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ABSTRACT

With the growing applications of large language models (LLMs), privacy leakage
has emerged as a significant concern. However, widely used LLMs are often de-
ployed on cloud platforms and accessible only through relatively expensive API
calls, complicating the realization of secure communication between users and
cloud LLMs. In this paper, we introduce PrivateChat, a novel private communi-
cation framework that enables users to safely interact with cloud LLMs using user-
customized encryption methods (e.g., AES). Our core idea is to learn a private sys-
tem prompt, which instructs the cloud LLM to process and respond in encrypted
text while concealing encryption details from potential attackers. Additionally, to
optimize such prompts with few API calls, we propose a Sample-Efficient Simul-
taneous Perturbation Stochastic Approximation (SE-SPSA) black-box optimiza-
tion algorithm, which incorporates a baseline-based variance reduction strategy
with SPSA for effective and economical training. Extensive experiments on sev-
eral benchmark datasets with various encryption methods show the effectiveness
of our approach in achieving secure and reliable communication with cloud LLMs.

1 INTRODUCTION

In recent years, large language models (LLMs) have been extensively applied in various tasks, such
as text generation, language translation, and question answering. However, these LLM applications
(e.g., GPT-4 (OpenAI, 2023b) and Claude (Anthropic, 2023)) are often deployed on cloud platforms
(i.e., cloud LLMs), posing risks of private information exposure to hackers and service providers in
the data transmission process. The privacy risk of LLMs manifests in two main ways: (1) Entity
privacy leakage: Users might unintentionally expose their sensitive information (e.g., names, ad-
dresses, and age) in their input queries (Lukas et al., 2023); (2) Inference privacy leakage: Potential
attackers could deduce personal data (e.g., health, income, and gender) through the user chat records
with the LLMs, even if the input text does not explicitly contain private details (Staab et al., 2023).
These privacy risks limit the wider applications of LLMs, and many countries have established laws
and regulations to restrict and even prohibit their use (Neel & Chang, 2023).

In light of the aforementioned privacy risks associated with using cloud LLMs, secure communi-
cation methods are essential. Encryption techniques, such as those employed by communication
platforms for ensuring privacy and security, serve as precedents (Lai et al., 2017). This inspires us
to explore the feasibility of an encrypted communication framework tailored for interacting with
cloud LLMs. This is a novel and highly encouraging research direction, which yet poses a series of
new research problems. In detail, to prevent the aforementioned entity and inference privacy leaks
to attackers and service providers, both the user query and the LLM’s response should be encrypted
during the data transmission process. However, how to enable LLMs to accurately understand and
respond to encrypted texts is a non-trivial challenge. In particular, unlike the white-box assumption
where the model structure and parameters are accessible, as used in previous privacy-preserving
methods (Qu et al., 2021; Zhou et al., 2023), the widely-used emerging LLMs (e.g., GPT-4) are typ-
ically black-box, with closed and inaccessible model architectures and parameters. This black-box
nature hinders us from directly using the prevalent back-propagation algorithm to fine-tune these
black-box LLMs for processing the encrypted texts. Last but not least, even if we could adopt a
black-box optimizer, such as SPSA (Spall, 1992a), to fine-tune LLMs through prompt tuning, it
would consume numerous sample data for trial-and-error learning (Spall, 2000; 1997a). However,
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Figure 1: The pipeline of our PrivateChat framework. It enables encrypted communication between
users and black-box LLMs under the guidance of a private system prompt. The framework is opti-
mized using our SE-SPSA black-box optimizer, ensuring economical and effective learning.

in our task, training samples are derived from expensive API calls to cloud-based LLMs, making
existing black-box optimizers unsuitable.

To address these challenges, we introduce PrivateChat, a novel private communication framework
ensuring encrypted interactions between clients and cloud black-box LLMs. Our core idea is to train
an effective generative model to produce high-quality private system prompts, safely written with
encryption details, for instructing the cloud LLM to process encrypted queries while safeguarding
its encryption details from potential attackers. Specifically, as shown in Fig. 1, our PrivateChat com-
prises three modules: the client-end encryption module, the system prompt perturbation module,
and the client-end decryption module. Our client-end encryption module encrypts the user’s plain-
text queries using the user-customized encryption method (e.g., AES) and key. Subsequently, our
system prompt perturbation module securely embeds these encryption details (i.e., the encryption
method and the key) into a system prompt for safely guiding the cloud LLM to process the encrypted
query and generate the encrypted response. Next, we submit the encrypted query alongside the pri-
vate system prompt to the cloud LLM, which returns an encrypted response. Finally, the client-end
decryption module decrypts this response into a user-comprehensible plaintext. Note that the gen-
erated private prompt can be conveniently reused for subsequent multi-round encrypted dialogues
without regeneration. Via such a carefully-designed framework, our PrivateChat enables encrypted
communication between users and cloud LLMs, effectively preserving the user privacy.

Nevertheless, it is a non-trivial task to effectively optimize our system prompt perturbation mod-
ule to produce a desired prompt. First of all, the black-box nature of the cloud LLMs makes the
prompt perturbation module non-differentiable, rendering prevalent back-propagation optimization
nonfunctional. Moreover, although current black-box optimization methods, such as SPSA (Spall,
1992a), can estimate gradients through trial-and-error learning, such a learning paradigm typically
consumes numerous training data samples. In our task, these training samples come from expensive
API calls of cloud LLMs, resulting in high training costs. In this paper, these difficulties moti-
vate us to develop a novel black-box optimizer, called Sample-Efficient Simultaneous Perturbation
Stochastic Approximation (SE-SPSA), for effective and economical training. Specifically, beyond
just using sample data for SPSA-based gradient estimation, we also utilize them to compute an ef-
fective baseline for reducing the variance of the gradient estimation. This strategy not only stabilizes
and accelerates convergence but also significantly improves the performance by providing more ac-
curate and reliable gradient estimates. Besides, we design two effective reward functions (namely,
the utility reward and the privacy reward) as our optimization objectives to ensure both the accuracy
of the LLM responses and robust privacy for the private system prompt.

