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ABSTRACT

We consider a problem of covariance estimation from a sample of i.i.d. high-
dimensional random vectors. To avoid the curse of dimensionality, we impose an
additional assumption on the structure of the covariance matrix . To be more
precise, we study the case when X can be approximated by a sum of double Kro-
necker products of smaller matrices in a tensor train (TT) format. Our setup natu-
rally extends widely known Kronecker sum and CANDECOMP/PARAFAC mod-
els but admits richer interaction across modes. We suggest an iterative polynomial
time algorithm based on TT-SVD and higher-order orthogonal iteration (HOOI)
adapted to Tucker-2 hybrid structure. We derive non-asymptotic dimension-free
bounds on the accuracy of covariance estimation taking into account hidden Kro-
necker product and tensor train structures. The efficiency of our approach is illus-
trated with numerical experiments.

1 INTRODUCTION

Given X, X1, ..., X,, € R%ii.d. centered random vectors, we are interested in estimation of their
covariance matrix ¥ = EXX ' e R%*?, Despite its long history, this classical problem still gets
considerable attention of statistical and machine learning communities. The reason is that in mod-
ern data mining tasks researchers often have to deal with high-dimensional observations. In such
scenarios they cannot rely on classical estimates, for instance, sample covariance

~ 1 n
Y= ;Xixj,

suffering from the curse of dimensionality. To overcome this issue, statisticians impose additional
assumptions on Y in order to exploit the data structure and reduce the total number of unknown
parameters. Some recent methodological and theoretical advances in covariance estimation are re-
lated with Kronecker product models, which are particularly useful for analysis of multiway or
tensor-valued data (Werner et al.l 2008 |Allen and Tibshirani, [2010; |Greenewald et al., [2013; |Sun
et al., 2018; |Guggenberger et al., [2023). For example, motivated by multiple input multiple output
(MIMO) wireless communications channels, Werner, Jansson, and Stoical (2008) assumed that >
can be represented as a Kronecker product of two smaller matrices ® € RP*P and ¥ € R?*9, such
that pq = d:
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It is known that (see, for instance, the proof of Theorem 1 in (Van Loan and Pitsianis, [1993))) 3 of
form (1) can be reshaped into a rank-one matrix using an isometric rearrangement (or permutation)
operator P : RP9P4 — RP**4” (see (Puchkin and Rakhuba, [2024, Definition 2.1)). Based on this
fact,[Werner, Jansson, and Stoica|suggested to estimate P (X) applying singular value decomposition

to P(f]) and showed that this estimate is asymptotically efficient in the Gaussian case. They called
this approach covariance matching. This idea was further developed by (Tsiligkaridis and Hero,
2013; Masak et al., [2022; Puchkin and Rakhubal 2024), who considered the sum of Kronecker
products model
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where ®1,¥4,..., Pk, Vi are symmetric positive semidefinite matrices, such that ®; € RP*P,
U, e R?*forall j € {1,..., K} and pg = d. They studied properties of the permuted regularized
least squares (PRLS) estimates. In (Tsiligkaridis and Hero, [2013}; |Puchkin and Rakhuba, [2024]), the
authors regularized the loss function using the nuclear norm

~ - - 12
$° = P~Y(R), where Re argmin {HR—P(E) + /\|R*}, 3)
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while Masak et al.|(2022)) considered a rank-penalized estimate
- o o 12
¥ =P *R), Re argmin |R— P(Z)H + A rank(R). 4)
ReRp?xq? ¥

Following the covariance matching approach of |Werner et al.| (2008)), both and reduce the
problem of covariance estimation to recovering of a low-rank matrix P(f]) from noisy observations.
We would like to note that the estimates 3° and ¥ admit explicit expressions based on the singular
value decomposition of P(fl) For this reason, they can be computed in polynomial time.

In the present paper, we consider a covariance model combining Kronecker product and tensor train
(TT) structure. To be more precise, we consider 3 of the form

J K
L= 2 U0V @Wi, (5)
j=1k=1

where U; € RP*P, V3, € R?9, and W), € R™" forany j € {1,...,J}and k € {1,..., K}.
The numbers p, g, and r are assumed to be such that pgr = d. Let us note that (3) naturally
extends (2) to the case of three-way data and coincides with it when J = 1 and U; = 1. The
rationale for selecting our model is that the TT decomposition (Oseledets,[2011) is recognized for its
computational efficiency compared to the canonical polyadic (CP) decomposition, while providing a
robust framework for representing higher-order tensors. Notice that the CANDECOMP/PARAFAC
model

K
S =) 0@V, @y, 6)
k=1
which has recently got considerable attention in the literature (see, for example, (Pouryazdian et al.,
2016; |Greenewald et al 2019; [Yu et al., [2025)) and the references therein), is a particular case of
(9). Following the covariance matching approach, we can reshape a matrix X of the form () into
a third-order tensor with low canonical rank. Indeed, given a matrix A € RP4"*P4" et us define
a rearrangement operator R : RPI™*P4" — RP*xa” xr? componentwise: for any 1 < a < p?,
1<b<¢?andl <c<r?

R(E)abe = B(fafpl-1)-qr+([b/a]—1)-r+[e/r],((a—1)%p)-qr+((b—1)%q)-+ (c—1)%r+15 (7
where y%z € {0, ..., 2 — 1} stands for the residual of y modulo 2. Then it is easy to check that
J K
R(X) = Z 2 vec(U;) ® vec(W;i) ® vec(Vy), (8)
j=1k=1

where, for any matrix A, vec(A) is a vector obtained by stacking the columns of A together. Un-
fortunately, a formal extension of the approach suggested by [Tsiligkaridis and Hero| (2013)) to the
CANDECOMP/PARAFAC model will not result in a practical algorithm. The main obstacle is that
approximation of the nuclear norm of a tensor is an NP-hard problem [Hillar and Lim| (2013). The
statistical-computational gap was discussed in several papers including (Barak and Moitral |2016;
Zhang and Xia, 2018; Han et al., |2022aj [Luo and Zhang| [2022} 2024). For this reason, when de-
veloping an algorithm for estimation of the covariance matrix (3), we must take into account both
its computational and sample complexities. In the present paper, we extend the approach of Zhang
and Xial (2018)) and suggest an iterative procedure similar to the higher-order orthogonal iteration
(HOOI) with the notable distinction of utilizing the Tucker-2 representation of the tensor. Our algo-
rithm successfully adapts to the structure (5)) but requires less time, than Tucker decomposition and
HOOL.
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While statisticians (see, for example, (Tsiligkaridis and Hero|, 2013} [Puchkin and Rakhubal 2024))
established rates of convergence of the PRLS estimate , the CANDECOMP/PARAFAC model @
and the more general tensor train model (3)) remain underexplored. In Section 2] (see (9) below), we
discuss that the tensor train model (3] can be represented in a way, which is very similar to the low
Tucker rank tensor model (see, for instance, (Han et al., 2022a, Definition 2.1)). The only differ-
ence is that (9) includes two factors with orthogonal columns while in Tucker decomposition one has
three such factors. For this reason, some bounds on the estimation accuracy of X of the form @ with
respect to the Frobenius norm follow from the results on tensor estimation Zhang and Xial (2018));
Han et al.| (2022b); |Kumar et al.[(2025)), scalar-on-tensor regression Khavari and Rabusseau| (202 1));
Wang et al.| (2025)), and tensor-on-tensor regression Raskutti et al.| (2019); Luo and Zhang| (2024)
with constraints on Tucker ranks. However, these bounds are dimension dependent, while many re-
cent results in covariance estimation establish dimension-free bounds (see, for instance, Koltchinskii
and Lounici|(2017);/Bunea and Xiao|(2015);/Abdalla and Zhivotovskiy|(2022)); Zhivotovskiy|(2024);
Puchkin and Rakhuba) (2024)); Puchkin et al.| (2025)). To our knowledge, the existing dimension-
free results on tensor estimation only cover the case of simple rank-one tensors (Vershynin, 2020;
Zhivotovskiyl [2024; |Al-Ghattas et al.| [2025;|Chen and Sanz-Alonso,2025)). In the present paper, we
derive high-probability dimension-free bounds on the accuracy of estimation of third-order tensors
with low TT-ranks and of the covariance matrices, which can be well approximated by (3).

Contribution. Our main contribution is a comprehensive non-asymptotic analysis of this estima-
tion procedure. We first derive a general deterministic perturbation bound for our TT-SVD-like
algorithm, which may be of independent interest. We then leverage this result to establish a high-
probability error bound for our covariance estimator. The final bound clearly decomposes the error
into a bias term, related to how well the true 3 can be approximated by our model, and a vari-
ance term. This variance term scales gracefully with the sample size n, the TT-ranks (J, K'), and
data-dependent effective dimensions that capture the intrinsic complexity of the covariance struc-
ture. To our knowledge, this is the first work to provide a computationally efficient and theoretically
guaranteed method for covariance estimation with this flexible TT-based structure.

Paper structure. The rest of the paper is organized as follows. In Section [2] we present our
algorithm and main theoretical guarantees. We provide some practical analysis in Section [3] and
conclude with a discussion in Sectiond] All proofs are deferred to the Appendix.

Notation. Given a matrix M € R% %92 we define its vectorization as
VeC(M)(a—l)-d2+b = Ma,b, a < dla b < d2'

For a tensor 7 of order k with dimensions dy, . . ., dj, we define a multiplication x; on mode ¢ by a
matrix M € R% *4i a5 follows:

di

(M Xy 7—)01(12...01'0/1,4,14..(1]9 = § Maia’iﬁlag...ai,lagaprl...aka
-
a;=1

where a;,j # 1, takes values in {1, ..., d;} and a; takes valuesin {1, ...,d’}.

It will be convenient to assume that random vectors X, Xy, ..., X, lie in a tensor product space
RPQRIQRY, so ¥ = EXX T belongs to the space of SDP Hermitian operators H, (RP @ RI@R")
from R? @ R? ®RY to itself. Then, we will define partial traces of X as follows. Given linear spaces
Ly, Ly and linear operators X : Ly — L1,Y : Ly — Lo, we define the partial trace Trz,, 7 = 1,2,
w.r.t. L; as follows:

Trr,( X®Y)=Tr(X) Y, Tr,,(X®Y)=X T (Y).
We extend Try, (+) to all operators from L ® Ly — L1 ® Lo by linearity. In our case, for operators

from H (R? @ R?QR"), we define Try (-) as a partial trace w.r.t. R?, Try(-) as a partial trace w.r.t.
R? and Tr3(+) as a partial trace w.r.t. R”. Partial traces will play in important role in our theoretical
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analysis. We define

| Try (X)] [ Try,2(3)]]
r (E> = ma’X{ ’ ) ’
1=l | Tr2(Z)]]
| Tra(X)] [ Tra,s(2)]
(X)) = max{ , : ,
1=l [Tes (3]
Trs (X Try 3(2 Tri 23(2
r3(2)=max{| 3] [Tris(X)] [ Tri,a 0 )}7
IZl " [Tre ()7 [ Try,2(2)]
where Tr; ;, ;. stands for the composition of the traces Tr;,,Tr;,,...,Tr; .  Quantities

r1(X), r2(X), r3(X) play the role of effective dimensions. From (Rastegin, 2012, display (23)),
we know that r1(X) < p,ra(X) < ¢q,r3(X) < r. We define them as maxima over ratios of some
partial traces to ensure that for any non-empty set S < {1, 2, 3} we have

[Tesl _ 11,
< L=

seS
2 2.2 . . .
For a tensor 7 € RP" X7 %™ we introduce the unfolding operator with respect to the first mode as

01 (T)ay = T fy/rol,(u=1)%2 +1-
Similarly, the unfolding operators with respect to the second and the third modes are define as
follows:
w2(T)asy = Ty + 10 fy/p21 - B3(T oy = Tiy/a?),(v-1)%e 41,2+
We denote the output of SVD algorithm with hard thresholding via rank J as SV D ;. We denote

matrices with orthonormal columns of size R4*" by Oy .. In what follows, [m] stands for the set of
integers from 1 to m.

2 MAIN RESULTS

Let us return to the estimation of the covariance matrix ¥ of the form (). As discussed in the
introduction, we can reshape X into a third-order tensor R () using the rearrangement operator (7):

J K
R(Z) = 2 2 VeC(Uj) ®VeC(ij) ®VeC(Vk) c ]RPZXqZXTZ’
J=1k=1

where vectors vec(U) are assumed to be linearly independent, as well as vectors vec(V}). Stacking
together vectors vec(U;), j = 1,...,J into a matrix U € RP* %7 vectors vec(Vi), k=1,...,. K
into a matrix V € R *X and matrices Wi, j=1,...,J,k=1,..., K into a three-dimensional
tensor W € R7*4° XK e can rewrite the above decomposition in the following compact form:

R(E):UX1VX3W. (9)

Note that this decomposition is not unique. In particular, multiplying U by an invertible matrix
Qu € R s from the right and WV by Qal from the first mode does not change the right-hand side
of @]) The same true for the factor V. Hence, one can assume that the columns of U and V are
orthonormal, i.e. U € Q2 ; and V € O,2 . In what follows, we always assume that this is the

case. For brevity, we set d; = p?, do = ¢%, and d3 = 2.

