Enabling Efficient LLM Fine-Tuning at the Edge via Inference Engines

Anonymous ACL submission

Abstract

Large language models (LLMs) have demon-
strated remarkable capabilities across multiple
domains and fine-tuning is an essential step in
adapting a pre-trained model to downstream
tasks with user data. Given the sensitive na-
ture of such private data, it is desirable to fine-
tune these models on edge devices to improve
user trust. However, fine-tuning on resource-
constrained edge devices presents significant
challenges due to substantial memory, com-
putational demands, and limited infrastructure
support for backpropagation. We observe that
inference engines (e.g., ExecuTorch) can be re-
purposed for fine-tuning by leveraging zeroth-
order (ZO) optimization. Memory efficient ZO
(MeZO) proposes to estimate gradient using
only two forward passes, reducing the mem-
ory cost to the same as inference. However,
Z0 methods require multiple queries of gradi-
ent estimations at each training step to achieve
good performance. Since multi-query gradi-
ent estimation requires multiple independent
forward passes, our key insight is that these
can be executed in parallel. To this end, we
propose parallelized randomized gradient es-
timation (P-RGE), which employs a novel de-
sign based on parameter-efficient fine-tuning
techniques to achieve high-speed training while
still harvesting the model performance boost,
without increasing computational cost. More-
over, it seamlessly extends inference engines
without altering their underlying runtime code
and only minimal server-side modifications are
needed. Through extensive experiments, we
demonstrate that P-RGE delivers substantial
gains in fine-tuning efficiency and accuracy,
thereby enabling real-time, on-device personal-
ization of LLMs under strict memory and com-
pute budgets. Code available at: anonymous.
4open.science/r/PRGE-ARR-4FES5.

1 Introduction

Large Language Models (LLMs) have demon-
strated strong performance across various appli-

cations, including chatbots and image generation
(OpenAl et al., 2024; Chowdhery and et al., 2022;
Anil and et al., 2024). Fine-tuning is a crucial step
for adapting LLMs to specific tasks, but it demands
significant memory resources for storing model pa-
rameters, gradient, activation, and optimizer state
(Wan et al., 2024). This memory overhead makes
fine-tuning infeasible on resource-constrained de-
vices such as smartphones and edge platforms (Zhu
et al., 2023; Yin et al., 2024). Moreover, existing
on-device frameworks like ExecuTorch (Meta-Al,
2024a) and TensorFlow Lite (Google, 2020) primar-
ily optimize inference, leaving fine-tuning largely
unsupported.

Recent advancements in parameter-efficient fine-
tuning (PEFT) (Hu et al., 2022; Houlsby et al.,
2019) and memory-efficient strategies (Dettmers
et al., 2023; Lv et al., 2024) reduce the memory
footprint of model weights and optimizer states.
However, the storage of activation during back-
propagation remains a bottleneck, particularly for
large models (Lv et al., 2024). Techniques such
as gradient checkpointing (Chen et al., 2016) and
mixed-precision training (Micikevicius et al., 2018)
help mitigate activations memory usage but still
rely on automatic differentiation, which is not well-
supported in edge environments.

Unlike conventional first-order (FO) optimiza-
tion methods, zeroth-order (ZO) methods do not re-
quire backpropagation to compute gradients (Duchi
et al., 2015; Nesterov and Spokoiny, 2017). The
memory-efficient ZO (MeZO) method is proposed
to further reduce memory overhead and relies on
only two forward passes to estimate the gradient
along one random direction (i.e., single-query gra-
dient estimation) (Malladi et al., 2023). Therefore,
Z0 methods eliminate the need to store activations
and gradients, making them particularly attractive
for memory and computation-efficient LLM fine-
tuning (Zhang et al., 2024b).

However, models trained using ZO methods typ-

anonymous.4open.science/r/PRGE-ARR-4FE5
anonymous.4open.science/r/PRGE-ARR-4FE5
anonymous.4open.science/r/PRGE-ARR-4FE5

ically exhibit lower accuracy than those using FO
methods. To bridge this gap, gradient estimation
at each training step can be improved by incorpo-
rating multiple queries (i.e., averaging the gradi-
ent estimations along multiple random directions)
(Zhang et al., 2024b). In a multi-query setting,
each query is executed sequentially. Given a fixed
computational budget (i.e., fixed total FLOPs), ZO
methods like MeZO attempt to scale up the num-
ber of queries while proportionally reducing the
number of training steps and find that this trade-off
of using multi-query does not necessarily lead to
better final model performance or reduction in total
wall-clock training time (Malladi et al., 2023).

In this work, we aim to leverage multi-query
gradient estimation to boost model performance
while still achieving speedups under a fixed com-
putational budget by enhancing computational ef-
ficiency, particularly in resource-constrained sce-
narios. We observe that reducing batch size while
keeping the number of training steps unchanged
improves final model performance in a multi-query
setting, yet it also prolongs training because each
query is processed sequentially. To address this, we
eliminate serial processing and maximize parallel
execution of forward passes, both across queries
and within each query at every training step. Our
key contributions are as follows:

* We introduce a parallelized randomized gradient
estimation (P-RGE) technique that achieves high
parallel efficiency by leveraging both outer-loop
and inner-loop parallelization. By executing
multiple forward passes in parallel, P-RGE effec-
tively amortizes the memory access cost of load-
ing model parameters, thereby reducing training
time while improving model performance.

* We implement a P-RGE PEFT module that seam-
lessly integrates P-RGE into ExecuTorch with-
out requiring any modifications to its runtime
code. Our approach is realized through minimal
server-side code changes only, making it practi-
cal for on-device fine-tuning.

* We demonstrate that our method achieves sub-
stantial wall-clock time speedups and memory
savings while improving model performance.
Our approach results in up to 4.3x end-to-end
training speedups and up to 9.87% improvement
in accuracy.

2 Background and Related Work

Low-Rank Adaptation. To reduce the resource
demands of LLM fine-tuning, parameter-efficient
fine-tuning methods update only a small subset of
parameters. LoRA (Hu et al., 2022) introduces
trainable low-rank matrices A € R¥» <" and B €
R™*kout while freezing the original weight matrix
W. Since r < min(k;y, Koyt), the number of train-
able parameters is significantly reduced. The for-
ward pass is computed as y = xW + xAB, where
A is initialized randomly and B starts at zero,
ensuring no initial deviation from the pre-trained
model. Variations such as LoRA-FA (Zhang et al.,
2023) further reduce trainable parameters by freez-
ing A and updating only B.

Zeroth-Order Optimization. ZO optimization
methods have been widely applied across various
machine learning applications (Chen et al., 2017;
Sun et al., 2022; Wang et al., 2022; Liu et al,,
2024c). Among ZO gradient estimators, the ran-
domized gradient estimator (RGE) is particularly
effective, especially for fine-tuning LLMs (Malladi
et al., 2023). Given a labeled dataset D and a model
with parameters @ € R, let the loss function on a
minibatch B C D of size B be denoted as L(0; B).
The RGE estimates the gradient of the loss £ with
respect to the parameters 6 on a minibatch B via:

if oy

. 1 ~[L(0+ezi;B) — L(O — ezi: B
Vﬁ("?B):;Z{ ()26 ()

i=1

where z; ~ N (0, Id), q is the query number, and e
is the perturbation scale. The choice of ¢ balances
the variance of the ZO gradient estimate and the
computational cost. According to (Zhang et al.,
2024b), the variance of the RGE is approximately
O(d/q).

Z0-SGD replaces FO gradients with ZO gra-
dient estimates: ;11 = 6; — n@ﬁ(@; B;), with
learning rate 7 at timestpe ¢t. The choice of op-
timizer (SGD) is orthogonal to ZO optimization
methods, but in our preliminary experiments we
find adaptive optimizers such as Adam would not
necessarily improve LLM fine-tuning performance.