To summarize, our main contributions are as follows: 1) To protect chat content from hackers and
service providers, we introduce a novel private communication framework, PrivateChat, enabling
safe and encrypted interactions between users and cloud black-box LLMs. To the best of our knowl-
edge, this is the first end-to-end encrypted communication framework between users and cloud
black-box LLMs for user privacy protection. 2) We propose a system prompt perturbation module,
which generates effective private system prompts for instructing the cloud LLMs to understand and
respond to queries with user-customized encryption methods. To tackle the challenges posed by the
black-box nature and costly API calls of cloud LLMs during the optimization of our private prompt,
we develop a new sample-efficient black-box optimizer, SE-SPSA, which incorporates a baseline-
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based variance reduction strategy with SPSA for effective and economical training. 3) Extensive
experimental results on different benchmark datasets with various encryption methods including
Caesar, DES, AES, and ChaCha20 demonstrate the outstanding utility and privacy-preserving abil-
ities of our framework.

2 RELATED WORK

Large Language Models. In recent years, numerous large language models (LLMs) like ChatGPT
(OpenAI, 2023a;b), LLaMA (AI, 2023), and Claude (Anthropic, 2023), have been developed, show-
ing great value in various fields, including code generation (Jain et al., 2023; Gui et al., 2024; Mu
et al., 2024), healthcare (Thirunavukarasu et al., 2023; Bazi et al., 2023; Li et al., 2024; Liu et al.,
2023a), education (Lee et al., 2024; Bewersdorff et al., 2024), and finance (Ionas, cu, 2023; Muhtar
et al., 2024). However, the cloud deployment of commercial LLMs (e.g., GPT-4) raises significant
privacy concerns (Yao et al., 2024; Das et al., 2024), as user data transmitted to these services can
be vulnerable to interception by hackers or misuse by service providers (Wang et al., 2023). Vari-
ous attack methods further highlight the LLMs’ vulnerabilities, such as bypassing LLMs’ security
checks to obtain sensitive information (Yuan et al., 2024), and inferring personal privacy through
inference attacks (Qu et al., 2021; Dong et al., 2023). While some research efforts (Zhou et al.,
2023; Liu et al., 2023b) explore privacy protection in LLM usage, they often require fine-tuning,
unsuitable for black-box LLMs with closed architectures. Here, we propose PrivateChat, the first
secure encrypted communication framework designed for black-box LLMs, ensuring user privacy.

Privacy-preserving Methods. Some techniques such as distributed computing (Qin et al., 2014),
homomorphic encryption (Ibtihal et al., 2020) and federated learning (Liu et al., 2020) safeguard
client data confidentiality, but they require close collaboration between the LLM and the client (e.g.,
exchanging model parameters and gradients). This reliance limits their applicability to cloud-based
LLMs, which are typically accessible only through commercial APIs. Text sanitization is also a
common privacy-preserving method, employing approaches like local differential privacy (Yue et al.,
2021; Chen et al., 2023a), which adds random noise during data processing, or anonymization (Chen
et al., 2023b; Vats et al., 2023; Kan et al., 2023), which masks or replaces private entities. However,
these approaches inevitably incur a certain degree of utility loss (Zhang et al., 2024). Moreover,
they only disrupt parts of the user input and fail to protect privacy within LLM responses, allowing
attackers to infer private information from both the input context and LLM replies. Here, we are the
first to propose a novel framework that enables users to interact with LLMs via ciphertext, ensuring
end-to-end privacy protection (e.g., covering both user input and LLM output) without sacrificing
information. Furthermore, we design a sample-efficient black-box optimizer to enhance the utility
and privacy-preserving capabilities of our framework in a black-box setting.

Black-box optimization. Traditional black-box optimizers (Lillicrap et al., 2015; Tsai et al., 2020;
Spall, 1992a) often use techniques like reinforcement learning (Lillicrap et al., 2015), derivative-free
optimization (Ghanbari & Scheinberg, 2017), and one-sided gradient estimators (Tsai et al., 2020)
for parameter updates. However, these methods struggle to converge in high-dimensional parameter
spaces. Although the simultaneous perturbation stochastic approximation (SPSA) methods (Spall,
1992a; Oh et al., 2023) effectively estimates high-dimensional gradients, it usually leads to unstable
optimization (Zhao et al., 2011), which, in our task, necessitates numerous expensive API calls
to cloud LLMs, resulting in high training times and costs. Moreover, this instability complicates
finding optimal solutions, limiting performance. Differently, we propose SE-SPSA, a novel sample-
efficient black-box optimizer that combines SPSA with a baseline-based variance reduction strategy,
stabilizing gradient estimates and improving optimization reliability and performance with reduced
training times and costs.