We extend the model (§) to the case when X can be approximated by decomposition () up to some
error. Then, it is naturally to consider the best (J, K')-TT-rank approximation of R(X), which we
denote by 7*. We denote the misspecification shift R(X) — 7* by £. To approximate 3, we aim to

recover its structured part 7 * from the noisy tensor Y = R(f]), which can be represented as
y _ 7—* + g = Rdlxdzxdg
)

where the error tensor & consists of the approximation part € and the noise part £ = R(3) — R().
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Since 7* has TT-ranks (J, K), it can be decomposed as 7* = U™ x; V* x3W*, where U* € Q2 ;,

V* € Q2 ¢ and W* € R/ xq*xK Thig decomposition suggests the following natural algorithm
for estimating 7* from ). Using truncated SVD, one estimates the image of U* which coincides
with Imm; (7*), then estimates the image of V* which coincides with Imm3(7*), and then project
Y onto the estimated spaces. However, this estimation is not straightforward, and one should apply
truncated SVD iteratively to reach reasonable accuracy. In Section [3] we conduct numerical ex-
periments illustrating that additional iterations indeed improve the estimation. We summarized the
resulting procedure as Algorithm [T} We refer to it as the Hartth algorithm where the abbreviation
HardTTh stands for Hard Tensor Train Thresholding.

Algorithm 1: HardTTh
Input: Tensor ) € R%*42%ds TT.ranks (J K ) number of steps T’
Qutput: TT-approximation T=0U X1 1% X3 W where U € QOd,,7, Ve Oy, K
W c RJX do X K’

Find SVD of m; ()) truncated on the first .JJ singular values: U, Y01, Uy = SVD(my (Y))
Find truncated SVD of mg(Ug x1 V): Vo, So.2, Vo = SVD g (ms (U] x1 V)
fort=1,...,Tdo

Set Uy, $r,1,U; = SVD s (my (V,T ) x3 V)
L Set Vi, 2y, Vi = SVDk (m3 (U, x1 D))

SetU =Up, V="Vpand W =0T x, VT x3 ).

Notice that computational complexity of Algorithm[I]is determined by the complexity of truncated
SVD applied to the matricizations. The randomized truncated SV D at the first step of HardTTh
takes O(Jd1dads) flops (Halko et al., 2011). Other steps require either O(J Kdsds + Jdidads) or
O(JKdydy + Kdydads) flops, so the overall complexity of the algorithm is

O((J + K)ledgdg +TJKdds + TJKdeg) = O((J + K)ledgdg)

If the misspecification is not too large, the number T of iterations can be taken logarithmical in the
ambient dimensions, see discussion below after Theorem

Given the output 7 of Algorithm EI applied to Y = R(EA]), define the estimator ¥ of X as 3 =
R~Y(T). To analyze rates of convergence for this estimator, we impose some assumption on the
distribution of X,;.

Assumption 2.1. There exists w > 0, such that the standardized random vector ¥~ /*X satisfies
the inequality

log E exp {(2*1/2X)TV(2*1/2X) - Tr(V)} <w?V[2 (10)
forall Ve R™9 such that |V |r < 1/w.

In (Puchkin et al., [2025)), the authors showed that Assumption@] holds for a large class of distribu-
tion. Indeed, Assumption 2.1]is a weaker version of the Hanson—Wright inequality. In particular, if
the Hanson—Wright inequality is fulfilled for ¥~/2X, then X satisfies Assumption Therefore,
Assumption [2.1{can be used when ¥~/2X is multivariate standard Gaussian, consists of i.i.d. sub-
Gaussian random variables, satisfies the logarithmic Sobolev inequality or the convex concentration
property (Adamczak, [2015)).

Under Assumption 2.1} we establish the following theorem. We give its proof in Appendix [D] The
proof sketch is given in Appendix
Theorem 2.2. Fix § € (0,1). Grant Assumption Suppose that singular values
oy(mi(R(X)), ok (m3(R(X)) satisfy

om0 (R(2)) > 25 (B)] + o)y L I s (6)0)

%) + JT3(%) + £3(5) + log(48/0)

7ima(R()) > 25lma(E)] + 7082l T
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Then, we have

S — 2 2 2 N
5 Sle <B + 960[5] \/ Jr2(2) + JKr(2) + Kr2(2) + log(48/0)

" + Qo+ 7r
with probability at least 1 — §, provided n = Rg, where
= [€lr + sup [UT VT x5 E|p
E@d17,],V€ do K
+ 4V [mi (V)T %3 &) + 4VK [ms (U*)T %1 E)],
and Rs and remainder terms <~>2, T are defined in Table
Variable Expression
e I‘2 r2 O,

iy m (V¥)T x5 E)] + 32w ]y / KT E) Hlos(15/0)
Bu | supyegasen lma (VT xg B)] + 32|y FLELHEEC) H K (0) Hog(as/s)

IVi<i
~ ra r2 r2 o 5
By s (U%)T 1 8)] + 32|55/ L) Hog(15)
Br | supyegass Ims(UT x1 E)] + 3205y BRI+ (3) Hog(1s)0)

IUl<1
X VEBy& VIpya
02 9 (mrkasy + st

~ o~ T
~ 2008v 3
T (VI +VEK)- (GJ(ml(R(E)));KZUS(R(E)))) X
8 (|m1 @) + 32w/ r%<2>+r%<E>r%<2>+log<6/6))

Rs Jri(3) + JKr3 () + Kri(X) + r3(X)r3(X) + log(48/6)

Table 1: List of ancillary variables

The upper bound on |32 — /g provided by the above theorem can be decomposed into the bias term
b due to model misspecification, the leading variance term

2(x Kri(X) + Kr3 (%) + log(4
{;=96w“2|\/‘jr1( )+J r2( )+ r3( )+ Og( 8/6)

n

b

and remainder terms {», 7. Note that after T = O(log(JKr,(X))) iterations, the variance part of
77 will be dominated by V.

Compared to the known results in the literature, Theorem [2.2) has several advantages. First, it pro-
vides dimension-free bounds based on the effective dimensions r;(X) < d; instead of bounds in-
volving ambient dimensions d1, do, d3 as in vast of literature on high-dimensional tensor estimation
(cf. (Zhang and Xial 2018} |Qin et al., [2025; |[Han et al., [2022b; [Tang et al.| 2025} |[Luo and Zhang,
2024)). Second, we point out the following. Set r(X) = Tr(X)/|X]|. It is known that, under some

assumptions, the sample covariance matrix ¥ satisfies concentration inequalities

S r(X) + log(1/6 +log1(5
8- 5p < pupyZELREAD) gy [P+ oe(1/E)

with probability at least 1 — ¢ (see (Zhivotovskiyl 2024} [Bunea and Xiaol, 2015, Hsu et al., [2012;
Puchkin et al., 2025))), where < hides some distribution-dependent constant. Hence, our effective
dimensions r;(2) naturally extends the effective dimension r(3) of sample covariance concen-
tration in the unstructured case. Third, while Puchkin and Rakhuba) (2024)) prove dimension-free
bounds for the model (2)) and the estimator ¥° = 73_1(}}) defined by (3), they do not analyze the
misspecification case and bound the variance term with probability at least 1 — § as follows:

maxr2 (Pr) + maer(CI)k) + log(1/9)

|£° = Slle < VEw Z I‘I’kll‘lfkl\/ ,

n
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yielding rough variance proxy factor Zszl [®4]| P instead of || = | Zszl D ® Uyl We
improve their analysis to establish bounds on the variance involving variance proxy factor |X| which
seems to be tight.

The main drawback of Theorem is the requirements o ;(m; (R(X))) = |Z]

and n 2 r3(X)rZ(3). Indeed, the theory of tensor estimation by SVD- based algorlthms developed
in (Zhang and Xia, 2018} |Tang et al.| 2025)) suggests that the minimax error can be achieved under
condition

05 (m(R(E)) 2 [S]/n'/? - (dads)** (11)

and there is strong evidence that the power 3/8 in the above inequality can not be taken smaller
for any polynomial-time algorithm (Barak and Moitra, 2016} [Hopkins et al., |2015; Zhang and Xia,
2018} [Luo and Zhang, 2024} Diakonikolas et al., 2023). However, minimax bounds under condi-
tions of the type were established for homoscedastic noise £, i.e. when entries of £ are i.i.d.
Roughly speaking, the estimation error of the singular subspaces corresponds to the impact of the
term m; (£) 'm; (€) in the decomposition

my (V) "my (V) = my (7%) Ty (7%) + 0 (7)) Ty (€) 4+ mp (E) Ty (T%) 4+ my (€) Tmy (€)

to the perturbation of eigenspace of my (7*) Tm; (7*), see (Cai and Zhang, 2018). For homoscedas-
tic noise, we have Em; (€) 'm;(£) = aly, for some scalar a, so the error of singular subspaces

estimation is determined by deviations of m; (é ) 'my (5 ) from its mean, which can be controlled un-
der conditions like (TT). This is clearly not the case of our setup, so Algorithm [I|requires debiasing
before applying SVD, which needs extra assumptions on the distribution of X; and is left for future
work.

Comparing Theorem with results of |[Zhang and Xia (2018]), one can note that, in their paper,

upper bounds on the tensor estimation error do not involve second-order terms like {»>5. The reason

is that their work imposes an assumption max{dy, da,ds} < C min{d;,ds,d3} for some absolute

constant C. Translated to our setup, it means that, assuming maxr;(X) < C'minr;(X), the term
1 1

<~>2 is dominated by the leading variance term v, which is exactly the case.

Finally, we briefly comment on the choice of J and K. If ¥ can be represented by (3)) for some
J, K, such that

7

os(m (R(S)) > Cuw z|\/ )+ ) + log(6/9)

J J 2(2) + log(48/6
or(m3(R(X)) = Cw2|\/ r3(¥) + Jr3(¥) + r5(%) + log(48/9)
n
for some large enough absolute constant C, and for n one has bounds

1072 < ] < 3[%]/2,
- 1
[Trs(X) — Trg(2)| < §|\Tr5(2)|| for all non-empty S < [3] (12)

with probability at least 1 — 6/6, then one can define estimators f K of J, K as

j — max< J' | o (ml( ( C/UJ|E|\/ + r2 ) (Z) + 10g(6/5 ’ (13)

A~

S Jr1 () + Jr2( )+r3(f]) + log(48/9)
n

K =max{ K' | o5 (m3(R(S)) = )

where C’ is some other absolute constant and w is assumed to be known. For example, one can

compute w explicitly when X; are linear transform of Gaussian random variables. For such J, we
will have

B3 (5) + BT + log(6/8) _

05(m(R(%))) > 768w|2|\/
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with probability 1 — 6/6 (see Lemma in Appendix), implying J < J. IfCis significantly
larger than C”, then the singular number o ; (my (R(X))) = o (m; (R(Z ) — Imy (€)] satisfies the
inequality of the definition (I3)) with probability at least 1 — §/6, so J < J, and we conclude J = J
with probability at least 1 — 6/2. Analogously, one can show that K = K for suitable choice of
C, C" with probability at least 1 — §/2, yielding J = J and K = K with probability at least 1 — 4.
However, this holds assuming that is fulfilled, so concentration bounds should be established
for the norms of partial traces, which we left for future research.

3 EXPERIMENTS

In the present section, we illustrate that additional iterations 7" of HardTTh indeed improve the
estimation of the covariance matrix X provided singular numbers of matricizations satisfy conditions
of Theorem [2.2]up to some constant. We also compare HardTTh with several other algorithms.

To illustrate our theory, we construct a sampling model with the covariance matrix ¥ satisfying (3))
as follows. Set J =7, K = 9andp = ¢ = r = 10. Let 9%, i € [n],j € [J],k € [K] ben - JK
tensors of shape (p,q,r) consisting of i.i.d. standard Gaussian entries. Let A; € RP*P By, €
R?*? () € R™" be random symmetric matrices, which diagonal and upper diagonal entries are

i.i.d. Gaussian also. Then, random vectors X, ..., X,, are defined as vectorized tensors
J K
Z 2 Aj X1 Bjk X9 Ck X3 (‘:Uk € Rpqur’
j=1k=1

conditioned on A;, Bjj, C). The covariance matrix X of X; satisfies (see [Puchkin and Rakhuba
(2024))

J K
S=) Y A®B,QC.
j=1k=1

We propose several algorithms for comparative analysis with HardTTh. Specifically, we consider
a version of Algorithm [I] with 7" = 0 additional steps, to which we refer as TT- HOSVD. This

algorlthm computes an approximate Tucker-2 decomp0s1t10n of a noisy tensor R( ) &~ ﬁo X1

VO X3 W and output the estimatior UO X1 VO X3 W of R(X). We use this comparison to justify
whether additional iterations are indeed necessary.

