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ABSTRACT

We consider a problem of covariance estimation from a sample of i.i.d. high-
dimensional random vectors. To avoid the curse of dimensionality, we impose an
additional assumption on the structure of the covariance matrix Σ. To be more
precise, we study the case when Σ can be approximated by a sum of double Kro-
necker products of smaller matrices in a tensor train (TT) format. Our setup natu-
rally extends widely known Kronecker sum and CANDECOMP/PARAFAC mod-
els but admits richer interaction across modes. We suggest an iterative polynomial
time algorithm based on TT-SVD and higher-order orthogonal iteration (HOOI)
adapted to Tucker-2 hybrid structure. We derive non-asymptotic dimension-free
bounds on the accuracy of covariance estimation taking into account hidden Kro-
necker product and tensor train structures. The efficiency of our approach is illus-
trated with numerical experiments.

1 INTRODUCTION

Given X,X1, . . . ,Xn P Rd i.i.d. centered random vectors, we are interested in estimation of their
covariance matrix Σ “ EXXJ P Rdˆd. Despite its long history, this classical problem still gets
considerable attention of statistical and machine learning communities. The reason is that in mod-
ern data mining tasks researchers often have to deal with high-dimensional observations. In such
scenarios they cannot rely on classical estimates, for instance, sample covariance

pΣ “
1

n

n
ÿ

i“1

XiX
J
i ,

suffering from the curse of dimensionality. To overcome this issue, statisticians impose additional
assumptions on Σ in order to exploit the data structure and reduce the total number of unknown
parameters. Some recent methodological and theoretical advances in covariance estimation are re-
lated with Kronecker product models, which are particularly useful for analysis of multiway or
tensor-valued data (Werner et al., 2008; Allen and Tibshirani, 2010; Greenewald et al., 2013; Sun
et al., 2018; Guggenberger et al., 2023). For example, motivated by multiple input multiple output
(MIMO) wireless communications channels, Werner, Jansson, and Stoica (2008) assumed that Σ
can be represented as a Kronecker product of two smaller matrices Φ P Rpˆp and Ψ P Rqˆq , such
that pq “ d:

Σ “ Φ b Ψ “

¨

˚

˝

φ11Ψ . . . φ1pΨ
...

. . .
...

φp1Ψ . . . φppΨ

˛

‹

‚

. (1)

It is known that (see, for instance, the proof of Theorem 1 in (Van Loan and Pitsianis, 1993)) Σ of
form (1) can be reshaped into a rank-one matrix using an isometric rearrangement (or permutation)
operator P : Rpqˆpq Ñ Rp2

ˆq2 (see (Puchkin and Rakhuba, 2024, Definition 2.1)). Based on this
fact, Werner, Jansson, and Stoica suggested to estimate PpΣq applying singular value decomposition
to PppΣq and showed that this estimate is asymptotically efficient in the Gaussian case. They called
this approach covariance matching. This idea was further developed by (Tsiligkaridis and Hero,
2013; Masak et al., 2022; Puchkin and Rakhuba, 2024), who considered the sum of Kronecker
products model

Σ “

K
ÿ

k“1

Φk b Ψk, (2)
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where Φ1,Ψ1, . . . ,ΦK ,ΨK are symmetric positive semidefinite matrices, such that Φj P Rpˆp,
Ψj P Rqˆq for all j P t1, . . . ,Ku and pq “ d. They studied properties of the permuted regularized
least squares (PRLS) estimates. In (Tsiligkaridis and Hero, 2013; Puchkin and Rakhuba, 2024), the
authors regularized the loss function using the nuclear norm

pΣ˝ “ P´1p rRq, where rR P argmin
RPRp2ˆq2

"

›

›

›
R ´ PppΣq

›

›

›

2

F
` λ}R}˚

*

, (3)

while Masak et al. (2022) considered a rank-penalized estimate

qΣ “ P´1p qRq, qR P argmin
RPRp2ˆq2

›

›

›
R ´ PppΣq

›

›

›

2

F
` λ rankpRq. (4)

Following the covariance matching approach of Werner et al. (2008), both (3) and (4) reduce the
problem of covariance estimation to recovering of a low-rank matrix PppΣq from noisy observations.
We would like to note that the estimates pΣ˝ and qΣ admit explicit expressions based on the singular
value decomposition of PppΣq. For this reason, they can be computed in polynomial time.

In the present paper, we consider a covariance model combining Kronecker product and tensor train
(TT) structure. To be more precise, we consider Σ of the form

Σ “

J
ÿ

j“1

K
ÿ

k“1

Uj b Wjk b Vk, (5)

where Uj P Rpˆp, Vjk P Rqˆq , and Wk P Rrˆr for any j P t1, . . . , Ju and k P t1, . . . ,Ku.
The numbers p, q, and r are assumed to be such that pqr “ d. Let us note that (5) naturally
extends (2) to the case of three-way data and coincides with it when J “ 1 and U1 “ 1. The
rationale for selecting our model is that the TT decomposition (Oseledets, 2011) is recognized for its
computational efficiency compared to the canonical polyadic (CP) decomposition, while providing a
robust framework for representing higher-order tensors. Notice that the CANDECOMP/PARAFAC
model

Σ “

K
ÿ

k“1

Φk b Ψk b Ωk, (6)

which has recently got considerable attention in the literature (see, for example, (Pouryazdian et al.,
2016; Greenewald et al., 2019; Yu et al., 2025) and the references therein), is a particular case of (5)
with J “ K, Wjk “ Ψk1pj “ kq, and Uj “ Φj . Following the covariance matching approach, we
can reshape a matrix Σ of the form (5) into a third-order tensor with low canonical rank. Indeed,
given a matrix A P Rpqrˆpqr, let us define a rearrangement operator R : Rpqrˆpqr Ñ Rp2

ˆq2ˆr2

componentwise: for any 1 ď a ď p2, 1 ď b ď q2, and 1 ď c ď r2

RpΣqa,b,c “ Σpra{ps´1q¨qr`prb{qs´1q¨r`rc{rs,ppa´1q%pq¨qr`ppb´1q%qq¨r`pc´1q%r`1, (7)

where y%x P t0, . . . , x ´ 1u stands for the residual of y modulo x. Then it is easy to check that

RpΣq “

J
ÿ

j“1

K
ÿ

k“1

vecpUjq b vecpWjkq b vecpVkq, (8)

where, for any matrix A, vecpAq is a vector obtained by stacking the columns of A together. Un-
fortunately, a formal extension of the approach suggested by Tsiligkaridis and Hero (2013) to the
CANDECOMP/PARAFAC model will not result in a practical algorithm. The main obstacle is that
approximation of the nuclear norm of a tensor is an NP-hard problem Hillar and Lim (2013). The
statistical-computational gap was discussed in several papers including (Barak and Moitra, 2016;
Zhang and Xia, 2018; Han et al., 2022a; Luo and Zhang, 2022; 2024). For this reason, when de-
veloping an algorithm for estimation of the covariance matrix (5), we must take into account both
its computational and sample complexities. In the present paper, we extend the approach of Zhang
and Xia (2018) and suggest an iterative procedure similar to the higher-order orthogonal iteration
(HOOI) with the notable distinction of utilizing the Tucker-2 representation of the tensor. Our algo-
rithm successfully adapts to the structure (5) but requires less time, than Tucker decomposition and
HOOI.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

While statisticians (see, for example, (Tsiligkaridis and Hero, 2013; Puchkin and Rakhuba, 2024))
established rates of convergence of the PRLS estimate (3), the CANDECOMP/PARAFAC model (6)
and the more general tensor train model (5) remain underexplored. In Section 2 (see (9) below), we
discuss that the tensor train model (5) can be represented in a way, which is very similar to the low
Tucker rank tensor model (see, for instance, (Han et al., 2022a, Definition 2.1)). The only differ-
ence is that (9) includes two factors with orthogonal columns while in Tucker decomposition one has
three such factors. For this reason, some bounds on the estimation accuracy of Σ of the form (5) with
respect to the Frobenius norm follow from the results on tensor estimation Zhang and Xia (2018);
Han et al. (2022b); Kumar et al. (2025), scalar-on-tensor regression Khavari and Rabusseau (2021);
Wang et al. (2025), and tensor-on-tensor regression Raskutti et al. (2019); Luo and Zhang (2024)
with constraints on Tucker ranks. However, these bounds are dimension dependent, while many re-
cent results in covariance estimation establish dimension-free bounds (see, for instance, Koltchinskii
and Lounici (2017); Bunea and Xiao (2015); Abdalla and Zhivotovskiy (2022); Zhivotovskiy (2024);
Puchkin and Rakhuba (2024); Puchkin et al. (2025)). To our knowledge, the existing dimension-
free results on tensor estimation only cover the case of simple rank-one tensors (Vershynin, 2020;
Zhivotovskiy, 2024; Al-Ghattas et al., 2025; Chen and Sanz-Alonso, 2025). In the present paper, we
derive high-probability dimension-free bounds on the accuracy of estimation of third-order tensors
with low TT-ranks and of the covariance matrices, which can be well approximated by (5).

Contribution. Our main contribution is a comprehensive non-asymptotic analysis of this estima-
tion procedure. We first derive a general deterministic perturbation bound for our TT-SVD-like
algorithm, which may be of independent interest. We then leverage this result to establish a high-
probability error bound for our covariance estimator. The final bound clearly decomposes the error
into a bias term, related to how well the true Σ can be approximated by our model, and a vari-
ance term. This variance term scales gracefully with the sample size n, the TT-ranks pJ,Kq, and
data-dependent effective dimensions that capture the intrinsic complexity of the covariance struc-
ture. To our knowledge, this is the first work to provide a computationally efficient and theoretically
guaranteed method for covariance estimation with this flexible TT-based structure.

Paper structure. The rest of the paper is organized as follows. In Section 2, we present our
algorithm and main theoretical guarantees. We provide some practical analysis in Section 3 and
conclude with a discussion in Section 4. All proofs are deferred to the Appendix.

Notation. Given a matrix M P Rd1ˆd2 , we define its vectorization as
vecpMqpa´1q¨d2`b “ Ma,b, a ď d1, b ď d2.

For a tensor T of order k with dimensions d1, . . . , dk, we define a multiplication ˆi on mode i by a
matrix M P Rd1

ˆdi as follows:

pT ˆi Mqa1a2...aiai`1...ak
“

di
ÿ

a1
i“1

Ta1a2...ai´1a1
iai`1...ak

Maia1
i
,

where aj , j ‰ i, takes values in t1, . . . , dju and ai takes values in t1, . . . , d1u.

It will be convenient to assume that random vectors X,X1, . . . ,Xn lie in a tensor product space
Rp bRq bRq , so Σ “ EXXJ belongs to the space of SDP Hermitian operators H`pRp bRq bRrq

from Rp bRq bRq to itself. Then, we will define partial traces of Σ as follows. Given linear spaces
L1, L2 and linear operators X : L1 Ñ L1, Y : L2 Ñ L2, we define the partial trace TrLi , i “ 1, 2,
w.r.t. Li as follows:

TrL1
pX b Y q “ TrpXq ¨ Y, TrL2

pX b Y q “ X ¨ TrpY q.

We extend TrLi
p¨q to all operators from L1 bL2 Ñ L1 bL2 by linearity. In our case, for operators

from H`pRp bRq bRrq, we define Tr1p¨q as a partial trace w.r.t. Rp, Tr2p¨q as a partial trace w.r.t.
Rq and Tr3p¨q as a partial trace w.r.t. Rr. Partial traces will play in important role in our theoretical
analysis. We define

r1pΣq “ max

"

}Tr1pΣq}

}Σ}
,

}Tr1,2pΣq}

}Tr2pΣq}

*

, r2pΣq “ max

"

}Tr2pΣq}

}Σ}
,

}Tr2,3pΣq}

}Tr3pΣq}

*

,

r3pΣq “ max

"

}Tr3pΣq}

}Σ}
,

}Tr1,3pΣq}

}Tr1pΣq}
,

}Tr1,2,3pΣq}

}Tr1,2pΣq}

*

,
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where Tri1i2...ik stands for the composition of the traces Tri1 ,Tri2 , . . . ,Trik . Quantities
r1pΣq, r2pΣq, r3pΣq play the role of effective dimensions. From (Rastegin, 2012, display (23)),
we know that r1pΣq ď p, r2pΣq ď q, r3pΣq ď r. We define them as maxima over ratios of some
partial traces to ensure that for any non-empty set S Ă t1, 2, 3u we have

}TrSpΣq}

}Σ}
ď

ź

sPS

rspΣq.

For a tensor T P Rp2
ˆq2ˆr2 , we introduce the unfolding operator with respect to the first mode as

m1pT qx,y “ Tx,ry{r2s,py´1q%r2`1.

Similarly, the unfolding operators with respect to the second and the third modes are define as
follows:

m2pT qx,y “ Tpy´1q%p2`1,x,ry{p2s, m3pT qx,y “ Try{q2s,py´1q%q2`1,x.

We denote the output of SVD algorithm with hard thresholding via rank J as SV DJ . We denote
matrices with orthonormal columns of size Rdˆr by Od,r. In what follows, rms stands for the set of
integers from 1 to m.

2 MAIN RESULTS

Let us return to the estimation of the covariance matrix Σ of the form (5). As discussed in the
introduction, we can reshape Σ into a third-order tensor RpΣq using the rearrangement operator (7):

RpΣq “

J
ÿ

j“1

K
ÿ

k“1

vecpUjq b vecpWjkq b vecpVkq P Rp2
ˆq2ˆr2 ,

where vectors vecpUjq are assumed to be linearly independent, as well as vectors vecpVkq. Stacking
together vectors vecpUjq, j “ 1, . . . , J into a matrix U P Rp2

ˆJ , vectors vecpVkq, k “ 1, . . . ,K

into a matrix V P Rr2ˆK and matrices Wjk, j “ 1, . . . , J , k “ 1, . . . ,K into a three-dimensional
tensor W P RJˆq2ˆK , we can rewrite the above decomposition in the following compact form:

RpΣq “ W ˆ3 V ˆ1 U. (9)

Note that this decomposition is not unique. In particular, multiplying U by an invertible matrix
QU P RJ,J from the right and W by Q´1

U from the first mode does not change the right-hand side
of (9). The same true for the factor V . Hence, one can assume that the columns of U and V are
orthonormal, i.e. U P Op2,J and V P Or2,K . In what follows, we always assume that this is the
case. For brevity, we set d1 “ p2, d2 “ q2, and d3 “ r2.

We extend the model (5) to the case when Σ can be approximated by decomposition (5) up to some
error. Then, it is naturally to consider the best pJ,Kq-TT-rank approximation of RpΣq, which we
denote by T ˚. We denote the misspecification shift RpΣq ´ T ˚ by E . To approximate Σ, we aim to
recover its structured part T ˚ from the noisy tensor Y “ RppΣq, which can be represented as

Y “ T ˚ ` E P Rd1ˆd2ˆd3 ,

where the error tensor E consists of the approximation part E and the noise part pE “ RppΣq ´RpΣq.

Since T ˚ has TT-ranks pJ,Kq, it can be decomposed as T ˚ “ W˚ˆ3V
˚ˆ1U

˚, where U˚ P Op2,J ,
V ˚ P Or2,K and W˚ P RJˆq2ˆK . This decomposition suggests the following natural algorithm
for estimating T ˚ from Y . Using truncated SVD, one estimates the image of U˚ which coincides
with Im m1pT ˚q, then estimates the image of V ˚ which coincides with Im m3pT ˚q, and then project
Y onto the estimated spaces. However, this estimation is not straightforward, and one should apply
truncated SVD iteratively to reach reasonable accuracy. In Section 3, we conduct numerical ex-
periments illustrating that additional iterations indeed improve the estimation. We summarized the
resulting procedure as Algorithm 1. We refer to it as the Hartth algorithm where the abbreviation
HardTTh stands for Hard Tensor Train Thresholding.

4
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Algorithm 1: HardTTh

Input: Tensor Y P Rd1ˆd2ˆd3 , TT-ranks pJ,Kq, number of steps T
Output: TT-approximation pT “ xW ˆ3

pV ˆ1
pU , where pU P Od1,J ,

pV P Od2,K ,
xW P RJˆd2ˆK ;

Find SVD of m1pYq truncated on the first J singular values: pU0,Σ0,1, rU0 “ SVDJpm1pYqq

Find truncated SVD of m3pY ˆ1
pUJ
0 q: pV0,Σ0,2, rV0 “ SVDKpm3pY ˆ1

pUJ
0 qq

for t “ 1, . . . , T do
Set pUt,Σt,1, rUt “ SVDJpm1pY ˆ3

pV J
t´1qq

Set pVt,Σt,2, rVt “ SVDKpm3pY ˆ1
pUJ
t qq

Set pU “ pUT , pV “ pVT and xW “ Y ˆ3
pV J ˆ1

pUJ.