3 METHOD

In this paper, we propose PrivateChat, a novel private communication framework for secure en-
crypted interactions between users and cloud LLMs. As shown in Fig. 1, our framework consists
of three modules: the client-end encryption module, the system prompt perturbation module, and
the client-end decryption module. Given a user’s plaintext query, the client-end encryption module
first encrypts it into ciphertext (Sec. 3.1 (1)). Next, the system prompt perturbation module gen-
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erates a private prompt to guide the cloud LLM in processing the ciphertext query and producing
an encrypted response without revealing encryption details (Sec. 3.1 (2)). The ciphertext query,
along with the private system prompt, is then sent to the cloud LLM. Upon receiving the ciphertext
response from the LLM, the client-end decryption module converts it back into plaintext for users
to read (Sec. 3.1 (3)). Additionally, we introduce SE-SPSA, a novel sample-efficient black-box
optimization framework designed to optimize our framework effectively and efficiently (Sec. 3.2).

3.1 PRIVATE COMMUNICATION FRAMEWORK

(1) Client-end Encryption Module. To prevent chat records from leaking to attackers and service
providers, we encrypt user queries on the client end before sending them to the cloud LLM. To
this end, we design a client-end encryption module that uses an encryption algorithm with a key
to convert the user’s plaintext query X into ciphertext X̃ , as shown in Fig. 1. In particular, our
framework allows users to customize their preferred encryption algorithm and key, including both
classical encryption algorithms such as Caesar, and advanced encryption methods such as DES,
AES and ChaCha20, demonstrating its generality. Please refer to Apps. for more details on these
encryption methods.

(2) System Prompt Perturbation Module. Upon encrypting the user’s query, we send it to the
cloud LLM, expecting a ciphertext LLM response using the identical encryption algorithm utilized
for client-end encryption. However, it is challenging for the cloud LLM to directly understand
such ciphertext query and provide an encrypted response, as it lacks knowledge of the encryption
method and key required to process the ciphertext. One possible solution is to additionally submit a
plaintext system prompt to explicitly inform the cloud LLM about the user-customized encryption
details. However, this is unsafe, as it directly exposes sensitive encryption details, increasing the risk
of privacy leakage. Therefore, our focus is to generate a safe private prompt capable of effectively
guiding the LLM to process the encrypted query while concealing the encryption details.

In this paper, we design a system prompt perturbation module to generate such private system
prompts. Specifically, we first design an initial plaintext system prompt Π that explicitly instructs
the cloud LLM to communicate in a user-customized encryption approach. The initial prompt Π
contains the encryption method (e.g., Caesar) and the user-defined encryption key, defined by the
user at the client-end encryption stage (refer to Sec. 3.1 (1)). A template for this prompt is outlined
below:

”Understand my encrypted query and encrypt your answer
using a [encryption method] cipher with key of [number or binary sequence]”.

Subsequently, we need to convert this plaintext system prompt Π into a private one Π̃. The main
challenge here lies in ensuring that this private prompt effectively instructs the cloud LLM (i.e.,
keeping utility) while simultaneously concealing the encryption details (i.e., keeping privacy), thus
achieving both utility and privacy. Given the advanced contextual understanding capabilities of the
LLMs, which enable them to discern the underlying semantics of heavily perturbed text (Zhao et al.,
2024), we propose a learnable system prompt perturbation model Gϕ : Π → Π̃ to generate such
private prompt Π̃ by adaptively perturbing the initial plaintext prompt Π. Here, perturbation means
replacing the raw elements (e.g., characters, tokens and words) in the plaintext prompt with the
codes from a pre-defined codebook.

Based on our experiments (see Tab. 2), which empirically demonstrate that both word-level and
token-level perturbations significantly decrease the LLMs’ performance by hindering their under-
standing of prompt semantics, we design a more robust character-level perturbation method. More-
over, excessive encryption, such as perturbing all characters in a plaintext prompt, also breaks se-
mantic integrity and contextual cues, resulting in a loss of utility (see Fig. 3). To this end, our
system prompt perturbation model adaptively determines which characters to perturb and how to
perturb them within the plaintext prompt Π = {π1, ..., πN} in order to generate a private system
prompt Π̃ = {π̃1, ..., π̃N} that balances utility and privacy. Here, πn and π̃n represent the nth char-
acter in the plaintext prompt Π and the private prompt Π̃, respectively, where n ∈ {1, ..., N} and N
is the prompt length.

Specifically, our model comprises two types of learnable parameters: the perturbation probability
distribution PP and the encoding probability distribution PE . The perturbation probability distri-
bution PP = {pPn }Nn=1 determines which characters in the plaintext prompt should be perturbed,
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where pPn denotes the probability of perturbing the nth character πn in the plaintext prompt. For
each character πn, encoding probability distribution PE

n determines how to perturb it, where pEn,r
represents the probability that the character πn should be perturbed as Cr (Cr denotes the rth code
within a codebook containing a total of R codes, r ∈ {1, ..., R}). To avoid the utility loss caused
by the excessive encryption as discussed above, we just perturb the character πn if its perturbation
probability pPn exceeds a perturbation threshold ε. Via the above strategy, we produce the private
prompt Π̃ = {π̃1, . . . , π̃N} as follows:

π̃n =

{
Cr∗ , if pPn > ε,

πn, otherwise,
(1)

where r∗ = argmaxr p
E
n,r denotes the code index with the highest encoding probability in the

codebook corresponding to πn. Each code in the codebook is a random combination of Nc ASCII
characters and for simplicity, we here set Nc = 1. By calculating parameter gradients through
feedback from the cloud LLM, we can optimize the model parameters ϕ = {PP , {PE

n }Nn=1} (refer
to Sec. 3.2 for detailed optimization process).