Furthermore, we modify the algorithm proposed in |Tsiligkaridis and Hero|(2013)) for use in our con-
text. Instead of a single parameter A to control soft-thresholding, two distinct parameters are passed
for each of the first and third matricizations of R(f)) Using the first one, soft-thresholding upon first
matricization is applied, then tensor is reshaped and soft- thresholding with another parameter upon
third matricization is used. Then, we reshape the obtained tensor X' back into a matrix R~ Yx ) of
size pgr x pqr. The pseudocode is given in Algorithm [2]in Appendix [G.T]

Finally, we compare HardTTh with the approximate Tucker decomposition with the Tucker ranks
(J, JK, K) using HOOI (Higher Order Orthogonal Iterations) algorithm of [Zhang and Xia (2018)).
If no additional iterations in this algorithm were applied, we refer to it as “Tucker” in our tables.
Otherwise, we refer to it as “Tucker+HOOI”.

We also include the sample covariance estimator into our comparative analysis.

We conduct several experiments varying the number of samples n. For n = 500, the result is given
in Table[2] For n = 2000, the result is given in Table[3] Other values of n are studied in Appendix|G|
For each estimator S of ¥, we compute the relative error | S — X||r/| S| in the Frobenius norm. For
each n, we tune parameters A1, Ay of the PRLS algorithm over a log-scale grid. We fix the number
of iterations 7" of HardTTh to 10.

Note that while the sample size increases by 4, the relative error of HardTTh decreases by 3,
contradicting the 1/4/n dependence between estimation error and the sample size. The reason is
that for n = 500 neither TT-HOSVD nor HardTTh is able to reconstruct bases of Imm; (R(X))
and Immz(R(X)), so the leading error is determined by the lost components of these bases.
Hence, one indeed needs some condition on the least singular values of matricizations of R(X).
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Table 2: Performance comparison of tensor decomposition algorithms for n = 500.
Relative errors were averaged over 32 repeats of the experiment, empirical standard
deviation is given after + sign. The best results are boldfaced.

Metri Algorithm
etric

Sample Mean TT-HOSVD HardTTh
Relative Error 1.22 +0.02 0.269 +£ 0.008 0.238 +0.013
Time (seconds) 0.007 £+ 0.003 1.9+£0.8 2.7+0.8
Metric Algorithm

Tucker Tucker+HOOI PRLS

Relative Error  0.252 + 0.007 0.240 + 0.013 0.238 + 0.017
Time (seconds) 41.3+ 1.7 81.6 £3.5 0.7+0.3

Table 3: Performance comparison of tensor decomposition algorithms for n = 2000.
Relative errors were averaged over 16 repeats of the experiment, empirical standard
deviation is given after + sign. The best results are boldfaced.

. Algorithm

Metric
Sample Mean =~ TT-HOSVD HardTTh
Relative Error  0.611 £ 0.009 0.154 +£ 0.006 0.082 + 0.005
Time (seconds) 0.010 + 0.007 1.7+ 0.6 41+1.1
Metric Algorithm
Tucker Tucker+HOOI PRLS

Relative Error  0.150 + 0.005 0.082 + 0.005 0.216 + 0.012
Time (seconds) 39.9+5.2 74.2 + 8.1 0.6 +0.3

When n = 2000, HardTTh is able to approximate these bases, yielding a much better perfor-
mance, while TT-HOSVD cannot approximate them. It is instructive to look at sin O-distance

between Im (707Im ﬁT and ImU*. If n = 500, then both Im ﬁmlm U’T have sin ©-distance
to ImU* around 1. But for n = 2000, while sin ©(Im Uy, Im U*) is still around 1, we have
sin ©(Im Ur, Im U*) = 0.33 + 0.08. Therefore, additional iterations of HardTTh indeed help.

The fact that noise in singular numbers is larger than the estimation error is illustrated by the fact that
PRLS performs worse than TT-HOSVD. Indeed, to remove noise in singular numbers, PRLS applies
soft-thresholding with A1, A2 being around the noise level in singular numbers of matricizations.
Then, soft-thresholded SVD has each singular number decreased by either A /2 or Ay/2. This yields
the estimation error around the maximum of A; and A9, which dramatically affects the algorithm
performance. This highlights the difference between low-rank tensor estimation problem and low-
rank matrix estimation problem, since for the latter there is no significant difference between soft-
thresholding and hard-thresholding estimation.

4 CONCLUSION

In the present paper, we suggest a novel computationally efficient algorithm for estimation of high-
dimensional covariance matrix. We provide a comprehensive theoretical analysis of this algorithm,
establishing sufficient conditions for its application and rigorous guarantees that take into account
both bias and variance of the proposed estimator. Our analysis is non-asymptotic and relies on the
intrinsic dimensions of the covariance matrix associated to our algorithm, without involving the
ambient dimension. We illustrate our theory with numerical experiments.
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5 REPRODUCIBILITY STATEMENT

We provide the code in Supplementary Material. We give a proof sketch of Theorem [2.2]in Ap-
pendix [C] The proof of Theorem 2.2]is given in Appendix D}
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A USAGE OF LLM

We used DeepSeek to polish and aid writing. All mathematical derivations and numerical experi-
ments were performed solely by the authors.

B ADDITIONAL NOTATIONS AND BASIC TOOLS

For proofs, we need some extra notation. First, we adapt the Einstein notation for tensors, omitting
the summation symbol and assuming that the summation holds across repeated indices, e.g. for the
matrix product

(AB)ab = Z Aachb7

we will write as

(AB)ab = Aachb-

Second, we will widely use the following identities for a tensor 7 € R4 *92*ds and a matrix X of
suitable shape

m (X x37T) =m(T)(Ig, ® X 1),
ml(X X1 T) =X -m1(T),

(14)
m3(X x1 7)) =m3(T)(X ' ®1a,),

m3(X x3T) =X -m3(T).

While the second and the fourth identities are straightforward, the first and the last one should be

verified. Let us prove the first identity for X € R% %% Choosing indices a € [d1],b € [da], ¢ € [d'],
we obtain

(ml (X X3 T))a,(b—1)~d3+c = (X X3 T)abc = ch”];bc’
=y (T, 1)ds+e (Tdy @ X ) (yr—1)dyer, (b—1)ds 4
The third idenitty of (T4)) can be checked analogously.

For a matrix U € Qy., we denote the projector UU T on Im U by IIy;.

C PROOF SKETCH FOR THEOREM [2.2]

In this section, we provide the sketch of the proof of Theorem The proof develops the ideas
of Zhang and Xial (2018)) and Puchkin and Rakhuba (2024). First, we consider the problem of
estimating a tensor 7* = U* x; V* x3 W* from a noisy observations ) = T* + £, without
any assumptions on the error term £. Let 7 be the estimator obtained by Algorithm |1| on the
input ). The noise £ influence the estimation of 7 in several ways. First, one need to impose

some assumptions depending on the norms of m; (£) and mg(ﬁo x1 £) on the singular numbers of
matricizations m; (7*), m3(7*) to be able to recover left singular subspaces of these matricizations

up to a sin O-error at most 1/4. Second, we show by induction on ¢ = 1,...,T that Im (7,5, Im XA/t
improves the estimation of singular subspaces and establish the dependence of the estimation error

on € at step T'. Finally, we decompose the error |7 — 7| into terms depending on the singular
subspaces estimation and the error of estimating *. Combining all types of errors, we obtain the
following theorem. Its proof if postponed to Section [E]

Theorem C.1. Given model (16), suppose that singular values o j(my (T*)), ok (mg(T*)) satisfy
oy(m(7T%)) = 24|my ()] and ok (m3(T*)) =24 sup [m3(E)(URIa,)|.  (15)

13
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Put
ay = [m ((V¥)" x3 &), Bu= sup [m(V' x58)|,

do x K
Vi<t
ay = ms((U*)T x1 )], Bv = sup |mg(UT x1 ).

UeR%1*/
[U]<1

Then, we have

1T = T*|r < sup 1UT x, VT x3Elp + 4VEKay + 4V Jay + o + 1,

e@dl,J-,VE@dz,K

where

e [ VEBvau VJBuay
G2 =8 <oJ<m1<T*>> * oK<m3<T*>>> |

3T 4 VE) - ( 646v Bu I (&)

T
UJ(ml(T*))UK(m3(T*))>

Then, we decompose the error £ into the bias part £ and the varaince part E. Using the trian-
gle inequality, we bound each error term appearing in Theorem [C.1] into the bias and variance
parts, and bound the variance parts with high probability using the variational PAC—Bayes approach
(see (Catoni and Giulini, 2017} [Zhivotovskiyl |2024; |Abdalla and Zhivotovskiyl 2022} |Puchkin and
Rakhuba, 2024) for other applications of this technique).

D PROOF OF THEOREM

Proof of Theorem[2.2] For clarity, we divide the proof into several steps. For brevity, we denote
R(m;(+)), ¢ = 1,3, by R;(-).

Step 1. Sensititivty analysis of Algorlthm [} First, we establish deterministic bounds on the
reconstruction of the tensor 7 * from a noisy observation ) by Algorithm|[I} denoting

Y=T*+E&, (16)

where T* = U* x1 V* x3 W* is the best (J K)-TT-rank approximation of R(X), U* € Qg J,

V* € Qg, 1, W* € R7¥42XK and ) = R( ). Let T be the output of Algor1thmlw1th input ).
Then, Theorem|[C.1]is apphcable But we need first to check its conditions.

Step 2. Checking conditions of Theorem[C.1I} We deduce Theorem [2.2]from Theorem|[C.1] Let us
start with conditions of Theorem [C.I] and bound right-hand sides of inequalities (I3]) from above.
Consider the lower bound on ¢ ;(m; (7*)). By the triangle inequality, we have

[m1 (E)]] < [m1(E)] + ma (&)
The second term of the above can be upper bounded using the following lemma.

Lemma D.1. Fix 6 € (0,1). Suppose that n > r3(2) + r3(X)r3(X) + log(4/5). Then, under
Assumption we have

|my (€) 32w|2\/ ) + 13(2)r3(2) + log(1/9)

n

with probability at least 1 — 0.

Define the event

81—{|m1< | < sy TE = )n(z)“"g<6/5)}. a7

14
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Since n > Rs = r?(X) + r3(X)r3(X) + log(24/6), due to LemmalD.1| we have Pr(€;) > 1 —4§/6.
Hence, if

00 (7)) = 2y B+ T o) TEEL ) ¢ (0]

n

the first inequality of (T3) is fulfilled on the event €. Since o 7(m (7*)) = 07(R1(X)) — |m1(E)],
on &1, to fulfill the first inequality of (T3)), it is enough to ensure that
- r2(3) + r2(2)r3(X) + log(6/6
1 (Ra(5) > 25l B)] + Toswlc]y| L) FBEIE) + og6/0)

n

as guaranteed by the conditions of the theorem.

To satisfy the second inequality of (I3)), we use the triangle inequality again and obtain

sup [ma(E)(U®Is,)| < sup  [ms@)UIa)|+ sup  [mg(E)(U @ L)
UeR1 > UeR1 %7 UeR%1 >/
IUl<1 IUl<1 [Ul<1
We bound the second term, using the following lemma. Its proof is given in Section|[D.2]
Lemma D.2. Fixd € (0,1). Suppose that n > Jr3 () + Jr3(X) + r3(2) + log(8/3). Then, with
probability at least 1 — §, we have

sup |ms(E)(U @ I, )| <32w||z|wrl<2>+Jr2<2>+r3<2>+1og<8/6>.

UeRr% xJ n
[U]<1

Analogously, ifn > r3(X) + Kr3(3) + Kr3(X) + log(8/6), then, with probability at least 1 — 4,
it holds that

2
()L, © V)] < 3205l 2

VeRds*xK |V |<1

¥) + Kr3(X) + Kr3 (%) + log(8/4)

Define the event

) + Jr2 (D) + Jri(X) + log(48/6
E2={ s (@)U L) < 2wy )+ T ¢ g/
eR1xJ n
IUl<1

It has probability Pr(€;) > 1 — 6/6, since n > R; satisfies conditions of Lemma [D.2] with §/6 in
place of 4. Due to conditions of the theorem, we have

i (Ra(5) = 25J(E)] + Tosw BT £ Ie(E) - hop(48/D)

n

so conditions of Theorem [C.I]is satisfied on £1 N E-.

Step 3. Bounding o/, ay, By, By. Then, we bound ay;, ay, By, By. We start by the former two
quantities. By the triangle inequality, we have

0 < I (V)T % B+ I (V)T xa €],
av < Ims((U)T %1 €] + Ims ()T x5 €]l

To bound the second terms of the right-hand sides of the above, we use the following lemma. Its
proof is given in Section[D.3]

Lemma D.3. Fix é € (0,1). Suppose that n > r3(X) + Kr3(X) + log(8/5). Then, with probability
at least 1 — 0, we have

[mi (V*)T %3 &) < 32w 2|\/ +Krz ) + log(8/0)

Analogously, if n > r3(X) + Jr3(X) + log(8/6), then, with probabllity at least 1 — 0, we have

X)) + log(8/§).