70 LLM Fine-Tuning. Conventional RGE
training requires storing perturbation noise z, effec-
tively doubling inference memory. MeZO (Malladi
et al., 2023) eliminates this overhead by storing
only the random seed and regenerating z on de-
mand. While MeZO also considers ¢ > 1, it com-
pensates for the increased computation per step by

proportionally reducing the total number of training
steps (e.g., halving the steps when ¢ = 2). Under
this fixed computational budget, they observe that
larger ¢ does not improve accuracy compared to
q = 1, prompting MeZO to adopt ¢ = 1 as the de-
fault setting. In contrast, Zhang et al. benchmarked
various ZO optimization methods, including RGE
with ¢ > 1, and confirmed that when computa-
tional constraints are lifted, larger ¢ can indeed
enhance performance.

Sparse-MeZO (Liu et al., 2024b) selectively up-
dates parameters but is sensitive to hyperparam-
eters. Extreme-sparse-MeZO (Guo et al., 2025)
integrates first-order Fisher-based sparse train-
ing. MeZO-SVRG (Gautam et al., 2024) im-
proves variance reduction but occasionally requires
full-dataset gradient estimation, increasing cost.
AdaZeta (Yang et al., 2024) adaptively schedules
queries but still relies on sequential gradient esti-
mations.

On-device LLM Training. Several methods
address the memory and compute constraints of
on-device LLM training. PockEngine (Zhu et al.,
2023) updates only select layers, skipping gradient
calculations for less critical parameters. FwdLLM
(Xu et al., 2024) applies numerical differentiation
to approximate gradients, lowering communica-
tion costs in federated learning but is limited to
CUDA environment. HETLORA (Cho et al., 2024)
enables federated LoRA training across heteroge-
neous devices but requires further real-world test-
ing due to high activation memory costs. Pock-
etLLM (Peng et al., 2024) evaluates MeZO for
on-device fine-tuning but does so in a simulated
Linux environment rather than mobile devices.

3 Method
Query Batchsize Training steps Performance Wall-clock time
1 B T X 4
q B T/q X v
q B/q T v X

Table 1: Different trade-offs for RGE.

Table 1 summarizes different trade-offs in RGE
under a fixed computational budget. One strategy
(Row 2) suggested by MeZO compensates for the
increased number of queries by reducing the total
number of training steps. Here, we introduce an
alternative trade-off: increasing the query count
while decreasing the batch size, rather than reduc-
ing training steps. We later demonstrate that this

Algorithm 1 Parallelized Randomized Gradient
Estimation (P-RGE) Algorithm.

1: Input: learnable parameters 8; € R%, frozen
parameters 67 € R loss £ : R% xR — R,
step budget T, query budget g, effective batch
size I, perturbation scale ¢, learning rate n

2: fort =1to7 do

3: Sample batch B C D

4: for ¢ = 1to ¢ do in parallel > Outer

5: Sample random seed s;

6: zi~N (0, 1) using s;

7 for k € {+1, —1} do in parallel > Inner

8 0" = 0, + kez;

9 (= £(6,0;);B)

10: end for

g+ _ p(=1)
11: g = ———
2€
12: Store s; and g;

13: end for .
q
14: 0,60, —n < > gz‘Zz’>
qi=1
15: end for

approach consistently outperforms the strategy in
Row 3. Nonetheless, each training step takes longer
than it would with a single-query (¢ = 1) because
the gradient estimations are executed sequentially,
even though the total compute remains the same.
While this trade-off improves final model accuracy,
our objective is to maintain high accuracy while
minimizing per-step execution time.

In general, performing g-query RGE requires 2¢
forward passes. A naive implementation (detailed
in Appendix A) would run these forward passes in
a two-level nested loop: the outer loop iterates over
each random direction, and the inner loop executes
the two forward passes required for gradient estima-
tion. Such a sequential approach repeatedly loads
model parameters into computational units, caus-
ing significant overhead. However, these passes
are entirely independent, distinguished only by the
random perturbations applied to the trainable pa-
rameters. Building on this key observation, we pro-
pose parallelized randomized gradient estimation
(P-RGE) to address the runtime overhead inherent
in multi-query RGE. P-RGE combines outer-loop
parallelization and inner-loop parallelization to
perform multiple forward passes in parallel, sub-
stantially reducing per-step latency while harvest-
ing the accuracy benefits of multi-query gradient
estimation.

[W € RF*F (shared)]

[Frozen Parameters j [Trainable Parameters]

I A€
B

(shared)

(a) Outer-loop parallelization

(b) Inner-loop parallelization

Figure 1: Overview of the proposed P-RGE method. Model weights are reused across multiple forward passes,
reducing the expensive cost of external memory access and improving runtime per training step.

3.1 Outer-loop Parallelization

One straightforward solution to perform multiple
gradient estimations in parallel is to create multiple
copies of the model inputs and trainable parame-
ters, then execute all forward passes in parallel
(Algorithm 1, line 4). However, this approach
incurs large memory overhead from duplicating
weights, as well as computational burdens from
parallelizing over multiple queries. Particularly, if
each query step already maximally uses the avail-
able compute resources, then parallelly executing
multiple queries is infeasible.

To mitigate memory overhead and avoid sequen-
tial parameter operations, we employ PEFT meth-
ods, which reduce the number of trainable parame-
ters. The random seed trick from MeZO (Malladi
et al., 2023) shrinks the memory overhead from
O(d) to O(1) but also increases runtime associated
with parameter perturbation from O(1) to O(d),
as each parameter must be updated individually.
This can substantially slow training for large mod-
els, potentially offsetting the speedups gained from
removing backpropagation. Hence, reducing the
number of trainable parameters using PEFT is cru-
cial for enabling MeZO for overall computational
efficiency.

Our preliminary experiments (see Appendix B)
indicate that combining ZO with LoRA-FA per-
forms better than alternatives such as DoRA (Liu
et al., 2024a) and VeRA (Kopiczko et al., 2024),
making LoRA-FA our default choice, but our ap-
proach can be adapted to any other PEFT method.

To further improve the memory usage efficiency
we propose to carefully schedule the operations to
minimize needless data movement between mem-
ory and compute units. As illustrated in Figure 1(a),

we start by replicating the model input batch (x)
q times. We keep both W and LoRA-A matri-
ces fixed, and replicate only the LoRA-B matrix ¢
times. Each B copy is then perturbed by distinct
random noise during its forward pass. Next, the
replicated inputs (z1, 22, . . . , 4) undergo batched
matrix multiplication with their respective LORA-
B copies.

When performing P-RGE with ¢ > 1, we propot-
tionally reduce the batch size to B/q = E, where
FE is referred to as the effective batch size. For
instance, if the original setting uses ¢ = 1 and
B = 16, our approach can increase g to 4 while
setting E/ = 4, thereby maintaining ¢F = B.

One benefit of outer-loop parallelization is that
it also increases parallelism across queries and im-
proves data locality for model weights. By loading
the required weights once and reusing them for
all queries, costly external memory accesses are
amortized across different queries, and runtime per
training step is also reduced to the same level as
the original setting of ¢ = 1 (Table 1 Row 1).

Reducing B in a multi-query setting has the
added benefit of reducing padding tokens as shown
in Figure 2. Typically, the number of padding to-
kens increases with the batch size as the variability
of sequence length increases with batch size, and
sequences of varying lengths are padded to the
maximum sequence length in a batch. By adopting
a smaller batch size, the total padding decreases,
limiting wasted computation on padding tokens
during attention operations (Vaswani et al., 2017).
Although batching sequences of similar lengths can
also reduce padding, it disrupts random data shuf-
fling, which is crucial for preventing overfitting
and enhancing model generalizability (Yun et al.,

2021; Giirbiizbalaban et al., 2021; Bengio, 2012).
Detailed statistics on the padding ratio for each task
are given in Appendix C.