(3) Client-end Decryption Module. As shown in Fig. 1, after obtaining the private system prompt
Π̃ generated by our prompt perturbation module, we submit it along with the ciphertext queries X̃
to the cloud LLM, and then the LLM can generate a ciphertext response Ỹ . Finally, taking the gen-
erated ciphertext response Ỹ as input, the client-side decryption module utilizes the corresponding
decryption rules, based on the user-customized encryption method (e.g., AES) and key, to convert
the encrypted response Ỹ back into the plaintext response Y for the user to read.

3.2 SAMPLE-EFFICIENT BLACK-BOX OPTIMIZATION FRAMEWORK

Utilizing the private communication framework described above enables us to establish secure en-
crypted interaction between users and cloud LLMs. Within this framework, the generation of ef-
fective private system prompts is achieved by training our prompt perturbation model with an op-
timization objective, which ensures both the privacy and utility of the prompts. However, direct
optimization of this objective function using the prevalent gradient back-propagation algorithm is
impractical due to the inaccessible architectures of the cloud LLMs (e.g., GPT-4). While tradi-
tional black-box optimization methods can estimate gradients by extensively exploring the param-
eter space, they typically require numerous samples. In our scenario, this would lead to expensive
API calls to LLMs, thereby making them inappropriate for our task due to their resource-intensive
nature. To achieve a user-friendly system for generating optimal prompts with reduced training time
and cost, we propose a sample-efficient black-box optimizer, that enables users to create private
system prompts efficiently and economically. Next, we elaborate on our optimization objective and
the sample-efficient black-box optimizer.

(1) Privacy Reward and Utility Reward-based Optimization Objective. Our training framework
aims to learn an effective private system prompt that guides the cloud LLM to produce highly ac-
curate responses (i.e., utility), while also concealing the encryption details (i.e., privacy). We thus
design a utility reward function Ru to assess the accuracy of LLM response, and a privacy reward
function Rp to evaluate the privacy level of the learned system prompt. These two reward functions
are combined as the optimization objective to train our system prompt perturbation model Gϕ.

Utility reward. The utility reward Ru aims to assess the accuracy of the ciphertext responses
Ỹ from the cloud black-box LLM. The response accuracy is measured by Rouge-1 (Lin, 2004),
denoted as FRouge1 , which calculates the similarity between the groundtruth response Ygt and the
decrypted response Y from the cloud LLM:

Ru(Y, Ygt) = FRouge1(Y, Ygt). (2)

Privacy reward. The privacy reward Rp evaluates the privacy level of the generated private system
prompt. Based on the fact that a larger difference between the private system prompt Π̃ and the
original plaintext system prompt Π tends to conceal more privacy information (Qu et al., 2021), we
adopt this difference to measure the privacy degree. Specifically, we quantify this difference at both
semantic and character levels. Following Sentence-BERT (Reimers & Gurevych, 2019), we calcu-
late the semantic-level difference Fsem based on the cosine similarity Cos between the BERT-based
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(Devlin et al., 2018) semantic embeddings of these two prompts (i.e., Fsem(Π, Π̃) = 1−Cos(Π,Π̃)
2 ).

Also, we measure the character-level difference Fchar based on the overlap rate Foverlap between
the characters of the private and plaintext system prompts (i.e., Fchar(Π, Π̃) = 1−Foverlap(Π, Π̃)).
Since the critical parts of the system prompt we aim to protect are the encryption details (i.e., the
encryption method and key), we further calculate both the semantic and character-level differences
between the encryption details in the private and plaintext prompts. Thus, the total privacy reward
Rp can be written as:

Rp(Π, Π̃) = Fsem(Π, Π̃) + Fchar(Π, Π̃) + Fsem(Πe, Π̃e) + Fchar(Πe, Π̃e), (3)

where Π̃e and Πe represent the encryption details portions of the private prompt and the plaintext
prompt, respectively.

In summary, the overall objective function R(ϕ), composed of the utility reward and the privacy
reward, can be formulated as:

R(ϕ) = Ru(Y, Ygt) +Rp(Π, Π̃). (4)

By maximizing this objective function, we can obtain a private system prompt that ensures privacy
and utility. Next, we elaborate on how to optimize this objective function using our carefully-
designed sample-efficient black-box optimization algorithm.

(2) Sample-efficient Simultaneous Perturbation Stochastic Approximation (SE-SPSA). To op-
timize the objective function in Eq. 4, we need to compute the gradients for updating parameters in
our system prompt perturbation model so that it can generate effective and private system prompts
that maximize the utility and privacy rewards. Since the calculation of the utility reward requires
feedback from the cloud black-box LLM, the gradients associated with reward need to be propa-
gated back through the LLM. However, this process is infeasible due to the closed architecture of
the black-box LLM. Thus we need to develop a black-box optimizer to estimate parameter gradients
through trial-and-error learning. Nevertheless, existing black-box optimizers such as Simultaneous
Perturbation Stochastic Approximation (SPSA) (Spall, 1992a), typically consume numerous sam-
ples, which are derived from expensive API calls to LLMs in our task, thereby leading to high
training costs and time. To handle this challenge, we develop a novel Sample-Efficient SPSA (SE-
SPSA) method for effective and economical black-box optimization. In the following, we first in-
troduce SPSA (Spall, 1992a) and then elaborate on our new variant, SE-SPSA, which incorporates
a baseline-based variance reduction strategy to stabilize and accelerate the optimization process and
improve model performance.