2(2) + Jrd

Ims ((U*) " x5 €)] < 32w|2||\/r3(

15



Under review as a conference paper at ICLR 2026

Define events

. 22 2
£ - {m((v*)T 2 8] 5 )y FLELH KeED) “‘)g“‘/‘”}

&y = {mg((U*)T x3&| < w|2|\/r3(2) + Jr3(X) + log(6/6) } .

n

Since n > R satisfies the conditions of Lemmawith 0/6 in place of d, the lemma and the union
bound imply Pr(€3 n €4) = 1 — §/3. On the event £5 N €4, we have

ay <ay and ay < ay,
where &y, &y are defined in Table

Next, we bound S8y, By. Applying the triangle inequality, we get

By < sup Hml(VT x3E)| + sup Hml(VT X3 5)”,

VeRdQXK Ve]RdQXK
Vi<t IVi<i
Bv < sup [my(E)(UIa,)|+ sup [ms(E)(URIa,)].
UeRdli UERdli
IUl<1 [U]<1

Note that on the event €5, we have By < EV, where BV is defined in Tablelﬂ To bound By, we use
Lemma [D.2]again. Define an event

& 2(2) + Kr3(2) + Kr3(X) + log(48/0
Iml(VTX35)<32w|2|\/r1( )+ KeiE) + Kef(5) + loglis/)

Es = sup

VeRdzxK
Vi<t

Since n > Ry satisfies the conditions of the lemma with §/6 in place of 4, we have Pr(€5) = 1—4/6,
and on this event 8y < By.

Step 4. Bounding sup;rc, , veo,, , [U x1 V" x3&|r. Using the triangle inequality again, we
get

sup HU—r x1 V7T x3E|F < sup HU—r x1 V7T x3 E|r
Ue@dl,(],Ve@)d%K UE@dl,J;VEQdQ,K
+ sup HUT x1 VT ><3<‘,A'HF.

UE@dl,J,VE(O)dQ,K

We bound the second term of the right-hand side using the following lemma. Its proof is given in

Section

Lemma D.4. Fix § € (0,1). Suppose that n > Jr3(X) + JKr3(2) + Kr3(X) + log(8/5). Then,
with probability at least 1 — 0, we have

& 2(2) + JKr2(2) + Kr2(Z) +1 B
[UT x, VT X35|F<32W|Z\/Jr1( ) + JETy( ); r3(X) + log(8/6)

sup
UG@dl YJ.,VE@dQJ(

Define the event

862{ sup HUT><1 ‘/T ><35HF
UE@dl,Jave®d2,K

< 32|E\/Jr%(2) + JKT5(2) ZKri(E) + log(48/0) } |

Since n > Ry satisfies the conditions of Lemma [D.4 with §/6 in place of 4, it implies Pr(Es) >
1 — 6/6.

16
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Step 5. Establishing bias and variance leading terms. The event £ = ﬂ?zl & has probability
at least 1 — § due to the union bound. On the event £, conditions of Theorem [C.1] are satisfied, so
we have

ay < dy, ay <ady, fuv<pPu, PBv <Py

and

R 2 2 2
U7 0 VT sl < 32w|2|\/Jr1(Z) + JKr3(X) + Kr3(3) + log(48/9)

n

sup
UE@dl JJ ;V€©d2,K

The conclusion of Theorem [C.T]yields

1T = T*p < sup [UT x1 VT x3&|p
e@dl,J,Ve(D)dQ,K
4wz \/ Jri(%) + JKT3(S) ; KT3(%) + log(6/6)
+4\/§&U +4\/j&U + O+

Substituting expressions for &7, &y from Table (1} we obtain

1T —T*|r < sup 1UT x1 VT x5 E|p + VK m (V¥)T x5 &)|
Ue@dly‘],VE@dZ,K

Jr3(X) + JKT3(Z) + Kri(X) + log(48/6)

+ 4V T |mg (U*)T x4 E|| + 32w|2|\/

4 3Tz \/r%@) + Kr3 <nz> + log(48/0)

2 2
+32\/Ew|2|\/r3(2) + Jrz(f) +log(48/0) s 4 7.

n

Note that the fifth and sixth terms of the right-hand side are dominated by the fourth term. Using
IZE=Sle = |7 =T*+T* =R ©)le < |7 = T*|e + [E]r,
we derive

~ _ 2 2 2
S vlp <B4 96w2|\/Jr1(2) + JK13(%) ;Kr?)(Z) + log(48/9)

+ Qo+ (18)

on 8().

Step 6. Bounding the remainder terms. Since <{o,rr depend on 1/0;(m;(7%*))
and 1/0k(m3(7*)), we will bound singular numbers o ;(m;(7*)), 0k (m3(7*)) below using
07(R1(%)),0x(R3(X)). By the conditions of the theorem, we have o;(R1 (X)) = 25|m( ()]
and o (R3(X)) = |m3(E)], so, by the Weyl inequality, we deduce

24

0@ (T%) 2 05 (R1(Z)) = [m(E)] = 5z - 0 (Ru(X)),
o (m3(T™)) = 0k (R3(%)) — [ms(&)] = % ok (Ra(X)).

On the event &y, it implies
Gy = 48 VK Byay VI Buay
? or(m(T*) " ox(ms(T*))
50. VK By VI Bydy =3
a1 (RU(T*) " ox(Rs(D)) >

N
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and

B 648v B ’
T =30V + VK. (aJ(m1<T*>>aK<m3<T*>>>

~ ~ T
2008v Bu
<+ VE) (aJ<R1<z>>aK<R3(z>>> el

Using definition of the event £1, £y = €1, and the trinagle inequality |m;(&)| < [m1(E)] +
|m1(£)], we obtain

rr < T,

where 77 is defined in Table Substituting the above bounds on <, 77 into (I8) finishes the
proof. O

D.1 PROOF OF LEMMA D]
Proof. Step 1. Reduction to the PAC-bayes inequality. The analysis will be based the following
lemma, which is known as the PAC-Bayes inequality (see, e.g.,/Catoni and Giulini| (2017))).

Lemma D.5. Let X, X1,...,X,, be i.i.d. random elements on a measurable space X. Let © be a
parameter space equipped with a measure (1 (which is also referred to as prior). Let f : X x© — R.
Then, with probability at least 1 — §, it holds that

1(X.0) | KL(p, pt) + log(1/6)
n

1 n
EONPE 2:21 f(XZ‘, 0) < EgNP logExe
simultaneously for all p < p.

Let us rewrite |m; (SA )| as the supremum of a certain empirical process. We have
Imy (E)] = sup x"m (€)y = sup m (&), xy "

xeS91—1 yeSdads—1 xeS¥1 1 yeSdads—1

= sup <§) — E,Rl_l(xyT»

xeSd1~1 yeSdadz—1

1 & _ _
= sup XX R (xy 1)) = ECGGXT Ry (xby ')

xeS41—1 yeSdadz—1 n i1

1 n
= sup — Z X R (xy X — EX] R (xy T)X.

xeSd1—1 yeSdadz—1 n )

Define the following functions:
filx,y) = MXI R (xy X — EX Ry (xy X},
fx(xy) = MXTR ' (xy )X —EXTR; ' (xy )X},
where the positive factor A to be chosen later. We will apply Lemma [D.5]to the empirical process
A 1 &
Am1 (€)| = sup - filx,y
Im1(€)] s ; (x,y)

with R4 ® R%2% as the parameter space and the centered Gaussian distribution A (0, 071, ) ®
N(0, a%[dzdg) as the prior u, where o1, oo will be defined in the sequel. Consider random vectors
¢, with mutual distribution px y such that E¢n" = xy . Since fi(x,y), fx(x,y) are linear in

xy',wehave E,__ fi(&,n) = fi(x,y),so Lemmayields

1 n
sup  — Y fi(x,y) < sup {pr,y log Ex exp fx (&, m)
xeshi—t T iT xe§91—1

yesdzdz—1 yesdzds—1

+

KL(px,y, 1) +log(1/6) } (19)

n
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with probability at least 1 — §. Then, we construct py , such that the right-hand side of the above
inequality can be controlled efficiently.

Step 2. Constructing p, . Suppose for a while that p, y-almost surely we have
AIRYPRT (€N ) S e < 1w, (20)
Then, Assumption [2.T]implies
E,., logEx exp fx(&,m) =E,,, logEx exp {\ (X R (xy )X — EX R (xy")X)}
< N, SR (€0 EVA R 1)

So, to control the above and keep the left-hand side of (20) bounded, we do the following. Define
independent random vectors G1 ~ N(0,021,,), G2 ~ N(0,0514,4,), and consider a function

9(x,y') = [EVARIN (K (v) 1)V e (22)
By the triangle inequality, we have
g(x+ G,y + G2) < g(x,y) + g(x,G2) + 9(G1,y) + 9(G1,G2),
)
g (x + G,y + G2) <4g%(x,¥) + 49°(x, Ga) + 49° (G1,y) + 49°(G1, Ga).

Then, the distribution p , of the random vector (&, n7) is equal to the distribution of (x+G1,y+G2)
subject to the condition

(G1,G2) € T = {g%(a,b) < 4Eg*(a,b) | (a,b) € ({x,G1} x {y, G2})\{(x.¥)}} .
Note that by the union bound and the Markov inequality, we have

Pr((G1,G2) ¢ Y) < > Pr (¢%(a,b) > 4E¢*(a, b))
(a,0)e({x,G1} x{y,G2H\{(x.¥)}
1 3
< - ==z,
> 1= (23)

(a,b)e({x,G1}x{y,G2H\{(x,¥)}

Let us check, that pryyénT = xy . Since the Gaussian distribution is centrally symmetric and the
function g does not change its value when multiplying any of its argument by —1, we have

d
€n) = (x+e(§—x)y+e2(n—y)), 24)
where 1, €5 are i.i.d. Rademacher ramdom variables independent of (£, 7). Then, we obtain
E&n' =xy' +EaiE(€ —x)y " +EeoBx(n —y)" +EeiEE(E —x)(n—y) " =xy'.

Hence, to satisfy the assumption and use (21), it is enough to bound expectations Eg?(a, b) for
(CL, b) € {Xv Gl} X {Yv GQ}

Step 3. Bounding expectations Eg?(-, ). Let us start with g?(x,y). From the definition (22)), we
have

Pxy) = [SVPR (xy B2 = Te(BV2Ry (xy IR, T (xy 1) BY?)
= Te(SRy (xy IR T(xy ")) (25)
Since Tr(AB) < | A|lr||B||r for any matrices A, B, we have
g*(x,y) < [ERT (xy DIl ERT T (xy ) < |2 =y TE = 2,
where we used the fact that R} *(-) does not change the Frobenius norm and that ||xy ' |r =
Ixllyl = 1.

It will be convenient for future purposes to rewrite (23) in a slightly different form. We introduce
the following tensors, that are reshapings of the matrix ¥ and vectors x,y, G1, Ga:

Sprarripagars = L(p1—1)gr+(q1—1)r+r1,(p2—1)ar+(g2—1)r+r2-
1 2
g}gz;)nfs = (Gl)(Pz—l)‘P"rpa’ gézzlsrz?”s = (G2)(Q2—1)117‘2+(<13—1)7‘2+(7‘2—1)"‘+"“37

Xpops = X(pa—1)p+p3s  Vazqsrars = Y(g2—1)qr2+(gs—1)r2+(ra—1)r+rz-

19
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Following the Einstein notation, we obtain
g(x.y) = TSRy (Gry )IRT (xy 1))
= Y(p1—1)gr+(r1—1)r+r1,(p2a—1)gr+(gz—1)r+rs
X (XY) (pa—1)p-+pa, a2 -1)ar+ (as =17+ (ra—1)r-+75
X B(pg—1)gr+(gs—1)r+7a,(pa—1)gr+(@a—1)r+rs
x (Xy)&l—1)p+p4,(q1—1)qT2+(q4—1)T2+(T1—1)T+T4'
= Spraur1p2azra¥paps Y a2asrars Opaqsrapaqara ¥p1pa Y a1 qarira (26)

Note that the above holds for any x € R%, y € R%293,
Then, we bound Eg?(G1,y). Following (26)), we get

2 (1)
Eg (le ) ESP1q1T1PZQ2T2gpgpgyt]2an27‘38pxqarxp4Q4T4gp1p4ythlI4T1?”4
_ 2
=01 61)2101 510317481)1qlT1p2£127”2nyz(Ia?‘QTdSPBZIdT3P4Q47”4YCI1CI4T17“4

- UISP1Q171111<I272yflzqa7273SPSQ373P3Q47‘4YQ1Q47174
where ¢ is the Kronecker delta symbol. The above can be rewritten as the following trace:

Eg*(G1,y) = of - Tr(Tr (B)Y Tr (2)Y "),
where entries of the matrix Y are defined by Y4, —1)r4rs,(g3—1)r+rs = Yaagsrars- Lhen, we have

Eg*(G1,y) < of|Tri(D)Y [p - [Tra(B)Y e < oF [ Tre (D)2 - [V [ = of [ Tri (D).