Padding on batch size of 8 Padding on batch size of 2

Sample Index
00U LI —
I I I I I I I I
I I I I I I I I
0N U LI —

! 1]
1 32 64 96 128
Token Count

1 32 64 96 128
Token Count

Figure 2: The standard batching approach pads shorter
sequences to the maximum sequence length within the
batch. A smaller batch size reduces the number of
padding tokens, resulting in less wasted computation.

3.2 Inner-loop Parallelization

While outer-loop parallelization increases paral-
lelism across multiple queries, one gradient esti-
mation still requires two forward passes per query:
one with positive perturbation and one with nega-
tive perturbation, which are executed sequentially
in the RGE algorithm.

To further accelerate each gradient estimation,
we propose inner-loop parallelization as shown in
Algorithm 1 (line 7), which performs both forward
passes simultaneously. As illustrated in Figure 1
(b), each input batch and LoRA-B matrix is dupli-
cated once more. One copy of the LoRA-B matrix
is perturbed with positive noise, and the other with
negative noise. By computing the loss difference in
parallel, we can estimate the gradient using a sin-
gle combined forward pass. This approach further
reduces the external memory bandwidth burden
for loading model weights by reusing the model
weights across two forward passes. As a result,
P-RGE achieves even faster runtime per training
step compared to the sequential two forward passes
execution in RGE’s original setting of ¢ = 1.

With inner-loop parallelization, the activation
size at each layer is doubled, as it forwards two
batches at the same time. However, this does not
result in significant memory overhead. Unlike first-
order methods, ZO methods allow activations from
previous layers to be discarded during forward
passes, rather than accumulating across all layers.
This property, as noted in (Zhang et al., 2024b),
enables ZO methods to scale more efficiently with
long sequence lengths and large batch sizes com-

pared to FO methods. To minimize memory costs
for storing LoORA-B weight matrices, it is possible
to keep a master copy of LoORA-B and instantiate
perturbed copies dynamically during the forward
pass. At each LoRA layer, only the master copy is
updated with the gradient and learning rate. Per-
turbed copies of LoORA-B are then instantiated and
deleted once the output is computed, ensuring that
the number of additional trainable parameters re-
mains the same as in the conventional LoORA-FA
method.

3.3 On-Device Training Workflow

For the on-device implementation of our proposed
methods, we use ExecuTorch (Meta-Al, 2024a)
as the inference engine. As the successor to Py-
Torch Mobile (Meta-Al, 2024c), ExecuTorch en-
ables model inference across various platforms
with different backends (e.g., CPUs, NPUs, DSPs)
using the same toolchains and SDKSs provided by
PyTorch.

Deploying a PyTorch model (nn.Module) on
edge devices via ExecuTorch involves two main
steps. First, we convert the model into an Execu-
Torch program, a computation graph containing
the model’s parameters. This process produces a
binary file with ExecuTorch instructions that the
runtime interprets and executes. Second, we of-
fload the binary file and runtime library to the tar-
get device. The runtime, written in C++ and OS-
independent, includes an operator library tailored
for the hardware backend and executes the Execu-
Torch program.

However, the MeZO implementation is not na-
tively supported in ExecuTorch, as it requires sig-
nificant device-side modifications (e.g., resetting
the random number generator, generating noise,
extracting weights, applying gradients). For in-
stance, line 8 in Algorithm 1 requires extracting
model weights and applying noise, which is chal-
lenging because ExecuTorch does not provide an
API for this. To simplify deployment, we leverage
inner-loop parallelization and implement a dual-
forwarding LoRA module in PyTorch. By defin-
ing the P-RGE training procedure within the LoRA
module’s forward function, we ensure full exporta-
bility to an ExecuTorch program. This allows us
to generate and offload the program with minimal
server-side modifications, enabling training with-
out changes to the ExecuTorch runtime on edge
devices.

In our dual-forwarding LoRA module, as shown

Offline Compile-time (Server)

Online Runtime (Edge)

] " . 1 f { 1
' Model |modify (Dual-Forwarding | €XPort Exported |compile (ExecuTorch) 1 offload ! Load Data 3 Kernel Library i ‘
! Authoring [m.reaue’| LoRA module | m.toduié Graph Expor tIR Program [| fiatbuffer ! & Program e Custom Op = .
' [:

Figure 3: On-device training workflow via ExecuTorch with minimal modifications. The green box represents
additional procedure in addition to standard steps for inference deployment on edge devices.

Algorithm 2 Dual-forwarding LoRA-FA Module

1: Input: x € R2xsedlenxk A < Rixr B ¢
R2X7xk Wk*E learning rate 7, perturbation
scale €, projected gradient g

diff = BOBOI

update:n-g-%ff

z = € - randn_like(B[0])

B(0] = B[0] — diff — update + z

B[1] = BJ[1] + diff — update — z

output = xW + bmm(xA, B)

Return: output

in Algorithm 2, we first compute the difference
between the perturbed weights B[0] (positive per-
turbation) and B[1] (negative perturbation), which
share the same random noise scaled by €. Since
resetting the random number generator with a seed
is not an exportable operation in ExecuTorch (i.e.,
line 5 and 6 in Algorithm 1), we store all copies
of matrix B in memory rather than maintaining a
single master copy. This allows us to recover the
random noise without regenerating it. Lines 5 and
6 in Algorithm 2 restore the original value of B,
update the weights with gradients, and apply new
random noise. The output is computed by com-
bining the original linear transformation xW with
a batched matrix multiplication between matrices
xA and B. This approach extends to larger batch
sizes and integrates with outer-loop parallelization.

Figure 3 illustrates the workflow for enabling
on-device fine-tuning using dual-forwarding LoRA
module in ExecuTorch. Starting with a pre-trained
PyTorch model, we integrate the dual-forwarding
LoRA module as in conventional first-order LoORA
training and redirect the scalar projected gradient
g to each module. Following the standard Execu-
Torch process, we export, compile, and offload the
model to the edge device. On the device, the Execu-
Torch runtime seamlessly executes the binary file,
handling data loading and running the inference
plan, which includes the dual-forwarding LoRA
module to update the model without explicitly rec-
ognizing it as a training task. For random noise

generation, a custom operator can be integrated
into the runtime library using the ExecuTorch API
(Meta-Al, 2024b).

4 Experiments

We conduct comprehensive experiments on the
TinyLlama-1.1B (Zhang et al., 2024a) and Llama2-
7B (Touvron and et al, 2023) models across dif-
ferent systems to evaluate both fine-tuning perfor-
mance and system efficiency.

4.1 Model Fine-Tuning Performance

We compare two sets of baselines: the first em-
ploys an FO-SGD optimizer in both the full and
LoRA-FA parameter spaces, while the second uses
a ZO-SGD optimizer with MeZO (¢ = 1, B = 16)
in the same parameter spaces. For our method, P-
RGE, we ensure equivalent computation per train-
ing step while varying ¢ by scaling the effective
batch size (E) to maintain a fixed E * g value, such
that setting ¢ = 4,F = 4orq = 16,FE = 1.
By using the same number of training steps (i.e.,
20,000) for both P-RGE and MeZO, we ensure that
P-RGE does not exceed the computational budget
of the MeZO baseline for end-to-end training. For
reference, we also report zero-shot performance
without additional fine-tuning. Additional experi-
mental details, including dataset descriptions, train-
ing procedures, and hyperparameters, are provided
in Appendix D.