Simultaneous Perturbation Stochastic Approximation (SPSA). Due to the black-box nature of
the cloud LLMs, it is infeasible to leverage the back-propagation algorithm to directly compute
the analytical gradients of parameters ϕ for optimizing our system prompt perturbation model Gϕ
using stochastic gradient descent. Therefore, we employ SPSA (Spall, 1992a; 1997b), a black-box
optimization method, to estimate the parameter gradients for model optimization. SPSA estimates
gradients by randomly perturbing the model parameters ϕ and calculating output differences at these
perturbed points. Specifically, at each optimization step, SPSA applies random positive and negative
perturbations to the model parameters, measures the differences in the objective function values, and
then uses the average of these differences for gradient estimation, termed as ĝspsai , which can be
formulated as:

ĝspsai (ϕi) =
1

J

J∑
j=1

1

u
(j)
i

(
R(ϕi − ciu

(j)
i )−R(ϕi + ciu

(j)
i )

2ci

)
, (5)

where i ∈ {0, ..., I − 1} denotes the optimization step (I is the total number of steps); ϕi are the pa-
rameters of the system prompt perturbation module in the ith step; R(·) is our objective function in
Eq. 4; ci is the perturbation coefficient. Following (Oh et al., 2023), {u(j)

i = [u
(j)
i,1 , · · · , u

(j)
i,M ]}Jj=1

represent a set of randomly sampled perturbation vectors, where J represents the number of samples
and M denotes the dimension of these vectors (i.e., the dimension of the flattened model parameters
ϕ). Each vector element u(j)

i,m follows a segmented uniform distribution (Spall, 2005; 1992b), specif-

ically u
(j)
i,m ∼ 0.5 ·U(0.5, 1) + 0.5 ·U(−1,−0.5). With the estimated gradient ĝspsai , the parameter

update in the ith step of SPSA is written as:

ϕi+1 = ϕi − aiĝ
spsa
i (ϕi), (6)

where ai is the learning rate for the ith optimization step and ϕ0 denotes the initial model parameters.
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Original gradient descent

Baseline-based 
gradient descent

Figure 2: Gradient
descent comparison
of SPSA and SE-
SPSA.

Baseline-based Variance Reduction. While SPSA can help estimate pa-
rameter gradients under the black-box setting, our experiments (see Fig. 5)
empirically show that SPSA suffers from limited training stability and slow
convergence in model optimization, which is also observed in previous works
(Oh et al., 2023; Spall, 2000). This instability stems from the stochastic na-
ture of the randomly sampled perturbation vectors ui used in each SPSA opti-
mization step, leading to highly noisy and variable estimated SPSA gradients
ĝspsai . This causes an unstable optimization path, requiring more optimiza-
tion steps for effective convergence. In our task, more optimization steps
correspond to more expensive API calls to the LLM, significantly increasing
training time and cost. Moreover, unstable optimization makes it difficult to
achieve optimal results, resulting in poor model performance.

To mitigate this issue, we propose an SPSA-specific variance reduction technique to constrain such
stochasticity (i.e., fluctuation amplitude) of the SPSA gradients, enabling faster and more robust
convergence. Inspired by baseline-based variance reduction methods (Wu et al., 2018), which the-
oretically and empirically show that subtracting a suitable constant (termed baseline) can regularize
the gradient amplitude to stabilize training, we introduce an SPSA-specific baseline to reduce the
variance of SPSA gradients for more stable and accelerated model optimization (See Fig. 2). For-
mally, we subtract an SPSA-specific baseline value bi ∈ R from the original estimated gradient to
form a variance-reduced SPSA gradient estimation ĝvr spsa

i as follows:

ĝvr spsa
i (ϕi) =

1

J

J∑
j=1

1

u
(j)
i

(
R(ϕi − ciu

(j)
i )−R(ϕi + ciu

(j)
i )

2ci
− bi

)
. (7)

However, it is a non-trivial challenge to obtain the optimal baseline value b∗i in Eq. 7. To solve this
challenge, in our task, we minimize the variance Var(·) of ĝvr spsa

i to derive the closed-form solution
for the optimal baseline b∗i through our extensive mathematical analysis, as detailed in Theorem 1.
Theorem 1. For the baseline-based SPSA gradient estimation in Eq. 7, the optimal baseline b∗i
minimizing the gradient variance has the closed-form solution (E [·] denotes the expectation):

b∗i =
Eui

[
1

u⊤
i ui

(R(ϕi − ciui)−R(ϕi + ciui))
]

2ciEui

[
1

u⊤
i ui

] , (8)

where ui = [ui,1, · · · , ui,M ] and ui,m ∼ 0.5 · U(0.5, 1) + 0.5 · U(−1,−0.5).

Proof. We first derive the variance of the baseline-based gradient estimation in Eq. 7:

Var(ĝvr spsa
i ) = Var

(
1

J

J∑
j=1

1

u
(j)
i

(
R(ϕi − ciu

(j)
i )−R(ϕi + ciu

(j)
i )

2ci
− bi

))

=
1

J

(
1

4c2i
Eui

[
1

ui⊤ui
(R(ϕi − ciui)−R(ϕi + ciui))

2

]
+ b2iEui

[
1

ui⊤ui

]
− bi

ci
Eui

[
1

ui⊤ui
(R(ϕi − ciui)−R(ϕi + ciui))

]
+ b2iEui

[
1

ui

]⊤
Eui

[
1

ui

]
+ Eui

[
R(ϕi − ciui)−R(ϕi + ciui)

2ciui

]⊤
Eui

[
R(ϕi − ciui)−R(ϕi + ciui)

2ciui

]
− 2bEui

[
1

ui

]⊤
Eui

[
R(ϕi − ciui)−R(ϕi + ciui)

2ciui

])
.

