE) Algorithm.

1: Input: learnable parameters θl ∈ Rdl , frozen
parameters θf ∈ Rdf , lossL : Rdl×Rdf → R,
step budget T , query budget q, effective batch
size E, perturbation scale ϵ, learning rate η

2: for t = 1 to T do
3: Sample batch B ⊂ D
4: for i = 1 to q do in parallel ▷ Outer
5: Sample random seed si
6: zi∼N (0, Idl) using si
7: for k ∈ {+1,−1} do in parallel ▷ Inner
8: θ

(k)
l = θl + kϵzi

9: ℓ(k) = L((θ(k)
l ,θf );B)

10: end for

11: gi =
ℓ(+1) − ℓ(−1)

2ϵ
12: Store si and gi
13: end for
14: θl ← θl − η

(
1

q

q∑
i=1

gizi

)
15: end for

approach consistently outperforms the strategy in 226

Row 3. Nonetheless, each training step takes longer 227

than it would with a single-query (q = 1) because 228

the gradient estimations are executed sequentially, 229

even though the total compute remains the same. 230

While this trade-off improves final model accuracy, 231

our objective is to maintain high accuracy while 232

minimizing per-step execution time. 233

In general, performing q-query RGE requires 2q 234

forward passes. A naive implementation (detailed 235

in Appendix A) would run these forward passes in 236

a two-level nested loop: the outer loop iterates over 237

each random direction, and the inner loop executes 238

the two forward passes required for gradient estima- 239

tion. Such a sequential approach repeatedly loads 240

model parameters into computational units, caus- 241

ing significant overhead. However, these passes 242

are entirely independent, distinguished only by the 243

random perturbations applied to the trainable pa- 244

rameters. Building on this key observation, we pro- 245

pose parallelized randomized gradient estimation 246

(P-RGE) to address the runtime overhead inherent 247

in multi-query RGE. P-RGE combines outer-loop 248

parallelization and inner-loop parallelization to 249

perform multiple forward passes in parallel, sub- 250

stantially reducing per-step latency while harvest- 251

ing the accuracy benefits of multi-query gradient 252

estimation. 253
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W ∈ Rk×k (shared)

B1 ∈ Rr×k

B2 ∈ Rr×k

...

Bq ∈ Rr×k

z1

z2

zq

x1

x2

...

xq

y1

y2

...

yq

A ∈

Rk×r

(shared)

x+
i

x−
i

A ∈

Rk×r

(shared)

Bi + zi ∈ Rr×k

Bi − zi ∈ Rr×k

y+
i

y−
i

for each xi

Frozen Parameters Trainable Parameters

(a) Outer-loop parallelization (b) Inner-loop parallelization

Figure 1: Overview of the proposed P-RGE method. Model weights are reused across multiple forward passes,
reducing the expensive cost of external memory access and improving runtime per training step.

3.1 Outer-loop Parallelization254

One straightforward solution to perform multiple255

gradient estimations in parallel is to create multiple256

copies of the model inputs and trainable parame-257

ters, then execute all forward passes in parallel258

(Algorithm 1, line 4). However, this approach259

incurs large memory overhead from duplicating260

weights, as well as computational burdens from261

parallelizing over multiple queries. Particularly, if262

each query step already maximally uses the avail-263

able compute resources, then parallelly executing264

multiple queries is infeasible.265

To mitigate memory overhead and avoid sequen-266

tial parameter operations, we employ PEFT meth-267

ods, which reduce the number of trainable parame-268

ters. The random seed trick from MeZO (Malladi269

et al., 2023) shrinks the memory overhead from270

O(d) to O(1) but also increases runtime associated271

with parameter perturbation from O(1) to O(d),272

as each parameter must be updated individually.273

This can substantially slow training for large mod-274

els, potentially offsetting the speedups gained from275

removing backpropagation. Hence, reducing the276

number of trainable parameters using PEFT is cru-277

cial for enabling MeZO for overall computational278

efficiency.279

Our preliminary experiments (see Appendix B)280

indicate that combining ZO with LoRA-FA per-281

forms better than alternatives such as DoRA (Liu282

et al., 2024a) and VeRA (Kopiczko et al., 2024),283

making LoRA-FA our default choice, but our ap-284

proach can be adapted to any other PEFT method.285

To further improve the memory usage efficiency286

we propose to carefully schedule the operations to287

minimize needless data movement between mem-288

ory and compute units. As illustrated in Figure 1(a),289

we start by replicating the model input batch (x) 290

q times. We keep both W and LoRA-A matri- 291

ces fixed, and replicate only the LoRA-B matrix q 292

times. Each B copy is then perturbed by distinct 293

random noise during its forward pass. Next, the 294

replicated inputs (x1, x2, . . . , xq) undergo batched 295

matrix multiplication with their respective LoRA- 296

B copies. 297

When performing P-RGE with q > 1, we propor- 298

tionally reduce the batch size to B/q = E, where 299

E is referred to as the effective batch size. For 300

instance, if the original setting uses q = 1 and 301

B = 16, our approach can increase q to 4 while 302

setting E = 4, thereby maintaining qE = B. 303

One benefit of outer-loop parallelization is that 304

it also increases parallelism across queries and im- 305

proves data locality for model weights. By loading 306

the required weights once and reusing them for 307

all queries, costly external memory accesses are 308

amortized across different queries, and runtime per 309

training step is also reduced to the same level as 310

the original setting of q = 1 (Table 1 Row 1). 311

Reducing B in a multi-query setting has the 312

added benefit of reducing padding tokens as shown 313

in Figure 2. Typically, the number of padding to- 314

kens increases with the batch size as the variability 315

of sequence length increases with batch size, and 316

sequences of varying lengths are padded to the 317

maximum sequence length in a batch. By adopting 318

a smaller batch size, the total padding decreases, 319

limiting wasted computation on padding tokens 320

during attention operations (Vaswani et al., 2017). 321

Although batching sequences of similar lengths can 322

also reduce padding, it disrupts random data shuf- 323

fling, which is crucial for preventing overfitting 324

and enhancing model generalizability (Yun et al., 325
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2021; Gürbüzbalaban et al., 2021; Bengio, 2012).326

Detailed statistics on the padding ratio for each task327

are given in Appendix C.328
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Figure 2: The standard batching approach pads shorter
sequences to the maximum sequence length within the
batch. A smaller batch size reduces the number of
padding tokens, resulting in less wasted computation.