Notice that computational complexity of Algorithm 1 is determined by the complexity of trun-
cated SVD applied to the matricizations. The truncated SV DJ at the first step of HardTTh takes
Opd1d2d3 ¨ mintd1, d2d3uq. Other steps require either OpJd3d2 ¨ mintd3, Jd2u ` Jd1d2d3q or
OpKd1d2 mintd1,Kd2u ` Kd1d2d3q flops, so the overall complexity of the algorithm is

OppJ ` KqTd1d2d3 ` TKd1d2 ¨ mintd1,Kd2u ` TJd3d2 ¨ mintd3, Jd2u

` d1d2d3 ¨ mintd1, d2d3uq.

If the misspecification is not too large, the number T of iterations can be taken logarithmical in the
ambient dimensions, see discussion below after Theorem 2.2.

In practice, randomized truncated SVD could be used (Halko et al., 2011) or other approximate
algorithms (Baglama and Reichel, 2005).

Given the output pT of Algorithm 1 applied to Y “ RppΣq, define the estimator rΣ of Σ as rΣ “

R´1ppT q. To analyze rates of convergence for this estimator, we impose some assumption on the
distribution of Xi.

Assumption 2.1. There exists ω ą 0, such that the standardized random vector Σ´1{2X satisfies
the inequality

logE exp
!

pΣ´1{2XqJV pΣ´1{2Xq ´ TrpV q

)

ď ω2}V }2F (10)

for all V P Rdˆd, such that }V }F ď 1{ω.

In (Puchkin et al., 2025), the authors showed that Assumption 2.1 holds for a large class of distribu-
tion. Indeed, Assumption 2.1 is a weaker version of the Hanson–Wright inequality. In particular, if
the Hanson–Wright inequality is fulfilled for Σ´1{2X, then X satisfies Assumption 2.1. Therefore,
Assumption 2.1 can be used when Σ´1{2X is multivariate standard Gaussian, consists of i.i.d. sub-
Gaussian random variables, satisfies the logarithmic Sobolev inequality or the convex concentration
property (Adamczak, 2015).

Under Assumption 2.1, we establish the following theorem. We give its proof in Appendix E. The
proof sketch is given in Appendix D.

Theorem 2.2. Fix δ P p0, 1q. Grant Assumption 2.1. Suppose that singular values
σJpm1pRpΣqq, σKpm3pRpΣqq satisfy

σJpm1pRpΣqqq ě 25}m1pEq} ` 768ω}Σ}

c

r21pΣq ` r22pΣqr23pΣq ` logp6{δq

n
,

σKpm3pRpΣqqq ě 25}m3pEq} ` 768ω}Σ}

c

Jr21pΣq ` Jr22pΣq ` r23pΣq ` logp48{δq

n
.

Then, we have

}rΣ ´ Σ}F ď b ` 96ω}Σ}

c

Jr21pΣq ` JKr22pΣq ` Kr23pΣq ` logp48{δq

n
` r♢2 ` rrT

5
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with probability at least 1 ´ δ, provided n ě Rδ , where

b “ }E}F ` 5
?
J}m1pEq} ` 5

?
K}m3pEq},

and Rδ and remainder terms r♢2, rrT are defined in Table 1.

Variable Expression

rαU }m1pE ˆ3 pV ˚qJq} ` 32ω}Σ}

b

r21pΣq`Kr22pΣq`logp48{δq

n

rβU supV PRd2ˆK

}V }ď1

}m1pE ˆ3 V
Jq} ` 32ω}Σ}

b

r21pΣq`Kr22pΣq`Kr23pΣq`logp48{δq

n

rαV }m3pE ˆ1 pU˚qJq} ` 32ω}Σ}

b

r23pΣq`Jr22pΣq`logp48{δq

n

rβV supUPRd1ˆJ

}U}ď1

}m3pE ˆ1 U
Jq} ` 32ω}Σ}

b

r22pΣq`Jr21pΣq`Jr23pΣq`logp48{δq

n

r♢2 96
´ ?

K rβV rαU

σJ pm1pRpΣqqq
`

?
J rβU rαV

σKpm3pRpΣqqq

¯

rrT p
?
J `

?
Kq ¨

´

200rβV
rβU

σJ pm1pRpΣqqqσKpm3pRpΣqqq

¯T

ˆ

ˆ

ˆ

}m1pEq} ` 32ω

b

r21pΣq`r22pΣqr23pΣq`logp6{δq

n

˙

Rδ Jr21pΣq ` JKr22pΣq ` Kr23pΣq ` r22pΣqr23pΣq ` logp48{δq

Table 1: List of ancillary variables

The upper bound on }rΣ´Σ}F provided by the above theorem can be decomposed into the bias term
b due to model misspecification, the leading variance term

pv “ 96ω}Σ}

c

Jr21pΣq ` JKr22pΣq ` Kr23pΣq ` logp48{δq

n
,

and remainder terms r♢2, rrT . Note that after T “ OplogpJKr2pΣqqq iterations, the variance part

rrvT “ p
?
J `

?
Kq ¨

˜

200rβV
rβU

σJpm1pRpΣqqqσKpm3pRpΣqqq

¸T

ˆ 32ω

c

r21pΣq ` r22pΣqr23pΣq ` logp6{δq

n
,

of rrT will be dominated by pv.

Compared to the known results in the literature, Theorem 2.2 has several advantages. First, it pro-
vides dimension-free bounds based on the effective dimensions ripΣq ď di instead of bounds in-
volving ambient dimensions d1, d2, d3 as in vast of literature on high-dimensional tensor estimation
(cf. (Zhang and Xia, 2018; Qin et al., 2025; Han et al., 2022b; Tang et al., 2025; Luo and Zhang,
2024)). Second, we point out the following. Set rpΣq “ TrpΣq{}Σ}. It is known that, under some
assumptions, the sample covariance matrix pΣ satisfies concentration inequalities

}pΣ ´ Σ} À }Σ}

c

rpΣq ` logp1{δq

n
, }pΣ ´ Σ}F À }Σ}

c

r2pΣq ` logp1{δq

n
with probability at least 1 ´ δ (see (Zhivotovskiy, 2024; Bunea and Xiao, 2015; Hsu et al., 2012;
Puchkin et al., 2025)), where À hides some distribution-dependent constant. Hence, our effective
dimensions ripΣq naturally extends the effective dimension rpΣq of sample covariance concen-
tration in the unstructured case. Third, while Puchkin and Rakhuba (2024) prove dimension-free
bounds for the model (2) and the estimator pΣ˝ “ P´1p rRq defined by (3), they do not analyze the
misspecification case and bound the variance term with probability at least 1 ´ δ as follows:

}pΣ˝ ´ Σ}F À
?
Kω

K
ÿ

k“1

}Φk}}Ψk}

d

max
k

r2pΨkq ` max
k

r2pΦkq ` logp1{δq

n
,
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so they have rough variance proxy factor
řK

k“1 }Φk}}Ψk} instead of }Σ} “ }
řK

k“1 Φk b Ψk}.
We improve their analysis to establish bounds on the variance involving variance proxy factor }Σ}

which seems to be tight.

To highlight the advances of Theorem 2.2, let us discuss how effective dimensions could be small
compared to the ambient dimensions. In Appendix C, we prove the following proposition.
Proposition 2.3. Suppose that a covariance matrix Σ P H`pRp b Rq b Rrq can be represented in
the form

Σ “

J
ÿ

j“1

K
ÿ

k“1

Uj b Vjk b Wk

for some symmetric positive semidefinite matrices Uj ,Wjk, Vk. Then, we have

r1pΣq ď J ¨ max
j

rpUjq, r2pΣq ď JK ¨ max
jk

rpWjkq, r3pΣq ď K ¨ max
k

rpVkq.

For example, Proposition 2.3 implies that if the spectra of matrices Uj ,Wjk and Vk decay quadrat-
ically, i.e. if max

jk
tσipUjq{}Uj}, σipWjkq{}Wjk}, σipVkq{}Vk}u ď Cσi

´2, then r1pΣq ď Cσπ
2{6 ¨

J, r2pΣq ď Cσπ
2{6 ¨ JK and r3pΣq ď Cσπ

2{6 ¨ K.

The main drawback of Theorem 2.2 is the requirements σJpm1pRpΣqqq Á }Σ}
a

r22pΣqr23pΣq{n
and n Á r22pΣqr23pΣq. Indeed, the theory of tensor estimation by SVD-based algorithms developed
in (Zhang and Xia, 2018; Tang et al., 2025) suggests that the minimax error can be achieved under
condition

σJpm1pRpΣqqq Á }Σ}{n1{2 ¨ pd2d3q
3{8

, (11)

and there is strong evidence that the power 3{8 in the above inequality can not be taken smaller
for any polynomial-time algorithm (Barak and Moitra, 2016; Hopkins et al., 2015; Zhang and Xia,
2018; Luo and Zhang, 2024; Diakonikolas et al., 2023). However, minimax bounds under conditions
of the type (11) were established when entries of pE are i.i.d. Roughly speaking, the estimation error
of the singular subspaces corresponds to the impact of the term m1pEqm1pEqJ in the decomposition

m1pYqm1pYqJ “ m1pT ˚qm1pT ˚qJ ` m1pT ˚qm1pEqJ ` m1pEqm1pT ˚qJ ` m1pEqm1pEqJ

on the perturbation of eigenspace of m1pT ˚qm1pT ˚qJ, see (Cai and Zhang, 2018). When entries of
pE are i.i.d., we have Em1ppEqm1ppEqJ “ αId1 for some scalar α, so the error of singular subspaces
estimation is determined by deviations of m1ppEqJm1ppEqJ from its mean, which can be controlled
under conditions like (11). This is clearly not the case of our setup, so Algorithm 1 requires debiasing
before applying SVD, which needs extra assumptions on the distribution of Xi and is left for future
work.

Comparing Theorem 2.2 with results of Zhang and Xia (2018), one can note that, in their paper,
upper bounds on the tensor estimation error do not involve second-order terms like r♢2. The reason
is that their work imposes an assumption maxtd1, d2, d3u ď Cmintd1, d2, d3u for some absolute
constant C. Translated to our setup, it means that, assuming max

i
ripΣq ď Cmin

i
ripΣq, the term

r♢2 is dominated by the leading variance term pv, which is exactly the case.

Finally, we briefly comment on the choice of J and K. If Σ can be represented by (5) for some
J,K, such that

σJpm1pRpΣqq ě Cω}Σ}

c

r21pΣq ` r22pΣqr23pΣq ` logp6{δq

n
,

σKpm3pRpΣqq ě Cω}Σ}

c

Jr22pΣq ` Jr22pΣq ` r23pΣq ` logp48{δq

n

for some large enough absolute constant C, and the following bounds hold

}Σ}{2 ď }pΣ} ď 3}Σ}{2,

}TrSppΣq ´ TrSpΣq} ď
1

2
}TrSpΣq} for all non-empty S Ă r3s (12)

7
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with probability at least 1 ´ δ{6, then one can define estimators pJ, pK of J,K as

pJ “ max

$

&

%

J 1 | σJ 1 pm1pRppΣqq ě C 1ω}pΣ}

d

r21ppΣq ` r22ppΣqr23ppΣq ` logp6{δq

n

,

.

-

, (13)

pK “ max

$

&

%

K 1 | σK1 pm3pRppΣqq ě C 1ω}pΣ}

d

pJr21ppΣq ` pJr22ppΣq ` r23ppΣq ` logp48{δq

n

,

.

-

,

where C 1 is some other absolute constant and ω is assumed to be known. For example, one can
compute ω explicitly when Xi are linear transform of Gaussian random variables. For such pJ , we
will have

σ
pJpm1pRpΣqqq ą 768ω}Σ}

c

r21pΣq ` r22pΣqr23pΣq ` logp6{δq

n
ě }m1ppEq},

with probability 1´ δ{6 (see Lemma E.1 in Appendix), implying pJ ď J . If C is significantly larger
than C 1, then the singular value σJpm1pRppΣqqq ě σJpm1pRpΣqqq ´ }m1ppEq} satisfies the inequality
of the definition (13) with probability at least 1 ´ δ{6, so J ď pJ , and we conclude J “ pJ with
probability at least 1 ´ δ{2. Analogously, one can show that K “ pK for suitable choice of C,C 1

with probability at least 1 ´ δ{2, yielding J “ pJ and K “ pK with probability at least 1 ´ δ.

Then, while applying Algorithm 1 with J ď pJ,K ď pK could lead to better bias-variance tradeoff,
using J ą pJ will result in much worse convergence rate in our model.

However, this holds assuming that (12) is fulfilled, so concentration bounds should be established
for the norms of partial traces, which we left for future research.

3 EXPERIMENTS

In the present section, we illustrate that additional iterations T of HardTTh indeed improve the
estimation of the covariance matrix Σ provided singular values of matricizations satisfy conditions
of Theorem 2.2 up to some constant. We also compare HardTTh with several other algorithms.

To illustrate our theory, we construct a sampling model with the covariance matrix Σ satisfying (5)
as follows. Set J “ 7,K “ 9 and p “ q “ r “ 10. Let E ijk, i P rns, j P rJs, k P rKs be n ¨ JK
tensors of shape pp, q, rq consisting of i.i.d. standard Gaussian entries. Let Aj P Rpˆp, Bjk P

Rqˆq, Ck P Rrˆr be random symmetric matrices with diagonal and upper diagonal entries being
i.i.d. Gaussian as well. Then, random vectors X1, . . . ,Xn are defined as vectorized tensors

J
ÿ

j“1

K
ÿ

k“1

E ijk ˆ3 Ck ˆ2 Bjk ˆ1 Aj P Rpˆqˆr,

conditioned on Aj , Bjk, Ck. The covariance matrix Σ of Xi satisfies (see Puchkin and Rakhuba
(2024))

Σ “

J
ÿ

j“1

K
ÿ

k“1

A2
j b B2

jk b C2
k .

We propose several algorithms for comparative analysis with HardTTh. Specifically, we consider
a version of Algorithm 1 with T “ 0 additional steps, to which we refer as TT-HOSVD. This
algorithm computes an approximate Tucker-2 decomposition of a noisy tensor RppΣq « xW ˆ3

pV0 ˆ1
pU0, and output the estimatior xW ˆ3

pV0 ˆ1
pU0 of RpΣq. We use this comparison to justify

whether additional iterations are indeed necessary.

Furthermore, we modify the algorithm proposed in Tsiligkaridis and Hero (2013) for use in our con-
text. Instead of a single parameter λ to control soft-thresholding, two distinct parameters are passed
for each of the first and third matricizations of RppΣq. Using the first one, soft-thresholding upon first
matricization is applied, then tensor is reshaped and soft-thresholding with another parameter upon

8
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third matricization is used. Then, we reshape the obtained tensor pX back into a matrix R´1p pX q of
size pqr ˆ pqr. The pseudocode is given in Algorithm 2 in Appendix H.1.

Finally, we compare HardTTh with the approximate Tucker decomposition with the Tucker ranks
pJ, JK,Kq using HOOI (Higher Order Orthogonal Iterations) algorithm of Zhang and Xia (2018).
If no additional iterations in this algorithm were applied, we refer to it as “Tucker” in our tables.
Otherwise, we refer to it as “Tucker+HOOI”.

We also include the sample covariance estimator into our comparative analysis.

We conduct several experiments varying the number of samples n. For n “ 500, the result is given
in Table 2. For n “ 2000, the result is given in Table 3. Other values of n are studied in Appendix H.
For each estimator pS of Σ, we compute the relative error }pS´Σ}F{}Σ}F in the Frobenius norm. For
each n, we tune parameters λ1, λ2 of the PRLS algorithm over a log-scale grid. We fix the number
of iterations T of HardTTh to 10.

Table 2: Performance comparison of tensor decomposition algorithms for n “ 500.
Relative errors were averaged over 32 repeats of the experiment, empirical standard
deviation is given after ˘ sign. The best results are boldfaced.

Metric Algorithm

Sample Mean TT-HOSVD HardTTh

Relative Error 1.22 ˘ 0.02 0.269 ˘ 0.008 0.238 ˘ 0.013
Time (seconds) 0.007 ˘ 0.003 1.9 ˘ 0.8 2.7 ˘ 0.8

Metric Algorithm

Tucker Tucker+HOOI PRLS

Relative Error 0.252 ˘ 0.007 0.240 ˘ 0.013 0.238 ˘ 0.017
Time (seconds) 41.3 ˘ 1.7 81.6 ˘ 3.5 0.7 ˘ 0.3

Table 3: Performance comparison of tensor decomposition algorithms for n “ 2000.
Relative errors were averaged over 16 repeats of the experiment, empirical standard
deviation is given after ˘ sign. The best results are boldfaced.