Next, we bound Eg?(x, G3). Using (26)), we derive

2 - (2) (2)
Eg (X7 GQ) - ES])1(]17‘1[)2Q27"2xI)2])3gq2q37'27-38p3Q37’3p4Q4T4XIJ][)4 gq1q47'17-4

Ugéqz 419451 0r2r1 Orars Spr i1 p2gzrs Xpaps Spsasrapagara Xpipa
03 - Tr(Tra3(2) X Tra 3(2)X ),
where entries of the matrix X are defined by X,,, ,, = xp,,,. Then, we have
Eg*(x, G2) < 03| Tr2,3(2) X[ - [Tra3(2)X ' |p < 03] Troa (D) - [ X[ = 03 - | Tr25(2)]*.
Finally, we bound Eg?(G1, G2). Using (26), we get
Eg*(G1,G2)

(1) 1) (2
Espl q17T1pP2q272 gp2p3 qu qarars 8103%7”31)4%7“4 gp1p4 gq1 qarira

_ 22
=03 025171172 5173174 6111112 61139?45T17‘26T3T4SP1Q1T1P2QQT28PSQST3P4Q4T4
olo2  Tr3(%).

Hence, we have py ,-almost surely:

9(&m) < 2\/HEH2 + 07 Tra ()2 + 03| Tr2,3(8)[? + 003 Tr? (%)

Set 07 = r;%(%) and 03 = r;%(X)r;%(X). By the definition of r;(X), for this choice of oy, o,
the function g(&, n) is bounded by 4[| almost surely. Thus, using (20) and (1)), we deduce that
for any A satisfying

A< (4B
we have
E,, , logEx exp fx(§,m) < A2w? ~pr’y92(§, n) < 160%w? |2, 27

Due to (T9), it remains to bound the Kullback-Leibler divergence KL (px,y, 1t)-
Step 4. Bounding the Kullback-Leibler divergence. The density of py y is given by
_ (QW)_(lerdeS)/QdelU;dzd?’ 1 2 1 2
Pxy (T, y) = (G Ga ) exp IIx x| 507 ly =yl
x 1{(x —x,y —y) e T}

20
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The density of the prior 4 is given by

(27T)—(d1+d2d3)/2 1 1

ol v L it U
01 09 oy o5

Then, the KL-divergence can be computed as follows:

M($>y) =

px,y(ﬂc,y)
KL(px,y» =J v (2, y) log =222 daed
(Px,ys 1) i y(z,y)log (@.0) Y
1
= log

PI‘((Gl, GQ) € T)

1 2 2 1 2 2
+ ey (@) 4 = (| — x| = [2]?) = == (ly — y|? — dzdy.
[ st { = ol =12 = 1al?) = o ly = yI? = Iol?) | dady
Due to (23), the first term is bounded by log 4. Note that the second term is equal to:

Ix|? lyl*> 2
— —(E .
202 203 + 20§< pxy )

2
+ ﬁ@px,y&@ -

Using (24), we get
E,. & =x+EeiE(€ —x) = x,

E,,n =y +EE(n—y) =y,
so we have

KL(pxy, t) <logd + —5F + =—=
( i ) 8 20% 20%

Step 5. Final bound. Substituting the above bound and bound (27) into {6)) and using

o 1 1 ¢
(€)= sup Ei;fi(&y),

yesdzds—1

=logd +ri(X)/2 + r3(X)ri(¥)/2.

we get
1(2)/2 + r3(2)r3()/2 + log(4/9)
An
for any positive A < (4w|3|)~! with probability at least 1 — 4. Since n > r3(X) + r3(2)ri(X) +
log(4/0), we choose

lm1 (8)] < 16022 + =

A= (4w|§])_1\/r%(2>/2 +r3(2)r3(%)/2 + log(4/0)

)

and get n
A~ r2 I'2 I‘,2 o
Imy (&) < 8w|2\/ 1(2)/2 4+ 73(%) ;(E)/2 +log(4/5)
< 32w|2\/r%(2) + r%(E)rf(Z) + log(1/6) .

D.2 PROOF OF LEMMA [D.2]

Proof. We deduce Lemma[D.2]from the following theorem. Its proof is posteponed to Section[F]
Theorem D.6. Let S1,Ss,S3 be sets of linear operators

Si < {A;: Ly > RY, suchthat |A;| < 1},i=1,3,

So = {A€e Ly @ R™ ® Lg such that | A|p < 1} .
For brevity, put Ly = L1 ® Ls. Denote dim L; as l;. Then, we have

A 3 min{r?(2) - 1, log S|} +1 §
(AT x, 4] X35,A2><27w||2|\/2’1mm{r’( J lilos i) + log(®/0)

n

sup
A1€S8y,
As€Sy,A3€S3

with probability at least 1 — 6, provided n = Zf’zl min{r?(X) - I;,log [S;|} + log(8/d). Here we
assume that min{r;(3) - l;,1og [S;|} = 1;(X) - l; if S; is infinite.
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Note that
sup  [m3(E)(U®Ia,)| = sup [mg(UT x1 )
UGRdlx,] UGRdli
[Ul<1 [Ul<1
= sup x'mg(U" x, EA)y
x€R?3 yeR7/¥2 UeR91 ¥/
[xI<1,|yll<1,|U]<1

can rewritten as the following supremum over scalar product:

sup <A1T X1 A; X3 EA’,A2>,
AleSl,
AQESQ,A;;ES;;
where
Sl = {Al :RJ e Rdl | HA1” < 1},
Sp = {Ay e R7*42X1 | | 4Ay|p < 1},
S3 = {A3 . R — Rds | HA3” < 1}
Then, Theorem [D.€]implies that for any & € (0, 1), with probability at least 1 — &, we have

PN Jr3(%) + Jri(X) + r3(2) + log(8/6
sup ()0 @ Ioy)] < Fwfs]y| TLE) T £ ) + k()
UeRd1xJ n
[Ull<1

ifn > Jri(X) + Jri(X) + r3(2) + log(8/9).

Analogously, we have

+ Kr3(3) + Kr3(X) + log(8/9)

2(2
s m(E)n V)] < 32alshy T

VeRds* K |V|<1 n

with probability at least 1 — 6, if n > r?(X) + Kr3(3) + Kr3(X) + log(8/5). This completes the

proof.

D.3 PROOF OF LEMMA [D.3]

Proof. Note that the norm

Hml((v*>T X3 E‘)H = sup XTml((V*)T X3 E‘)y
xeR?1 yeRK d2
Ixl<1,|yl<1

can be rewritten as the following supremum over scalar product:

sup <Air X1 Ag X3 g, A2>,
AleSl,
AQESQ,ASESS
where
Sl = {Al R — Rdl | HAIH < ].}7
Sy = {Az e RF¥4="1 | | Ag|lp < 13,
S3 = {V*}.
Hence, Theorem D.6implies that for any & € (0, 1), with probability at least 1 — §, we have

~ r2(3) + Kr3(2) + log(8/§
(V)T xa 8)] < 32y LK) + loa(8/0)
ifn > r3(X) + Kr3(X) + log(8/4). Analogously, we have

Ims ((U*)T x5 &) < 32w|2||\/r§(2) + Jrg(nﬁ) +log(8/9)

b

)

with probability at least 1 — §, if n > Jr3 () + r3(X) + log(8/4). This completes the proof.
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D.4 PROOF OF LEMMA[D 4]
Proof. Using the variational representation of the Frobenius norm, we observe that

sup IUT %1 VT x3&|p = sup WT 51 VT x3 &, W).
Ue®d1,‘]7ve®d2,K UE@dl,J;VE(DdQ,K
WeR” 42X K |W|p<1

Then, we apply Theoremwith S1 = 04y ,7,S2 = {W e RI*EXEK - |W|p < 1},S3 = Oy x
and get the desired result. O

E PROOF OF THEOREM
Proof of Theorem|C1] The proof follows that of Theorem 1 by Zhang and Xia (2018). For clarity,
we divide it into several steps.
Step 1. Reduction to spectral norm of random matrices. We have
1T —T*|2 = |U x1 V x3 W — U* x1 V¥ x5 W*|2
= |0 x1 V xg W — (DUT)U* x1 V* x3 W2 + (I = ) U* x1 VF x W3
= [V x3 W — (UTU*) x1 V¥ xg W*[2 + (I — T5)U* xq V* x3 W¥|2
= [W = (@TU*) >0 (VTVF) s WHE + [(TTU*) x1 (1= T1g)V* x5 W¥[
+ (I —Hp)U* x1 V* x5 WH|3. (28)
By the construction of 17\/\, the first term is equal to
”ij X1 ‘7T X3 y— ij X1 ‘7T X3 T*”% = ”ij X1 VT X3 5“12; (29)
We rewrite the second term as follows:
[(TTU*) x1 (I = ) V* xs W¥lp = (I = Tg)ma(T T x1 T%)|p.

Due to (T4), we have mg(U T x1 T#) = mg(T*)(U ® I4,), somg(UT x; T*) has rank at most K
and

|(I = Hp)ms (T*)(U @ I, )|p < VE|(I = Uy )ms(T*)(U @ 1,
= VE|(I -~ Tp)ms (U7 1 T%)|
SVE|(I - Tp)ms (U x V)| + VE[(I - Mp)ms (T %1 E)].

Since V' consists of K leading left singular vectors of ms(U x; ) and m3(U; x1 T*) has rank K,
we have (I — IIp)m3(Ur x V)| = ox41(m3(Ur x1Y)) < [m3(Uy x £)| by the Weyl inequality .
It yields

[(TTU*) x1 (I = ) V* xs W¥[p < 2VK ma(TT %1 ). (30)
Then, we bound the third term of (28). We have
I( =TH)U* x1 VF xg Wl = |[(I — Hp)U* x1 W¥|p
< Oin (VI VI = T)U* X1 (VL4 V) x3 WH)e
= i (VI VA = T (Vi) 5 T5) .
The matrix ml(‘A/TT_l x3 T*) = my (T*)(Ig, ® V_1) has rank at most .J, so
(=g (Vs s T*) e < V(I = g (Vi) x5 7))
< VI =Ty (Vi_y x3 Y|+ VI = g)my(V7_y x5 ).
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Since U consists of .J leading left singular vectors of my (V,]_, x3 y) and ml(IA/TT 1 X3 T%) has the
rank at most .J, we have | (I —II5 )ml(VTT 1 %3 V)| = o1 (my (V] 1 X3 V) < Imy (V7 x &)
by the Weyl inequality. It 1mphes

2VJ o
T * * * T
[( = Tg)U* x1 VE xg W < amin(@_W*)Hml(VT’l x3 E)|.

Combining (28) with (29), (30) and the above display, we get
IT=T*E <107 51 VT xz € + 4K ma(UT %1 &)

4J ~
e m(V s €)]
mln(VT 1V )
< sup JUT ;1 VT x3 xE|3
Ue@le,Ve@dz,K
T 2 4J T 2
+4K[m3 (U x1 E)|" + 5 —=7——<Im(Vr_y x3 E)[". G1)

U?nin(vl:r—lv*)
Step 2. Bounding o (V1 V*), [my (ViI_, x5 &), |ms(UT x4 €)]. To obtain the theorem, we

need to bound omin(‘A/TT_l x3 E), ml(‘A/TT_1 %3 E)|l, Ims(TUT x4 E)|. We start with the latter two

norms. We have

Ima(@T x1 &) = Im3(E)(T @ I,)| < [ms(€) (MywT @ L) + [ma(E)((T = Ty )T @ Iy )|

(32)
Since s = U*(U*)T, the first term of the above is at most
lms (E)U*(U*)TT @ L)} = [ma(E)(U* @ 1, ) (U*) T @ 1)

< m3(E)(U* @ 1) I((U*) T ® 1, )|

< [m3(E)(U* ® La,)|- (33)
For the second term, we have

Ims(E)(( M) @ 1) < ()T 1) (1~ )0
[(I — Tys)U|
< sup mg(E)(V @ 1a,)| - (1 =TIy )T

Then, we have
(T = Ty 0] = | ~ M) g | = (T — Ty )Tg | < [T — Ty

where we used Im U T = RX and orthogonality of U for the first equality. To bound the latter norm
of the difference, we rely on the following standard proposition, which is proved

Proposition E.1. For two orthogonal matrices Uy,Us € Qg p, a = b, define the following semidis-
tance

= inf — .
p(U1,Uz) on |U, — Us0|
Then, we have

HHUl - HU2 H <2 p(Uh UZ)

The proposition implies

s ()(( ~ TMy2)T @1, | <2 sup |me(E)V @ 1Lay)]| - p(0,U%).
VeR*1*
IVi=1
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Combining the above with (32)) and (33), we get

lms (U %1 E)| < |m3(E)(U* @ 1a,)| + 2 sup Ims(E)(V @ Ia,)| - p(TU,U*).  (34)
VeRd1®
Vi1
Analogously, we have

oy (Vr—1 %3 )| < [m(E)(Lay @ V)| +2 sup |y (E)(La, ® V)| - p(Vr—1, V). (35)

VeR?3%
[Vi<i

Finally, we bound oy, (‘7711‘/*) below. We have

0 (VI V™) = A (V) TVVTVH) = A (Tl Tys),

min

where we used the fact that V*A(V*) T has the same singular values as A for any Hermitian A €
RKXK. Since Hv* H‘j.Hv* = H\/* - Hv* (I - H‘7T_1 )Hv* = Hv* - H\/* (Hv* - H\7T—1 )Hv* s
the Weyl inequality implies

)\K(HV*HOTAHV*) > A (ITy ) — |y (I« — H\A/T,l)HV* [=1- HH\A/T,I — Iy ||.