3.2 Inner-loop Parallelization329

While outer-loop parallelization increases paral-330

lelism across multiple queries, one gradient esti-331

mation still requires two forward passes per query:332

one with positive perturbation and one with nega-333

tive perturbation, which are executed sequentially334

in the RGE algorithm.335

To further accelerate each gradient estimation,336

we propose inner-loop parallelization as shown in337

Algorithm 1 (line 7), which performs both forward338

passes simultaneously. As illustrated in Figure 1339

(b), each input batch and LoRA-B matrix is dupli-340

cated once more. One copy of the LoRA-B matrix341

is perturbed with positive noise, and the other with342

negative noise. By computing the loss difference in343

parallel, we can estimate the gradient using a sin-344

gle combined forward pass. This approach further345

reduces the external memory bandwidth burden346

for loading model weights by reusing the model347

weights across two forward passes. As a result,348

P-RGE achieves even faster runtime per training349

step compared to the sequential two forward passes350

execution in RGE’s original setting of q = 1.351

With inner-loop parallelization, the activation352

size at each layer is doubled, as it forwards two353

batches at the same time. However, this does not354

result in significant memory overhead. Unlike first-355

order methods, ZO methods allow activations from356

previous layers to be discarded during forward357

passes, rather than accumulating across all layers.358

This property, as noted in (Zhang et al., 2024b),359

enables ZO methods to scale more efficiently with360

long sequence lengths and large batch sizes com-361

pared to FO methods. To minimize memory costs 362

for storing LoRA-B weight matrices, it is possible 363

to keep a master copy of LoRA-B and instantiate 364

perturbed copies dynamically during the forward 365

pass. At each LoRA layer, only the master copy is 366

updated with the gradient and learning rate. Per- 367

turbed copies of LoRA-B are then instantiated and 368

deleted once the output is computed, ensuring that 369

the number of additional trainable parameters re- 370

mains the same as in the conventional LoRA-FA 371

method. 372

3.3 On-Device Training Workflow 373

For the on-device implementation of our proposed 374

methods, we use ExecuTorch (Meta-AI, 2024a) 375

as the inference engine. As the successor to Py- 376

Torch Mobile (Meta-AI, 2024c), ExecuTorch en- 377

ables model inference across various platforms 378

with different backends (e.g., CPUs, NPUs, DSPs) 379

using the same toolchains and SDKs provided by 380

PyTorch. 381

Deploying a PyTorch model (nn.Module) on 382

edge devices via ExecuTorch involves two main 383

steps. First, we convert the model into an Execu- 384

Torch program, a computation graph containing 385

the model’s parameters. This process produces a 386

binary file with ExecuTorch instructions that the 387

runtime interprets and executes. Second, we of- 388

fload the binary file and runtime library to the tar- 389

get device. The runtime, written in C++ and OS- 390

independent, includes an operator library tailored 391

for the hardware backend and executes the Execu- 392

Torch program. 393

However, the MeZO implementation is not na- 394

tively supported in ExecuTorch, as it requires sig- 395

nificant device-side modifications (e.g., resetting 396

the random number generator, generating noise, 397

extracting weights, applying gradients). For in- 398

stance, line 8 in Algorithm 1 requires extracting 399

model weights and applying noise, which is chal- 400

lenging because ExecuTorch does not provide an 401

API for this. To simplify deployment, we leverage 402

inner-loop parallelization and implement a dual- 403

forwarding LoRA module in PyTorch. By defin- 404

ing the P-RGE training procedure within the LoRA 405

module’s forward function, we ensure full exporta- 406

bility to an ExecuTorch program. This allows us 407

to generate and offload the program with minimal 408

server-side modifications, enabling training with- 409

out changes to the ExecuTorch runtime on edge 410

devices. 411

In our dual-forwarding LoRA module, as shown 412
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Figure 3: On-device training workflow via ExecuTorch with minimal modifications. The green box represents
additional procedure in addition to standard steps for inference deployment on edge devices.

Algorithm 2 Dual-forwarding LoRA-FA Module

1: Input: x ∈ R2×seq_len×k, A ∈ Rk×r, B ∈
R2×r×k, Wk×k, learning rate η, perturbation
scale ϵ, projected gradient g

2: diff = B[0]−B[1]
2

3: update = η · g · diff
ϵ

4: z = ϵ · randn_like(B[0])
5: B[0] = B[0]− diff− update + z
6: B[1] = B[1] + diff− update− z
7: output = xW + bmm(xA,B)
8: Return: output