For the smaller-scale TinyLlama-1.1B model,
we evaluate its performance on the GLUE dataset
(Wang et al., 2019). The results in Table 2 show
that increasing the number of queries while de-
creasing the batch size outperforms the baseline
MeZO by up to 8.8% accuracy. For the larger
Llama2-7B model, we evaluate its performance
on SST-2 (Wang et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), and the SuperGLUE (Wang
et al., 2020) dataset using the same experimental
setup. As shown in Table 2, P-RGE consistently im-
proves performance over the baseline that updates
the full parameter space by up to 9.87%. While
P-RGE introduces an additional hyperparameter ¢

TinyLlama-1.1B Methods \ Tasks SST-2 RTE MRPC QQP QNLI WNLI
Zero-shot 553 523 68.3 32.8 527 43.6
Full 93.7 80.5 80.4 832 833 56.3
FO-SGD LoRA-FA 927 787 806 834 837 592
MeZO (Full) 912 679 70.6 72.0 679 57.8
70-SGD MeZO (LoRA-FA) 875 67.9 71.6 746 672 60.6
P-RGE (¢ = 4) 89.1 170.8 75.5 779 76.0 60.6
P-RGE (¢ = 16) 90.8 68.6 76.7 79.1 750 57.8
Llama2-7B Methods \ Tasks SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande
Zero-shot 580 592 719 51.9 50.0 54.6 79.0 62.7
FO-SGD Full 962 86.6 864 69.2 7338 83.7 87.0 66.9
LoRA-FA 956 812 855 62.5 635 80.4 86.0 66.1
Z0-SGD MeZO (Full) 937 726 81.1 644 546 69.9 81.0 64.4
MeZO (LoRA-FA) 944 729 80.7 644 60.0 73.1 86.0 64.5
P-RGE (¢ = 4) 949 762 83.0 63.5 644 74.5 85.0 65.4
P-RGE (¢ = 16) 942 776 825 654 629 74.9 87.0 65.7

Table 2: Performance of fine-tuning TinyLlama-1.1B and Llama2-7B on different tasks with different optimizers.
P-RGE outperforms the baseline MeZO in most tasks under the same computational budget.

Sequence length 64 128 256
Batch size 1 8 16 1 8 16 1 8 16
TinyLlama-1.1B
FO (Full) 1132 1200 12.78 11.44 13.00 1476 11.77 15.62 20.02
FO (LoRA-FA) 415 500 598 427 598 7.81 451 781 1158
MeZO (LoRA-FA) 2.09 219 232 210 232 256 213 256 3.05
P-RGE 211 232 256 214 256 3.05 220 305 398
Llama2-7B
FO (Full) 6431 66.12 6920 64.6 6851 7297 6532 7422 84.40
FO (LoRA-FA) 25.16 2720 29.58 2546 29.58 3428 26.05 3429 43.66
MeZO (LoRA-FA) 1259 1270 12.82 12.61 1282 13.06 12.64 13.06 13.55
P-RGE 1261 12.82 13.06 12.64 13.07 13.55 1270 13.55 14.53

Table 3: Peak memory usage of TinyLlama-1.1B and
Llama2-7B for different sequence length and batch size
configurations.

for improved accuracy, setting q to either 4 or 16 is
recommended in practice to minimize the need for
extensive hyperparameter searching.

4.2 System Performance

We conduct measurements on a single NVIDIA
A100 GPU to evaluate the server-side system per-
formance of P-RGE compared to its baselines. The
Z0O-SGD optimizer, including both MeZO and P-
RGE, performs forward passes in 16-bit floating-
point precision to maximize computational effi-
ciency, leveraging ZO’s tolerance for low-precision
gradient estimation (Zhang et al., 2024b). We use
the FO-SGD optimizer with mixed-precision train-
ing enabled for memory and runtime evaluations.

Memory Efficiency. We first evaluate the peak
memory usage of P-RGE across different fixed se-
quence length and batch size configurations. The
reported memory footprint includes storage for
weights, activations, gradients, CUDA kernels, and
other implementation-specific details.

Table 3 shows the memory usage of FO-SGD
(LoRA-FA), MeZO (LoRA-FA), and P-RGE with
both outer-loop and inner-loop parallelization. The
FO-SGD optimizer requires more memory due to
storing activations from all intermediate layers, de-
spite minimal gradient and optimizer state stor-
age through PEFT. In contrast, P-RGE slightly in-
creases memory usage due to the increased size of
the largest output tensor during the forward pass
and instantiation of multiple sets of LoRA trainable
parameters, yet it still demands significantly less
memory than the FO optimizer. For instance, with
Llama2-7B, a sequence length of 256, and a batch
size of 16, memory usage increases from 13.55 GB
to 14.53 GB for P-RGE, whereas FO requires over
40 GB. FO over full parameter space requires even
much more memory, going beyond the memory
capacity of edge devices.

End-to-end Wall-clock Time Speedup. Fig-
ure 4 shows the end-to-end wall-clock time for
fine-tuning TinyLlama-1.1B and Llama2-7B using
MeZO and P-RGE for 20,000 steps across various
tasks. By applying PEFT methods, both MeZO and
P-RGE reduce training time by minimizing sequen-
tial processing of model parameters, a benefit that
becomes more pronounced with larger models such
as Llama2-7B. P-RGE further improves training
runtime through inner-loop and outer-loop paral-
lelization achieving speedups of up to 4.3x over
MeZO (Full) and up to 1.9x over MeZO (LoRA-
FA).

Additional system profiling ablation studies, in-
cluding runtime breakdown under different fixed

TinyLlama-1.1B

Llama2-7B

Runtime (min/task)

C by
%%@ YS@ \\ng & Q\@\ > %%@

MeZO (Full)
MeZO (LoRA-FA)
P-RGE (¢ = 4)
B PRGE (¢ = 16)

Q&
2 <™
<% %OO\Q PSS @W\‘& o \ﬂ.\(\oc’ %QoP‘o

Figure 4: End-to-end wall-clock time of fine-tuning TinyLlama-1.1B and Llama2-7B for various configurations

across tasks.

sequence length and batch size configurations, as
well as under different quantization schemes, are
available in Appendix F.

4.3 On-Device Training Experiments

For on-device training experiments, we begin with
a sanity check to verify per-step loss values on
two edge platforms: the NVIDIA Jetson Nano
Orin (8GB) GPU and the OnePlus 12 smartphone
(12GB) NPU backend. This ensures that both plat-
forms yield the same output given the same input
as those observed on the server side. Detailed edge
system specifications are provided in Appendix
G. After verification, we measure and report the
runtime per step of P-RGE across different fixed
sequence length and batch size configurations, fol-
lowing the same setup in Section 4.2. Due to out-
of-memory issues, FO training is omitted from on-
device experiments.

On the Jetson platform, which runs on a Linux
system, we use the PyTorch library for model for-
ward passes. Table 4 shows the speedup achieved
through P-RGE with inner-loop parallelization
with NF4 weight-only quantization, showing up
to 1.83x performance improvement.

On the smartphone platform, which operates on
Android OS without PyTorch support, we use the
ExecuTorch workflow to perform ZO fine-tuning,
integrating the dual-forwarding LoRA module as
described in Section 3.3. Since we do not modify
the runtime code on the edge device, vanilla MeZO
baseline experiments are omitted. Additionally,
due to current limitations in ExecuTorch’s support
for weight-only quantization, we run TinyLlama-
1.1B in FP16 mode on the NPU backend. Execu-
Torch shows lower runtime efficiency for multi-
batch inference compared to CUDA platforms, as
it is primarily optimized for single-prompt process-
ing, typical in chat-based LLMs. As shown in
Table 5, with an effective batch size of 16, the NPU

Sequence length 64 128
Batch size 1 2 4 8 1 2 4 8
TinyLlama-1.1B

MeZO (LoRA-FA) 0.69 0.71 0.89 128 070 0.88 1.27 2.18

P-RGE 043 049 0.69 1.15 049 0.69 1.13 2.00

Speedup ratio 1.62 145 129 1.12 142 129 1.12 1.09
Llama2-7B

MeZO (LoRA-FA) 3.10 337 444 646 337 444 647 1083

P-RGE 1.69 222 322 538 222 322 537 8.60

Speedup ratio 1.83 152 1.38 120 1.52 138 121 1.26

Table 4: Runtime (sec/step) and speedup ratio of
inner-loop parallelization on Jetson GPU backend for
TinyLlama-1.1B and Llama2-7B with NF4 quantization.
The results demonstrate a consistent performance boost
across different batch sizes and sequence lengths.