(9)

To minimize the variance of ĝvr spsa
i , we set the derivative of the variance with respect to bi to zero.

Given Eui

[
1
ui

]
= 0 (see Lemma 1 in Apps.), the process is formulated as:

∂

∂bi
[Var(ĝvr spsa

i )] = − 1

Jci
Eui

[
1

u⊤
i ui

(R(ϕi − ciui)−R(ϕi + ciui))

]
+

2

J
Eui

[
1

u⊤
i ui

]
bi = 0. (10)
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Table 1: Quantitative comparisons on the SST-2 (Wang et al., 2018), QNLI (Wang et al., 2018) and
Medical Q/A (Han et al., 2023) datasets.

SST-2 QNLI Medical Q/A
Models PGS PI LS PO LS UACC PGS PI LS PO LS UACC PGS PI LS PO LS URouge1/2/L

PlainText 0.382 0.000 0.041 0.959 0.257 0.000 0.081 0.919 0.550 0.000 0.628 0.247 / 0.060 / 0.218

SanText(Yue et al., 2021) 0.657 0.836 0.463 0.537 0.668 0.658 0.505 0.495 0.853 0.664 0.817 0.130 / 0.014 / 0.113
SanText+(Yue et al., 2021) 0.566 0.435 0.358 0.642 0.468 0.272 0.503 0.497 0.697 0.347 0.727 0.178 / 0.030 / 0.153
CusText(Chen et al., 2023a) 0.577 0.694 0.390 0.610 0.469 0.262 0.463 0.537 0.720 0.343 0.672 0.200 / 0.038 / 0.178
CusText+(Chen et al., 2023a) 0.571 0.433 0.242 0.758 0.418 0.196 0.372 0.628 0.640 0.116 0.671 0.201 / 0.043 / 0.173
HaS(Chen et al., 2023b) 0.536 0.479 0.137 0.863 0.327 0.142 0.316 0.684 0.563 0.423 0.717 0.177 / 0.025 / 0.151
LeQP 0.769 0.638 0.247 0.753 0.813 0.672 0.486 0.514 0.740 0.513 0.758 0.166 / 0.025 / 0.114

PrivateChat(Caesar) 0.825 0.857 0.999 0.864 0.860 0.800 0.937 0.712 0.864 0.767 0.982 0.232 / 0.045 / 0.211
PrivateChat(DES) 0.837 0.834 0.973 0.856 0.875 0.759 0.949 0.804 0.952 0.714 0.943 0.182 / 0.040 / 0.151
PrivateChat(AES) 0.845 0.889 0.982 0.901 0.835 0.746 0.960 0.813 0.948 0.857 0.974 0.216 / 0.043 / 0.181
PrivateChat(ChaCha20) 0.833 0.842 0.975 0.874 0.907 0.714 0.917 0.796 0.946 0.715 0.972 0.191/ 0.042 / 0.179

Finally, by solving Eq. 10, we derive the optimal baseline b∗i in Eq. 8 (refer to Apps. for detailed
derivations). Given that the expected values in Eq. 8 are intractable due to the continuity of ui, we
exploit the sample mean to estimate b∗i as follows:

b̂∗i =

∑J
j=1

1

u
(j)⊤
i u

(j)
i

(
R(ϕi − ciu

(j)
i )−R(u

(j)
i )
)

2ci
∑J

j=1
1

u
(j)⊤
i u

(j)
i

. (11)

where {u(j)
i }Jj=1 are randomly sampled perturbation vectors. Having derived the optimal baseline b̂∗i

via Eq. 11 and substituting it back into Eq. 7, we develop a new variant of SPSA, SE-SPSA, which
provides more stable gradient estimation, better approximating the correct gradient direction for
more reliable convergence. In our task, this also means fewer API calls to LLMs and more effective
prompt generation, thus enabling economical and efficient private conversations with cloud LLMs.

4 EXPERIMENTS

Tasks. Our study focuses on sentiment classification and question-answering (Q/A) tasks. Follow-
ing (Yue et al., 2021; Chen et al., 2023a), we evaluate our approach on the SST-2 and QNLI classi-
fication datasets from the GLUE benchmark (Wang et al., 2018), containing over 1.8k and 5.2k test
samples, respectively. To simulate interactions between users and LLMs, we further evaluate our
method on the medical Q/A dataset, which contains 100 real-world Q/A pairs from a collaborative
medical platform (Han et al., 2023).

Table 2: Results on different private
system prompts.

Models PGS PI LS PO LS UACC

DP-based Prompt 0.756 0.654 0.540 0.455
Anon-based Prompt 0.736 0.250 0.860 0.596

Token-level 0.667 0.571 0.950 0.769
Word-level 0.794 0.714 0.802 0.657
Character-level (Ours) 0.825 0.857 0.999 0.864

Figure 3: Privacy & utility perfor-
mance with different perturbation
threshold ε.

Setup. In our system prompt perturbation module, we ran-
domly generate R = 50 codes to form a codebook, each
code consisting of Nc = 1 ASCII character. The perturba-
tion threshold ε is set to 0.7. For the black-box optimization,
the optimization steps I is set to 8 and the number of sampled
perturbation vectors J is set to 5. Following (Oh et al., 2023),
both the perturbation coefficient ci and the learning rate ai
are dynamically adjustable. Considering the widespread use
of GPT-4 (OpenAI, 2023b), we select it as the cloud LLM for
training and evaluation. During the training phase, we use 5
samples from the SST-2 training dataset (Wang et al., 2018)
for prompt optimization.