in Algorithm 2, we first compute the difference413

between the perturbed weights B[0] (positive per-414

turbation) and B[1] (negative perturbation), which415

share the same random noise scaled by ϵ. Since416

resetting the random number generator with a seed417

is not an exportable operation in ExecuTorch (i.e.,418

line 5 and 6 in Algorithm 1), we store all copies419

of matrix B in memory rather than maintaining a420

single master copy. This allows us to recover the421

random noise without regenerating it. Lines 5 and422

6 in Algorithm 2 restore the original value of B,423

update the weights with gradients, and apply new424

random noise. The output is computed by com-425

bining the original linear transformation xW with426

a batched matrix multiplication between matrices427

xA and B. This approach extends to larger batch428

sizes and integrates with outer-loop parallelization.429

Figure 3 illustrates the workflow for enabling430

on-device fine-tuning using dual-forwarding LoRA431

module in ExecuTorch. Starting with a pre-trained432

PyTorch model, we integrate the dual-forwarding433

LoRA module as in conventional first-order LoRA434

training and redirect the scalar projected gradient435

g to each module. Following the standard Execu-436

Torch process, we export, compile, and offload the437

model to the edge device. On the device, the Execu-438

Torch runtime seamlessly executes the binary file,439

handling data loading and running the inference440

plan, which includes the dual-forwarding LoRA441

module to update the model without explicitly rec-442

ognizing it as a training task. For random noise443

generation, a custom operator can be integrated 444

into the runtime library using the ExecuTorch API 445

(Meta-AI, 2024b). 446

4 Experiments 447

We conduct comprehensive experiments on the 448

TinyLlama-1.1B (Zhang et al., 2024a) and Llama2- 449

7B (Touvron and et al, 2023) models across dif- 450

ferent systems to evaluate both fine-tuning perfor- 451

mance and system efficiency. 452

4.1 Model Fine-Tuning Performance 453

We compare two sets of baselines: the first em- 454

ploys an FO-SGD optimizer in both the full and 455

LoRA-FA parameter spaces, while the second uses 456

a ZO-SGD optimizer with MeZO (q = 1, B = 16) 457

in the same parameter spaces. For our method, P- 458

RGE, we ensure equivalent computation per train- 459

ing step while varying q by scaling the effective 460

batch size (E) to maintain a fixed E ∗ q value, such 461

that setting q = 4, E = 4 or q = 16, E = 1. 462

By using the same number of training steps (i.e., 463

20,000) for both P-RGE and MeZO, we ensure that 464

P-RGE does not exceed the computational budget 465

of the MeZO baseline for end-to-end training. For 466

reference, we also report zero-shot performance 467

without additional fine-tuning. Additional experi- 468

mental details, including dataset descriptions, train- 469

ing procedures, and hyperparameters, are provided 470

in Appendix D. 471

For the smaller-scale TinyLlama-1.1B model, 472

we evaluate its performance on the GLUE dataset 473

(Wang et al., 2019). The results in Table 2 show 474

that increasing the number of queries while de- 475

creasing the batch size outperforms the baseline 476

MeZO by up to 8.8% accuracy. For the larger 477

Llama2-7B model, we evaluate its performance 478

on SST-2 (Wang et al., 2019), WinoGrande (Sak- 479

aguchi et al., 2021), and the SuperGLUE (Wang 480

et al., 2020) dataset using the same experimental 481

setup. As shown in Table 2, P-RGE consistently im- 482

proves performance over the baseline that updates 483

the full parameter space by up to 9.87%. While 484

P-RGE introduces an additional hyperparameter q 485
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TinyLlama-1.1B Methods \ Tasks SST-2 RTE MRPC QQP QNLI WNLI
Zero-shot 55.3 52.3 68.3 32.8 52.7 43.6

FO-SGD
Full 93.7 80.5 80.4 83.2 83.3 56.3
LoRA-FA 92.7 78.7 80.6 83.4 83.7 59.2

ZO-SGD

MeZO (Full) 91.2 67.9 70.6 72.0 67.9 57.8
MeZO (LoRA-FA) 87.5 67.9 71.6 74.6 67.2 60.6
P-RGE (q = 4) 89.1 70.8 75.5 77.9 76.0 60.6
P-RGE (q = 16) 90.8 68.6 76.7 79.1 75.0 57.8

Llama2-7B Methods \ Tasks SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande
Zero-shot 58.0 59.2 71.9 51.9 50.0 54.6 79.0 62.7

FO-SGD
Full 96.2 86.6 86.4 69.2 73.8 83.7 87.0 66.9
LoRA-FA 95.6 81.2 85.5 62.5 63.5 80.4 86.0 66.1

ZO-SGD MeZO (Full) 93.7 72.6 81.1 64.4 54.6 69.9 81.0 64.4
MeZO (LoRA-FA) 94.4 72.9 80.7 64.4 60.0 73.1 86.0 64.5
P-RGE (q = 4) 94.9 76.2 83.0 63.5 64.4 74.5 85.0 65.4
P-RGE (q = 16) 94.2 77.6 82.5 65.4 62.9 74.9 87.0 65.7

Table 2: Performance of fine-tuning TinyLlama-1.1B and Llama2-7B on different tasks with different optimizers.
P-RGE outperforms the baseline MeZO in most tasks under the same computational budget.

Sequence length 64 128 256
Batch size 1 8 16 1 8 16 1 8 16

TinyLlama-1.1B
FO (Full) 11.32 12.00 12.78 11.44 13.00 14.76 11.77 15.62 20.02
FO (LoRA-FA) 4.15 5.00 5.98 4.27 5.98 7.81 4.51 7.81 11.58
MeZO (LoRA-FA) 2.09 2.19 2.32 2.10 2.32 2.56 2.13 2.56 3.05
P-RGE 2.11 2.32 2.56 2.14 2.56 3.05 2.20 3.05 3.98

Llama2-7B
FO (Full) 64.31 66.12 69.20 64.6 68.51 72.97 65.32 74.22 84.40
FO (LoRA-FA) 25.16 27.20 29.58 25.46 29.58 34.28 26.05 34.29 43.66
MeZO (LoRA-FA) 12.59 12.70 12.82 12.61 12.82 13.06 12.64 13.06 13.55
P-RGE 12.61 12.82 13.06 12.64 13.07 13.55 12.70 13.55 14.53