Sequence length 64 128

Batch size 2 4 8 16 2 4 8 16
Runtime (sec/step) 1.04 234 470 1043 249 483 1036 1573
Memory (GB) 336 3.53 375 388 343 3.68 391 446

Table 5: Runtime and memory usage of dual-
forwarding implementation on Android NPU backend
for TinyLlama-1.1B.

backend takes 15.73 seconds for one step with a
sequence length of 128, whereas Jetson completes
it in 8.60 seconds.

5 Conclusion

This work introduces parallelized randomized gra-
dient estimation (P-RGE) to address the computa-
tional and memory challenges of fine-tuning LLMs
in resource-constrained edge environments. P-
RGE leverages outer-loop and inner-loop paral-
lelization for efficient multi-query gradient estima-
tion, improving model accuracy without extra com-
putational overhead. Experiments show P-RGE
significantly enhances training speed and reduces
memory usage on both server and edge platforms,
enabling real-time, on-device fine-tuning. By in-
tegrating P-RGE with inference engines like Ex-
ecuTorch, we validate its versatility across diverse
hardware such as Android NPU and Jetson GPU.

6 Limitations

While P-RGE enables efficient on-device LLM fine-
tuning, it has several limitations. First, P-RGE is
tailored for the randomized gradient estimator in
Z0 optimization. Extending it to other ZO meth-
ods, such as variance-reduced optimizers or adap-
tive query selection, could further improve con-
vergence speed. Second, Android’s NPU backend
lacks native support for large matrix multiplica-
tions, limiting batch processing efficiency. Future
work will explore alternative backends, such as
Vulkan for GPU acceleration. Third, P-RGE as-
sumes static computational settings, whereas edge
environments often have dynamic resource con-
straints. Adapting query count, batch size, or preci-
sion in response to runtime conditions is a promis-
ing direction.

References

Rohan Anil and et al. 2024. Gemini:
of highly capable multimodal models.
arXiv:2312.11805.

A family
Preprint,

Stephen H. Bach and et al. 2022. Promptsource:
An integrated development environment and repos-
itory for natural language prompts. Preprint,
arXiv:2202.01279.

Yoshua Bengio. 2012. Practical recommendations for
gradient-based training of deep architectures. In Neu-
ral networks: Tricks of the trade: Second edition.
Springer.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi,
and Cho-Jui Hsieh. 2017. Zoo: Zeroth order op-
timization based black-box attacks to deep neural
networks without training substitute models. In Pro-
ceedings of the 10th ACM Workshop on Artificial
Intelligence and Security.

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. Preprint, arXiv:1604.06174.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi,
and Gauri Joshi. 2024. Heterogeneous lora for fed-
erated fine-tuning of on-device foundation models.
Preprint, arXiv:2401.06432.

Aakanksha Chowdhery and et al. 2022. Palm: Scal-
ing language modeling with pathways. Preprint,
arXiv:2204.02311.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-
ing of quantized LLMs. In Thirty-seventh Confer-
ence on Neural Information Processing Systems.

John C. Duchi, Michael I. Jordan, Martin J. Wainwright,
and Andre Wibisono. 2015. Optimal rates for zero-
order convex optimization: The power of two func-
tion evaluations. IEEE Transactions on Information

Theory, 61(5):2788-2806.

Tanmay Gautam, Youngsuk Park, Hao Zhou,
Parameswaran Raman, and Wooseok Ha. 2024.
Variance-reduced zeroth-order methods for fine-
tuning language models. In 5th Workshop on
practical ML for limited/low resource settings.

Google. 2020. Tensorflow lite guide.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu,
Xinyu Yang, Yide Ran, Jacob R. Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, Beidi
Chen, and Zhaozhuo Xu. 2025. Zeroth-order fine-
tuning of LLMs with transferable static sparsity. In
The Thirteenth International Conference on Learning
Representations.

Mert Giirbiizbalaban, Asu Ozdaglar, and Pablo A Par-
rilo. 2021. Why random reshuffling beats stochastic
gradient descent. Mathematical Programming.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference on
Machine Learning.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M
Asano. 2024. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference
on Learning Representations.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024a. DoRA: Weight-
decomposed low-rank adaptation. In Forty-first In-
ternational Conference on Machine Learning.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng,
Cho-Jui Hsieh, and Yang You. 2024b. Sparse mezo:
Less parameters for better performance in zeroth-
order llm fine-tuning. Preprint, arXiv:2402.15751.

Z Liu, J Lou, W Bao, Y Hu, B Li, Z Qin, and K Ren.
2024c. Differentially private zeroth-order meth-
ods for scalable large language model finetuning.
Preprint, arXiv:2402.07818.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qipeng Guo, and
Xipeng Qiu. 2024. Full parameter fine-tuning for
large language models with limited resources. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics. Association
for Computational Linguistics.

https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2202.01279
https://arxiv.org/abs/2202.01279
https://arxiv.org/abs/2202.01279
https://arxiv.org/abs/2202.01279
https://arxiv.org/abs/2202.01279
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2401.06432
https://arxiv.org/abs/2401.06432
https://arxiv.org/abs/2401.06432
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://doi.org/10.1109/TIT.2015.2409256
https://doi.org/10.1109/TIT.2015.2409256
https://doi.org/10.1109/TIT.2015.2409256
https://doi.org/10.1109/TIT.2015.2409256
https://doi.org/10.1109/TIT.2015.2409256
https://www.tensorflow.org/lite/guide
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.07818
https://arxiv.org/abs/2402.07818
https://arxiv.org/abs/2402.07818

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D. Lee, Danqgi Chen, and Sanjeev
Arora. 2023. Fine-tuning language models with just
forward passes. In Thirty-seventh Conference on
Neural Information Processing Systems.

Meta-Al. 2024a. Executorch.
Meta-Al. 2024b. Executorch kernel registration.
Meta-Al. 2024c. Pytorch mobile.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed precision
training. In International Conference on Learning
Representations.

Yurii Nesterov and Vladimir Spokoiny. 2017. Ran-
dom gradient-free minimization of convex functions.
Foundations of Computational Mathematics.

OpenAl, Josh Achiam, and et al. 2024. Gpt-4 technical
report. Preprint, arXiv:2303.08774.

Dan Peng, Zhihui Fu, and Jun Wang. 2024. Pock-
etLLM: Enabling on-device fine-tuning for person-
alized LLMs. In Proceedings of the Fifth Workshop
on Privacy in Natural Language Processing. Associ-
ation for Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: an adver-
sarial winograd schema challenge at scale. Commun.
ACM.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou,
Xuanjing Huang, and Xipeng Qiu. 2022. BBTv2:
Towards a gradient-free future with large language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing.

Hugo Touvron and et al. 2023. Llama 2: Open
foundation and fine-tuned chat models. Preprint,
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam,
Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and
Mi Zhang. 2024. Efficient large language models: A
survey. Transactions on Machine Learning Research.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2020. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. Preprint, arXiv:1905.00537.

10

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Interna-
tional Conference on Learning Representations.

Xiaoxing Wang, Wenxuan Guo, Jianlin Su, Xiaokang
Yang, and Junchi Yan. 2022. ZARTS: On zero-order
optimization for neural architecture search. In Ad-
vances in Neural Information Processing Systems.