Metric Algorithm

Sample Mean TT-HOSVD HardTTh

Relative Error 0.611 ˘ 0.009 0.154 ˘ 0.006 0.082 ˘ 0.005
Time (seconds) 0.010 ˘ 0.007 1.7 ˘ 0.6 4.1 ˘ 1.1

Metric Algorithm

Tucker Tucker+HOOI PRLS

Relative Error 0.150 ˘ 0.005 0.082 ˘ 0.005 0.216 ˘ 0.012
Time (seconds) 39.9 ˘ 5.2 74.2 ˘ 8.1 0.6 ˘ 0.3

Note that while the sample size increases by 4, the relative error of HardTTh decreases by 3,
contradicting the 1{

?
n dependence between estimation error and the sample size. The reason is

that for n “ 500 neither TT-HOSVD nor HardTTh is able to reconstruct bases of Im m1pRpΣqq

and Im m3pRpΣqq, so the leading error is determined by the lost components of these bases.
Hence, one indeed needs some condition on the least singular values of matricizations of RpΣq.
When n “ 2000, HardTTh is able to approximate these bases, yielding a much better perfor-
mance, while TT-HOSVD cannot approximate them. It is instructive to look at sinΘ-distance
between Im pU0, Im pUT and ImU˚. If n “ 500, then both Im pU0, Im pUT have sinΘ-distance
to ImU˚ around 1. But for n “ 2000, while sinΘpIm pU0, ImU˚q is still around 1, we have
sinΘpIm pUT , ImU˚q “ 0.33 ˘ 0.08. Therefore, additional iterations of HardTTh indeed help.

9
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The fact that noise in singular values is larger than the estimation error is illustrated by the fact
that PRLS performs worse than TT-HOSVD. Indeed, to remove noise in singular values, PRLS
applies soft-thresholding with λ1, λ2 being around the noise level in singular values of matriciza-
tions. Then, soft-thresholded SVD has each singular value decreased by either λ1{2 or λ2{2. This
yields the estimation error around the maximum of λ1 and λ2, which dramatically affects the algo-
rithm performance. This highlights the difference between low-rank tensor estimation problem and
low-rank matrix estimation problem, since for the latter there is no significant difference between
soft-thresholding and hard-thresholding estimation.

We conduct experiments on image denoising task between mentioned tensor methods. The idea
behind such comparison is the following: comparing covariance estimation through long pipelines
is unfair, since other blocks might need additional tuning and it is hard to solve credit assignment
between such changes. So we have decided to estimate the denoising abilities of our algorithm
across one-shot methods (neural nets are out of scope, due to the training process in which they
interact with tons of data). One can see results in Figure 1. We chosen p, q, r as p8, 4, 4q to match
the dimension 256 of a given picture. Then we apply gaussian noise to the picture and pass it as
sample covariance to the denoising algorithms. We search best hyperparameters to minimize the
error and obtain J,K “ 32, 32.

Noisy
Error: 0.1488

Hardtth
Error: 0.1020

Tucker
Error: 0.1084

Tucker + HOOI
Error: 0.1077

Figure 1: Performance of tensor decomposition algorithms on image denoising task.

4 CONCLUSION

In the present paper, we suggest a computationally efficient algorithm for estimation of high-
dimensional covariance matrix based on HOOI algorithm of De Lathauwer et al. (2000). We provide
a comprehensive theoretical analysis of this algorithm, establishing sufficient conditions for its ap-
plication and rigorous guarantees that take into account both bias and variance of the proposed
estimator. Our analysis is non-asymptotic and relies on the intrinsic dimensions of the covariance
matrix associated to our algorithm, without involving the ambient dimension. We illustrate our
theory with numerical experiments.

5 REPRODUCIBILITY STATEMENT

We provide the code in Supplementary Material. We give a proof sketch of Theorem 2.2 in Ap-
pendix D. The proof of Theorem 2.2 is given in Appendix E.
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A USAGE OF LLM

We used DeepSeek to polish and aid writing. All mathematical derivations and numerical experi-
ments were performed solely by the authors.

B ADDITIONAL NOTATIONS AND BASIC TOOLS

For proofs, we need some extra notation. First, we adapt the Einstein notation for tensors, omitting
the summation symbol and assuming that the summation holds across repeated indices, e.g. for the
matrix product

pABqab “
ÿ

c

AacBcb,

we will write as

pABqab “ AacBcb.

Second, we will widely use the following identities for a tensor T P Rd1ˆd2ˆd3 and a matrix X of
suitable shape

m1pT ˆ3 Xq “ m1pT qpId2 b XJq,

m1pT ˆ1 Xq “ X ¨ m1pT q,

m3pT X ˆ1 Xq “ m3pT qpXJ b Id2
q,

m3pT ˆ3 Xq “ X ¨ m3pT q.

(14)

While the second and the fourth identities are straightforward, the first and the last one should be
verified. Let us prove the first identity for X P Rd1

ˆd3 . Choosing indices a P rd1s, b P rd2s, c P rd1s,
we obtain

pm1pT ˆ3 Xqqa,pb´1q¨d3`c “ pT ˆ3 Xqabc “ Xcc1Tabc1

“ m1pT qa,pb1´1qd3`c1 pId2
b XJqpb1´1qd3`c1,pb´1qd3`c.

The third idenitty of (14) can be checked analogously.

For a matrix U P Od,r, we denote the projector UUJ on ImU by ΠU .

C PROOF OF PROPOSITION 2.3

Proof. The proposition follows from the following bound on the partial trace. Let Ψg : L1 Ñ

L1,Φg : L2 Ñ L2, g “ 1, . . . , G, be positive semidefinite operators. Define

H “

G
ÿ

g“1

Ψg b Φg.

Then, we have

}TrL1pHq} “ }

G
ÿ

g“1

TrpΨgqΦg} ď

G
ÿ

g“1

TrpΨgq

}Ψg}
}Ψg}}Φg} ď max

g
rpΨgq

G
ÿ

g“1

}Ψg}}Φg}

ď G ¨ max
g

rpΨgq ¨ max
g

}Ψg}}Φg} ď G ¨ max
g

rpΨgq ¨ }H}.

The result follows by applying the above to each partial trace TrSpΣq, S Ă r3s, with a proper choice
of L1,Ψg and Φg .

D PROOF SKETCH FOR THEOREM 2.2

In this section, we provide the sketch of the proof of Theorem 2.2. The proof develops the ideas
of Zhang and Xia (2018) and Puchkin and Rakhuba (2024). First, we consider the problem of

14
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estimating a tensor T ˚ “ W˚ ˆ3 V ˚ ˆ1 U˚ from a noisy observations Y “ T ˚ ` E , without
any assumptions on the error term E . Let pT be the estimator obtained by Algorithm 1 on the
input Y . The noise E influence the estimation of pT in several ways. First, one need to impose
some assumptions depending on the norms of m1pEq and m3pE ˆ1

pU0q on the singular values of
matricizations m1pT ˚q, m3pT ˚q to be able to recover left singular subspaces of these matricizations
up to a sinΘ-error at most 1{4. Second, we show by induction on t “ 1, . . . , T that Im pUt, Im pVt

improves the estimation of singular subspaces and establish the dependence of the estimation error
on E at step T . Finally, we decompose the error }pT ´ T ˚}F into terms depending on the singular
subspaces estimation and the error of estimating W˚. Combining all types of errors, we obtain the
following theorem. Its proof if postponed to Section F.
Theorem D.1. Given model (16), suppose that singular values σJpm1pT ˚qq, σKpm3pT ˚qq satisfy

σJpm1pT ˚qq ě 24}m1pEq} and σKpm3pT ˚qq ě 24 sup
UPRd1ˆJ

}U}ď1

}m3pEqpU b Id2q}. (15)

Put

αU “ }m1pE ˆ3 pV ˚qJq}, βU “ sup
V PRd2ˆK

}V }ď1

}m1pE ˆ3 V
Jq},

αV “ }m3pE ˆ1 pU˚qJq}, βV “ sup
UPRd1ˆJ

}U}ď1

}m3pE ˆ1 U
Jq}.

Then, we have

}pT ´ T ˚}F ď sup
UPOd1,J ,V POd2,K

}E ˆ3 V
J ˆ1 U

J}F ` 4
?
KαV ` 4

?
JαU ` ♢2 ` rT ,

where

♢2 “ 48 ¨

˜ ?
KβV αU

σJpm1pT ˚qq
`

?
JβUαV

σKpm3pT ˚qq

¸

,

rT “ 3p
?
J `

?
Kq ¨

ˆ

64βV βU

σJpm1pT ˚qqσKpm3pT ˚qq

˙T

}m1pEq}.

Then, we decompose the error E into the bias part E and the varaince part pE . Using the trian-
gle inequality, we bound each error term appearing in Theorem D.1 into the bias and variance
parts, and bound the variance parts with high probability using the variational PAC–Bayes approach
(see (Catoni and Giulini, 2017; Zhivotovskiy, 2024; Abdalla and Zhivotovskiy, 2022; Puchkin and
Rakhuba, 2024) for other applications of this technique).

E PROOF OF THEOREM 2.2

Proof of Theorem 2.2. For clarity, we divide the proof into several steps. For brevity, we denote
Rpmip¨qq, i “ 1, 3, by Rip¨q.

Step 1. Sensititivty analysis of Algorithm 1. First, we establish deterministic bounds on the
reconstruction of the tensor T ˚ from a noisy observation Y by Algorithm 1, denoting

Y “ T ˚ ` E , (16)

where T ˚ “ W˚ ˆ3 V
˚ ˆ1 U

˚ is the best pJ,Kq-TT-rank approximation of RpΣq, U˚ P Od1,J ,
V ˚ P Od3,K , W˚ P RJˆd2ˆK , and Y “ RppΣq. Let pT be the output of Algorithm 1 with input Y .
Then, Theorem D.1 is applicable. But we need first to check its conditions.

Step 2. Checking conditions of Theorem D.1. We deduce Theorem 2.2 from Theorem D.1. Let us
start with conditions of Theorem D.1, and bound right-hand sides of inequalities (15) from above.
Consider the lower bound on σJpm1pT ˚qq. By the triangle inequality, we have

}m1pEq} ď }m1pEq} ` }m1ppEq}.

The second term of the above can be upper bounded using the following lemma.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lemma E.1. Fix δ P p0, 1q. Suppose that n ě r21pΣq ` r22pΣqr23pΣq ` logp4{δq. Then, under
Assumption 2.1, we have

}m1ppEq} ď 32ω}Σ}

c

r21pΣq ` r22pΣqr23pΣq ` logp1{δq

n
with probability at least 1 ´ δ.

Define the event

E1 “

#

}m1ppEq} ď 32ω}Σ}

c

r21pΣq ` r22pΣqr23pΣq ` logp6{δq

n

+

. (17)

Since n ě Rδ ě r21pΣq ` r22pΣqr23pΣq ` logp24{δq, due to Lemma E.1, we have PrpE1q ě 1´ δ{6.
Hence, if

σJpm1pT ˚qq ě 24}m1pEq} ` 768ω}Σ}

c

r21pΣq ` r22pΣqr23pΣq ` logp6{δq

n
,

the first inequality of (15) is fulfilled on the event E1. Since σJpm1pT ˚qq ě σJpR1pΣqq ´ }m1pEq},
on E1, to fulfill the first inequality of (15), it is enough to ensure that

σJpR1pΣqq ě 25}m1pEq} ` 768ω}Σ}

c

r21pΣq ` r22pΣqr23pΣq ` logp6{δq

n
,

as guaranteed by the conditions of the theorem.

To satisfy the second inequality of (15), we use the triangle inequality again and obtain

sup
UPRd1ˆJ

}U}ď1

}m3pEqpU b Id2
q} ď sup

UPRd1ˆJ

}U}ď1

}m3pEqpU b Id2
q} ` sup

UPRd1ˆJ

}U}ď1

}m3ppEqpU b Id2
q}.

We bound the second term, using the following lemma. Its proof is given in Section E.2.

Lemma E.2. Fix δ P p0, 1q. Suppose that n ě Jr21pΣq ` Jr22pΣq ` r23pΣq ` logp8{δq. Then, with
probability at least 1 ´ δ, we have

sup
UPRd1ˆJ

}U}ď1

}m3ppEqpU b Id2
q} ď 32ω}Σ}

c

Jr21pΣq ` Jr22pΣq ` r23pΣq ` logp8{δq

n
.

Analogously, if n ě r21pΣq ` Kr22pΣq ` Kr23pΣq ` logp8{δq, then, with probability at least 1 ´ δ,
it holds that

sup
V PRd3ˆK ,}V }ď1

}m1pEqpId2 b V q} ď 32ω}Σ}

c

r21pΣq ` Kr22pΣq ` Kr23pΣq ` logp8{δq

n
.

Define the event

E2 “

$

’

&

’

%

sup
UPRd1ˆJ

}U}ď1

}m3ppEqpU b Id2
q} ď 32ω}Σ}

c

r23pΣq ` Jr21pΣq ` Jr22pΣq ` logp48{δq

n

,

/

.

/

-

.

It has probability PrpE2q ě 1 ´ δ{6, since n ě Rδ satisfies conditions of Lemma E.2 with δ{6 in
place of δ. Due to conditions of the theorem, we have

σKpR3pΣqq ě 25}m3pEq} ` 768ω}Σ}

c

r23pΣq ` Jr21pΣq ` Jr22pΣq ` logp48{δq

n
,

so conditions of Theorem D.1 is satisfied on E1 X E2.

Step 3. Bounding αU , αV , βU , βV . Then, we bound αU , αV , βU , βV . We start by the former two
quantities. By the triangle inequality, we have

αU ď }m1pE ˆ3 pV ˚qJ} ` }m1ppE ˆ3 pV ˚qJ},

αV ď }m3pE ˆ1 pU˚qJ} ` }m3ppE ˆ3 pU˚qJ}.

To bound the second terms of the right-hand sides of the above, we use the following lemma. Its
proof is given in Section E.3.
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Lemma E.3. Fix δ P p0, 1q. Suppose that n ě r21pΣq `Kr22pΣq ` logp8{δq. Then, with probability
at least 1 ´ δ, we have

}m1ppE ˆ3 pV ˚qJq} ď 32ω}Σ}

c

r21pΣq ` Kr22pΣq ` logp8{δq

n
.

Analogously, if n ě r23pΣq ` Jr22pΣq ` logp8{δq, then, with probability at least 1 ´ δ, we have

}m3ppE ˆ3 pU˚qJq} ď 32ω}Σ}

c

r23pΣq ` Jr22pΣq ` logp8{δq

n
.

Define events

E3 “

#

}m1ppE ˆ3 pV ˚qJ} À ω}Σ}

c

r21pΣq ` Kr22pΣq ` logp6{δq

n

+

,

E4 “

#

}m3ppE ˆ3 pU˚qJ} À ω}Σ}

c

r23pΣq ` Jr22pΣq ` logp6{δq

n

+

.

Since n ě Rδ satisfies the conditions of Lemma E.3 with δ{6 in place of δ, the lemma and the union
bound imply PrpE3 X E4q ě 1 ´ δ{3. On the event E3 X E4, we have

αU ď rαU and αV ď rαV ,

where rαU , rαV are defined in Table 1.

Next, we bound βU , βV . Applying the triangle inequality, we get

βU ď sup
V PRd2ˆK

}V }ď1

}m1pE ˆ3 V
Jq} ` sup

V PRd2ˆK

}V }ď1

}m1ppE ˆ3 V
Jq},

βV ď sup
UPRd1ˆJ

}U}ď1

}m3pEqpU b Id2
q} ` sup

UPRd1ˆJ

}U}ď1

}m3ppEqpU b Id2
q}.

Note that on the event E2, we have βV ď rβV , where rβV is defined in Table 1. To bound βU , we use
Lemma E.2 again. Define an event

E5 “

$

’

&

’

%

sup
V PRd2ˆK

}V }ď1

}m1ppE ˆ3 V
Jq} ď 32ω}Σ}

c

r21pΣq ` Kr22pΣq ` Kr23pΣq ` logp48{δq

n

,

/

.

/

-

.

Since n ě Rδ satisfies the conditions of the lemma with δ{6 in place of δ, we have PrpE5q ě 1´δ{6,
and on this event βU ď rβU .

Step 4. Bounding supUPOd1,J ,V POd2,K
}E ˆ3 V

J ˆ1 U
J}F. Using the triangle inequality again, we

get

sup
UPOd1,J ,V POd2,K

}E ˆ3 V
J ˆ1 U

J}F ď sup
UPOd1,J ,V POd2,K

}E ˆ3 V
J ˆ1 U

J}F

` sup
UPOd1,J ,V POd2,K

}pE ˆ3 V
J ˆ1 U

J}F.