Table 3: Peak memory usage of TinyLlama-1.1B and
Llama2-7B for different sequence length and batch size
configurations.

for improved accuracy, setting q to either 4 or 16 is486

recommended in practice to minimize the need for487

extensive hyperparameter searching.488

4.2 System Performance489

We conduct measurements on a single NVIDIA490

A100 GPU to evaluate the server-side system per-491

formance of P-RGE compared to its baselines. The492

ZO-SGD optimizer, including both MeZO and P-493

RGE, performs forward passes in 16-bit floating-494

point precision to maximize computational effi-495

ciency, leveraging ZO’s tolerance for low-precision496

gradient estimation (Zhang et al., 2024b). We use497

the FO-SGD optimizer with mixed-precision train-498

ing enabled for memory and runtime evaluations.499

Memory Efficiency. We first evaluate the peak500

memory usage of P-RGE across different fixed se-501

quence length and batch size configurations. The502

reported memory footprint includes storage for503

weights, activations, gradients, CUDA kernels, and504

other implementation-specific details.505

Table 3 shows the memory usage of FO-SGD 506

(LoRA-FA), MeZO (LoRA-FA), and P-RGE with 507

both outer-loop and inner-loop parallelization. The 508

FO-SGD optimizer requires more memory due to 509

storing activations from all intermediate layers, de- 510

spite minimal gradient and optimizer state stor- 511

age through PEFT. In contrast, P-RGE slightly in- 512

creases memory usage due to the increased size of 513

the largest output tensor during the forward pass 514

and instantiation of multiple sets of LoRA trainable 515

parameters, yet it still demands significantly less 516

memory than the FO optimizer. For instance, with 517

Llama2-7B, a sequence length of 256, and a batch 518

size of 16, memory usage increases from 13.55 GB 519

to 14.53 GB for P-RGE, whereas FO requires over 520

40 GB. FO over full parameter space requires even 521

much more memory, going beyond the memory 522

capacity of edge devices. 523

End-to-end Wall-clock Time Speedup. Fig- 524

ure 4 shows the end-to-end wall-clock time for 525

fine-tuning TinyLlama-1.1B and Llama2-7B using 526

MeZO and P-RGE for 20,000 steps across various 527

tasks. By applying PEFT methods, both MeZO and 528

P-RGE reduce training time by minimizing sequen- 529

tial processing of model parameters, a benefit that 530

becomes more pronounced with larger models such 531

as Llama2-7B. P-RGE further improves training 532

runtime through inner-loop and outer-loop paral- 533

lelization achieving speedups of up to 4.3× over 534

MeZO (Full) and up to 1.9× over MeZO (LoRA- 535

FA). 536

Additional system profiling ablation studies, in- 537

cluding runtime breakdown under different fixed 538
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Figure 4: End-to-end wall-clock time of fine-tuning TinyLlama-1.1B and Llama2-7B for various configurations
across tasks.

sequence length and batch size configurations, as539

well as under different quantization schemes, are540

available in Appendix F.541

4.3 On-Device Training Experiments542

For on-device training experiments, we begin with543

a sanity check to verify per-step loss values on544

two edge platforms: the NVIDIA Jetson Nano545

Orin (8GB) GPU and the OnePlus 12 smartphone546

(12GB) NPU backend. This ensures that both plat-547

forms yield the same output given the same input548

as those observed on the server side. Detailed edge549

system specifications are provided in Appendix550

G. After verification, we measure and report the551

runtime per step of P-RGE across different fixed552

sequence length and batch size configurations, fol-553

lowing the same setup in Section 4.2. Due to out-554

of-memory issues, FO training is omitted from on-555

device experiments.556

On the Jetson platform, which runs on a Linux557

system, we use the PyTorch library for model for-558

ward passes. Table 4 shows the speedup achieved559

through P-RGE with inner-loop parallelization560

with NF4 weight-only quantization, showing up561

to 1.83× performance improvement.562

On the smartphone platform, which operates on563

Android OS without PyTorch support, we use the564

ExecuTorch workflow to perform ZO fine-tuning,565

integrating the dual-forwarding LoRA module as566

described in Section 3.3. Since we do not modify567

the runtime code on the edge device, vanilla MeZO568

baseline experiments are omitted. Additionally,569

due to current limitations in ExecuTorch’s support570

for weight-only quantization, we run TinyLlama-571

1.1B in FP16 mode on the NPU backend. Execu-572

Torch shows lower runtime efficiency for multi-573

batch inference compared to CUDA platforms, as574

it is primarily optimized for single-prompt process-575

ing, typical in chat-based LLMs. As shown in576

Table 5, with an effective batch size of 16, the NPU577

Sequence length 64 128
Batch size 1 2 4 8 1 2 4 8

TinyLlama-1.1B
MeZO (LoRA-FA) 0.69 0.71 0.89 1.28 0.70 0.88 1.27 2.18
P-RGE 0.43 0.49 0.69 1.15 0.49 0.69 1.13 2.00
Speedup ratio 1.62 1.45 1.29 1.12 1.42 1.29 1.12 1.09

Llama2-7B
MeZO (LoRA-FA) 3.10 3.37 4.44 6.46 3.37 4.44 6.47 10.83
P-RGE 1.69 2.22 3.22 5.38 2.22 3.22 5.37 8.60
Speedup ratio 1.83 1.52 1.38 1.20 1.52 1.38 1.21 1.26

Table 4: Runtime (sec/step) and speedup ratio of
inner-loop parallelization on Jetson GPU backend for
TinyLlama-1.1B and Llama2-7B with NF4 quantization.
The results demonstrate a consistent performance boost
across different batch sizes and sequence lengths.