Then, Proposition yields [IIp, — —Iy«| < 20(Vr_1,V*)}, s0

Umin(‘?’l:r—lv*) = \/1 - 2p(‘/}T—lv V*)7 (36)
provided p(‘A/T,l,V*) <1/2.

Step 3. Bounding p(ﬁt, U#*), p(‘A/t, V*) recursively. We provide a recursive bound on p(ﬁt, U¥*)

and p(‘A/t, V*). We widely use the following lemma, which is a weaker variant of the Wedin sin ©—
theorem:

Proposition E.2. Let A, B be matrices, such that A has rank r, and denote B = A + E. Let L be
left singular vectors of A and L be r leading left singular vectors of B. Then

NI
P L) < 08

By Proposition[E.2} we have

5 2v/2|my ()]
U0, U*) < . (37)

AT 0 < G a (T9))
To bound p(IA/t, V*), we note the following. Since IA/t are leading K left singular vectors of mg ([7; X1
V) =m3(U x1 T*) + m3(U,” x; €), and there exists an orthogonal matrix O € O f such that

V*O are the left singular vectors of mg (U, x1T*) = V¥mg(U* xy W*)(U;®14,), by the definition
of p(-,-) and Proposition[E.2] we have

2v/2m3(Uy %1 &)
ox (m3 (U x T*))

2v/2|ms (U 1 €)|
O’K(mg(UtT X1 T*))

p(Vo, V¥) < and  p(V;,V*) <

fort =1,...,T. Let us bound p(‘A/t, V*) using p(ﬁt, U*). First, we have

o m3 (U x1 T%)) = oxc(ms (T*) (U ® Ia,)) = o (ms(T*)(U* @ L) (U*) U © 1)
(38)

> 05 (m3(T*)(U* ® 1,))0min (U*) T U) =
= ox (m3(T*) (Hps ® 14,))0min(U*)T0) = 0xc(m3(T*)) - A/1 = 2p(U,, U*),
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provided p(Uy, U*) < 1/2. Second, we bound |m3(U,” x1 €)|. Following the derivation of (34), we
obtain

s (U x1 E)]| = m3(€)(Us ® 1, )
< [ms (&) My @ La,)(Ur @ Ly )| + [ms(E)((I = Tyx) @ La, ) (Ur ® La, )|
< [m3(E)(UF @ La)| + sup [ms(E)(U @ La,)| - (I — My ) Uy
UeRdli
[U]<1
Since U, is orthogonal, we have (I — HU*)(A]tH = (I — Ly« )15 [, so
(7 =Ty 0| = (Mg, =Ty )Tg, | < [Hg, = o« < 2p(0,, U*),
due to Proposition[E.T} and

ms (T x1 €)| < ms(E)(U* @ Lay )] + 2 sup [m3(E)(U @ Ia,)| (U, U*). (39)
UeR*1*
[Ul<1

Following the notation of the theorem, we get

22 - (av + 28y .p(ﬁt,U*))
o (ms (T*)A/1 — 20(00, U%)

Next, we will bound p(Uy, U*) using p(V;_1, V*) for t > 1. Since U, are leading J left singular

vectors of m (V;T; x5 V) = m(V,T; x5 T*) + my(V,T, x5 &), and there exists an orthogonal

matrix O € Qs such that U*O are the left singular vectors of my (V,; x3 T*) = U*my (V* x3
WH*)(Ig, ® ‘A/t,l), by Propositionand the definition of p(-, -), we have

2v2)mi (V,1 x5 &)
oy(my(Vici x3 T%))

p(V,, V*) < (40)

p(ﬁt—h U*) <

Analogously to (38), we have

oy (Vs x5 T#)) = o (m (T 1 = 2p(0i 1, V),
provided p(V;_1, V*) < 1/2. Analogously to (39), we have
Im1 (Vier x5 )] < [ma(€)(Ia, @ V¥)[ +2  sup  [m1 (&) (e, ® V] p(Vier, V). (41)

VeRd1 X
[Vi<1

Thus, using the notation of the theorem, we get
2v/2 (OtU + 280 - p(Vir, V*))

o (ma (T*) /1 20V, V)

p(U, U*) < (42)

Step 4. Solving the recursion. We claim that foreach ¢t = 0,...,7T, we have
p(0,,U") <1/4 and p(V,,V¥) < 1/4. (43)
Let us prove it by induction. From (37) and conditions of the theorem, we have
O U%) < iy <
Suppose that we have p(U,, U*) < 1/4. Let us prove that p(V;, V*) < 1/4and p(U,41, U*) < 1/4.
First, applying bound (@0), we deduce

DV < 2v2(av +28v - p(0n,U*)) _4lav +8v/2) _ 68y 1

ox (T — 200, U%) K@) " oxms(T?) =4
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where we used
ay = [mz3(E)(U* @ 14,)| < sup  |m3(E)(U® La,)|| = By
UL

and o (m3 (7)) = 248y due to conditions of the theorem. Similarly, from @0), we deduce
2v2(au +28u - p(Vi, V¥))
o (mi (T*)\/1 = 2p(V3, V*)
Moo +Bu/f2) 66y 6m(E)] _1

os@(T*) ~ os@(T*) ~ os@m(T*) = 4’
by the conditions of the theorem and the definition of oy, B7. Hence, for each ¢t = 0,...,T, we
have p(U;, U*) < 1/4 and p(V;, V*) < 1/4.

Hence, we can simplify bounds {0),([@2) as follows:

av + 2By - p(0,U*))

p(Ups1,U%) <

~ 4
p(Vi, V¥) < (

@)
T G A \tee)
Pl U < o (@ (7))

We solve these recursive inequalities using the following proposition.
Proposition E.3. Suppose that a sequence of numbers (py, n;) satisfies

Pt < X1 + Tany,

N < Y1+ Y2pe—1
Sor some x1,y1, T2, Yo such that xoys < 1/2 and x4, ys = 0. Then, we have
pr < 2(x1 + w2y1) + 22(22y2) 0,
e < 2(y1 + 21y2) + (2292) 0.

Applying Propositionto pr = p(f/t7 V*), e = p(ﬁt, U*), we obtain
80[\/ 16BVQU

PV V) < CmaT) o (T))ow @a(7™)
( 646y fu > L 2By |m(E)] 44)
o7 (m (T%))oK (m3(T*)) ok (m3(T*))o s (mi (T#))
~ " ay 168y oy
UL < i) ¥ oy @ (T)ow @a(7™)
648y By b 3m(9)]
y (oxml(’r*))aK(ms(T*))) o m (%)’ )

where we used (37) to bound g = p(Uy, U*).

Step 4. Final bound. Let us return to the bound (3I). Using 4/>, a; < Y, \/a; suitable for any
positive numbers a;, we get

H7A‘—T*HF< sup [UT x1 VT x3&|p

E@dl J,VE@dQ K
2VJ

—=_—————|m ‘7T7 X‘g .
o ey el

+ 2V ms (07 %1 )] +
Combining (@3) and (36), we obtain

IT = T*e < sup JUT 51 VT s Elle + 2VE [ma(UT x1 )] + 3T ma (V71 x5 )

E@dl T ,VE@dz,K
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Then, applying (34) and (33)), we get
1T = T*|p < sup IUT x1 VT x5 &|r + 2VEK (ay + 28y p(Ur, U*))

E@dl ,.]7V€©d2,K
+ 3\/7(04U + 208y - p(‘/}Tfl, V*))
Then, we substitute bounds [@3)),[@4) into above, and get
1T —T*r < sup IUT %1 VT x3 &l + 2VE (v +v1 + v2)

E@dl \J 7V6@d2 VK

+ 3V J (o + u1 + uy),

where
168y ay
A (T o (e (7))
vy = L0Bvev _ 6fvIm(E)] < 645y Bu )T
oymi(7*)) oy (T*)) oy(mi(T*))ox (ms(T*)) )
Uy = QﬂU . 166‘/&[]
oy (mi (T*))ok (m3(T*))

16Buay 648y By r
o @a(T9) <UJ(m1(T*))UK(m3(T*))) [ ()]

Since o7 (m1 (T*)) = 24|my1 (€)] = 248y and ok (m3(T*)) = 248y, we have v; < ay,u; < ay/3
and

U =

168y ay ( 648y Bu >T
Vg < + m;(€)]|.
* = o m) T o mT ) oxmrey ) ™E)
Combining the above, we obtain
|7 = T*|r < sup [UT x1 VT x3 &l + 4VKay + 4V Jay + Oz + 71,
UE@dl,J,VE®d2,K
where {9 and r7 are introduced in the statement of the theorem. O

E.1 PROOF OF PROPOSITION [E.T]
Proof. For any matrix O € O 5, we have
[Ty — Tys| = |07 - U*@W*)T| = |00T - GOW*)T + Tow*)T —U*U*)7|
<|TOWO - U*)T| +[(TO - U*)(U*)T| < 2|00 - U*|.

Taking the infimum over O € Oy, 3, we obtain the proposition. O

E.2 PROOF OF PROPOSITION[E.2]

Proof of Proposition[E.2] For two subspaces X, Y define:
Jsin©(X, V)| = (I - Ty)Ty.
Then, the following theorem holds.

Theorem E.4 (Wedin sin O-theorem (Wedin, 1972) ). Let P,Q be R**® matrices. Fix r <
min{a, b}. Consider the SVD decomposition of P = UgXoVy + Ui Vi, Q = ﬁoio‘N/J +
U 1 il ‘71T, where X, f)o corresponds to the first r singular values of P, Q respectively. Suppose that
O'min(io) — omax(21) = 0. Then, we have

Jsin @ (1m O, Tm )| < 5 max{| (P~ QWi L |U5 (P = @)}
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To apply the above theorem, consider two cases. If ,.(A) = 2| E|, then we apply the above theorem
with 0 = 0, (A)/2, P = Band Q = A, and get

~ A
[sin©®(Im L, Im L)| < JJ(A)'
If 0, (A) < 2||E||, then
N 2| F
[sinO(Im L, ImL)| <1< 0,,|(A)'
Hence, in either case, we have
A A
[sin©®(Im L, Im L)| < UJ(A)'
Finally, Lemma 1 of (Cai and Zhang]| 2018) implies that
~ ~ 24/2|FE
p(L,L) < V2|sin©(Im L,Im L) | < m7
or(A)
and the proposition follows. O

E.3 PROOF OF PROPOSITION[E.J]

Proof of Proposition[E.3] Combining the initial inequalities, we get
Nt < Y1+ Y21 + (T2y2)—1-

Iterating the above inequality ¢ — 1 times, we get

t—1
ne < (z2y2)'no + (Y1 + Y1) ;}(@m)i < % + (22y2)" 0.
Using 2292 < 1/2, we obtain
me < 2(y1 + y2x1) + (22y2)" po-
Combining the above with the bound p; < z; + x27;, we derive
pr < @1+ 2(Y122 + Tayaw1) + w2(T2y2) po < 2(w1 + T2y1) + 2 (w2y2)" po,

where we used zoy2 < 1/2 again. O

F PROOF OF THEOREM D.G

Proof. Step 1. Reduction to the PAC-bayes inequality. Let us rewrite the core expression, as a
supremum of a certain empirical process. We have:

sup (AT x1 A] x5, Ay) = sup (AT x1 A} x5 A9,E)
(Al,AQ,Ag)Enle Si (A17A27A3)EH?=1 Si
= sup (A x1 Az x3 Ag,(‘f}
(A1,A2,A3)€el[3_, S
o 1 T T
= sup Al X1 A3 X3 AQ, Z 7R(X1X1 — E(XX ))
(A1,A2,A3)e[ 13, S: =1

1 n
= sup <R1(A1 x1 Az x3 Az), — Z X, X! - ]E(XXT)>
(A1,A2,A3)e[[2_;'S; [

1 &
= sup - Z {X:R_l(Al X1 Ag X3 AQ)Xz

(A1, Az, A3)el 2, 8: ™ 521
_EXT'R,_I(Al x1 Az X3 AQ)X} .
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Define the following functions:
fi(Ay x1 Az x3 Ao) = M{XTR7THAr xq Az x3 A2)X; — EX]R7H(A; x1 Az x3 A2)X;},
Fx (A1 x1 Az x3 As) = MXTR (A1 x1 Az x3 A)X —EXTR™(A; x1 A3 x5 42)X},
where the positive factor A will be chosen later. We will apply Lemma[D.5]to the empirical process

1 n
sup - Z f’i(AlaA27A3)
(A1,A2,A3)el [, 8 ™ {5
with the parameter space defined by the target spaces L; dimensionalities and the prior distribution
1, constructed as a product of independent measures for each subspace separately. Choosing bases
in Ly, Lo, L3, we identify Ay, A5 with corresponding matrices and A3 with a corresponding tensor.
Define linear spaces L; = R% ¥ Ly, = Rii*d2xls and s = R9*!3_ and consider distributions
D; over LL; defined as follows:
o N<Oaaillidi)a 1flzr2(§]) <10g|§1|,
" | Uniform(S;), ifl; - ri(Z) > log|Sy,
for some o1, 02,03 to be chosen later, assuming that samples from the normal distribution have
appropriate shapes. Then, we put
1 =D; ®D:®Ds.
Consider random vectors P, (), R with mutual distribution p4, 4, 4, such that EP x; R x3Q =
Al X1 A3 X3 Ag. Since fi(Ala Ag,Ag), fx(Al,AQ, A3 are linear in Al X1 A3 X3 AQ, we have
Epa, aga, [i(PQ, R) = fi(A1, Aa, A3), so LemmaD.5|yields

1 n
sup - — D fi(Ar, Ag, As)

A1€Sy 5 i=1
Ag€eSy,A3€S3

< sup {EpAl,Az,AS log]EX €xp fX(PaQ7R)
A1€Sl N
AzGSz,A;gGSg
with probability at least 1 — 6. Then, we construct p4, 4, 4, such that the right-hand side of the
above inequality can be controlled efficiently.