We bound the second term of the right-hand side using the following lemma. Its proof is given in
Section E.4.

Lemma E.4. Fix δ P p0, 1q. Suppose that n ě Jr21pΣq ` JKr22pΣq ` Kr23pΣq ` logp8{δq. Then,
with probability at least 1 ´ δ, we have

sup
UPOd1,J ,V POd2,K

}pE ˆ3 V
J ˆ1 U

J}F ď 32ω}Σ}

c

Jr21pΣq ` JKr22pΣq ` Kr23pΣq ` logp8{δq

n
.

17
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Define the event

E6 “

#

sup
UPOd1,J ,V POd2,K

}pE ˆ3 V
J ˆ1 U

J}F

ď 32}Σ}

c

Jr21pΣq ` JKr22pΣq ` Kr23pΣq ` logp48{δq

n

+

.

Since n ě Rδ satisfies the conditions of Lemma E.4 with δ{6 in place of δ, it implies PrpE6q ě

1 ´ δ{6.

Step 5. Establishing bias and variance leading terms. The event E0 “
Ş6

i“1 Ei has probability
at least 1 ´ δ due to the union bound. On the event E0, conditions of Theorem D.1 are satisfied, so
we have

αU ď rαU , αV ď rαV , βU ď rβU , βV ď rβV

and

sup
UPOd1,J ,V POd2,K

}pE ˆ3 V
J ˆ1 U

J}F ď 32ω}Σ}

c

Jr21pΣq ` JKr22pΣq ` Kr23pΣq ` logp48{δq

n
.

The conclusion of Theorem D.1 yields

}pT ´ T ˚}F ď sup
UPOd1,J ,V POd2,K

}E ˆ3 V
J ˆ1 U

J}F

` ω}Σ}

c

Jr21pΣq ` JKr22pΣq ` Kr23pΣq ` logp6{δq

n

` 4
?
KrαU ` 4

?
J rαU ` ♢2 ` rT

Substituting expressions for rαU , rαV from Table 1, we obtain

}pT ´ T ˚}F ď sup
UPOd1,J ,V POd2,K

}E ˆ3 V
J ˆ1 U

J}F ` 4
?
K}m1pE ˆ3 pV ˚qJq}

` 4
?
J}m3pE ˆ1 pU˚qJq}

` 32ω}Σ}

c

Jr21pΣq ` JKr22pΣq ` Kr23pΣq ` logp48{δq

n

` 32
?
Jω}Σ}

c

r21pΣq ` Kr22pΣq ` logp48{δq

n

` 32
?
Kω}Σ}

c

r23pΣq ` Jr22pΣq ` logp48{δq

n
` ♢2 ` rT .

Note that the fifth and sixth terms of the right-hand side are dominated by the fourth term. Using

}rΣ ´ Σ}F “ }pT ´ T ˚ ` T ˚ ´ R´1pΣq}F ď }pT ´ T ˚}F ` }E}F,

sup
UPOd1,J ,V POd2,K

}E ˆ3 V
J ˆ1 U

J}F ď sup
UPOd1,J

sup
V POd3,K

}UJm1pEqpId2
b V q}F

ď
?
J sup

V POd3,K

}m1pEqpId2
b V q} ď

?
J}m1pEq},

}m3pE ˆ1 pU˚qJq} ď }m3pEq},

}m1pE ˆ3 pV ˚qJq} ď }m1pEq},

we derive

}rΣ ´ Σ}F ď b ` 96ω}Σ}

c

Jr21pΣq ` JKr22pΣq ` Kr23pΣq ` logp48{δq

n
` ♢2 ` rT (18)

on E0.
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Step 6. Bounding the remainder terms. Since ♢2, rT depend on 1{σJpm1pT ˚qq

and 1{σKpm3pT ˚qq, we will bound singular values σJpm1pT ˚qq, σKpm3pT ˚qq below using
σJpR1pΣqq, σKpR3pΣqq. By the conditions of the theorem, we have σJpR1pΣqq ě 25}m1pEq}

and σKpR3pΣqq ě }m3pEq}, so, by the Weyl inequality, we deduce

σJpm1pT ˚qq ě σJpR1pΣqq ´ }m1pEq} ě
24

25
¨ σJpR1pΣqq,

σKpm3pT ˚qq ě σKpR3pΣqq ´ }m3pEq} ě
24

25
¨ σKpR3pΣqq.

On the event E0, it implies

♢2 “ 48 ¨

˜ ?
KβV αU

σJpm1pT ˚qq
`

?
JβUαV

σKpm3pT ˚qq

¸

ď 50 ¨

˜ ?
K rβV rαU

σJpR1pT ˚qq
`

?
J rβU rαV

σKpR3pΣqq

¸

“ r♢2,

and

rT “ 3p
?
J `

?
Kq ¨

ˆ

64βV βU

σJpm1pT ˚qqσKpm3pT ˚qq

˙T

}m1pEq}

ď p
?
J `

?
Kq

˜

200rβV
rβU

σJpR1pΣqqσKpR3pΣqq

¸T

}m1pEq}.

Using definition (17) of the event E1, E0 Ă E1, and the trinagle inequality }m1pEq} ď }m1pEq} `

}m1ppEq}, we obtain

rT ď rrT ,

where rrT is defined in Table 1. Substituting the above bounds on ♢2, rT into (18) finishes the
proof.

E.1 PROOF OF LEMMA E.1

Proof. Step 1. Reduction to the PAC-bayes inequality. The analysis will be based the following
lemma, which is known as the PAC-Bayes inequality (see, e.g., Catoni and Giulini (2017)).

Lemma E.5. Let X,X1, . . . ,Xn be i.i.d. random elements on a measurable space X . Let Θ be a
parameter space equipped with a measure µ (which is also referred to as prior). Let f : X ˆΘ Ñ R.
Then, with probability at least 1 ´ δ, it holds that

Eθ„ρ
1

n

n
ÿ

i“1

fpXi,θq ď Eθ„ρ logEXefpX,θq `
KLpρ, µq ` logp1{δq

n

simultaneously for all ρ ! µ.

Let us rewrite }m1ppEq} as the supremum of a certain empirical process. We have

}m1ppEq} “ sup
xPSd1´1,yPSd2d3´1

xJm1ppEqy “ sup
xPSd1´1,yPSd2d3´1

xm1ppEq,xyJy

“ sup
xPSd1´1,yPSd2d3´1

xpΣ ´ Σ,R´1
1 pxyJqy

“ sup
xPSd1´1,yPSd2d3´1

1

n

n
ÿ

i“1

xXiX
J
i ,R´1

1 pxyJqy ´ ExXiX
J
i ,R´1

1 pxbyJqy

“ sup
xPSd1´1,yPSd2d3´1

1

n

n
ÿ

i“1

XJ
i R´1

1 pxyJqXi ´ EXJ
i R´1

1 pxyJqXi.
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Define the following functions:

fipx,yq “ λ
␣

XJ
i R´1

1 pxyJqXi ´ EXJ
i R´1

1 pxyJqXi

(

,

fXpx,yq “ λ
␣

XJR´1
1 pxyJqX ´ EXJR´1

1 pxyJqX
(

,

where the positive factor λ to be chosen later. We will apply Lemma E.5 to the empirical process

λ}m1ppEq} “ sup
xPSd1´1,yPSd2d3´1

1

n

n
ÿ

i“1

fipx,yq

with Rd1 b Rd2d3 as the parameter space and the centered Gaussian distribution N p0, σ2
1Id1

q b

N p0, σ2
2Id2d3

q as the prior µ, where σ1, σ2 will be defined in the sequel. Consider random vectors
ξ,η with mutual distribution ρx,y such that EξηJ “ xyJ. Since fipx,yq, fXpx,yq are linear in
xyJ, we have Eρx,yfipξ,ηq “ fipx,yq, so Lemma E.5 yields

sup
xPSd1´1

yPSd2d3´1

1

n

n
ÿ

i“1

fipx,yq ď sup
xPSd1´1

yPSd2d3´1

"

Eρx,y logEX exp fXpξ,ηq

`
KLpρx,y, µq ` logp1{δq

n

*

(19)

with probability at least 1 ´ δ. Then, we construct ρx,y such that the right-hand side of the above
inequality can be controlled efficiently.

Step 2. Constructing ρx,y. Suppose for a while that ρx,y-almost surely we have

λ}Σ1{2R´1
1 pξηJqΣ1{2}F ď 1{ω. (20)

Then, Assumption 2.1 implies

Eρx,y logEX exp fXpξ,ηq “ Eρx,y logEX exp
␣

λ
`

XJR´1
1 pxyJqX ´ EXJR´1

1 pxyJqX
˘(

ď λ2ω2Eρx,y}Σ1{2R´1
1 pξηJqΣ1{2}2F. (21)

So, to control the above and keep the left-hand side of (20) bounded, we do the following. Define
independent random vectors G1 „ N p0, σ2

1Id1
q, G2 „ N p0, σ2

2Id2d3
q, and consider a function

gpx1,y1q “ }Σ1{2R´1
1 px1py1qJqΣ1{2}F. (22)

By the triangle inequality, we have

gpx ` G1,y ` G2q ď gpx,yq ` gpx, G2q ` gpG1,yq ` gpG1, G2q,

so

g2px ` G1,y ` G2q ď 4g2px,yq ` 4g2px, G2q ` 4g2pG1,yq ` 4g2pG1, G2q.

Then, the distribution ρx,y of the random vector pξ,ηq is equal to the distribution of px`G1,y`G2q

subject to the condition

pG1, G2q P Υ “
␣

g2pa, bq ď 4Eg2pa, bq | pa, bq P ptx, G1u ˆ ty, G2uqztpx,yqu
(

.

Note that by the union bound and the Markov inequality, we have

Pr ppG1, G2q R Υq ď
ÿ

pa,bqPptx,G1uˆty,G2uqztpx,yqu

Pr
`

g2pa, bq ą 4Eg2pa, bq
˘

ď
ÿ

pa,bqPptx,G1uˆty,G2uqztpx,yqu

1

4
“

3

4
. (23)

Let us check, that Eρx,yξη
J “ xyJ. Since the Gaussian distribution is centrally symmetric and the

function g does not change its value when multiplying any of its argument by ´1, we have

pξ,ηq
d
“ px ` ε1pξ ´ xq,y ` ε2pη ´ yqq, (24)
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where ε1, ε2 are i.i.d. Rademacher ramdom variables independent of pξ,ηq. Then, we obtain

EξηJ “ xyJ ` Eε1Epξ ´ xqyJ ` Eε2Expη ´ yqJ ` Eε1Eε2Epξ ´ xqpη ´ yqJ “ xyJ.

Hence, to satisfy the assumption (20) and use (21), it is enough to bound expectations Eg2pa, bq for
pa, bq P tx, G1u ˆ ty, G2u.

Step 3. Bounding expectations Eg2p¨, ¨q. Let us start with g2px,yq. From the definition (22), we
have

g2px,yq “ }Σ1{2R´1
1 pxyJqΣ1{2}2F “ TrpΣ1{2R´1

1 pxyJqΣR´J
1 pxyJqΣ1{2q

“ TrpΣR´1
1 pxyJqΣR´J

1 pxyJqq (25)

Since TrpABq ď }A}F}B}F for any matrices A,B, we have

g2px,yq ď }ΣR´1
1 pxyJq}F}ΣR´J

1 pxyJq} ď }Σ}2}xyJ}2F “ }Σ},

where we used the fact that R´1
1 p¨q does not change the Frobenius norm and that }xyJ}F “

}x}}y} “ 1.

It will be convenient for future purposes to rewrite (25) in a slightly different form. We introduce
the following tensors, that are reshapings of the matrix Σ and vectors x,y, G1, G2:

Sp1q1r1p2q2r2 “ Σpp1´1qqr`pq1´1qr`r1,pp2´1qqr`pq2´1qr`r2 ,

Gp1q
p2p3

“ pG1qpp2´1q¨p`p3
, Gp2q

q2q3r2r3 “ pG2qpq2´1qqr2`pq3´1qr2`pr2´1qr`r3 ,

xp2p3
“ xpp2´1qp`p3

, yq2q3r2r3 “ ypq2´1qqr2`pq3´1qr2`pr2´1qr`r3 .

Following the Einstein notation, we obtain

g2px,yq “ TrpΣR´1
1 pG1y

JqΣR´J
1 pxyJqq

“ Σpp1´1qqr`pr1´1qr`r1,pp2´1qqr`pq2´1qr`r2

ˆ pxyqJ
pp2´1qp`p3,pq2´1qqr2`pq3´1qr2`pr2´1qr`r3

ˆ Σpp3´1qqr`pq3´1qr`r3,pp4´1qqr`pq4´1qr`r4

ˆ pxyqJ
pp1´1qp`p4,pq1´1qqr2`pq4´1qr2`pr1´1qr`r4

.

“ Sp1q1r1p2q2r2xp2p3yq2q3r2r3Sp3q3r3p4q4r4xp1p4yq1q4r1r4 (26)

Note that the above holds for any x P Rd1 ,y P Rd2d3 .

Then, we bound Eg2pG1,yq. Following (26), we get

Eg2pG1,yq “ ESp1q1r1p2q2r2Gp1q
p2p3

yq2q3r2r3Sp3q3r3p4q4r4Gp1q
p1p4

yq1q4r1r4

“ σ2
1δp2p1

δp3p4
Sp1q1r1p2q2r2yq2q3r2r3Sp3q3r3p4q4r4yq1q4r1r4

“ σ2
1Sp1q1r1p1q2r2yq2q3r2r3Sp3q3r3p3q4r4yq1q4r1r4

where δ is the Kronecker delta symbol. The above can be rewritten as the following trace:

Eg2pG1,yq “ σ2
1 ¨ TrpTr1pΣqY Tr1pΣqY Jq,

where entries of the matrix Y are defined by Ypq2´1qr`r2,pq3´1qr`r3 “ yq2q3r2r3 . Then, we have

Eg2pG1,yq ď σ2
1}Tr1pΣqY }F ¨ }Tr1pΣqY J}F ď σ2

1}Tr1pΣq}2 ¨ }Y }2F “ σ2
1}Tr1pΣq}.

Next, we bound Eg2px, G2q. Using (26), we derive

Eg2px, G2q “ ESp1q1r1p2q2r2xp2p3Gp2q
q2q3r2r3Sp3q3r3p4q4r4xp1p4Gp2q

q1q4r1r4

“ σ2
2δq2q1δq3q4δr2r1δr3r4Sp1q1r1p2q2r2xp2p3

Sp3q3r3p4q4r4xp1p4

“ σ2
2 ¨ TrpTr2,3pΣqXTr2,3pΣqXJq,

where entries of the matrix X are defined by Xp2,p3 “ xp2p3 . Then, we have

Eg2px, G2q ď σ2
2}Tr2,3pΣqX}F ¨ }Tr2,3pΣqXJ}F ď σ2

2}Tr2,3pΣq} ¨ }X}2F “ σ2
2 ¨ }Tr2,3pΣq}2.
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Finally, we bound Eg2pG1, G2q. Using (26), we get

Eg2pG1, G2q “ ESp1q1r1p2q2r2Gp1q
p2p3

Gp2q
q2q3r2r3Sp3q3r3p4q4r4Gp1q

p1p4
Gp2q
q1q4r1r4

“ σ2
1σ

2
2δp1p2δp3p4δq1q2δq3q4δr1r2δr3r4Sp1q1r1p2q2r2Sp3q3r3p4q4r4

“ σ2
1σ

2
2 ¨ Tr2pΣq.

Hence, we have ρx,y-almost surely:

gpξ,ηq ď 2

b

}Σ}2 ` σ2
1}Tr1pΣq}2 ` σ2

2}Tr2,3pΣq}2 ` σ2
1σ

2
2Tr

2
pΣq.

Set σ2
1 “ r´2

1 pΣq and σ2
2 “ r´2

2 pΣqr´2
3 pΣq. By the definition of ripΣq, for this choice of σ1, σ2,

the function gpξ,ηq is bounded by 4}Σ} almost surely. Thus, using (20) and (21), we deduce that
for any λ satisfying

λ ď p4ω}Σ}q´1,

we have

Eρx,y logEX exp fXpξ,ηq ď λ2ω2 ¨ Eρx,yg
2pξ,ηq ď 16λ2ω2}Σ}2. (27)

Due to (19), it remains to bound the Kullback-Leibler divergence KLpρx,y, µq.