Sequence length 64 128
Batch size 2 4 8 16 2 4 8 16
Runtime (sec/step) 1.04 2.34 4.70 10.43 2.49 4.83 10.36 15.73
Memory (GB) 3.36 3.53 3.75 3.88 3.43 3.68 3.91 4.46

Table 5: Runtime and memory usage of dual-
forwarding implementation on Android NPU backend
for TinyLlama-1.1B.

backend takes 15.73 seconds for one step with a 578

sequence length of 128, whereas Jetson completes 579

it in 8.60 seconds. 580

5 Conclusion 581

This work introduces parallelized randomized gra- 582

dient estimation (P-RGE) to address the computa- 583

tional and memory challenges of fine-tuning LLMs 584

in resource-constrained edge environments. P- 585

RGE leverages outer-loop and inner-loop paral- 586

lelization for efficient multi-query gradient estima- 587

tion, improving model accuracy without extra com- 588

putational overhead. Experiments show P-RGE 589

significantly enhances training speed and reduces 590

memory usage on both server and edge platforms, 591

enabling real-time, on-device fine-tuning. By in- 592

tegrating P-RGE with inference engines like Ex- 593

ecuTorch, we validate its versatility across diverse 594

hardware such as Android NPU and Jetson GPU. 595
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6 Limitations596

While P-RGE enables efficient on-device LLM fine-597

tuning, it has several limitations. First, P-RGE is598

tailored for the randomized gradient estimator in599

ZO optimization. Extending it to other ZO meth-600

ods, such as variance-reduced optimizers or adap-601

tive query selection, could further improve con-602

vergence speed. Second, Android’s NPU backend603

lacks native support for large matrix multiplica-604

tions, limiting batch processing efficiency. Future605

work will explore alternative backends, such as606

Vulkan for GPU acceleration. Third, P-RGE as-607

sumes static computational settings, whereas edge608

environments often have dynamic resource con-609

straints. Adapting query count, batch size, or preci-610

sion in response to runtime conditions is a promis-611

ing direction.612
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A MeZO Algorithm and Its Limitation799

Algorithm 3 MeZO with q > 1.

1: Input: parameters θ ∈ Rd, loss L : Rd →
R, step budget T , function query budget q,
perturbation scale ϵ, learning rate η

2: for t = 1, . . . , T do
3: for i = 1, . . . , q do
4: seeds, projected_grads = []
5: Sample batch B ⊂ D and random seed s
6: θ = PerturbParameters(θ, ϵ, s)
7: ℓ+ = L(θ;B)
8: θ = PerturbParameters(θ,−2ϵ, s)
9: ℓ− = L(θ;B)

10: θ = PerturbParameters(θ, ϵ, s)
11: proj_grads[i] = ℓ+−ℓ−

2ϵ
12: seeds[i] = s
13: end for
14: for i = 1, . . . , q do
15: Reset random generator with seeds[i]
16: for θj ∈ θ do
17: z ∼ N (0, 1)
18: θj = θj − ηt

q × proj_grads[i]× z
19: end for
20: end for
21: end for
22: Function PerturbParameters(θ, ϵ, s)
23: Reset random number generator with seed s
24: for θj ∈ θ do
25: z ∼ N (0, 1)
26: θj = θj + ϵz
27: end for
28: End Function

We evaluate the runtime efficiency of the MeZO800

optimizer, outlined in Algorithm 3, which is801

adapted from the original work. MeZO employs a802

random seed trick to eliminate the need for storing803

random noise, reducing peak memory usage.804

In each iteration, MeZO proceeds through four805

distinct loops. First, it introduces positive noise806

into the trainable parameters (line 6), followed by807

perturbing the weights in the opposite direction808

using the same noise (line 8). Next, the weights809

are restored to their original state before the update810

(line 10), and finally, the computed gradients are811

applied to update the weights (line 18).812

This method reduces memory overhead from813

O(d) to O(1) by avoiding the storage of random814

noise. However, the runtime cost escalates from815

O(1) to O(d) because each parameter update re-816

quires individual processing, which cannot be effi- 817

ciently parallelized. In practical settings, especially 818

with LLMs, iterating over the full parameter set 819

four times per update can significantly slow down 820

the training process, thus negating the benefits of 821

eliminating backpropagation. 822

In contrast, PyTorch’s FO optimizers utilize a 823

foreach implementation by default. This method 824

aggregates all layer weights into a single tensor dur- 825

ing parameter updates, which speeds up the compu- 826

tation. However, this approach also increases the 827

memory usage by O(d), as it requires maintaining 828

a copy of the entire gradients for the parameters 829

update. 830

Table 6 compares the runtime of the Llama2-7B 831

model using both FO-SGD and MeZO-SGD opti- 832

mizers (q = 1) over the full parameter space across 833

various batch sizes and sequence lengths on the 834

same standard benchmark introduced in Section 835

4.2. The FO optimizer is run with FP16 mixed- 836

precision training, while MeZO uses pure FP16 837

to maximize computational speed. To avoid out- 838

of-memory errors, we utilize two NVIDIA A100 839

(40GB) GPUs for the FO optimizer, which in- 840

curs additional GPU communication time in a dis- 841

tributed environment. 842

Sequence length 64 128 256
Batch size 1 4 8 1 4 8 1 4 8
FO-SGD 0.17 0.21 0.34 0.19 0.33 0.49 0.18 0.49 0.90
MeZO-SGD (q = 1) 0.43 0.48 0.56 0.43 0.56 0.73 0.45 0.73 1.05

Table 6: Runtime (sec/step) of Llama2-7B using FO and
MeZO optimizers over full parameter space.