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and
Shangguang Wang. 2024. FwdLLM: Efficient fed-
erated finetuning of large language models with per-
turbed inferences. In 2024 USENIX Annual Techni-
cal Conference (USENIX ATC 24).

Yifan Yang, Kai Zhen, Ershad Banijamal, Athanasios
Mouchtaris, and Zheng Zhang. 2024. Adazeta: Adap-
tive zeroth-order tensor-train adaption for memory-
efficient large language models fine-tuning. Preprint,
arXiv:2406.18060.

Wangsong Yin, Mengwei Xu, Yuanchun Li, and Xu-
anzhe Liu. 2024. Llm as a system service on mobile
devices. Preprint, arXiv:2403.11805.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. 2021. Open
problem: Can single-shuffle sgd be better than reshuf-
fling sgd and gd? In Proceedings of Thirty Fourth
Conference on Learning Theory.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-
tuning. Preprint, arXiv:2308.03303.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024a. Tinyllama: An open-source small
language model. Preprint, arXiv:2401.02385.

Susan Zhang and et al. 2022. Opt:
trained transformer language models.
arXiv:2205.01068.

Open pre-
Preprint,

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li,
Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Ja-
son D. Lee, Wotao Yin, Mingyi Hong, Zhangyang
Wang, Sijia Liu, and Tianlong Chen. 2024b. Revisit-
ing zeroth-order optimization for memory-efficient
LLM fine-tuning: A benchmark. In Forty-first Inter-
national Conference on Machine Learning.

Ligeng Zhu, Lanxiang Hu, Ji Lin, Wei-Chen Wang,
Wei-Ming Chen, and Song Han. 2023. Pockengine:
Sparse and efficient fine-tuning in a pocket. In
IEEE/ACM International Symposium on Microarchi-
tecture (MICRO).

https://pytorch.org/executorch-overview
https://pytorch.org/executorch/stable/kernel-library-custom-aten-kernel
https://pytorch.org/mobile/home
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/2406.18060
https://arxiv.org/abs/2406.18060
https://arxiv.org/abs/2406.18060
https://arxiv.org/abs/2406.18060
https://arxiv.org/abs/2406.18060
https://arxiv.org/abs/2403.11805
https://arxiv.org/abs/2403.11805
https://arxiv.org/abs/2403.11805
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068

A MeZO Algorithm and Its Limitation

Algorithm 3 MeZO with g > 1.

1: Input: parameters € R% loss £ : R —
R, step budget 7', function query budget g,
perturbation scale €, learning rate n

2. fort=1,...,T do

3 fori=1,...,qgdo
4 seeds, projected_grads =[]
5: Sample batch B C D and random seed s
6: 60 = PerturbParameters(8, ¢, s)
7 (. =L(0;B)
8 0 = PerturbParameters(8, —2¢, s)
9: (_ =L(0;B)
10: 0 = PerturbParameters(0, ¢, s)
11: proj_grads[i] = é*;f*
12: seeds[i]l =s
13: end for
14: fori=1,...,qdo
15: Reset random generator with seeds[i]
16: for 6; € 6 do
17: z~N(0,1)
18: 0;,=0;— % x proj_grads[i] x z
19: end for
20: end for
21: end for

22: Function PerturbParameters(8, e, s)
23: Reset random number generator with seed s
24: for ; € 6 do

25: 2~ N(0,1)
26: Oj = 0]' + €z
27: end for

28: End Function

We evaluate the runtime efficiency of the MeZO
optimizer, outlined in Algorithm 3, which is
adapted from the original work. MeZO employs a
random seed trick to eliminate the need for storing
random noise, reducing peak memory usage.

In each iteration, MeZO proceeds through four
distinct loops. First, it introduces positive noise
into the trainable parameters (line 6), followed by
perturbing the weights in the opposite direction
using the same noise (line 8). Next, the weights
are restored to their original state before the update
(line 10), and finally, the computed gradients are
applied to update the weights (line 18).

This method reduces memory overhead from
O(d) to O(1) by avoiding the storage of random
noise. However, the runtime cost escalates from
O(1) to O(d) because each parameter update re-

quires individual processing, which cannot be effi-
ciently parallelized. In practical settings, especially
with LLMs, iterating over the full parameter set
four times per update can significantly slow down
the training process, thus negating the benefits of
eliminating backpropagation.

In contrast, PyTorch’s FO optimizers utilize a
foreach implementation by default. This method
aggregates all layer weights into a single tensor dur-
ing parameter updates, which speeds up the compu-
tation. However, this approach also increases the
memory usage by O(d), as it requires maintaining
a copy of the entire gradients for the parameters
update.

Table 6 compares the runtime of the Llama2-7B
model using both FO-SGD and MeZO-SGD opti-
mizers (¢ = 1) over the full parameter space across
various batch sizes and sequence lengths on the
same standard benchmark introduced in Section
4.2. The FO optimizer is run with FP16 mixed-
precision training, while MeZO uses pure FP16
to maximize computational speed. To avoid out-
of-memory errors, we utilize two NVIDIA A100
(40GB) GPUs for the FO optimizer, which in-
curs additional GPU communication time in a dis-
tributed environment.

Sequence length 64 128 256

Batch size 1 4 8 1 4 8 1 4 8
FO-SGD 0.17 021 034 0.19 033 049 0.8 049 0.90
MeZO-SGD (g =1) 043 048 0.56 043 056 0.73 045 0.73 1.05

Table 6: Runtime (sec/step) of Llama2-7B using FO and
MeZO optimizers over full parameter space.

When both the batch size and sequence length
are small, MeZO exhibits significantly higher run-
time due to the overhead of sequential operations
required to apply perturbations and gradients. How-
ever, as the batch size and sequence length increase,
where forward and backward passes, as well as
GPU communication, dominate the runtime, the
MeZO optimizer demonstrates improved perfor-
mance. This behavior highlights the importance of
applying PEFT methods with MeZO to mitigate
the computation overhead caused by the sequential
processing of model parameters.

B Preliminary Experiment of ZO with
Different PEFT Methods

We conducted a preliminary experiment by fine-
tuning the OPT-1.3B model (Zhang and et al, 2022)
for 10,000 iterations on the SST2 dataset (Wang

et al., 2019) using ZO-SGD optimizer with differ-
ent PEFT methods. We use hyperparameter grid
search with learning rate € {5e — 6,5e — 5, e —
4,5e—3}and e € {le—3,1e—2}. LoRA (Huetal.,
2022), LoRA-FA (Zhang et al., 2023), and DoRA
(Liu et al., 2024a) are configured with r = 16,
and VeRA (Kopiczko et al., 2024) uses r = 1024.
The results in Table 7 indicate that the LoRA-FA
method outperforms other PEFT methods in terms
of accuracy.

PEFT Methods
Accuracy

LoRA LoRA-FA DoRA VeRA
90.9 92.0 90.9 91.4

Table 7: ZO accuracy of OPT-1.3B on SST?2 dataset
using different PEFT methods.

C Padding Statistics

Figure 5 shows the average percentage of padding
tokens used across different tasks and batch sizes.
A larger batch size of 16 results in a higher percent-
age of padding tokens across all tasks compared to
a batch size of 4. This suggests that smaller batch
sizes may help reduce padding overhead, poten-
tially leading to more efficient computation.

5]
g 60 —
5 - Batch size 16
i‘j - Batch size 4
» 401 I
<
g
220 |
: HW %
en
g Hj
e}
E 0 \E\lﬁ%\b\\\o\ T
SRS
© S ¥ O L
A\ &
&

Figure 5: Average percentage of padding tokens for
different tasks and batch sizes.