Step 4. Bounding the Kullback-Leibler divergence. The density of ρx,y is given by

ρx,ypx, yq “
p2πq´pd1`d2d3q{2σ´d1

1 σ´d2d3
2

PrppG1, G2 P Υq
exp

"

´
1

2σ2
1

}x ´ x}2 ´
1

2σ2
2

}y ´ y}2
*

ˆ 1tpx ´ x, y ´ yq P Υu.

The density of the prior µ is given by

µpx, yq “
p2πq´pd1`d2d3q{2

σd1
1 σd2d3

2

exp

"

´
1

2σ2
1

}x}2 ´
1

2σ2
2

}y}2
*

.

Then, the KL-divergence can be computed as follows:

KLpρx,y, µq “

ż

Rd1ˆd2d3

ρx,ypx, yq log
ρx,ypx, yq

µpx, yq
dxdy

“ log
1

PrppG1, G2q P Υq

`

ż

Rd1ˆd2d3

ρx,ypx, yq

"

´
1

2σ2
1

p}x ´ x}2 ´ }x}2q ´
1

2σ2
2

p}y ´ y}2 ´ }y}2q

*

dxdy.

Due to (23), the first term is bounded by log 4. Note that the second term is equal to:

´
}x}2

2σ2
1

`
2

2σ2
1

xEρx,yξ,xy ´
}y}2

2σ2
2

`
2

2σ2
2

xEρx,yη,yy.

Using (24), we get

Eρx,yξ “ x ` Eε1Epξ ´ xq “ x,

Eρx,yη “ y ` Eε2Epη ´ yq “ y,

so we have

KLpρx,y, µq ď log 4 `
}x}22

2σ2
1

`
}y}22

2σ2
2

“ log 4 ` r21pΣq{2 ` r22pΣqr23pΣq{2.

Step 5. Final bound. Substituting the above bound and bound (27) into (46) and using

}m1ppEq} “
1

λ
sup

xPSd1´1

yPSd2d3´1

1

n

n
ÿ

i“1

fipx,yq,

22
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we get

}m1ppEq} ď 16λω2}Σ}2 `
r21pΣq{2 ` r22pΣqr23pΣq{2 ` logp4{δq

λn

for any positive λ ď p4ω}Σ}q´1 with probability at least 1 ´ δ. Since n ě r21pΣq ` r22pΣqr23pΣq `

logp4{δq, we choose

λ “ p4ω}Σ}q´1

c

r21pΣq{2 ` r22pΣqr23pΣq{2 ` logp4{δq

n
,

and get

}m1ppEq} ď 8ω}Σ}

c

r21pΣq{2 ` r22pΣqr23pΣq{2 ` logp4{δq

n

ď 32ω}Σ}

c

r21pΣq ` r22pΣqr23pΣq ` logp1{δq

n
.

E.2 PROOF OF LEMMA E.2

Proof. We deduce Lemma E.2 from the following theorem. Its proof is posteponed to Section G.

Theorem E.6. Let S1,S2,S3 be sets of linear operators

Si Ă
␣

Ai : Li Ñ Rdi , such that }Ai} ď 1
(

, i “ 1, 3,

S2 Ă
␣

A P L1 b Rd2 b L3 such that }A}F ď 1
(

.

For brevity, put L2 “ L1 b L3. Denote dimLi as li. Then, we have

sup
A1PS1,

A2PS2,A3PS3

xpE ˆ3 A
J
3 ˆ1 A

J
1 , A2y ď 27ω}Σ}

d

ř3
i“1 mintr2i pΣq ¨ li, log |Si|u ` logp8{δq

n

with probability at least 1 ´ δ, provided n ě
ř3

i“1 mintr2i pΣq ¨ li, log |Si|u ` logp8{δq. Here we
assume that mintripΣq ¨ li, log |Si|u “ ripΣq ¨ li if Si is infinite.

Note that

sup
UPRd1ˆJ

}U}ď1

}m3ppEqpU b Id2
q} “ sup

UPRd1ˆJ

}U}ď1

}m3ppE ˆ1 U
Jq}

“ sup
xPRd3 ,yPRJd2 ,UPRd1ˆJ

}x}ď1,}y}ď1,}U}ď1

xJm3ppE ˆ1 U
Jqy.

can rewritten as the following supremum over scalar product:

sup
A1PS1,

A2PS2,A3PS3

xpE ˆ3 A
J
3 ˆ1 A

J
1 , A2y,

where

S1 “ tA1 : RJ Ñ Rd1 | }A1} ď 1u,

S2 “ tA2 P RJˆd2ˆ1 | }A2}F ď 1u,

S3 “ tA3 : R Ñ Rd3 | }A3} ď 1u.

Then, Theorem E.6 implies that for any δ P p0, 1q, with probability at least 1 ´ δ, we have

sup
UPRd1ˆJ

}U}ď1

}m3ppEqpU b Id2q} ď 27ω}Σ}

c

Jr21pΣq ` Jr22pΣq ` r23pΣq ` logp8{δq

n
,
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if n ě Jr21pΣq ` Jr22pΣq ` r23pΣq ` logp8{δq.

Analogously, we have

sup
V PRd3ˆK ,}V }ď1

}m1pEqpId2
b V q} ď 32ω}Σ}

c

r21pΣq ` Kr22pΣq ` Kr23pΣq ` logp8{δq

n

with probability at least 1 ´ δ, if n ě r21pΣq ` Kr22pΣq ` Kr23pΣq ` logp8{δq. This completes the
proof.

E.3 PROOF OF LEMMA E.3

Proof. Note that the norm

}m1ppE ˆ3 pV ˚qJq} “ sup
xPRd1 ,yPRKd2

}x}ď1,}y}ď1

xJm1ppE ˆ3 pV ˚qJqy

can be rewritten as the following supremum over scalar product:

sup
A1PS1,

A2PS2,A3PS3

xpE ˆ3 A
J
3 ˆ1 A

J
1 , A2y,

where
S1 “ tA1 : R Ñ Rd1 | }A1} ď 1u,

S2 “ tA2 P RKˆd2ˆ1 | }A2}F ď 1u,

S3 “ tV ˚u.

Hence, Theorem E.6 implies that for any δ P p0, 1q, with probability at least 1 ´ δ, we have

}m1ppE ˆ3 pV ˚qJq} ď 32ω}Σ}

c

r21pΣq ` Kr22pΣq ` logp8{δq

n
,

if n ě r21pΣq ` Kr22pΣq ` logp8{δq. Analogously, we have

}m3ppE ˆ1 pU˚qJq} ď 32ω}Σ}

c

r23pΣq ` Jr22pΣq ` logp8{δq

n
,

with probability at least 1 ´ δ, if n ě Jr22pΣq ` r23pΣq ` logp8{δq. This completes the proof.

E.4 PROOF OF LEMMA E.4

Proof. Using the variational representation of the Frobenius norm, we observe that

sup
UPOd1,J ,V POd2,K

}pE ˆ3 V
J ˆ1 U

J}F “ sup
UPOd1,J ,V POd2,K

WPRJˆd2ˆK ,}W }Fď1

xpE ˆ3 V
J ˆ1 U

J,W y.

Then, we apply Theorem E.6 with S1 “ Od1,J ,S2 “ tW P RJˆd2ˆK : }W }F ď 1u,S3 “ Od3,K

and get the desired result.

F PROOF OF THEOREM D.1

Proof of Theorem D.1. The proof follows that of Theorem 1 by Zhang and Xia (2018). For clarity,
we divide it into several steps.

Step 1. Reduction to spectral norm of random matrices. We have

}pT ´ T ˚}2F “ }xW ˆ3
pV ˆ1

pU ´ W˚ ˆ3 V
˚ ˆ1 U

˚}2F

“ }xW ˆ3
pV ˆ1

pU ´ W˚ ˆ3 V
˚ ˆ1 ppU pUJqU˚}2F ` }W˚ ˆ3 V

˚ ˆ1 pI ´ Π
pU qU˚}2F

“ }xW ˆ3
pV ´ W˚ ˆ3 V

˚ ˆ1 ppUJU˚q}2F ` }W˚ ˆ3 V
˚ ˆ1 pI ´ Π

pU qU˚}2F

“ }xW ´ W˚ ˆ3 ppV JV ˚q ˆ1 ppUJU˚q}2F ` }W˚ ˆ3 pI ´ Π
pV qV ˚ ˆ1 ppUJU˚q}2F

` }W˚ ˆ3 V
˚ ˆ1 pI ´ Π

pU qU˚}2F. (28)
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By the construction of xW , the first term is equal to

}Y ˆ3
pV J ˆ1

pUJ ´ T ˚ ˆ3
pV J ˆ1

pUJ}2F “ }E ˆ3
pV J ˆ1

pUJ}2F. (29)

We rewrite the second term as follows:

}W˚ ˆ3 pI ´ Π
pV qV ˚ ˆ1 ppUJU˚q}F “ }pI ´ Π

pV qm3pT ˚ ˆ1
pUJq}F.

Due to (14), we have m3pT ˚ ˆ1
pUJq “ m3pT ˚qppU b Id2

q, so m3pT ˚ ˆ1
pUJq has rank at most K

and

}pI ´ Π
pV qm3pT ˚qppU b Id2

q}F ď
?
K}pI ´ Π

pV qm3pT ˚qppU b Id2
q}

“
?
K}pI ´ Π

pV qm3pT ˚ ˆ1
pUJq}

ď
?
K}pI ´ Π

pV qm3pY ˆ pUJq} `
?
K}pI ´ Π

pV qm3pE ˆ1
pUJ
1 q}.

Since pV consists of K leading left singular vectors of m3pY ˆ1
pUq and m3pT ˚ ˆ1

pUJ
1 q has rank K,

we have }pI ´ Π
pV qm3pY ˆ pU1q} “ σK`1pm3pY ˆ1

pU1qq ď }m3pE ˆ pU1q} by the Weyl inequality .
It yields

}W˚ ˆ3 pI ´ Π
pV qV ˚ ˆ1 ppUJU˚q}F ď 2

?
K}m3pE ˆ1

pUJq}. (30)

Then, we bound the third term of (28). We have

}W˚ ˆ3 V
˚ ˆ1 pI ´ Π

pU qU˚}F “ }W˚ ˆ1 pI ´ Π
pU qU˚}F

ď σ´1
minppV J

T´1V
˚q}W˚q ˆ3 ppV J

T´1V
˚q ˆ1 pI ´ Π

pU qU˚}F

“ σ´1
minppV J

T´1V
˚q}pI ´ Π

pU qm1pT ˚ ˆ3
pV J
T´1q}F.

The matrix m1pT ˚ ˆ3
pV J
T´1q “ m1pT ˚qpId2

b pVT´1q has rank at most J , so

}pI ´ Π
pU qm1pT ˚ ˆ3

pV J
T´1q}F ď

?
J}pI ´ Π

pU qm1pT ˚ ˆ3
pV J
T´1q}

ď
?
J}pI ´ Π

pU qm1pY ˆ3
pV J
T´1q} `

?
J}pI ´ Π

pU qm1pE ˆ3
pV J
T´1q}.

Since pU consists of J leading left singular vectors of m1pY ˆ3
pV J
T´1q and m1pT ˚ ˆ3

pV J
T´1q has the

rank at most J , we have }pI ´Π
pU qm1pY ˆ3

pV J
T´1q} “ σJ`1pm1p pY ˆ3

pV J
T´1qq ď }m1pEq ˆ3

pV J
T´1q}

by the Weyl inequality. It implies

}W˚ ˆ3 V
˚ ˆ1 pI ´ Π

pU qU˚}F ď
2

?
J

σminppV J
T´1V

˚q
}m1pE ˆ3

pV J
T´1q}.

Combining (28) with (29), (30) and the above display, we get

}pT ´ T ˚}2F ď }E ˆ3
pV J ˆ1

pUJ}2F ` 4K}m3pE ˆ1
pUJq}2

`
4J

σ2
minppV J

T´1V
˚q

}m1pE ˆ3
pV J
T´1q}

ď sup
UPOd1,J ,V POd2,K

}E ˆ ˆ3V
J ˆ1 U

J}2F

` 4K}m3pE ˆ1
pUJq}2 `

4J

σ2
minppV J

T´1V
˚q

}m1pE ˆ3
pV J
T´1q}2. (31)

Step 2. Bounding σminppV J
T´1V

˚q, }m1pE ˆ3
pV J
T´1q}, }m3pE ˆ1

pUJq}. To obtain the theorem, we
need to bound σminppV J

T´1 ˆ3 Eq, }m1pE ˆ3
pV J
T´1q}, }m3pE ˆ1

pUJq}. We start with the latter two
norms. We have

}m3pE ˆ1
pUJq} “ }m3pEqppU b Id2

q} ď }m3pEqpΠU˚ pU b Id2
q} ` }m3pEqppI ´ ΠU˚ qpU b Id2

q}.
(32)
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Since ΠU˚ “ U˚pU˚qJ, the first term of the above is at most

}m3pEqU˚ppU˚qJ
pU b Id2

q} “ }m3pEqpU˚ b Id2
qppU˚qJ

pU b Id2
q}

ď }m3pEqpU˚ b Id2q}}ppU˚qJ
pU b Id2q}

ď }m3pEqpU˚ b Id2
q}. (33)

For the second term, we have

}m3pEqppI ´ ΠU˚ qpU b Id2q} ď }m3pEqp
pI ´ ΠU˚ q

}pI ´ ΠU˚ qpU}
b Id2q} ¨ }pI ´ ΠU˚ qpU}

ď sup
V PRd1ˆJ ,

}V }“1

}m3pEqpV b Id2q} ¨ }pI ´ ΠU˚ qpU}.

Then, we have

}pI ´ ΠU˚ qpU} “ }pI ´ ΠU˚ qΠ
pU } “ }pΠ

pU ´ ΠU˚ qΠ
pU } ď }Π

pU ´ ΠU˚ },

where we used Im pUJ “ RK and orthogonality of pU for the first equality. To bound the latter norm
of the difference, we rely on the following standard proposition, which is proved

Proposition F.1. For two orthogonal matrices U1, U2 P Oa,b, a ě b, define the following semidis-
tance

ρpU1, U2q “ inf
OPOb,b

}U1 ´ U2O}.

Then, we have

}ΠU1 ´ ΠU2} ď 2 ¨ ρpU1, U2q.

The proposition implies

}m3pEqppI ´ ΠU˚ qpU b Id2
} ď 2 sup

V PRd1ˆJ

}V }“1

}m3pEqpV b Id2
q} ¨ ρppU,U˚q.

Combining the above with (32) and (33), we get

}m3ppU ˆ1 Eq} ď }m3pEqpU˚ b Id2q} ` 2 sup
V PRd1ˆJ

}V }“1

}m3pEqpV b Id2q} ¨ ρppU,U˚q. (34)

Analogously, we have

}m1ppVT´1 ˆ3 Eq} ď }m1pEqpId2 b V ˚q} ` 2 sup
V PRd3ˆK

}V }ď1

}m1pEqpId2 b V q} ¨ ρppVT´1, V
˚q. (35)

Finally, we bound σminppV J
T´1V

˚q below. We have

σ2
minppV J

T´1V
˚q “ λminppV ˚qJ

pV pV JV ˚q “ λKpΠV ˚Π
pVT´1

ΠV ˚ q,

where we used the fact that V ˚ApV ˚qJ has the same singular values as A for any Hermitian A P

RKˆK . Since ΠV ˚Π
pV ΠV ˚ “ ΠV ˚ ´ΠV ˚ pI ´Π

pVT´1
qΠV ˚ “ ΠV ˚ ´ΠV ˚ pΠV ˚ ´Π

pVT´1
qΠV ˚ ,

the Weyl inequality implies

λKpΠV ˚Π
pVT´1

ΠV ˚ q ě λKpΠV ˚ q ´ }ΠV ˚ pΠV ˚ ´ Π
pVT´1

qΠV ˚ } ě 1 ´ }Π
pVT´1

´ ΠV ˚ }.

Then, Proposition F.1 yields }Π
pVT´1

´ ΠV ˚ } ď 2ρppVT´1, V
˚qu, so

σminppV J
T´1V

˚q ě

b

1 ´ 2ρppVT´1, V ˚q, (36)

provided ρppVT´1, V
˚q ď 1{2.

Step 3. Bounding ρppUt, U
˚q, ρppVt, V

˚q recursively. We provide a recursive bound on ρppUt, U
˚q

and ρppVt, V
˚q. We widely use the following lemma, which is a weaker variant of the Wedin sinΘ–

theorem:
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Proposition F.2. Let A,B be matrices, such that A has rank r, and denote B “ A ` E. Let L be
left singular vectors of A and pL be r leading left singular vectors of B. Then

ρpL, pLq ď
2
?
2}E}

σrpAq
.