When both the batch size and sequence length 843

are small, MeZO exhibits significantly higher run- 844

time due to the overhead of sequential operations 845

required to apply perturbations and gradients. How- 846

ever, as the batch size and sequence length increase, 847

where forward and backward passes, as well as 848

GPU communication, dominate the runtime, the 849

MeZO optimizer demonstrates improved perfor- 850

mance. This behavior highlights the importance of 851

applying PEFT methods with MeZO to mitigate 852

the computation overhead caused by the sequential 853

processing of model parameters. 854

B Preliminary Experiment of ZO with 855

Different PEFT Methods 856

We conducted a preliminary experiment by fine- 857

tuning the OPT-1.3B model (Zhang and et al, 2022) 858

for 10,000 iterations on the SST2 dataset (Wang 859
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et al., 2019) using ZO-SGD optimizer with differ-860

ent PEFT methods. We use hyperparameter grid861

search with learning rate ∈ {5e− 6, 5e− 5, 5e−862

4, 5e−3} and ϵ ∈ {1e−3, 1e−2}. LoRA (Hu et al.,863

2022), LoRA-FA (Zhang et al., 2023), and DoRA864

(Liu et al., 2024a) are configured with r = 16,865

and VeRA (Kopiczko et al., 2024) uses r = 1024.866

The results in Table 7 indicate that the LoRA-FA867

method outperforms other PEFT methods in terms868

of accuracy.869

PEFT Methods LoRA LoRA-FA DoRA VeRA
Accuracy 90.9 92.0 90.9 91.4

Table 7: ZO accuracy of OPT-1.3B on SST2 dataset
using different PEFT methods.

C Padding Statistics870

Figure 5 shows the average percentage of padding871

tokens used across different tasks and batch sizes.872

A larger batch size of 16 results in a higher percent-873

age of padding tokens across all tasks compared to874

a batch size of 4. This suggests that smaller batch875

sizes may help reduce padding overhead, poten-876

tially leading to more efficient computation.877
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Figure 5: Average percentage of padding tokens for
different tasks and batch sizes.

D Experiment Setup878

D.1 Datasets879

We evaluate the performance of the TinyLlama-880

1.1B model on six tasks from the GLUE dataset881

(Wang et al., 2019): sentiment analysis (SST2),882

paraphrase (MRPC and QQP), and natural lan-883

guage inference (QNLI, RTE, and WNLI). For884

the larger Llama2-7B model, evaluations were885

performed on two tasks from the GLUE dataset:886

SST2 and RTE. Additionally, the model was 887

tested on six tasks from the SuperGLUE dataset 888

(Wang et al., 2020), categorized as follows: 889

text classification (BoolQ, WSC, WIC, and Mul- 890

tiRC), multiple-choice (COPA), and question-and- 891

answering (SQuAD). We include one additional 892

multiple-choice task from WinoGrande (Sakaguchi 893

et al., 2021) dataset. For question-and-answering 894

tasks, we utilize the F1 score as a metric, while 895

accuracy metrics are used for the rest. All datasets 896

used in this work are in English. 897

D.2 Training procedure 898

We achieve text classification, multiple-choice, and 899

question-and-answering tasks through next-word 900

prediction, using prompt templates based on MeZO 901

(Malladi et al., 2023) and PromptSource (Bach and 902

et al., 2022). Table 8 presents the prompt templates 903

used for the datasets in our TinyLlama-1.1B and 904

Llama2-7B experiments. For SST-2, RTE, BoolQ, 905

WSC, WIC, MultiRC, COPA, and SQuAD, we 906

applied the template from MeZO (Malladi et al., 907

2023). We created templates for MRPC, QQP, 908

QNLI, and WNLI by following the suggestions 909

from PromptSource (Bach and et al., 2022), and we 910

adapted the same template for WinoGrande from 911

(Zhang et al., 2024b). 912

Unlike MeZO, we compute the loss value of pre- 913

diction over the entire vocabulary space instead of 914

only the vocabulary space of the ground true. For 915

these tests, we also adopt a low-volume data con- 916

dition, limiting our samples to 1,000 for training, 917

500 for validation, and 1,000 for testing, as pro- 918

posed in the original MeZO work (Malladi et al., 919

2023). FO-SGD experiments are trained for 1,000 920

iterations, and performance on the test dataset is 921

evaluated every 100 steps. ZO experiments are 922

trained for 20,000 iterations and performance on 923

the test dataset is evaluated every 500 steps. 924

D.3 Hyperparameters 925

We report the hyperparameters searching grids in 926

Table 9. For LoRA hyperparameters, we choose 927

the LoRA rank to be 16 and LoRA alpha to be 928

32. For P-RGE, with the constant batch size of 929

16, we search configurations (q = 1, E = 16), 930

(q = 4, E = 4), and (q = 16, E = 1). 931
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Dataset Type Prompt
SST-2 cls. <text> It was terrible/great
RTE cls. <premise> Does this mean that “<hypothesis>” is true? Yes or No?

Yes/No
MRPC cls. Do the following two sentences mean the same thing? Yes or No?

Sentence 1: <sentence1>
Sentence 2: <sentence2>
Yes/No

QQP cls. Are these two questions asking the same thing? Yes or No?
Question 1: <question1>
Question 2: <question2>
Yes/No

QNLI cls. Does this sentence answer the question? Yes or No?
Sentence 1: <sentence1>
Sentence 2: <sentence2>
Yes/No

WNLI cls. Given the first sentence, is the second sentence true? Yes or No?
Sentence 1: <sentence1>
Sentence 2: <sentence2>
Yes/No

BoolQ cls. <passage> <question> <answer>?
Yes/No

WSC cls. <text> In the previous sentence, does the pronoun “<span2>” refer to <span1>?
Yes/No

WIC cls. Does the word “<word>” have the same meaning in these two sentences?
<sent1> <sent2>
Yes, No?

MultiRC cls. <paragraph> Question: <question>
I found this answer “<answer>”. Is that correct?
Yes or No?