D Experiment Setup

D.1 Datasets

We evaluate the performance of the TinyLlama-
1.1B model on six tasks from the GLUE dataset
(Wang et al., 2019): sentiment analysis (SST2),
paraphrase (MRPC and QQP), and natural lan-
guage inference (QNLI, RTE, and WNLI). For
the larger Llama2-7B model, evaluations were
performed on two tasks from the GLUE dataset:

12

SST2 and RTE. Additionally, the model was
tested on six tasks from the SuperGLUE dataset
(Wang et al., 2020), categorized as follows:
text classification (BoolQ, WSC, WIC, and Mul-
tiRC), multiple-choice (COPA), and question-and-
answering (SQuAD). We include one additional
multiple-choice task from WinoGrande (Sakaguchi
et al., 2021) dataset. For question-and-answering
tasks, we utilize the F1 score as a metric, while
accuracy metrics are used for the rest. All datasets
used in this work are in English.

D.2 Training procedure

We achieve text classification, multiple-choice, and
question-and-answering tasks through next-word
prediction, using prompt templates based on MeZO
(Malladi et al., 2023) and PromptSource (Bach and
et al., 2022). Table 8 presents the prompt templates
used for the datasets in our TinyLlama-1.1B and
Llama2-7B experiments. For SST-2, RTE, BoolQ,
WSC, WIC, MultiRC, COPA, and SQuAD, we
applied the template from MeZO (Malladi et al.,
2023). We created templates for MRPC, QQP,
QNLI, and WNLI by following the suggestions
from PromptSource (Bach and et al., 2022), and we
adapted the same template for WinoGrande from
(Zhang et al., 2024b).

Unlike MeZO, we compute the loss value of pre-
diction over the entire vocabulary space instead of
only the vocabulary space of the ground true. For
these tests, we also adopt a low-volume data con-
dition, limiting our samples to 1,000 for training,
500 for validation, and 1,000 for testing, as pro-
posed in the original MeZO work (Malladi et al.,
2023). FO-SGD experiments are trained for 1,000
iterations, and performance on the test dataset is
evaluated every 100 steps. ZO experiments are
trained for 20,000 iterations and performance on
the test dataset is evaluated every 500 steps.

D.3 Hyperparameters

We report the hyperparameters searching grids in
Table 9. For LoRA hyperparameters, we choose
the LoRA rank to be 16 and LoRA alpha to be
32. For P-RGE, with the constant batch size of
16, we search configurations (¢ = 1, £ = 16),
(q=4,F=4),and (¢ =16, F = 1).

Dataset Type Prompt

SST-2 cls. <text> It was terrible/great

RTE cls. <premise> Does this mean that “<hypothesis>” is true? Yes or No?
Yes/No

MRPC cls. Do the following two sentences mean the same thing? Yes or No?

Sentence 1: <sentencel>
Sentence 2: <sentence2>
Yes/No
QQP cls. Are these two questions asking the same thing? Yes or No?
Question 1: <question1>
Question 2: <question2>
Yes/No
QNLI cls. Does this sentence answer the question? Yes or No?
Sentence 1: <sentencel>
Sentence 2: <sentence2>
Yes/No
WNLI cls. Given the first sentence, is the second sentence true? Yes or No?
Sentence 1: <sentencel>
Sentence 2: <sentence2>

Yes/No
BoolQ cls. <passage> <question> <answer>?
Yes/No
WSC cls. <text> In the previous sentence, does the pronoun “<span2>” refer to <span1>?
Yes/No
WIC cls. Does the word “<word>" have the same meaning in these two sentences?
<sentl1><sent2>
Yes, No?
MultiRC cls. <paragraph> Question: <question>
I found this answer “<answer>". Is that correct?
Yes or No?
COPA mch. <premise> so/because <candidate>
WinoGrande mch. <context><subject><object>
SQuAD QA Title: <title>

Context: <context>
Question: <question>
Answer:

Table 8: The prompt template of the datasets used in the experiments.

TinyLlama-1.1B

FO (Full) Batch size {8}

Learning rate {1e-5, 5e-5, 8e-5}
FO (LoRA-FA) Batch size {8}

Learning rate {1le-4, 3e-4, 5e-4}
MeZO (Full) Batch size {16}

Learning rate {1e-7, 5e-7, 1e-6}

€ le-3
P-RGE Batch size {16}

q {1, 4, 16}

Learning rate {5e-5, le-4, 5e-4, 1e-3}

€ le-2

Llama2-7B

Experiment Hyperparameters Values
FO (Full) Batch size {8}

Learning rate {1e-5, 5e-5, 8e-5} or {1e-7, 5e-7, 8e-7} for SQUAD
FO (LoRA-FA) Batch size {8}

Learning rate {1le-4, 3e-4, 5e-4}
MeZO (Full) Batch size {16}

Learning rate {1e-7, 5e-7, 1e-6}

€ le-3
P-RGE Batch size {16}

q {1, 4, 16}

Learning rate {5e-5, le-4, 5e-4, 1e-3}

€ le-2

Table 9: Hyperparameters used for TinyLlama-1.1B and Llama2-7B experiments. Note that MeZO (LoRA-FA) is a
special case of P-RGE with ¢ = 1.

13

E Additional FO Experiments

We also provide additional experimental results on
FO-Adam in Tables 10 and 11. While FO-Adam
can enhance model performance, it introduces a
significantly higher memory overhead, particularly
when updating all model parameters. This is be-
cause Adam maintains two state variables, moment
estimates of the first and second order, for each
parameter, effectively tripling the memory require-
ment compared to storing only the model param-
eters. Therefore, FO-Adam is typically deployed
in distributed multi-GPU environments, which fur-
ther increases runtime due to the overhead of inter-
device communication.

F.2 Efficiency of inner-loop parallelization

We measure the runtime and memory usage of P-
RGE, implemented using inner-loop parallelization
only for the Llama2-7B model across fixed differ-
ent sequence length and batch size configurations.
As shown in Table 13, the runtime speedup is up
to 1.79x at a sequence length of 64 and batch size
of 1. This improvement is primarily due to reusing
model weights across two forward passes, which
reduces cache access and increases operation in-
tensity. However, the benefits diminish as opera-
tion intensity increases and the system becomes
compute-bound.

Sequence length 64 128 256

Tasks SST-2 RTE MRPC QQP QNLI WNLI
Full 91.9 72.5 774 824 80.8 56.3
LoRA-FA 942 82.6 82.3 84.4 86.5 56.3

Table 10: Performance of fine-tuning TinyLlama-1.1B
on different tasks with FO-Adam optimizers.

Tasks SST-2 RTE BoolQ WSC WiC MultiRC COPA
Full 925 787 80.6 634 672 717 81.0
LoRA-FA 96.0 88.1 85.7 798 751 84.2 87.0

WinoGrande SQuAD
68.2 79.2
71.8 77.2

Table 11: Performance of fine-tuning Llama2-7B on
different tasks with FO-Adam optimizers.

F Ablation Studies on System
Performance of P-RGE

F.1 Efficiency of outer-loop parallelization

We measure the runtime and memory usage of P-
RGE, implemented using outer-loop parallelization
only for the Llama2-7B model across different ef-
fective batch size and fixed sequence lengths con-
figurations. As shown in Table 12, the runtime
remains nearly identical across different combina-
tions of the number of queries ¢q and effective batch
size F, given that the batch size remains constant at
B = 16, which indicates our outer-loop paralleliza-
tion implementation does not incur computation
overhead. Peak memory usage increases slightly
due to the instantiation of multiple LoRA trainable
parameters at each layer.

Sequence length 64 128 256

q 1 4 16 1 4 16 1 4 16
Effective batch size 16 4 1 16 4 1 16 4 1
Runtime (sec/step) 0.18 020 0.9 035 037 032 069 067 071

Memory (GB) 12.61 12.69 1281 12.64 12.80 13.14 12.70 13.04 13.53

Table 12: System performance of outer-loop paralleliza-
tion for Llama2-7B under the same batch size of 16.