By Proposition F.2, we have

ρppU0, U
˚q ď

2
?
2}m1pEq}

σJpm1pT ˚qq
. (37)

To bound ρppVt, V
˚q, we note the following. Since pVt are leading K left singular vectors of m3pY ˆ1

pUJ
t q “ m3pT ˚ ˆ1

pUJ
t q ` m3pE ˆ1

pUJ
t q, and there exists an orthogonal matrix O P OK,K such

that V ˚O are the left singular vectors of m3pT ˚ ˆ1
pUJ
t q “ V ˚m3pW˚ ˆ1 U

˚qppUt b Id2q, by the
definition of ρp¨, ¨q and Proposition F.2, we have

ρppV0, V
˚q ď

2
?
2}m3pE ˆ1

pU0q}

σKpm3pT ˚ ˆ pUJ
0 qq

and ρppVt, V
˚q ď

2
?
2}m3pE ˆ1

pUtq}

σKpm3pT ˚ ˆ1
pUJ
t qq

for t “ 1, . . . , T . Let us bound ρppVt, V
˚q using ρppUt, U

˚q. First, we have

σKpm3pT ˚ ˆ1
pUJ
t qq “ σKpm3pT ˚qppUt b Id2

qq “ σKpm3pT ˚qpU˚ b Id2
qppU˚qJ

pU b Id2
qq

(38)

ě σKpm3pT ˚qpU˚ b Id2
qqσminppU˚qJ

pUtq “

“ σKpm3pT ˚qpΠU˚ b Id2qqσminppU˚qJ
pUq ě σKpm3pT ˚qq ¨

b

1 ´ 2ρppUt, U˚q,

provided ρppUt, U
˚q ă 1{2. Second, we bound }m3pE ˆ1

pUJ
t q}. Following the derivation of (34), we

obtain

}m3pE ˆ1
pUJ
t q} “ }m3pEqppUt b Id2

q}

ď }m3pEqpΠU˚ b Id2
qppUt b Id2

q} ` }m3pEqppI ´ ΠU˚ q b Id1
qppUt b Id2

q}

ď }m3pEqpU˚ b Id2q} ` sup
UPRd1ˆJ

}U}ď1

}m3pEqpU b Id2q} ¨ }pI ´ ΠU˚ qpUt}.

Since pUt is orthogonal, we have }pI ´ ΠU˚ qpUt} “ }pI ´ ΠU˚ qΠ
pUt

}, so

}pI ´ ΠU˚ qpUt} “ }pΠ
pUt

´ ΠU˚ qΠ
pUt

} ď }Π
pUt

´ ΠU˚ } ď 2ρppUt, U
˚q,

due to Proposition F.1, and

}m3pE ˆ1
pUJ
t q} ď }m3pEqpU˚ b Id2

q} ` 2 sup
UPRd1ˆJ

}U}ď1

}m3pEqpU b Id2
q} ¨ ρppUt, U

˚q. (39)

Following the notation of the theorem, we get

ρppVt, V
˚q ď

2
?
2 ¨

´

αV ` 2βV ¨ ρppUt, U
˚q

¯

σKpm3pT ˚qq

b

1 ´ 2ρppUt, U˚q

. (40)

Next, we will bound ρppUt, U
˚q using ρppVt´1, V

˚q for t ě 1. Since pUt are leading J left singular
vectors of m1pY ˆ3

pV J
t´1q “ m1pT ˚ ˆ3

pV J
t´1q ` m1pE ˆ3

pV J
t´1q, and there exists an orthogonal

matrix O P OJ,J such that U˚O are the left singular vectors of m1pT ˚ ˆ3
pV J
t´1q “ U˚m1pW˚ ˆ3

V ˚qpId2 b pVt´1q, by Proposition F.2 and the definition of ρp¨, ¨q, we have

ρppUt´1, U
˚q ď

2
?
2}m1pE ˆ3

pV J
t´1q}

σJpm1pT ˚ ˆ3
pVt´1qq

.
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Analogously to (38), we have

σJpm1pT ˚ ˆ3
pVt´1qq ě σJpm1pT ˚qq

b

1 ´ 2ρppVt´1, V ˚q,

provided ρppVt´1, V
˚q ă 1{2. Analogously to (39), we have

}m1pE ˆ3
pVt´1q} ď }m1pEqpId2

b V ˚q} ` 2 sup
V PRd1ˆK

}V }ď1

}m1pEqpId2
b V q} ¨ ρppVt´1, V

˚q. (41)

Thus, using the notation of the theorem, we get

ρppUt, U
˚q ď

2
?
2
´

αU ` 2βU ¨ ρppVt´1, V
˚q

¯

σJpm1pT ˚qq

b

1 ´ 2ρppVt´1, V ˚q

. (42)

Step 4. Solving the recursion. We claim that for each t “ 0, . . . , T , we have

ρppUt, U
˚q ď 1{4 and ρppVt, V

˚q ď 1{4. (43)

Let us prove it by induction. From (37) and conditions of the theorem, we have

ρppU0, U
˚q ď

3}m1pEq}

σJpm1pT ˚qq
ď

1

4
.

Suppose that we have ρppUt, U
˚q ď 1{4. Let us prove that ρppVt, V

˚q ď 1{4 and ρppUt`1, U
˚q ď 1{4.

First, applying bound (40), we deduce

ρppVt, V
˚q ď

2
?
2pαV ` 2βV ¨ ρppUt, U

˚qq

σKpm3pT ˚qq

b

1 ´ 2ρppUt, U˚q

ď
4pαV ` βV {2q

σKpm3pT ˚qq
ď

6βV

σKpm3pT ˚qq
ď

1

4
,

where we used

αV “ }m3pEqpU˚ b Id2q} ď sup
UPRd1ˆJ

}U}ď1

}m3pEqpU b Id2q} “ βV

and σKpm3pT ˚qq ě 24βV due to conditions of the theorem. Similarly, from (40), we deduce

ρppUt`1, U
˚q ď

2
?
2pαU ` 2βU ¨ ρppVt, V

˚qq

σJpm1pT ˚qq

b

1 ´ 2ρppVt, V ˚q

ď
4pαU ` βU{2q

σJpm1pT ˚qq
ď

6βU

σJpm1pT ˚qq
ď

6}m1pEq}

σJpm1pT ˚qq
ď

1

4
,

by the conditions of the theorem and the definition of αU , βU . Hence, for each t “ 0, . . . , T , we
have ρppUt, U

˚q ď 1{4 and ρppVt, V
˚q ď 1{4.

Hence, we can simplify bounds (40),(42) as follows:

ρppVt, V
˚q ď

4 ¨

´

αV ` 2βV ¨ ρppUt, U
˚q

¯

σKpm3pT ˚qq
,

ρppUt, U
˚q ď

4 ¨

´

αU ` 2βU ¨ ρppVt´1, V
˚q

¯

σJpm1pT ˚qq
.

We solve these recursive inequalities using the following proposition.

Proposition F.3. Suppose that a sequence of numbers pρt, ηtq satisfies

ρt ď x1 ` x2ηt,

ηt ď y1 ` y2ρt´1

for some x1, y1, x2, y2 such that x2y2 ď 1{2 and x2, y2 ě 0. Then, we have

ρt ď 2px1 ` x2y1q ` x2px2y2qtη0,

ηt ď 2py1 ` x1y2q ` px2y2qtη0.
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Applying Proposition F.3 to ρt “ ρppVt, V
˚q, ηt “ ρppUt, U

˚q, we obtain

ρppVt, V
˚q ď

8αV

σKpm3pT ˚qq
`

16βV αU

σJpm1pT ˚qqσKpm3pT ˚qq

`

ˆ

64βV βU

σJpm1pT ˚qqσKpm3pT ˚qq

˙t

ˆ
24βV }m1pEq}

σKpm3pT ˚qqσJpm1pT ˚qq
, (44)

ρppUt, U
˚q ď

8αU

σJpm1pT ˚qq
`

16βUαV

σJpm1pT ˚qqσKpm3pT ˚qq

`

ˆ

64βV βU

σJpm1pT ˚qqσKpm3pT ˚qq

˙t

ˆ
3}m1pEq}

σJpm1pT ˚qq
, (45)

where we used (37) to bound η0 “ ρppU0, U
˚q.

Step 4. Final bound. Let us return to the bound (31). Using
a

ř

i ai ď
ř

i

?
ai suitable for any

positive numbers ai, we get

}pT ´ T ˚}F ď sup
UPOd1,J ,V POd2,K

}E ˆ3 V
J ˆ1 U

J}F

` 2
?
K}m3pE ˆ1

pUJq} `
2
?
J

σminppV J
T´1V

˚q
}m1pE ˆ3

pV J
T´1q}.

Combining (43) and (36), we obtain

}pT ´ T ˚}F ď sup
UPOd1,J ,V POd2,K

}E ˆ3 V
J ˆ1 U

J}F ` 2
?
K}m3pE ˆ1

pUJq} ` 3
?
J}m1pE ˆ3

pV J
T´1q}.

Then, applying (34) and (35), we get

}pT ´ T ˚}F ď sup
UPOd1,J ,V POd2,K

}E ˆ3 V
J ˆ1 U

J}F ` 2
?
KpαV ` 2βV ρppUT , U

˚qq

` 3
?
JpαU ` 2βU ¨ ρppVT´1, V

˚qq.

Then, we substitute bounds (45),(44) into above, and get

}pT ´ T ˚}F ď sup
UPOd1,J ,V POd2,K

}E ˆ3 V
J ˆ1 U

J}F ` 2
?
KpαV ` v1 ` v2q

` 3
?
JpαU ` u1 ` u2q,

where

v1 “ 2βV ¨
16βUαV

σJpm1pT ˚qqσKpm3pT ˚qq
,

v2 “
16βV αU

σJpm1pT ˚qq
`

6βV }m1pEq}

σJpm1pT ˚qq
ˆ

ˆ

64βV βU

σJpm1pT ˚qqσKpm3pT ˚qq

˙T

,

u1 “ 2βU ¨
16βV αU

σJpm1pT ˚qqσKpm3pT ˚qq

u2 “
16βUαV

σKpm3pT ˚qq
`

ˆ

64βUβV

σJpm1pT ˚qqσKpm3pT ˚qq

˙T

}m1pEq}.

Since σJpm1pT ˚qq ě 24}m1pEq} ě 24βU and σKpm3pT ˚qq ě 24βV , we have v1 ď αV , u1 ď αU{3
and

v2 ď
16βV αU

σJpm1pT ˚qq
`

ˆ

64βV βU

σJpm1pT ˚qqσKpm3pT ˚qq

˙T

}m1pEq}.

Combining the above, we obtain

}pT ´ T ˚}F ď sup
UPOd1,J ,V POd2,K

}E ˆ3 V
J ˆ1 U

J}F ` 4
?
KαV ` 4

?
JαU ` ♢2 ` rT ,

where ♢2 and rT are introduced in the statement of the theorem.
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F.1 PROOF OF PROPOSITION F.1

Proof. For any matrix O P Ob,b, we have

}Π
pU ´ ΠU˚ } “ }pU pUJ ´ U˚pU˚qJ} “ }pU pUJ ´ pUOpU˚qJ ` pUOpU˚qJ ´ U˚pU˚qJ}

ď }pUOppUO ´ U˚qJ} ` }ppUO ´ U˚qpU˚qJ} ď 2}pUO ´ U˚}.

Taking the infimum over O P Ob,b, we obtain the proposition.

F.2 PROOF OF PROPOSITION F.2

Proof of Proposition F.2. For two subspaces X,Y define:

} sinΘpX,Y q} “ }pI ´ ΠXqΠY }.

Then, the following theorem holds.

Theorem F.4 (Wedin sinΘ-theorem (Wedin, 1972) ). Let P,Q be Raˆb matrices. Fix r ď

minta, bu. Consider the SVD decomposition of P “ U0Σ0V
J
0 ` U1Σ1V

J
1 , Q “ rU0

rΣ0
rV J
0 `

rU1
rΣ1

rV J
1 , where Σ0, rΣ0 corresponds to the first r singular values of P,Q respectively. Suppose that

σminprΣ0q ´ σmaxpΣ1q ě δ. Then, we have

} sinΘpIm rU0, ImU0q} ď
1

δ
maxt}pP ´ QqV J

0 }, }UJ
0 pP ´ Qq}u.

To apply the above theorem, consider two cases. If σrpAq ě 2}E}, then we apply the above theorem
with δ “ σrpAq{2, P “ B and Q “ A, and get

} sinΘpImL, Im pLq} ď
2}E}

σrpAq
.

If σrpAq ď 2}E}, then

} sinΘpImL, Im pLq} ď 1 ď
2}E}

σrpAq
.

Hence, in either case, we have

} sinΘpImL, Im pLq} ď
2}E}

σrpAq
.

Finally, Lemma 1 of (Cai and Zhang, 2018) implies that

ρpL, pLq ď
?
2} sinΘpImL, Im pLq} ď

2
?
2}E}

σrpAq
,

and the proposition follows.

F.3 PROOF OF PROPOSITION F.3

Proof of Proposition F.3. Combining the initial inequalities, we get

ηt ď y1 ` y2x1 ` px2y2qηt´1.

Iterating the above inequality t ´ 1 times, we get

ηt ď px2y2qtη0 ` py1 ` y2x1q

t´1
ÿ

i“0

px2y2qi ď
y1 ` y2x1

1 ´ x2y2
` px2y2qtη0.

Using x2y2 ď 1{2, we obtain

ηt ď 2py1 ` y2x1q ` px2y2qtρ0.

Combining the above with the bound ρt ď x1 ` x2ηt, we derive

ρt ď x1 ` 2py1x2 ` x2y2x1q ` x2px2y2qtρ0 ď 2px1 ` x2y1q ` x2px2y2qtρ0,

where we used x2y2 ď 1{2 again.
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G PROOF OF THEOREM E.6

Proof. Step 1. Reduction to the PAC-bayes inequality. Let us rewrite the core expression, as a
supremum of a certain empirical process. We have:

sup
pA1,A2,A3qP

ś3
i“1 Si

xpE ˆ3 A
J
3 ˆ1 A

J
1 , A2y “ sup

pA1,A2,A3qP
ś3

i“1 Si
xA2 ˆ3 A

J
3 ˆ1 A

J
1 ,

pEy

“ sup
pA1,A2,A3qP

ś3
i“1 Si

xA2 ˆ3 A3 ˆ1 A1, pEy

“ sup
pA1,A2,A3qP

ś3
i“1 Si

C

A2 ˆ3 A3 ˆ1 A1,
n
ÿ

i“1

1

n
RpXiX

J
i ´ EpXXJqq

G

“ sup
pA1,A2,A3qP

ś3
i“1 Si

C

R´1pA2 ˆ3 A3 ˆ1 A1q,
1

n

n
ÿ

i“1

XiX
J
i ´ EpXXJq

G

“ sup
pA1,A2,A3qP

ś3
i“1 Si

1

n

n
ÿ

i“1

␣

XJ
i R´1pA2 ˆ3 A3 ˆ1 A1qXi

´EXJR´1pA2 ˆ3 A3 ˆ1 A1qX
(

.

Define the following functions:

fipA2 ˆ3 A3 ˆ1 A1q “ λ
␣

XJ
i R´1pA2 ˆ3 A3 ˆ1 A1qXi ´ EXJ

i R´1pA2 ˆ3 A3 ˆ1 A1qXi

(

,

fXpA2 ˆ3 A3 ˆ1 A1q “ λ
␣

XJR´1pA2 ˆ3 A3 ˆ1 A1qX ´ EXJR´1pA2 ˆ3 A3 ˆ1 A1qX
(

,

where the positive factor λ will be chosen later. We will apply Lemma E.5 to the empirical process

sup
pA1,A2,A3qP

śs
i“1 Si

1

n

n
ÿ

i“1

fipA1, A2, A3q

with the parameter space defined by the target spaces Li dimensionalities and the prior distribution
µ, constructed as a product of independent measures for each subspace separately. Choosing bases
in L1, L2, L3, we identify A1, A2 with corresponding matrices and A3 with a corresponding tensor.
Define linear spaces L1 “ Rd1ˆl1 ,L2 “ Rl1ˆd2ˆl3 and L3 “ Rd2ˆl3 , and consider distributions
Di over Li defined as follows:

Di “

"

N p0, σiIlidi
q, if li ¨ ripΣq ď log |Si|,

UniformpSiq, if li ¨ ripΣq ą log |Si|,
for some σ1, σ2, σ3 to be chosen later, assuming that samples from the normal distribution have
appropriate shapes. Then, we put

µ “ D1 b D2 b D3.