COPA mch. <premise> so/because <candidate>

WinoGrande mch. <context> <subject> <object>

SQuAD QA Title: <title>
Context: <context>
Question: <question>
Answer:

Table 8: The prompt template of the datasets used in the experiments.

TinyLlama-1.1B
FO (Full) Batch size {8}

Learning rate {1e-5, 5e-5, 8e-5}
FO (LoRA-FA) Batch size {8}

Learning rate {1e-4, 3e-4, 5e-4}
MeZO (Full) Batch size {16}

Learning rate {1e-7, 5e-7, 1e-6}
ϵ 1e-3

P-RGE Batch size {16}
q {1, 4, 16}
Learning rate {5e-5, 1e-4, 5e-4, 1e-3}
ϵ 1e-2

Llama2-7B
Experiment Hyperparameters Values
FO (Full) Batch size {8}

Learning rate {1e-5, 5e-5, 8e-5} or {1e-7, 5e-7, 8e-7} for SQuAD
FO (LoRA-FA) Batch size {8}

Learning rate {1e-4, 3e-4, 5e-4}
MeZO (Full) Batch size {16}

Learning rate {1e-7, 5e-7, 1e-6}
ϵ 1e-3

P-RGE Batch size {16}
q {1, 4, 16}
Learning rate {5e-5, 1e-4, 5e-4, 1e-3}
ϵ 1e-2

Table 9: Hyperparameters used for TinyLlama-1.1B and Llama2-7B experiments. Note that MeZO (LoRA-FA) is a
special case of P-RGE with q = 1.

13



E Additional FO Experiments932

We also provide additional experimental results on933

FO-Adam in Tables 10 and 11. While FO-Adam934

can enhance model performance, it introduces a935

significantly higher memory overhead, particularly936

when updating all model parameters. This is be-937

cause Adam maintains two state variables, moment938

estimates of the first and second order, for each939

parameter, effectively tripling the memory require-940

ment compared to storing only the model param-941

eters. Therefore, FO-Adam is typically deployed942

in distributed multi-GPU environments, which fur-943

ther increases runtime due to the overhead of inter-944

device communication.945

Tasks SST-2 RTE MRPC QQP QNLI WNLI
Full 91.9 72.5 77.4 82.4 80.8 56.3
LoRA-FA 94.2 82.6 82.3 84.4 86.5 56.3

Table 10: Performance of fine-tuning TinyLlama-1.1B
on different tasks with FO-Adam optimizers.

Tasks SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande SQuAD
Full 92.5 78.7 80.6 63.4 67.2 71.7 81.0 68.2 79.2
LoRA-FA 96.0 88.1 85.7 79.8 75.1 84.2 87.0 71.8 77.2

Table 11: Performance of fine-tuning Llama2-7B on
different tasks with FO-Adam optimizers.

F Ablation Studies on System946

Performance of P-RGE947

F.1 Efficiency of outer-loop parallelization948

We measure the runtime and memory usage of P-949

RGE, implemented using outer-loop parallelization950

only for the Llama2-7B model across different ef-951

fective batch size and fixed sequence lengths con-952

figurations. As shown in Table 12, the runtime953

remains nearly identical across different combina-954

tions of the number of queries q and effective batch955

size E, given that the batch size remains constant at956

B = 16, which indicates our outer-loop paralleliza-957

tion implementation does not incur computation958

overhead. Peak memory usage increases slightly959

due to the instantiation of multiple LoRA trainable960

parameters at each layer.961

Sequence length 64 128 256
q 1 4 16 1 4 16 1 4 16
Effective batch size 16 4 1 16 4 1 16 4 1
Runtime (sec/step) 0.18 0.20 0.19 0.35 0.37 0.32 0.69 0.67 0.71
Memory (GB) 12.61 12.69 12.81 12.64 12.80 13.14 12.70 13.04 13.53

Table 12: System performance of outer-loop paralleliza-
tion for Llama2-7B under the same batch size of 16.

F.2 Efficiency of inner-loop parallelization 962

We measure the runtime and memory usage of P- 963

RGE, implemented using inner-loop parallelization 964

only for the Llama2-7B model across fixed differ- 965

ent sequence length and batch size configurations. 966

As shown in Table 13, the runtime speedup is up 967

to 1.79× at a sequence length of 64 and batch size 968

of 1. This improvement is primarily due to reusing 969

model weights across two forward passes, which 970

reduces cache access and increases operation in- 971

tensity. However, the benefits diminish as opera- 972

tion intensity increases and the system becomes 973

compute-bound. 974

Sequence length 64 128 256
batch size 1 8 16 1 8 16 1 8 16
MeZO (q = 1, LoRA-FA) 0.07 0.11 0.18 0.07 0.19 0.35 0.07 0.35 0.69
P-RGE (q = 1, inner) 0.04 0.10 0.18 0.04 0.18 0.34 0.06 0.34 0.67

Table 13: Runtime (sec/step) of inner-loop paralleliza-
tion for Llama2-7B under different sequence length and
batch size configurations.