(40)

N KL(pa, As,4,, 1) +10g(1/6) }
n

Step 2. Constructing p4, 4, 4,. Suppose for a while that p4, 4, 4,-almost surely we have
A|SY2RU(P x1 R x3 Q)Y |p < 1/w. (47)
Then, Assumption 2. 1|implies
Epa, a,a, 08 Ex exp fx (P, Q, R)

=Epa, 1,1, l0gEx exp {A (XTR™Y(P x1 R x3Q)X s
—EX"R™MP x1 R x3Q)X)}
SN By, aya, ISPRTI(P 51 R x5 Q)82

So, to control the above and keep the left-hand side of bounded, we do the following. Consider
random matrices G; € R% %1 G4 € R%*ls and a random tensor G5 € Ri1xd2%ls guch that
vec(Gh) ~ {N@va’ildili)a if r;(2) < log [Si],
do, ifl; - r;(X) > log |S,],
where dj is the delta measure supported on 0 € R4 Then, define a function g : R >/t x R
g v W) = |[SVPRTN W x g w' x5 0")BY3|E. (49)
Sequentially applying the triangle inequality for the Frobenius norm and using (a +b)? < 2a% + 202,
we obtain
f(A1 + Gy, Ay + Go, Ag + Gg) < 2g(A1, Ay + Go, Az + G3) + 2g(G1,A2 + Go, A3 + Gg)
<4g(A1, Az, Az + G3) + 49(G1, G2, A3z + G3)
+ 4‘9(1417 Go, Ag + G3) + 4g(G1, A, Az + Gg)
< 8¢g(A1, Az, As) + 8g(A1, G2, G3) + 8g(A1, A3, G3) + 8g(A1, Ga, As)
+89(G1, A3, Az) + 89(G1, G2, Gs) + 89(G1, A3, G3) + 89(G1, G2, Az). (50)
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Then, we define the distribution pa, 4, 4, of the random vector (P, @, R) as the distribution of
(A1 + Gy, As + Go, A3 + G3) subject to the condition

(Gla GQ, G3) €T = {89((1, ba C) < 8Eg(a7 ba C) | (a7b7 C) € F} ) where
= ({A1,G1} x {42, Ga} x {A3,G3})\{(A1, A3, A2)}.
Note that by the union bound and the Markov inequality, we have
Pr((Gy,G2,Gs) ¢ Y)< >, Pr(f(a,bc)>8Ef(a,b,c))
(a b,c)el’
1 7
< - =-. 1
> 373 (51)
(a,b,c)el’
Combining the definition of Upsilon with upper bound (30) implies the following bound on
9(P,Q, R):
9(P,Q, R) < 64(g(A1, Az, A3) + Eg(A1, Az, G3) + Eg(Ar, G2, A3) + Eg(A1, G2, G3)
+Eg(G1, A2, A3) + Eg(G1, A2, G3) + Eg(G1, G2, A3) + Eg(G1, G2, G3)), (52)
which holds p 4, 4,,4,-almost surely.

Let us check that ]EPA aga, P X1 Q x3 R = Ay x1 A3 X3 As. Since both the Gaussian distribution
and &g are centrally symmetnc and the function f does not change its value when multiplying any
of its argument by —1, we have

(PQ R) (Al +€1(P A ) AQ+€2(Q—A2),A3+€3(R—A3)), (53)

where €1, €5, €3 are i.i.d. Rademacher random variables independent of (P, @, R). Then, we obtain

EP x1 R x3Q =EA; x1 (As + e2(R — A3)) x3 (As + 3(Q — Ag))

+Eey (P — Ay) x1 (A3 +e2(R — A3)) x3 (A2 +e3(Q — A43))

=TFEA; x1 Az x3 (As +e3(Q — As) + A1 x Eeq(R — A3)) x3 (Az + £3(Q — Asg)

= Ay x1 A3 x3 As + Ay x1 Az x3Ee3(Q — Ag) = Ay x1 A3 x3 As.
Hence, to satisfy the assumption and use (@8), it is enough to bound expectations Ef(a, b, ¢)
for (a,b,¢) € {A1,G1} x {A3,Gs} x {As, Ga}.

Step 3. Bounding expectations Eg(-, -, -). Let us start with g(A;, A3, A2). From the definition @9),
we have

g(A1, Ag, Ag) = |SYPRTH( Ay xq Az x5 A2) 22|}
<IBIPR™ (A1 x1 A3 x3 Ag)|f = [T A1 x1 A3 x5 Ao|lf = |Z]?, (54)

where we used the fact that A has unit Frobenius norm and ||A;| < 1, | As|| < 1 by the definition
of Sz .

In what follows, it will be useful to rewrite the function f(A4;, Aa, A3) in different notation. As in
the proof of Lemma|[D.T] define tensors

SP1Q1T1P2¢12T2 = Z(p1—1)q7‘+(‘11 —1)r+7r1,(p2—1)gr+(g2—1)r+r2
(3)

(1) _ _
A:D2P3j1 - (Al)(P2*1)P+P3J1’ Arzmlm - (A3)(T2*1)T+T3J€1a
(2)
JIQZQSkl As J1,(q2—1)q+qs,k1>

= (43)
1 3
gf(bg?sjl = (Gl) (p2—1)p+p3,j1° g7('27)"3k’1 = (G3)(T2—1)T'+7'37k1’
g (Ga)

J1gzask1 G3)j1,(a2—1)q+as k1 -

Then, we obtain
g(A1, Ag, A3) = |SYPRTY(AL x; Az x3 Ag)EV2|2
=Tr (ER_I(Al X1 A3 X3 AQ)ER_T(Al X1 A3 X3 Ag))
-S AL 4@ 23 S (1) a2 A® (55)

P149171P29272 pap3ji JlQ2Q3k1 Tar3ky P3‘I37’3p4’14T4AP1P4]2 j2q1q4k2 T1T4k2
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Note that the above holds for any A; € L;, so the formula remains true when replacing A;, A®) with
G, G respectively.
Next, we bound Eg(A1, As, G3). If vec(G1) ~ g, we have Eg(A4;, A3, G3) = 0, so it is enough
to consider the case vec(G3) ~ N(0, 0314, ). Due to formula (33), it yields

Eg(A1, A2,Gs) = ES, al) A g® s al) Al g®)

P19171P29272 papsj1~ j1q2q3k1 Frarsk, T P39373P494TA T pipaje T joqiqake T riraks

— 52 () (2 ) ()
_0'357”27‘167‘37"35k1k2SP1Q1T1P2Q27“2Ap2p3j1 j1q2q3k1Sp3Q37"31)4Q47“4Ap1p4j2 joq1qaka

2 (1) (2) (1) (2)
= 0381’1‘11”1"2‘127"1 APzstl J1q2q3k1 SP3Q3T3P4Q4T3AP1P4J'2 j2q1qaky”
Define matrices A1) € RPxP, A3k = 1. 2and j = 1,...,J, by A2 = o) and

~(o i P2p3j1
AR _ @)

42,05 ipapsk: Then, we have

1
Eg(A1, A2, Gs) =03 Y Tr (Trg(z) S A0 @ k)
kle[lg] Ji=1

1
x Trz(X) Z (A(l,jz) ®A(2,j2,k1))‘r>

j2=1
2
<o? Y m(m)- D) A @ Ak
kle[la] jle[J] P
<O’§HTI‘3(E)H2- Z H Z ﬁ(ldl)@g(?,jl,kl)ﬂ%, (56)

kle[lg] j1€[l1]

where we used the Cauchy—Schwartz inequality for the scalar product (4, B) = Tr(ATB) <
|A|r|B|r. Then, we introduce matrices A;(j’(’;:)_l)ﬁqg = A}, gagski» k1 € [I3], for which we have

2ol D AN @ACHEIR = N ATACRI R < Y AT AR

kie[ls] jie[la] ki1€[ls] kie[ls]
< DL AR = AR < 1,
k1€[ls]

where we used | A1]| < 1 and | Az < 1. Substituting the above into (36) yields

Eg(A1, As, G3) < o2 || Trz(2) |2 (57)
Analogously, we obtain

Eg(Gh, Ag, A3) < of | Tr1 ()] (58)

Next, we study the term Eg(A;, Ga, A3). Obviously, if vec(G3) ~ dg, then Eg(A4;, G2, A3) = 0,

so we consider the case then vec(G2) ~ N(0,0314,,,). Using (B3) with G2 in place of A and
3,k1)

defining a matrix AG#1) e R7*7 ag A — Af;’rskl, we obtain
_ (1) (2) (3) (1) (2) (3)
Eg(A1, G27 A3) - ESPI q1T1P292T2 Ap2p3j1 gjl q2q3k1 ArzT3k1Sp3Q37"3p4Q4r4 AP1P4J2 gjzlh qakz AT1T47€2 ’

= U§6j1j26Q1Q26’€1k28 A(l) A(s) S A(l) ®

P19171P29272  papgj1 rorsk; T P34937T3P494T4  p1paja T rirake

P1q171P2q172 Bpypajy Brorsk, OP3a2r3paq2raRpy pajy Ariraky
=03 Z Tr (T‘I'Q(E) JAGI) @ ABHF] L Ty () - [AT) ®g(3,k1]T)
j1€[l1],k1€[ls]
< Ug 2 HTI‘Q(Z) . [A/(le) ®A(3,k1)]”%’
j1E[l1],kle[13]
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where we used the Cauchy—Schwartz inequality on the last line. It yields
Eg(A1, G2, As) < o3| Tra(D)P Y JAL @ AGMI|;
Jr€lla],k1€[ls]
= Ta(®)> Y JADIRAB
Jr€lla],k1€(ls]
= o3| Tr2 (D) Av[E | As[F < o3lls] Tr2 (X)), (59)

where we used || 4;|# < ;| 4;* < l; fori=1,3.

Next, we bound Eg( A1, G2, G3). If either vec(G3) ~ dg or vec(G3) ~ &, then Eg(A41, G2, Gs) =
0, so we consider the case when both vec(Gz) ~ N(0,0314,1,) and vec(Gs) ~ N(0,0314,1,)-
Using (39) with G2, G5 in place of Ay, A3, we get
(1) (2) (3) (1) (2) (3)
Eg(Ala G27 G3) = Sp1q1T1p2q2T2Ap2p331g i1q2q3k1 gr2r3k1SP%Q3’”3P4‘I47’4AP1])4]2g]quq4k2g7"17’4k2’
1 (a
= 02035k1k1 P1Q17"1102Q17“1A;(72)1)3]1SP5QJ7“5P4Q37"3A;)11)4]1
1
= o202ls Z Tr (’I‘I-ZS(Z)A(lajl)’I‘I-Q}S(Z)(A(lvjl))T)

Jji=1

I i
<o3o3ly Y. |Tras(D) AT} < 03030 Tra (D)2 Y, A3

Ji=1 ji=1

= 050313) Tra 5(3) |* | A1 |7
2 we obtain

]Eg(Al,GQ,Gz;) 0'20'3l1l3||TI‘2 3( )H2 (60)

Since |41 |3 < I

Analogously, we get
(G17G2,A3) Ulo'gl l3||TI‘1 2( )H2 (61)
Then, we bound Eg(G1, A2, G3). Using (33) with G1, G in place of A;, A3, we get

_ (1) (1) (2) (3)
Eg(Gl’A27G3) - ESplq”lp?q?T?ngP%h quzq%klgrzmkl p3Q3r3p4‘J4T4gp1p4j2Aj2q1q4k2grlmkz

_ 22
=0 036171;02 5j1j257“17”2 5k1k25P3P4 67"37“4
(2) (2)
X SpllhT1pzq2TzAJIq2q3k1Spsq3T3P4fI4T4A]2q1q4k2

_ () (2)
=0 038P1Q1T1P1Q2T1 A]1q2q3k1SPSQ3T3P3Q4T3Aj1q1q4k1

= 0?02 Z Tr (Tl"1,3( ) AZdrsk) Tr1,3(2)(/~1(2’j1’k1))T) .
]16[[1],]616[[3]
By the Cauchy—Schwartz inequality for the matrix product, we obtain
Eg(Gr, A2, Gs) <otoy ), |Trag(R)ACTR)|2
16[[1],k}1€[13]
<ot Traa(s) Y JARIAR
Ji€[l1], k1€[ls]

= 0703 Tro,3(2)*| A2} = 3@ (62)

Finally, we bound Eg(Gi,G3,Gs). If some G; is distributed according to &g, then
Eg(G1,G2,G3) = 0, so it is enough to consider the case when G1, G2, G3 are Gaussian. Us-

ing (B3) with A;, A() replaced by G;, G*), we obtain

_ (1) (3) (2) (3)
Eg(G17 G, Gd) - ESplql’"lp?qz” gpzp:s]lgjlqwskl gT‘z"’Skl p3%r3p4‘14r4gp1p4jzg j2q1qak2 ghmkz

— 4242525

= 0102036]1]16k1k28P1Q1T1;D1Q1T1SP3Q3T3P3Q3T3

= oio5030113Tr (%)% (63)
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Quantity Bound Ref
g(A13A27A3) HEH2
Eg(A1, Az, Gs) o3| Trs(2)]|
Eg(G1, Az, As) oF | Try (2)[?