Consider random vectors P,Q,R with mutual distribution ρA1,A2,A3
such that EQ ˆ3 R ˆ1 P “

A2 ˆ3 A3 ˆ1 A1. Since fipA1, A2, A3q, fXpA1, A2, A3q are linear in A2 ˆ3 A3 ˆ1 A1, we have
EρA1,A3,A2

fipP,Q,Rq “ fipA1, A2, A3q, so Lemma E.5 yields

sup
A1PS1,

A2PS2,A3PS3

1

n

n
ÿ

i“1

fipA1, A2, A3q

ď sup
A1PS1,

A2PS2,A3PS3

"

EρA1,A2,A3
logEX exp fXpP,Q,Rq `

KLpρA1,A2,A3
, µq ` logp1{δq

n

*
(46)

with probability at least 1 ´ δ. Then, we construct ρA1,A2,A3 such that the right-hand side of the
above inequality can be controlled efficiently.

Step 2. Constructing ρA1,A2,A3
. Suppose for a while that ρA1,A2,A3

-almost surely we have

λ}Σ1{2R´1pQ ˆ3 R ˆ1 P qΣ1{2}F ď 1{ω. (47)
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Then, Assumption 2.1 implies

EρA1,A2,A3
logEX exp fXpP,Q,Rq

“ EρA1,A2,A3
logEX exp

␣

λ
`

XJR´1pQ ˆ3 R ˆ1 P qX

´EXJR´1pQ ˆ3 R ˆ1 P qX
˘(

ď λ2ω2EρA1,A2,A3
}Σ1{2R´1pQ ˆ3 R ˆ1 P qΣ1{2}2F.

(48)

So, to control the above and keep the left-hand side of (47) bounded, we do the following. Consider
random matrices G1 P Rd1ˆl1 , G3 P Rd3ˆl3 and a random tensor G3 P Rl1ˆd2ˆl3 such that

vecpGiq „

"

N p0, σiIdiliq, if ripΣq ď log |Si|,
δ0, if li ¨ ripΣq ą log |Si|,

where δ0 is the delta measure supported on 0 P Rdili . Then, define a function g : Rd1ˆl1 ˆ R

gpu1, v1, w1q “ }Σ1{2R´1pv1 ˆ3 w
1 ˆ1 u

1qΣ1{2}2F. (49)

Sequentially applying the triangle inequality for the Frobenius norm and using pa`bq2 ď 2a2`2b2,
we obtain

fpA1 ` G1, A2 ` G2, A3 ` G3q ď 2gpA1, A2 ` G2, A3 ` G3q ` 2gpG1, A2 ` G2, A3 ` G3q

ď 4gpA1, A2, A3 ` G3q ` 4gpG1, G2, A3 ` G3q

` 4gpA1, G2, A3 ` G3q ` 4gpG1, A2, A3 ` G3q

ď 8gpA1, A3, A2q ` 8gpA1, G2, G3q ` 8gpA1, A3, G3q ` 8gpA1, G2, A2q

` 8gpG1, A3, A2q ` 8gpG1, G2, G3q ` 8gpG1, A3, G3q ` 8gpG1, G2, A2q. (50)

Then, we define the distribution ρA1,A2,A3 of the random vector pP,Q,Rq as the distribution of
pA1 ` G1, A2 ` G2, A3 ` G3q subject to the condition

pG1, G2, G3q P Υ “ t8gpa, b, cq ď 8Egpa, b, cq | pa, b, cq P Γu , where
Γ “ ptA1, G1u ˆ tA2, G2u ˆ tA3, G3uqztpA1, A3, A2qu.

Note that by the union bound and the Markov inequality, we have

Pr ppG1, G2, G3q R Υq ď
ÿ

pa,b,cqPΓ

Pr pfpa, b, cq ą 8Efpa, b, cqq

ď
ÿ

pa,b,cqPΓ

1

8
“

7

8
. (51)

Combining the definition of Upsilon with upper bound (50) implies the following bound on
gpP,Q,Rq:

gpP,Q,Rq ď 64 pgpA1, A2, A3q ` EgpA1, A2, G3q ` EgpA1, G2, A3q ` EgpA1, G2, G3q

`EgpG1, A2, A3q ` EgpG1, A2, G3q ` EgpG1, G2, A3q ` EgpG1, G2, G3qq , (52)

which holds ρA1,A2,A3
-almost surely.

Let us check that EρA1,A3,A2
Qˆ3Rˆ1 P “ A2 ˆ3A3 ˆ1A1. Since both the Gaussian distribution

and δ0 are centrally symmetric and the function f does not change its value when multiplying any
of its argument by ´1, we have

pP,Q,Rq
d
“ pA1 ` ε1pP ´ A1q, A2 ` ε2pQ ´ A2q, A3 ` ε3pR ´ A3qq, (53)

where ε1, ε2, ε3 are i.i.d. Rademacher random variables independent of pP,Q,Rq. Then, we obtain

EQ ˆ3 R ˆ1 P “ EpA2 ` ε2pQ ´ A2qq ˆ3 pA3 ` ε3pR ´ A3qq ˆ1 A1

` EpA2 ` ε2pQ ´ A2qq ˆ3 pA3 ` ε3pR ´ A3qq ˆ1 ε1pP ´ A1q

“ EpA2 ` ε2pQ ´ A2qq ˆ3 A3 ˆ1 A1 ` EpA2 ` ε2pQ ´ A2qq ˆ3 ε3pR ´ A3qq ˆ1 A1

“ A2 ˆ3 A3 ˆ1 A1 ` Eε2pQ ´ A2q ˆ3 A3 ˆ1 A1 “ A2 ˆ3 A3 ˆ1 A1.
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Hence, to satisfy the assumption (47) and use (48), it is enough to bound expectations Efpa, b, cq
for pa, b, cq P tA1, G1u ˆ tA3, G3u ˆ tA2, G2u.

Step 3. Bounding expectations Egp¨, ¨, ¨q. Let us start with gpA1, A3, A2q. From the definition (49),
we have

gpA1, A2, A3q “ }Σ1{2R´1pA2 ˆ3 A3 ˆ1 A1qΣ1{2}2F

ď }Σ}2}R´1pA2 ˆ3 A3 ˆ1 A1q}2F “ }Σ}2}A2 ˆ3 A3 ˆ1 A1}2F “ }Σ}2, (54)

where we used the fact that A2 has unit Frobenius norm and }A1} ď 1, }A3} ď 1 by the definition
of Si.

In what follows, it will be useful to rewrite the function fpA1, A2, A3q in different notation. As in
the proof of Lemma E.1, define tensors

Sp1q1r1p2q2r2 “ Σpp1´1qqr`pq1´1qr`r1,pp2´1qqr`pq2´1qr`r2

A
p1q

p2p3j1
“ pA1qpp2´1qp`p3,j1 , A

p3q

r2r3k1
“ pA3qpr2´1qr`r3,k1

,

A
p2q

j1q2q3k1
“ pA3qj1,pq2´1qq`q3,k1

,

Gp1q

p2p3j1
“ pG1qpp2´1qp`p3,j1 , Gp3q

r2r3k1
“ pG3qpr2´1qr`r3,k1

,

Gp2q

j1q2q3k1
“ pG3qj1,pq2´1qq`q3,k1

.

Then, we obtain

gpA1, A2, A3q “ }Σ1{2R´1pA2 ˆ3 A3 ˆ1 A1qΣ1{2}2F

“ Tr
`

ΣR´1pA2 ˆ3 A3 ˆ1 A1qΣR´JpA2 ˆ3 A3 ˆ1 A1q
˘

“ Sp1q1r1p2q2r2A
p1q

p2p3j1
A

p2q

j1q2q3k1
A

p3q

r2r3k1
Sp3q3r3p4q4r4A

p1q

p1p4j2
A

p2q

j2q1q4k2
A

p3q

r1r4k2
. (55)

Note that the above holds for any Ai P Li, so the formula remains true when replacing Ai, A
piq with

Gi,Gpiq respectively.

Next, we bound EgpA1, A2, G3q. If vecpG1q „ δ0, we have EgpA1, A2, G3q “ 0, so it is enough
to consider the case vecpG3q „ N p0, σ3Id3l3q. Due to formula (55), it yields

EgpA1, A2, G3q “ ESp1q1r1p2q2r2A
p1q

p2p3j1
A

p2q

j1q2q3k1
Gp3q

r2r3k1
Sp3q3r3p4q4r4A

p1q

p1p4j2
A

p2q

j2q1q4k2
Gp3q

r1r4k2

“ σ2
3δr2r1δr3r3δk1k2Sp1q1r1p2q2r2A

p1q

p2p3j1
A

p2q

j1q2q3k1
Sp3q3r3p4q4r4A

p1q

p1p4j2
A

p2q

j2q1q4k2

“ σ2
3Sp1q1r1p2q2r1A

p1q

p2p3j1
A

p2q

j1q2q3k1
Sp3q3r3p4q4r3A

p1q

p1p4j2
A

p2q

j2q1q4k1
.

Define matrices rAp1,jq P Rpˆp, rAp1,j,kq, i “ 1, 2 and j “ 1, . . . , J , by rA
p1,jq
p2,p3 “ A

p1q

p2p3j1
and

rA
p2,j,kq
q2,q3 “ A

p2q

jp2p3k
. Then, we have

EgpA1, A2, G3q “ σ2
3 ¨

ÿ

k1Prl3s

Tr

˜

Tr3pΣq

l1
ÿ

j1“1

rAp1,j1q b rAp2,j1,k1q

ˆ Tr3pΣq

l1
ÿ

j2“1

p rAp1,j2q b rAp2,j2,k1qqJ

¸

ď σ2
3

ÿ

k1Prl3s

›

›

›

›

›

›

Tr3pΣq ¨
ÿ

j1PrJs

rAp1,j1q b rAp2,j1,k1q

›

›

›

›

›

›

2

F

ď σ2
3}Tr3pΣq}2 ¨

ÿ

k1Prl3s

}
ÿ

j1Prl1s

rAp1,j1q b rAp2,j1,k1q}2F, (56)
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where we used the Cauchy–Schwartz inequality for the scalar product xA,By “ TrpAJBq ď

}A}F}B}F. Then, we introduce matrices A1p2,k1q

j1,pq2´1qq`q3
“ Aj1q2q3k1 , k1 P rl3s, for which we have

ÿ

k1Prl3s

}
ÿ

j1Prl1s

rAp1,j1q b rAp2,j1,k1q}2F “
ÿ

k1Prl3s

}AJ
1 A

1p2,k1q}2F ď
ÿ

k1Prl3s

}AJ
1 }2}A1p2,k1q}2F

ď
ÿ

k1Prl3s

}A1p2,k1q}2F “ }A2}2F ď 1,

where we used }A1} ď 1 and }A2}F ď 1. Substituting the above into (56) yields

EgpA1, A2, G3q ď σ2
3}Tr3pΣq}2. (57)

Analogously, we obtain

EgpG1, A2, A3q ď σ2
1}Tr1pΣq}2 (58)

Next, we study the term EgpA1, G2, A3q. Obviously, if vecpG2q „ δ0, then EgpA1, G2, A3q “ 0,
so we consider the case then vecpG2q „ N p0, σ3Id2l2q. Using (55) with G2 in place of A2 and
defining a matrix rAp3,k1q P Rrˆr as rA

p3,k1q
r2r3 “ A

p3q

r2r3k1
, we obtain

EgpA1, G2, A3q “ ESp1q1r1p2q2r2A
p1q

p2p3j1
Gp2q

j1q2q3k1
A

p3q

r2r3k1
Sp3q3r3p4q4r4A

p1q

p1p4j2
Gp2q

j2q1q4k2
A

p3q

r1r4k2
,

“ σ2
2δj1j2δq1q2δk1k2Sp1q1r1p2q2r2A

p1q

p2p3j1
A

p3q

r2r3k1
Sp3q3r3p4q4r4A

p1q

p1p4j2
A

p3q

r1r4k2

“ σ2
2Sp1q1r1p2q1r2A

p1q

p2p3j1
A

p3q

r2r3k1
Sp3q2r3p4q2r4A

p1q

p1p4j1
A

p3q

r1r4k1

“ σ2
2

ÿ

j1Prl1s,k1Prl3s

Tr
´

Tr2pΣq ¨ r rAp1,j1q b rAp3,k1s ¨ Tr2pΣq ¨ r rAp1,j1q b rAp3,k1sJ
¯

ď σ2
2

ÿ

j1Prl1s,k1Prl3s

}Tr2pΣq ¨ r rAp1,j1q b rAp3,k1qs}2F,

where we used the Cauchy–Schwartz inequality on the last line. It yields

EgpA1, G2, A3q ď σ2
2}Tr2pΣq}2

ÿ

j1Prl1s,k1Prl3s

} rAp1,j1q b rAp3,k1q}2F

“ σ2
2}Tr2pΣq}2

ÿ

j1Prl1s,k1Prl3s

} rAp1,j1q}2F} rAp3,k1q}2F

“ σ2
2}Tr2pΣq}2}A1}2F}A3}2F ď σ2

2l1l3}Tr2pΣq}2, (59)

where we used }Ai}
2
F ď li}Ai}

2 ď li for i “ 1, 3.

Next, we bound EgpA1, G2, G3q. If either vecpG2q „ δ0 or vecpG3q „ δ0, then EgpA1, G2, G3q “

0, so we consider the case when both vecpG2q „ N p0, σ2
2Id2l2q and vecpG3q „ N p0, σ2

3Id3l3q.
Using (55) with G2, G3 in place of A2, A3, we get

EgpA1, G2, G3q “ ESp1q1r1p2q2r2A
p1q

p2p3j1
Gp2q

j1q2q3k1
Gp3q

r2r3k1
Sp3q3r3p4q4r4A

p1q

p1p4j2
Gp2q

j2q1q4k2
Gp3q

r1r4k2
,

“ σ2
2σ

2
3δk1k1

Sp1q1r1p2q1r1A
p1q

p2p3j1
Sp3q3r3p4q3r3A

p1q

p1p4j1

“ σ2
2σ

2
3l3

l1
ÿ

j1“1

Tr
´

Tr2,3pΣq rAp1,j1qTr2,3pΣqp rAp1,j1qqJ
¯

ď σ2
2σ

2
3l3

l1
ÿ

j1“1

}Tr2,3pΣq rAp1,j1q}2F ď σ2
2σ

2
3l3}Tr2,3pΣq}2

l1
ÿ

j1“1

} rAp1,j1q}2F

“ σ2
2σ

2
3l3}Tr2,3pΣq}2}A1}2F.

Since }A1}2F ď l1}A}2, we obtain

EgpA1, G2, G3q ď σ2
2σ

2
3l1l3}Tr2,3pΣq}2. (60)
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Analogously, we get

EgpG1, G2, A3q ď σ2
1σ

2
2l1l3}Tr1,2pΣq}2. (61)

Then, we bound EgpG1, A2, G3q. Using (55) with G1, G3 in place of A1, A3, we get

EgpG1, A2, G3q “ ESp1q1r1p2q2r2G
p1q

p2p3j1
A

p2q

j1q2q3k1
Gp3q

r2r3k1
Sp3q3r3p4q4r4G

p1q

p1p4j2
A

p2q

j2q1q4k2
Gp3q

r1r4k2

“ σ2
1σ

2
3δp1p2

δj1j2δr1r2δk1k2
δp3p4

δr3r4

ˆ Sp1q1r1p2q2r2A
p2q

j1q2q3k1
Sp3q3r3p4q4r4A

p2q

j2q1q4k2

“ σ2
1σ

2
3Sp1q1r1p1q2r1A

p2q

j1q2q3k1
Sp3q3r3p3q4r3A

p2q

j1q1q4k1

“ σ2
1σ

2
2

ÿ

j1Prl1s,k1Prl3s

Tr
´

Tr1,3pΣq rAp2,j1,k1qTr1,3pΣqp rAp2,j1,k1qqJ
¯

.

By the Cauchy–Schwartz inequality for the matrix product, we obtain

EgpG1, A2, G3q ď σ2
1σ

2
3

ÿ

j1Prl1s,k1Prl3s

}Tr2,3pΣq rAp2,j1,k1q}2F

ď σ2
1σ

2
3}Tr2,3pΣq

ÿ

j1Prl1s,k1Prl3s

} rAp2,j1,k1q}2F

“ σ2
1σ

2
3}Tr2,3pΣq}2}A2}2F “ σ2

1σ
2
3}Tr2,3pΣq}2. (62)

Finally, we bound EgpG1, G2, G3q. If some Gi is distributed according to δ0, then
EgpG1, G2, G3q “ 0, so it is enough to consider the case when G1, G2, G3 are Gaussian. Us-
ing (55) with Ai, A

piq replaced by Gi,Gpiq, we obtain

EgpG1, G2, G3q “ ESp1q1r1p2q2r2G
p1q

p2p3j1
Gp2q

j1q2q3k1
Gp3q

r2r3k1
Sp3q3r3p4q4r4G

p1q

p1p4j2
Gp2q

j2q1q4k2
Gp3q

r1r4k2

“ σ2
1σ

2
2σ

2
3δj1j1δk1k2Sp1q1r1p1q1r1Sp3q3r3p3q3r3

“ σ2
1σ

2
2σ

2
3l1l3TrpΣq2. (63)

We summarized obtained bounds on Egp¨, ¨, ¨q in Table 4.