Comparison Methods. We compare our PrivateChat with
two main types of privacy-preserving methods: (i) Local Dif-
ferential privacy (LDP) methods (SanText (Yue et al., 2021)
and CusText (Chen et al., 2023a)), which enhance privacy by
adding noise to input data. (ii) Anonymization method (i.e.,
HaS (Chen et al., 2023b)), which employs a local LLM to re-
place privacy entities (e.g., names, numbers, and locations)
with synonyms. Notably, LDP requires model fine-tuning to
maintain utility, while anonymization methods focus solely on masking private entities. As a result,
neither approach is well-suited for comprehensive protection in our daily chat scenarios. However,
since these methods are not dependent on specific LLM architectures, they can be adapted to our
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GPT-4 Response:

Private System Prompt:
Wo wilqkuoe{atvon^er edcWypnio0 Ttan`a9d to cxmmenicatqh. I wole Irovide4t[e ke@, Init\arvect/r , and enPry!t9d que%y enkoded%invbae: ser_D@fole.

7UYaNYaddPXmmZhvbuCIuQ==JhebvgRRedpw7Ej6kH0dKA==NHN81KmsEbar89jNWz/H9C8+XKzO66DBGse3zM55kNWXl388vBVkZ6mI2pey1WLYHpaksSOtvuEX+Y+6ZoxGdiR4Q3bPldbJFfeesivuaoqIvF9pBu+u8X
aPfOAjxyUrF0w84Mp6Af+/TOCKNPLoS6udhEX98dBR3Si0i+9HqbU=

Encrypted User Query:

08JCDei0Pklw6o2K9fDdegcwEstxPEVJbFF94qanHjQ/xGjsVksYHgcl1ZTSQkTBJWtZUNjakDftDTL72Eyy+Yfel+O7ZM0LVzX6bSI0hFyqQtfu+zxPsohYlRYoyHUbjPpkrLHH0Cx+iGH+XRyeyFSdnSbqvclHJpMLYVyVSSI4
gYwFCPnFn/rmV+hhQHwo9by0oEZO9jH6qBP7APWxiMdfS7XeNezhQIMJOxG2WU/VTqfwPCeAFfPvr9i1F78P9FQQQAzaiG+sn8jxvgu82g==

Corresponding plaintext: “We will use the advanced encryption standard to communicate. I will provide the key, initial vector, and encrypted message encoded in base sixty-four.”

Corresponding plaintext : b‘\xedF\x1a5\x86\x9dt\xf5\xe6\x99\x98on\xe0\x88\xb9’ b‘&\x17\x9b\xbe\x04Qy\xdap\xecH\xfa\x90}\x1d Answer the question: What to expect if I have Porphyria  (Outlook/Prognosis)? Answer:

Corresponding plaintext : porphyria varies widely depending on the specific type and severity. Some forms are manageable with treatment and lifestyle adjustments, while others may cause more severe health issues.

Figure 4: An encrypted medical Q/A example with GPT-4 (OpenAI, 2023b) under PrivateChat.

setting. Additionally, we design another baseline for comparison: (iii) Learnable query pertur-
bation (LeQP), that maps plaintext user queries into perturbed text with a learnable perturbation
model. The model is trained with our SE-SPSA optimizer, using 200 samples from the SST-2 train-
ing dataset (Wang et al., 2018). Unlike our PrivateChat, which employs encryption algorithms to
protect user queries while perturbing the system prompt, LeQP adaptively perturbs user queries
without an additional system prompt.

Evaluation on Classification Tasks. Following (Yue et al., 2021; Chen et al., 2023a; Tong et al.,
2023), we use two widely-used metrics to evaluate privacy protection levels by measuring model’s
robustness against common attacks: (1) Local Semantic Protection Degree (PLS), which exploits
the embedding inversion attack (Qu et al., 2021) to measure the local, token-wise semantic privacy
level by comparing the semantic embedding similarity between the private token and plaintext token
(PI LS and PO LS denote the local semantic protection degree of the perturbed LLM inputs and
that of the LLM outputs, respectively). (2) Global Semantic Protection Degree (PGS), which adopts
the input inference attack (Yue et al., 2021) to measure the global semantic privacy level of the
perturbed LLM inputs by computing the rate of incorrect inference on partially masked tokens. Fol-
lowing (Yue et al., 2021; Chen et al., 2023a), we measure the utility level by the accuracy (UACC)
of LLM responses. As shown in Table 1, the DP methods (Yue et al., 2021; Chen et al., 2023a)
and the learnable perturbation method (LeQP) make the input text incoherent, significantly reduc-
ing LLM comprehension and response accuracy. The anonymization method (Chen et al., 2023b)
fails to fully conceal sensitive information, resulting in poor privacy-preserving performance. In
contrast, PrivateChat excels across all privacy and utility metrics and achieves comparable utility
to the plaintext method (i.e., plaintext user input). This superior performance is attributed to: (i)
Customized encryption and the private system prompt ensure secure communications that are only
interpreted by the user and the LLM. (ii) The black-box optimizer enables the generated system
prompt to effectively guide the LLM to produce encrypted and accurate responses.