Eg(A1, G2, A3) o3lls] Try(2)]?
Eg(A1, G2,Gs) | 03031113 Tra3()]?
Eg(Gy,Ga, As) | 07031113 Try2(X)]?

Eg(G1, A2, Gs) | 0703|Tra5(2)|?

ZEBEBEEAQE

Eg(G1,G2,G3) | oio3o3lil3Tr(X)?

Table 4: Bounds on Eg(-, -, ).

We summarized obtained bounds on Eg(+, -, -) in Table
Combining (32) with bounds (54),(58)-(63) implies the following pa, 4, 4,-almost surely:
9(P,Q,R) < 64 (|| + 07030350115Tr(%)?
+03 | Tes(8)[* + 03l ls | Tr2(8)|* + oF [ Tr1 ()
+0303013| Trz3(2)]* + 0703 ils | Tro 2 (8) | + i3] Tra 3(2)[?) -

Finally, we choose 0%, 03, 03 as follows:

g1 =r;1(§3), g2 =r51(2)/\/lll3, g3 =r51(§]).
Then, pa, 4, a,-almost surely, we have
|SYVPRTH(P x1 R x3 Q)SY2|} = f(P.Q. R) < 2|,
where we used [Trs(X)| < 2] - [[,cq rs(X) for any non-empty S. Hence, if X satisfies

20 w2 < 1, (64)
then (7) is fulfilled and, due to (@8), we have
EpA1,A2,A3 log Ex exp fx (P, Q, R) < 2P0%0° HEHQ (65)

Step 4. Bounding the Kullback-Leibler divergence. Define I = {i € [3] | l;r;(2) > log|S;|}.
Then, for i € I, we have D; = Uniform(S;) and the density of p, 4, 4, is given by
—1;d;

o; 1
PAy, Ay A5 (a1, a2,03) = H50(ai —A;) x 1_[ m exXp {_W”ai - Ai|12:}
iel ie[3g T @

1 {(a1 — Al,ag — Ag,a3 — Ag) € T}
Pr((G1,Ga,G3) € T)

By the definition of T, pa, 4, 4, can be decomposed into product of the truncated Gaussian p_;
and delta measures (X),.; 0 4,. Hence, we have

KL(pA17A27A3 ) /’[’) = IC‘C(p—I ® @ 6Aia Dl ® DQ ® DS)
el
= KL(p-1, Q) Di)+ Y. KL(a4,, Uniform(S;))
1€[3]\I iel

= KL(p-1, @ Di)+ ). loglSil. (66)
1€[3]\I =
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Recap that for i € [3]\/, distribution D; is the centered Gaussian with the covariance matrix o2 1,,;,
up to the reshaping, so the density of (X),_; D; is given by

el
o, 1
por((@i)ieng) = [ (a2 P (—%gai%) :
ie[3\I i
Hence, we have

KL(p-1,®ieziDi) = J p—1((ai)ieapr)
HiE[S]\I L;

2 /9 2 2 /9 2
i exp (||laillg/207 — |ai — Al /20;
« log [ Ticpapr exp (Jailz/ I I%/207) ] de.
Pr((G1,G2,G3) e Y) iels]
1 1 1 ;
=1 - 52 Al z —(E lvAi ’
Pr(Gr, G2, Gy) e T) 2, gpldiit D, (e A)

ie[3\1 “7i ie[3\1
where &' is distributed as the i-th marginal of (P, Q, R) ~ pa,.a,.A,. Using ,weget BE" = A,
so bound (5T)) implies
1
952 | A7

i

KL(p-1,Ricpz)yDi) < log8 + 2
e[3]\/

1
<log8+ - Z Lir? (%),
ie[BI\I

where we used the definition of o; and the fact that |A;|3 < ;| A:|?> < I; fori = 1,3. Then,
bound (66) implies

1
KL(par a5, 1) <log8+ 5 3 Lri(D) + ) log]Si|

ie[3\/ iel
3
<log8+ > min{r} () -1, log [Si[}. (67)
1=1

Step 5. Final bound. Then, we substitute bounds (63)),(67) into {6). It yields

1 ¢ o
sup  — Z<A1T x1 A x3 &, Ax) < 2120?82
A1€Sl, n i=1
AQGSQ,AgESg

N log 8 + Z?:l min{r;(X) - l;,log [S;|} + log%
An

with probability at least 1 — §, provided 26 \w|X|| < 1. Since n > Z?Zl min{r?(%) - [;, log |S;|} +
log(8/4), we can choose ) as

1Y min{r(2) - 1, log [S;]} + log(8/0)
20w

n

It implies

1 o 3 min{r2(X) -1, log S|} +1 5
. Z<A;X1A;X35,A2><mm\/Zl_lmm{rz() Jlog [Sil} + log(8/9)

A1€8q 5 n i=1 n
As€eSy,A3€S3 )

with probability at least 1 — §. This completes the proof. O

G ADDITIONAL EXPERIMENTS

G.1 TENSOR-PRLS PSEUDOCODE

In this section, we give pseudocode for our version of PRLS adopted to order-3 tensors. See Algo-
rithm 2]
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Algorithm 2: PRLS Thresholding Algorithm

Require: Tensor X € R%1xd2xds regularization parameters A1, Ao
Ensure: Soft-thresholded tensor X

A

R

Step 1: Mode-1 Unfolding and Thresholding

Reshape initial tensor into matrix: X{;y = m (X')

Perform SVD of matricization: U, S, VT = SVD(X(y))

Apply soft-thresholding: 5" = max(S — A1 /2, 0)

Combine soft-thresholded SVD into a matrix: X(l) =U -diag(S’) - VT
Reshape back into tensor: X = m] (X(l))

Step 2: Mode-3 Unfolding and Thresholding

Reshape new approximation into matrix: X(s3) = m3(X)

Perform SVD of matricization: U, S, VT = SVD(X(3))

Apply soft-thresholding: S’ = max(S — A\2/2,0)

Combine soft-thresholded SVD into a matrix: )?(3) =U -diag(S’) - VT
Set ¥ = ;! (X(y))

G.2 EXTRA EXPERIMENTS ON COVARIANCE ESTIMATION

Here we study the performance of tensor decomposition algorithms in the setup of Section [3| First,
we repeat experiments of Section [3]for n = 4000, see Table[3]

Table 5: Performance comparison of tensor decomposition algorithms for n. = 4000.
Relative errors were averaged over 16 repeats of the experiment, empirical standard
deviation is given after + sign. Best results are boldfaced.

. Algorithm
Metric
Sample Mean TT-HOSVD HardTTh
Relative Error 0.430 £ 0.007 0.105 + 0.008 0.054 + 0.002
Time (seconds) 0.0039 + 0.0015 0.64 £ 0.15 3.2+3.3
Metric Algorithm
Tucker Tucker+HOOI PRLS
Relative Error  0.105 + 0.007 0.054 + 0.002 0.217 + 0.015
Time (seconds) 30.7+ 3.9 51.5+3.9 0.8+1.1

Second, we study the dependence of sin ©-distance of estimated singular subspaces to singular
subspaces of matricizations of 7* on the number of iterations 7" and the sample size n. Matrices
Uo, UT, VO, VT are defined in Algorithm |1 l As before, the number of additional iterations is taken
10. The results are presented in Table 6}

Table 6: The study of sin ©-distance from estimated singular subspaces to singular
subspaces of matricizations of R(X). Average errors and standard deviations are
obtained after 16 repeats of the experiment. The setup is defined in SectionE}

| n=500 n = 2000 n = 5000 n = 6000 n = 7000

sin®@(Im U, ImU*) [ 1.0+00 1.0+00 08+03 08+02 06+0.3
sin®(Im ¥y, ImV*) | 1.0400 1.0+00  1.0+0.0 090+0.14 0.9+0.2
sin©®(Im Uz, ImU*) | 1.0+ 0.0 0.33+0.08 0.17+0.04 0.13+0.03 0.13 +0.02
sin®(Im V7, ImV*) | 1.0+ 0.0 046 +0.17 0.214+0.03 0.18 +0.05 0.17 4 0.02
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G.3 EXPERIMENTS ON TENSOR ESTIMATION

This section is devoted to experiments that did not have enough space in the main text. In particular,
we numerically study the impact of additional iterations of Algorithm [I]in the tensor estimation
problem. We do not consider the misspecified case, and, given (J, K) and p, ¢, r, generate 7* as
follows. First, we generate matrices U;, Wy, Vi, from model (3) according to the matrix initialize
method - random, random symmetric, symmetric with special spectrum decay (i.e. inverse quadratic,
exponential, linear, etc.). We will refer to these matrices U;, Wy, Vj, as sub-components of matrix

J K
S = Z Z Uj®ij®Vk EquTqur,
j=1k=1

and reshape it to a tensor 7* = R(S). Itis ease to see that such procedure is equivalent to the direct
assignment of TT factors, due to Equation (8). Then, choosing a noise level o, we generate a noise

tensor £ as a random normal with ¢ as its standard deviation and compute
V=T"+€.

Our code supports some other testing regimes: one can choose the S structure directly (block-
Toeplitz, structure (T)), etc.) supporting misspecification case, and rank selection method (via hard
thresholding, effective rank, absolute error). For more information on rank selection see display

(13).

For the specific experiment, we vary the algorithms to test, as well as the actual ranks and sizes of the
components U, Wy, Vi, For PRLS algorithm, due to its special setup, we tune Aq, Ay parameters
on a log-scale. In the Table [/|one can see, that our method also shows less variance, compared to
the previous algorithms, such as sample mean or Algorithm 2] with noise variance equal to 0.3.

Table 7: Performance comparison of tensor decomposition algorithms under medium
noise conditions. The best results are boldfaced.

Algorithm
Sample Mean TT-HOSVD HardTTh

Relative Error ~ 0.3643 £+ 0.0135 0.0449 £ 0.0018 0.0357 &+ 0.0015
Time (seconds) 0.0204 £ 0.0096 4.4732 £1.8079  7.5522 % 2.1386

Metric

Algorithm
Tucker Tucker+HOOI PRLS

Relative Error 0.0439 £+ 0.0016 0.0357 £0.0015  0.1130 £+ 0.0037
Time (seconds) 56.7830 + 16.3132  106.5766 &+ 25.2531 0.7076 £+ 0.1160

Metric

Now consider the case of a low SNR setting (high-noise regime, fast spectrum decay). This case
violates the assumptions of Theorem [2.2] It can be seen that the methods perform poorly and do not
restore the signal (the relative error remains at the level of 0.3), thus, demonstrating the necessity of
theorem’s conditions. The experiment below was conducted for the case when sub-components of
S spectra decrease as inverse square sequence (see Table 8] for details).

It may be useful to examine the spectrum of matrix S and matricizations in order to understand how
the behavior of algorithms varies in different scenarios. Figure [I]illustrates this. These plots were
constructed for tensor-train rank (J, K') pairs of 7 and 9, respectively, with sub-components having
a size of 10 x 10. The total matrix size was 1000 x 10000, composed of these sub-components.

To experimentally confirm the necessity of the conditions of our theorem, we plotted the relationship
between singular values and noise levels, as well as the relative error and noise levels. Our findings
indicate that, after a certain threshold, our algorithm no longer effectively mitigate noise but instead
overfit to it, resulting in inferior performance compared to one-step methods such as TT-HOSVD
(see Figure2)).
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Absolute Eigenvalue

Table 8: Performance of tensor decomposition algorithms under inverse quadratic
decay of spectrum. In case of low SNR we observe that iterative methods perform
worse than one-shot and both do not restore signal. The best result is boldfaced.

Metric

Algorithm

Sample Mean TT-HOSVD

HardTTh

Relative Error

Time (seconds)

0.3508 £ 0.0004 0.0251 £+ 0.0001 0.0279 + 0.0003
0.0509 £ 0.0166  13.9748 4+ 4.1845  282.7375 + 145.8327
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Figure 1: Spectrum of the objectives in case of random sub-components. As one can
see, dense spectrum of matrix S with noise become separable for matricizations.
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Figure 2: Performance of tensor decomposition algorithms and spectrum behavior
under noise increase.
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