14

batch size 1 8 16 1 8 16 1 8 16
MeZO (¢ = 1,LoRA-FA) 0.07 0.11 0.18 0.07 0.19 035 0.07 035 0.69
P-RGE (q = 1, inner) 0.04 0.10 0.18 0.04 0.18 034 0.06 034 0.67

Table 13: Runtime (sec/step) of inner-loop paralleliza-
tion for Llama2-7B under different sequence length and
batch size configurations.

Additionally, we evaluate the speedup achieved
by inner-loop parallelization under weight-only
INT8 and NF4 quantization. As illustrated in Fig-
ure 6, inner-loop parallelization achieves the great-
est speedup in conjunction with NF4 quantization,
reaching up to a 1.97x improvement over the se-
quential execution of two forward passes. Since
NF4 dequantization is more computationally inten-
sive than INT8 during forward passes, inner-loop
parallelization enhances efficiency by dequantizing
weights only once per training step, reducing the
overhead from repeated dequantization.

F.3 End-to-end training efficiency

Tables 15 - 18 provide additional details on per-
task runtime and memory usage to complement
the experimental results in Table 2. In these ta-
bles, MeZO (Full) represents the baseline configu-
ration in which all model parameters are updated
during training. For MeZO (LoRA-FA), results
are presented for both the standard implementation
without optimizations and a variant enhanced with
inner-loop parallelization. For P-RGE, results are
shown for two setups: one using only outer-loop
parallelization and another that combines both in-
ner and outer-loop parallelization strategies. As
noted in Section 4.2, when both parallelization
strategies are enabled, P-RGE achieves speedups
of up to 4.3x over MeZO (Full) and up to 1.9x
over MeZO (LoRA-FA).

Regarding memory usage, enabling both inner

TinyLlama-1.1B Llama2-7B

seq len = 64 seq len = 128 seq len = 256 seq len = 64 seq len = 128 seq len = 256
2 T T T 2 T T T 2 T T T 27 T T 2 T T 2 T T T
NF4 NF4
= 1.8 ¢ —5—INT8 | o 1.8 F —5—INT8 |
3 —o—FPI6 3 ——FPI6
& 2 1.6 H
© o
£ £ 1.4 :
£ E
= =
=2 4 1.2 I
1 | | | 1 | | 1 | B—
1 8 16 1 8 16 1 8 16
batch size batch size batch size batch size batch size batch size

Figure 6: Runtime speedup per training step of TinyLlama-1.1B and Llama2-7B for different quantization methods,
sequence lengths, and batch sizes.

and outer-loop parallelization results in higher
memory consumption for both models compared to
configurations using only outer-loop parallelization.
This increase is due to the concurrent computation
of two forward passes when inner-loop paralleliza-
tion is enabled. Specifically, for Llama2-7B, tasks
like SQuAD and MultiRC see an increase in mem-
ory usage of up to 33% when using inner-loop
parallelization due to larger sequence length. De-
spite this increase, the memory efficiency remains
within acceptable bounds.

G Edge Devices Specifications

Table 14 presents the specifications of the edge
computing devices used in the experiments, detail-
ing the CPU, memory, and accelerator components.

Device CPU Memory Accelerator
NVIDIA Jetson 6x 1.5GHz Cortex- 8GB 68GB/s 1024-core Ampere
Orin Nano AT8AE LPDDRS5 GPU 625MHz
OnePlus 12 1x 3.3GHz Cortex-X4 12GB 77GB/s Hexagon NPU

3x 3.2GHz Cortex-A720 LPDDRS5
2x 3.0GHz Cortex-A720
2x 2.3GHz Cortex-A520

Table 14: Edge devices used in the experiments.

15

Methods \ Tasks SST-2 RTE MRPC QQP QNLI WNLI

MeZO (Full) (¢ = 1) 3831 61.51 4571 40.76 4630 4357
MeZO (LoRA-FA) (¢ = 1)
standard 34.66 5553 3545 3500 37.44 3440
inner 2355 54.07 3572 2876 36.59 3322
P-RGE (¢ = 4)
outer only 36.27 4522 3690 36.19 3533 3723
inner + outer 23.68 43.75 34.07 2583 3197 29.09
P-RGE (¢ = 16)
outer only 3557 3818 3538 3519 3586 3534
inner + outer 2477 3198 2990 2431 2743 2584

Table 15: Runtime (min/task) of fine-tuning TinyLlama-1.1B across different tasks using different ZO methods.

Methods \ Tasks SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande SQuAD
MeZO (Full) (¢ = 1) 159.44 288.10 384.07 209.72 173.01 52649 146.40 154.74 480.90
MeZO (LoRA-FA) (¢ = 1)
standard 5420 21381 32946 11679 7055 504.74 40.77 48.07 457.69
inner 5522 21030 322.64 118.03 7275 50554 = 36.57 48.62 440.63
P-RGE (¢ = 4)
outer only 49.11 16553 251.63 91.87 66.55 50570 44.65 49.01 376.34
inner + outer 45.17 16421 24855 92.17 67.52 496.32 37.38 46.89 371.29
P-RGE (g = 16)
outer only 4391 111.80 171.84 71.14 6031 43824 41.96 46.41 281.15
inner + outer 3699 11154 171.14 7240 61.10 421.41 3591 43.41 275.98

Table 16: Runtime (min/task) of fine-tuning Llama2-7B across different tasks using different ZO methods.

Methods \ Tasks SST-2 RTE MRPC QQP QNLI WNLI
MeZO (Full) (¢ = 1) 2.56 3.38 2.74 2.74 3.17 2.77
MeZO (LoRA-FA) (¢ = 1)
standard 235 327 2.63 2.63 3.06 2.66
inner 2.63 446 3.18 3.18 4.04 3.24
P-RGE (¢ = 4)
outer only 2.37 329 2.65 2.65 3.07 2.68
inner + outer 2.67 450 3.22 322 4.07 3.28
P-RGE (¢ = 16)
outer only 244 318 2.72 2.69 3.14 2.75
inner + outer 2.81 4.28 3.36 3.30 4.22 342

Table 17: Peak memory usage (GB) of fine-tuning TinyLlama-1.1B across different tasks using different ZO
methods.

Methods \ Tasks SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande SQuAD
MeZO (Full) 13.64 1623 1839 1451 1382 1839 13.60 13.60 18.39
MeZO (LoRAFA) (g = 1)
standard 1341 1600 18.16 1427 1358 18.16 12.98 13.15 18.16
inner 1423 1941 23.73 1596 1457 2373 1337 13.71 23.73
PRGE (¢ = 4)
outer only 1353 1612 1828 1440 1371 1828 13.10 13.27 18.28
inner + outer 1447 1965 2397 1620 1482 2397 1361 13.95 23.97
P-RGE (¢ = 16)
outer only 1403 1610 1877 14.92 1420 1877 13.59 13.77 18.77
inner + outer 1545 19.59 2495 17.17 1579 2495 14.58 14.93 24.95

Table 18: Peak memory usage (GB) of fine-tuning Llama2-7B across different tasks using different ZO methods.

16

	Introduction
	Background and Related Work
	Method
	Outer-loop Parallelization
	Inner-loop Parallelization
	On-Device Training Workflow

	Experiments
	Model Fine-Tuning Performance
	System Performance
	On-Device Training Experiments

	Conclusion
	Limitations
	MeZO Algorithm and Its Limitation
	Preliminary Experiment of ZO with Different PEFT Methods
	Padding Statistics
	Experiment Setup
	Datasets
	Training procedure
	Hyperparameters

	Additional FO Experiments
	Ablation Studies on System Performance of P-RGE
	Efficiency of outer-loop parallelization
	Efficiency of inner-loop parallelization
	End-to-end training efficiency

	Edge Devices Specifications