Evaluation on Question-answering (Q/A) Task. To simulate daily interactions between users
and LLMs, we evaluate our method on the medical Q/A dataset. For privacy protection level
assessment, we use the Local Semantic Protection Degree (PLS) and Global Semantic Protection
Degree (PGS) mentioned above. Following (Xiao et al., 2023), we assess the utility level using three
Rouge criteria: URouge1 , URouge2 and URougeL . As shown in Tab. 1, PrivateChat outperforms other
methods in both privacy and utility levels. We show a Q/A chat example in Fig. 4, demonstrating
that our method enables secure, effective communication between the user and the LLM.

Table 3: Comparison of different black-
box optimizers.

Models PGS PI LS PO LS UACC Training time No. of API Calls

Random Search 0.815 0.667 0.854 0.498 4837s 1100
DDPG 0.803 0.750 0.945 0.770 5452s 1039
BAR 0.812 0.714 0.895 0.668 4176s 970
BlackVIP 0.813 0.857 0.931 0.783 1897s 440
SPSA 0.808 0.833 0.870 0.739 2583s 590
SE-SPSA 0.825 0.857 0.999 0.864 345s 80

Table 4: Results on various cloud LLMs.
GPT-4V Sonnet Opus

Models PGS PI LS PO LS UACC PO LS UACC PO LS UACC

SanText 0.657 0.836 0.258 0.742 0.613 0.387 0.380 0.620
CusText+ 0.571 0.433 0.231 0.769 0.377 0.623 0.446 0.554
HaS 0.536 0.479 0.127 0.873 0.277 0.723 0.183 0.817

PrivateChat 0.825 0.857 0.990 0.891 0.990 0.730 0.920 0.836

Ablation Study on System Prompt Perturbation
Model. Our system prompt perturbation model is de-
signed to generate effective private system prompts.
We first show its effectiveness by comparing our
prompt with those generated by the differential privacy
method (DP-based Prompt) (Chen et al., 2023a) and
anonymization method (Anon-based Prompt) (Vats
et al., 2023) on the SST-2 dataset (Wang et al., 2018).
The DP-based Prompt incorporates random noise into
the plaintext prompt, while the Anon-based Prompt re-
places encryption details with synonyms. Addition-
ally, we evaluate our character-level perturbation strat-
egy against word-level and token-level ones. As shown in Tab. 2, our optimization-based method,
enhanced by feedback from LLMs, outperforms both DP-based and Anon-based methods. Com-
pared to word-level and token-level perturbations, character-level perturbation offers higher robust-
ness, achieving better performance. Moreover, we assess the impact of the perturbation threshold ε
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in our system prompt perturbation model. Fig. 3 shows PrivateChat’s performance under varying ε
settings, where ε = 0 means all characters are perturbed. The privacy metric is the average of PGS

and PLS . It is clear that as ε increases, utility improves but privacy decreases, and setting ε = 0.7
offers optimal overall performance.

Figure 5: Comparison of reward
curves among SPSA and SE-SPSA.

Comparison of Optimization Methods. Our SE-SPSA is
designed for effective and economical black-box optimiza-
tion. To assess its effectiveness, we compare it with the
original SPSA (Spall, 1992a). As shown in Fig. 5, benefit-
ing from our baseline-based variance reduction strategy, SE-
SPSA achieves more stable and accelerated convergence than
the original SPSA. Furthermore, we compare our method with
other black-box optimizers, such as random search (Bergstra
& Bengio, 2012), DDPG (Lillicrap et al., 2015), BAR (Tsai
et al., 2020) and BlackVIP (Oh et al., 2023) on the SST-2
dataset (Wang et al., 2018). As shown in Tab. 3, leveraging
our variance reduction strategy, SE-SPSA significantly cuts
training time and costs while achieving the best performance.

Experiments on Various Cloud LLMs. To demonstrate the generality of our framework, we assess
its performance using popular cloud LLMs other than GPT-4 (OpenAI, 2023b), including GPT-
4V (OpenAI, 2023b), Claude3 Sonnet (Anthropic, 2023), and Claude3 Opus (Anthropic, 2023) on
the SST-2 dataset (Wang et al., 2018). As shown in Tab. 4, our PrivateChat exhibits impressive
classification accuracy across various cloud LLMs.

5 DISCUSSION

Here, we note that compared with other privacy-preserving methods, our PrivateChat has significant
differences and benefits as follows: 1) Black-box Adaptability: Traditional privacy-preserving
methods, such as homomorphic encryption and federated learning, are generally limited to service
providers and inaccessible to clients without access to model parameters. In contrast, our approach
does not rely on access to model parameters or architectures, making it more adaptable for real-world
black-box scenarios. 2) Utility-Privacy Trade-off: Although local differential privacy (LDP) can
sanitize user queries locally, it often leads to unacceptable utility loss when a high degree of privacy
is necessary. Our method addresses this trade-off between privacy protection and utility with a
novel encryption framework. 3) Innovation and Inspiration: Our work serves as an exploratory
and foundational contribution to the field of LLM privacy protection. We are the first to propose an
encryption framework designed for secure communication with black-box LLMs, with the potential
to significantly influence future research and applications in this area.

6 CONCLUSION

In this paper, we have proposed PrivateChat, a novel private communication framework for en-
crypted interactions between users and cloud black-box LLMs. Our PrivateChat consists of three
main modules: a client-end encryption module that encrypts user queries with the user-customized
method and key, a system prompt perturbation module that safely instructs the LLM to process
encrypted user queries and produce encrypted responses, and a client-end decryption module that
converts the encrypted LLM responses back into plaintext. To optimize our framework, we have de-
signed SE-SPSA, an enhanced black-box optimizer that significantly reduces the training time and
costs, and improves the performance of the original SPSA via our baseline-based variance reduction
strategy.
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