Quantity Bound Ref.
gpA1, A2, A3q }Σ}2 (54)

EgpA1, A2, G3q σ2
3}Tr3pΣq} (57)

EgpG1, A2, A3q σ2
1}Tr1pΣq}2 (58)

EgpA1, G2, A3q σ2
2l1l3}Tr2pΣq}2 (59)

EgpA1, G2, G3q σ2
2σ

2
3l1l3}Tr2,3pΣq}2 (60)

EgpG1, G2, A3q σ2
1σ

2
2l1l3}Tr1,2pΣq}2 (61)

EgpG1, A2, G3q σ2
1σ

2
3}Tr2,3pΣq}2 (62)

EgpG1, G2, G3q σ2
1σ

2
2σ

2
3l1l3TrpΣq2 (63)

Table 4: Bounds on Egp¨, ¨, ¨q.

Combining (52) with bounds (54),(58)-(63) implies the following ρA1,A2,A3
-almost surely:

gpP,Q,Rq ď 64
`

}Σ}2 ` σ2
1σ

2
2σ

2
3l1l3TrpΣq2

`σ2
3}Tr3pΣq}2 ` σ2

2l1l3}Tr2pΣq}2 ` σ2
1}Tr1pΣq}

`σ2
2σ

2
3l1l3}Tr2,3pΣq}2 ` σ2

1σ
2
2l1l3}Tr1,2pΣq}2 ` σ2

1σ
2
3}Tr2,3pΣq}2

˘

.
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Finally, we choose σ2
1 , σ

2
2 , σ

2
3 as follows:

σ1 “ r´1
1 pΣq, σ2 “ r´1

2 pΣq{
a

l1l3, σ3 “ r´1
3 pΣq.

Then, ρA1,A2,A3 -almost surely, we have

}Σ1{2R´1pP ˆ1 R ˆ3 QqΣ1{2}2F “ fpP,Q,Rq ď 212}Σ}2,

where we used }TrSpΣq} ď }Σ} ¨
ś

sPS rspΣq for any non-empty S. Hence, if λ satisfies

26λω}Σ} ď 1, (64)

then (47) is fulfilled and, due to (48), we have

EρA1,A2,A3
logEX exp fXpP,Q,Rq ď 212λ2ω2}Σ}2. (65)

Step 4. Bounding the Kullback-Leibler divergence. Define I “ ti P r3s | liripΣq ą log |Si|u.
Then, for i P I , we have Di “ UniformpSiq and the density of ρA1,A2,A3

is given by

ρA1,A2,A3
pa1, a2, a3q “

ź

iPI

δ0pai ´ Aiq ˆ
ź

iPr3szI

σ´lidi
i

p2πqlidi{2
exp

"

´
1

2σ2
i

}ai ´ Ai}
2
F

*

ˆ
1 tpa1 ´ A1, a2 ´ A2, a3 ´ A3q P Υu

PrppG1, G2, G3q P Υq
.

By the definition of Υ, ρA1,A2,A3
can be decomposed into product of the truncated Gaussian ρ´I

and delta measures
Â

iPI δAi
. Hence, we have

KLpρA1,A2,A3
, µq “ KLpρ´I b

â

iPI

δAi
,D1 b D2 b D3q

“ KLpρ´I ,
â

iPr3szI

Diq `
ÿ

iPI

KLpδAi
,UniformpSiqq

“ KLpρ´I ,
â

iPr3szI

Diq `
ÿ

iPI

log |Si|. (66)

Recap that for i P r3szI , distribution Di is the centered Gaussian with the covariance matrix σ2
i Idili

up to the reshaping, so the density of
Â

iPI Di is given by

µ´IppaiqiPr3szIq “
ź

iPr3szI

σ´dili
i

p2πqdili{2
exp

ˆ

´
1

2σ2
i

}ai}
2
F

˙

.

Hence, we have

KLpρ´I ,biPr3szIDiq “

ż

ś

iPr3szI Li

ρ´IppaiqiPr3szIq

ˆ log

«

ś

iPr3szI exp
`

}ai}
2
F{2σ2

i ´ }ai ´ Ai}
2
F{2σ2

i

˘

PrppG1, G2, G3q P Υq

ff

ź

iPr3szI

dai

“ log
1

PrppG1, G2, G3q P Υq
´

ÿ

iPr3szI

1

2σ2
i

}Ai}
2
F `

ÿ

iPr3szI

1

σ2
i

xEξi, Aiy,

where ξi is distributed as the i-th marginal of pP,Q,Rq „ ρA1,A2,A3
. Using (53) , we get Eξi “ Ai,

so bound (51) implies

KLpρ´I ,biPr3szIDiq ď log 8 `
ÿ

iPr3szI

1

2σ2
i

}Ai}
2
F

ď log 8 `
1

2

ÿ

iPr3szI

lir
2
i pΣq,
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where we used the definition of σi and the fact that }Ai}
2
F ď li}Ai}

2 ď li for i “ 1, 3. Then,
bound (66) implies

KLpρA1,A2,A3
, µq ď log 8 `

1

2

ÿ

iPr3szI

lir
2
i pΣq `

ÿ

iPI

log |Si|

ď log 8 `

3
ÿ

i“1

mintr2i pΣq ¨ li, log |Si|u. (67)

Step 5. Final bound. Then, we substitute bounds (65),(67) into (46). It yields

sup
A1PS1,

A2PS2,A3PS3

1

n

n
ÿ

i“1

xpE ˆ3 A
J
3 ˆ1 A

J
1 , A2y ď 212λω2}Σ}2

`
log 8 `

ř3
i“1 mintripΣq ¨ li, log |Si|u ` log 1

δ

λn

with probability at least 1 ´ δ, provided 26λω}Σ} ď 1. Since n ě
ř3

i“1 mintr2i pΣq ¨ li, log |Si|u `

logp8{δq, we can choose λ as

λ “
1

26ω}Σ}

d

ř3
i“1 mintr2i pΣq ¨ li, log |Si|u ` logp8{δq

n
.

It implies

sup
A1PS1,

A2PS2,A3PS3

1

n

n
ÿ

i“1

xpE ˆ3 A
J
3 ˆ1 A

J
1 , A2y ď 27ω}Σ}

d

ř3
i“1 mintr2i pΣq ¨ li, log |Si|u ` logp8{δq

n

with probability at least 1 ´ δ. This completes the proof.

H ADDITIONAL EXPERIMENTS

H.1 TENSOR-PRLS PSEUDOCODE

In this section, we give pseudocode for our version of PRLS adopted to order-3 tensors. See Algo-
rithm 2.

Algorithm 2: PRLS Thresholding Algorithm

Require: Tensor X P Rd1ˆd2ˆd3 , regularization parameters λ1, λ2

Ensure: Soft-thresholded tensor pX
Step 1: Mode-1 Unfolding and Thresholding

1: Reshape initial tensor into matrix: Xp1q “ m1pX q

2: Perform SVD of matricization: U, S, V J “ SVDpXp1qq

3: Apply soft-thresholding: S1 “ maxpS ´ λ1{2, 0q

4: Combine soft-thresholded SVD into a matrix: pXp1q “ U ¨ diagpS1q ¨ V J

5: Reshape back into tensor: X 1 “ m´1
1 p pXp1qq

Step 2: Mode-3 Unfolding and Thresholding
6: Reshape new approximation into matrix: Xp3q “ m3pX 1q

7: Perform SVD of matricization: U, S, V J “ SVDpXp3qq

8: Apply soft-thresholding: S1 “ maxpS ´ λ2{2, 0q

9: Combine soft-thresholded SVD into a matrix: pXp3q “ U ¨ diagpS1q ¨ V J

10: Set pX “ m´1
3 p pXp3qq
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Table 5: Performance comparison of tensor decomposition algorithms for n “ 4000.
Relative errors were averaged over 16 repeats of the experiment, empirical standard
deviation is given after ˘ sign. Best results are boldfaced.

Metric Algorithm

Sample Mean TT-HOSVD HardTTh

Relative Error 0.430 ˘ 0.007 0.105 ˘ 0.008 0.054 ˘ 0.002
Time (seconds) 0.0039 ˘ 0.0015 0.64 ˘ 0.15 3.2 ˘ 3.3

Metric Algorithm

Tucker Tucker+HOOI PRLS

Relative Error 0.105 ˘ 0.007 0.054 ˘ 0.002 0.217 ˘ 0.015
Time (seconds) 30.7 ˘ 3.9 51.5 ˘ 3.9 0.8 ˘ 1.1

H.2 EXTRA EXPERIMENTS ON COVARIANCE ESTIMATION

Here we study the performance of tensor decomposition algorithms in the setup of Section 3. First,
we repeat experiments of Section 3 for n “ 4000, see Table 5.

Second, we study the dependence of sinΘ-distance of estimated singular subspaces to singular
subspaces of matricizations of T ˚ on the number of iterations T and the sample size n. Matrices
pU0, pUT , pV0, pVT are defined in Algorithm 1. As before, the number of additional iterations is taken
10. The results are presented in Table 6.

Table 6: The study of sinΘ-distance from estimated singular subspaces to singular
subspaces of matricizations of RpΣq. Average errors and standard deviations are
obtained after 16 repeats of the experiment. The setup is defined in Section 3.

n “ 500 n “ 2000 n “ 5000 n “ 6000 n “ 7000

sinΘpIm pU0, ImU˚q 1.0 ˘ 0.0 1.0 ˘ 0.0 0.8 ˘ 0.3 0.8 ˘ 0.2 0.6 ˘ 0.3

sinΘpIm pV0, ImV ˚q 1.0 ˘ 0.0 1.0 ˘ 0.0 1.0 ˘ 0.0 0.90 ˘ 0.14 0.9 ˘ 0.2

sinΘpIm pUT , ImU˚q 1.0 ˘ 0.0 0.33 ˘ 0.08 0.17 ˘ 0.04 0.13 ˘ 0.03 0.13 ˘ 0.02

sinΘpIm pVT , ImV ˚q 1.0 ˘ 0.0 0.46 ˘ 0.17 0.21 ˘ 0.03 0.18 ˘ 0.05 0.17 ˘ 0.02

For scalability study we increase the number of parameters from 106 to 7.4 ¨ 108 for 1000 samples.
One can see that our methods scales successfully, even winning comparison with Tucker+HOOI.
The results are shown in Table 7. Next, we increase number of parameters up to 4 ¨ 109 for 1000
and 2000 samples. Unfortunately, Tucker+HOOI does not show ability for scaling due to enormous
time overhead, so results in Table 8 are provided excluding it.

We provide ablation study on the effect of ranks on the error rate. We expect that large increase of
ranks leads to broken spectral gap condition, thus, models takes part of the noise as vital information.
Large decrease leads to loss of vital information, since relevant singular values may be erased.
Despite that, small perturbation in ranks may lead to better bias-variance tradeoff, thus, decreasing
error overall. See Figure 2 for details.

H.3 EXPERIMENTS ON TENSOR ESTIMATION

This section is devoted to experiments that did not have enough space in the main text. In particular,
we numerically study the impact of additional iterations of Algorithm 1 in the tensor estimation
problem. We do not consider the misspecified case, and, given pJ,Kq and p, q, r, generate T ˚ as
follows. First, we generate matrices Uj ,Wjk, Vk from model (5) according to the matrix initialize
method - random, random symmetric, symmetric with special spectrum decay (i.e. inverse quadratic,
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Table 7: Performance comparison of tensor decomposition algorithms for n “ 1000,
p “ q “ r “ 30. Best results are boldfaced.

Metric Algorithm

Sample Mean TT-HOSVD HardTTh

Relative Error 4.448 0.216 0.065
Time (seconds) 3.504 867.756 1007.069

Metric Algorithm

Tucker Tucker+HOOI PRLS

Relative Error 0.192 0.110 4.422
Time (seconds) 14601.442 31256.665 703.230

Table 8: Performance comparison of tensor decomposition algorithms for p “ q “

r “ 40. Best results are boldfaced.

Metric (n = 1000) Algorithm

Sample Mean TT-HOSVD HardTTh Tucker PRLS

Relative Error 6.86 0.21 0.055 0.19 6.82
Time (seconds) 20.94 5095.54 6873.25 84360.27 5872.09

Metric (n = 2000) Algorithm

Sample Mean TT-HOSVD HardTTh Tucker PRLS

Relative Error 4.87 0.19 0.038 0.1845 4.83
Time (seconds) 20.63 5839.20 6889.42 84476.38 5825.16

exponential, linear, etc.). We will refer to these matrices Uj ,Wjk, Vk as sub-components of matrix

S “

J
ÿ

j“1

K
ÿ

k“1

Uj b Wjk b Vk P Rpqrˆpqr,

and reshape it to a tensor T ˚ “ RpSq. It is ease to see that such procedure is equivalent to the direct
assignment of TT factors, due to Equation (8). Then, choosing a noise level σ, we generate a noise
tensor pE as a random normal with σ as its standard deviation and compute

Y “ T ˚ ` pE .

Our code supports some other testing regimes: one can choose the S structure directly (block-
Toeplitz, structure (1), etc.) supporting misspecification case, and rank selection method (via hard
thresholding, effective rank, absolute error). For more information on rank selection see display
(13).

For the specific experiment, we vary the algorithms to test, as well as the actual ranks and sizes of the
components Uj ,Wjk, Vk. For PRLS algorithm, due to its special setup, we tune λ1, λ2 parameters
on a log-scale. In the Table 9 one can see, that our method also shows less variance, compared to
the previous algorithms, such as sample mean or Algorithm 2 with noise variance equal to 0.3.

Now consider the case of a low SNR setting (high-noise regime, fast spectrum decay). This case
violates the assumptions of Theorem 2.2. It can be seen that the methods perform poorly and do not
restore the signal (the relative error remains at the level of 0.3), thus, demonstrating the necessity of
theorem’s conditions. The experiment below was conducted for the case when sub-components of
S spectra decrease as inverse square sequence (see Table 10 for details).

It may be useful to examine the spectrum of matrix S and matricizations in order to understand how
the behavior of algorithms varies in different scenarios. Figure 3 illustrates this. These plots were
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Figure 2: Rank ablation study for covariance with parameters pJ,Kq “ p7, 9q, p “

q “ r “ 10, averaged by 32 runs.

Table 9: Performance comparison of tensor decomposition algorithms under medium
noise conditions. The best results are boldfaced.

Metric Algorithm

Sample Mean TT-HOSVD HardTTh

Relative Error 0.3643 ˘ 0.0135 0.0449 ˘ 0.0018 0.0357 ˘ 0.0015
Time (seconds) 0.0204 ˘ 0.0096 4.4732 ˘ 1.8079 7.5522 ˘ 2.1386

Metric Algorithm

Tucker Tucker+HOOI PRLS

Relative Error 0.0439 ˘ 0.0016 0.0357 ˘ 0.0015 0.1130 ˘ 0.0037
Time (seconds) 56.7830 ˘ 16.3132 106.5766 ˘ 25.2531 0.7076 ˘ 0.1160

constructed for tensor-train rank pJ,Kq pairs of 7 and 9, respectively, with sub-components having
a size of 10 ˆ 10. The total matrix size was 1000 ˆ 10000, composed of these sub-components.

To experimentally confirm the necessity of the conditions of our theorem, we plotted the relationship
between singular values and noise levels, as well as the relative error and noise levels. Our findings
indicate that, after a certain threshold, our algorithm no longer effectively mitigate noise but instead
overfit to it, resulting in inferior performance compared to one-step methods such as TT-HOSVD
(see Figure 4).
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Table 10: Performance of tensor decomposition algorithms under inverse quadratic
decay of spectrum. In case of low SNR we observe that iterative methods perform
worse than one-shot and both do not restore signal. The best result is boldfaced.

Metric Algorithm

Sample Mean TT-HOSVD HardTTh

Relative Error 0.3508 ˘ 0.0004 0.0251 ˘ 0.0001 0.0279 ˘ 0.0003
Time (seconds) 0.0509 ˘ 0.0166 13.9748 ˘ 4.1845 282.7375 ˘ 145.8327
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Figure 3: Spectrum of the objectives in case of random sub-components. As one can
see, dense spectrum of matrix S with noise become separable for matricizations.
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Figure 4: Performance of tensor decomposition algorithms and spectrum behavior
under noise increase.
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