Additionally, we evaluate the speedup achieved 975

by inner-loop parallelization under weight-only 976

INT8 and NF4 quantization. As illustrated in Fig- 977

ure 6, inner-loop parallelization achieves the great- 978

est speedup in conjunction with NF4 quantization, 979

reaching up to a 1.97× improvement over the se- 980

quential execution of two forward passes. Since 981

NF4 dequantization is more computationally inten- 982

sive than INT8 during forward passes, inner-loop 983

parallelization enhances efficiency by dequantizing 984

weights only once per training step, reducing the 985

overhead from repeated dequantization. 986

F.3 End-to-end training efficiency 987

Tables 15 - 18 provide additional details on per- 988

task runtime and memory usage to complement 989

the experimental results in Table 2. In these ta- 990

bles, MeZO (Full) represents the baseline configu- 991

ration in which all model parameters are updated 992

during training. For MeZO (LoRA-FA), results 993

are presented for both the standard implementation 994

without optimizations and a variant enhanced with 995

inner-loop parallelization. For P-RGE, results are 996

shown for two setups: one using only outer-loop 997

parallelization and another that combines both in- 998

ner and outer-loop parallelization strategies. As 999

noted in Section 4.2, when both parallelization 1000

strategies are enabled, P-RGE achieves speedups 1001

of up to 4.3× over MeZO (Full) and up to 1.9× 1002

over MeZO (LoRA-FA). 1003

Regarding memory usage, enabling both inner 1004
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Figure 6: Runtime speedup per training step of TinyLlama-1.1B and Llama2-7B for different quantization methods,
sequence lengths, and batch sizes.

and outer-loop parallelization results in higher1005

memory consumption for both models compared to1006

configurations using only outer-loop parallelization.1007

This increase is due to the concurrent computation1008

of two forward passes when inner-loop paralleliza-1009

tion is enabled. Specifically, for Llama2-7B, tasks1010

like SQuAD and MultiRC see an increase in mem-1011

ory usage of up to 33% when using inner-loop1012

parallelization due to larger sequence length. De-1013

spite this increase, the memory efficiency remains1014

within acceptable bounds.1015

G Edge Devices Specifications1016

Table 14 presents the specifications of the edge1017

computing devices used in the experiments, detail-1018

ing the CPU, memory, and accelerator components.1019

Device CPU Memory Accelerator
NVIDIA Jetson 6× 1.5GHz Cortex- 8GB 68GB/s 1024-core Ampere
Orin Nano A78AE LPDDR5 GPU 625MHz
OnePlus 12 1× 3.3GHz Cortex-X4 12GB 77GB/s Hexagon NPU

3× 3.2GHz Cortex-A720 LPDDR5
2× 3.0GHz Cortex-A720
2× 2.3GHz Cortex-A520

Table 14: Edge devices used in the experiments.
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Methods \ Tasks SST-2 RTE MRPC QQP QNLI WNLI
MeZO (Full) (q = 1) 38.31 61.51 45.71 40.76 46.30 43.57
MeZO (LoRA-FA) (q = 1)

standard 34.66 55.53 35.45 35.00 37.44 34.40
inner 23.55 54.07 35.72 28.76 36.59 33.22

P-RGE (q = 4)
outer only 36.27 45.22 36.90 36.19 35.33 37.23
inner + outer 23.68 43.75 34.07 25.83 31.97 29.09

P-RGE (q = 16)
outer only 35.57 38.18 35.38 35.19 35.86 35.34
inner + outer 24.77 31.98 29.90 24.31 27.43 25.84

Table 15: Runtime (min/task) of fine-tuning TinyLlama-1.1B across different tasks using different ZO methods.

Methods \ Tasks SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande SQuAD
MeZO (Full) (q = 1) 159.44 288.10 384.07 209.72 173.01 526.49 146.40 154.74 480.90
MeZO (LoRA-FA) (q = 1)

standard 54.20 213.81 329.46 116.79 70.55 504.74 40.77 48.07 457.69
inner 55.22 210.30 322.64 118.03 72.75 505.54 36.57 48.62 440.63

P-RGE (q = 4)
outer only 49.11 165.53 251.63 91.87 66.55 505.70 44.65 49.01 376.34
inner + outer 45.17 164.21 248.55 92.17 67.52 496.32 37.38 46.89 371.29

P-RGE (q = 16)
outer only 43.91 111.80 171.84 71.14 60.31 438.24 41.96 46.41 281.15
inner + outer 36.99 111.54 171.14 72.40 61.10 421.41 35.91 43.41 275.98

Table 16: Runtime (min/task) of fine-tuning Llama2-7B across different tasks using different ZO methods.

Methods \ Tasks SST-2 RTE MRPC QQP QNLI WNLI
MeZO (Full) (q = 1) 2.56 3.38 2.74 2.74 3.17 2.77
MeZO (LoRA-FA) (q = 1)

standard 2.35 3.27 2.63 2.63 3.06 2.66
inner 2.63 4.46 3.18 3.18 4.04 3.24

P-RGE (q = 4)
outer only 2.37 3.29 2.65 2.65 3.07 2.68
inner + outer 2.67 4.50 3.22 3.22 4.07 3.28

P-RGE (q = 16)
outer only 2.44 3.18 2.72 2.69 3.14 2.75
inner + outer 2.81 4.28 3.36 3.30 4.22 3.42

Table 17: Peak memory usage (GB) of fine-tuning TinyLlama-1.1B across different tasks using different ZO
methods.

Methods \ Tasks SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande SQuAD
MeZO (Full) 13.64 16.23 18.39 14.51 13.82 18.39 13.60 13.60 18.39
MeZO (LoRA-FA) (q = 1)

standard 13.41 16.00 18.16 14.27 13.58 18.16 12.98 13.15 18.16
inner 14.23 19.41 23.73 15.96 14.57 23.73 13.37 13.71 23.73

P-RGE (q = 4)
outer only 13.53 16.12 18.28 14.40 13.71 18.28 13.10 13.27 18.28
inner + outer 14.47 19.65 23.97 16.20 14.82 23.97 13.61 13.95 23.97

P-RGE (q = 16)
outer only 14.03 16.10 18.77 14.92 14.20 18.77 13.59 13.77 18.77
inner + outer 15.45 19.59 24.95 17.17 15.79 24.95 14.58 14.93 24.95

Table 18: Peak memory usage (GB) of fine-tuning Llama2-7B across different tasks using different ZO methods.
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