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ABSTRACT

We consider a problem of covariance estimation from a sample of i.i.d. high-
dimensional random vectors. To avoid the curse of dimensionality, we impose an
additional assumption on the structure of the covariance matrix . To be more
precise, we study the case when X can be approximated by a sum of double Kro-
necker products of smaller matrices in a tensor train (TT) format. Our setup natu-
rally extends widely known Kronecker sum and CANDECOMP/PARAFAC mod-
els but admits richer interaction across modes. We suggest an iterative polynomial
time algorithm based on TT-SVD and higher-order orthogonal iteration (HOOI)
adapted to Tucker-2 hybrid structure. We derive non-asymptotic dimension-free
bounds on the accuracy of covariance estimation taking into account hidden Kro-
necker product and tensor train structures. The efficiency of our approach is illus-
trated with numerical experiments.

1 INTRODUCTION

Given X, X1, ..., X,, € R%ii.d. centered random vectors, we are interested in estimation of their
covariance matrix ¥ = EXX ' e R%*?, Despite its long history, this classical problem still gets
considerable attention of statistical and machine learning communities. The reason is that in mod-
ern data mining tasks researchers often have to deal with high-dimensional observations. In such
scenarios they cannot rely on classical estimates, for instance, sample covariance

~ 1 n
Y= ;Xixj,

suffering from the curse of dimensionality. To overcome this issue, statisticians impose additional
assumptions on Y in order to exploit the data structure and reduce the total number of unknown
parameters. Some recent methodological and theoretical advances in covariance estimation are re-
lated with Kronecker product models, which are particularly useful for analysis of multiway or
tensor-valued data (Werner et al.l 2008 |Allen and Tibshirani, [2010; |Greenewald et al., [2013; |Sun
et al., 2018; |Guggenberger et al., [2023). For example, motivated by multiple input multiple output
(MIMO) wireless communications channels, Werner, Jansson, and Stoical (2008) assumed that >
can be represented as a Kronecker product of two smaller matrices ® € RP*P and ¥ € R?*9, such
that pq = d:
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It is known that (see, for instance, the proof of Theorem 1 in (Van Loan and Pitsianis, [1993))) 3 of
form (1) can be reshaped into a rank-one matrix using an isometric rearrangement (or permutation)
operator P : RP9P4 — RP**4” (see (Puchkin and Rakhuba, [2024, Definition 2.1)). Based on this
fact,[Werner, Jansson, and Stoica|suggested to estimate P (X) applying singular value decomposition

to P(f]) and showed that this estimate is asymptotically efficient in the Gaussian case. They called
this approach covariance matching. This idea was further developed by (Tsiligkaridis and Hero,
2013; Masak et al., [2022; Puchkin and Rakhubal 2024), who considered the sum of Kronecker
products model
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where ®1,¥4,..., Pk, Vi are symmetric positive semidefinite matrices, such that ®; € RP*P,
U, e R?*forall j € {1,..., K} and pg = d. They studied properties of the permuted regularized
least squares (PRLS) estimates. In (Tsiligkaridis and Hero, [2013}; |Puchkin and Rakhuba, [2024]), the
authors regularized the loss function using the nuclear norm

~ ~ ~ ~ 12
$° = P~Y(R), where Re argmin {HR - P(E)HF + /\|R*} , 3)

ReRp?xq?
while Masak et al.|(2022)) considered a rank-penalized estimate

Y =P YR), Re argmin

ReRp?xq?

Following the covariance matching approach of |Werner et al.| (2008)), both and reduce the

problem of covariance estimation to recovering of a low-rank matrix P(f]) from noisy observations.

We would like to note that the estimates 3° and ¥ admit explicit expressions based on the singular
value decomposition of P(fl) For this reason, they can be computed in polynomial time.

R— P(i)”i + A rank(R). @)

In the present paper, we consider a covariance model combining Kronecker product and tensor train
(TT) structure. To be more precise, we consider 3 of the form

J K
EZZZUj@ij®Vk, (5)
J=1k=1

where U; € RP*P, V3, € R?9, and W), € R™" forany j € {1,...,J}and k € {1,..., K}.
The numbers p, g, and r are assumed to be such that pgr = d. Let us note that (3) naturally
extends (2) to the case of three-way data and coincides with it when J = 1 and U; = 1. The
rationale for selecting our model is that the TT decomposition (Oseledets,[2011) is recognized for its
computational efficiency compared to the canonical polyadic (CP) decomposition, while providing a
robust framework for representing higher-order tensors. Notice that the CANDECOMP/PARAFAC
model

K
S =) 0@V, @y, 6)
k=1
which has recently got considerable attention in the literature (see, for example, (Pouryazdian et al.,
2016; |Greenewald et al.,2019;|Yu et al.,[2025) and the references therein), is a particular case of (E])
with J = K, W), = U, 1(j = k), and U; = ®;. Following the covariance matching approach, we
can reshape a matrix X of the form (3)) into a third-order tensor with low canonical rank. Indeed,
given a matrix A € RPI"*P1" et us define a rearrangement operator R : RP4"*PI" — RP*xa*xr?
componentwise: forany 1 <a <p?, 1<b<¢? and1l<c<r?

R(E)ab,e = B(fafpl-1)-qr+([b/a]—1)-r+[e/r],((a—1)%p)-qr+((b—1)%q)-+ (c—1)%r+15 (7
where y%z € {0, ..., 2 — 1} stands for the residual of y modulo z. Then it is easy to check that
J K
R(X) = Z 2 vec(U;) ® vec(W;i) ® vec(Vy), (8)
j=1lk=1

where, for any matrix A, vec(A) is a vector obtained by stacking the columns of A together. Un-
fortunately, a formal extension of the approach suggested by [Tsiligkaridis and Hero| (2013)) to the
CANDECOMP/PARAFAC model will not result in a practical algorithm. The main obstacle is that
approximation of the nuclear norm of a tensor is an NP-hard problem [Hillar and Lim| (2013). The
statistical-computational gap was discussed in several papers including (Barak and Moitral |2016;
Zhang and Xia, 2018; Han et al., |2022aj [Luo and Zhang| [2022} 2024). For this reason, when de-
veloping an algorithm for estimation of the covariance matrix (3), we must take into account both
its computational and sample complexities. In the present paper, we extend the approach of Zhang
and Xial (2018)) and suggest an iterative procedure similar to the higher-order orthogonal iteration
(HOOI) with the notable distinction of utilizing the Tucker-2 representation of the tensor. Our algo-
rithm successfully adapts to the structure (5)) but requires less time, than Tucker decomposition and
HOOL.
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While statisticians (see, for example, (Tsiligkaridis and Hero|, 2013} [Puchkin and Rakhubal 2024))
established rates of convergence of the PRLS estimate , the CANDECOMP/PARAFAC model @
and the more general tensor train model (3)) remain underexplored. In Section 2] (see (9) below), we
discuss that the tensor train model (3] can be represented in a way, which is very similar to the low
Tucker rank tensor model (see, for instance, (Han et al., 2022a, Definition 2.1)). The only differ-
ence is that (9) includes two factors with orthogonal columns while in Tucker decomposition one has
three such factors. For this reason, some bounds on the estimation accuracy of X of the form @ with
respect to the Frobenius norm follow from the results on tensor estimation Zhang and Xial (2018));
Han et al.| (2022b); |Kumar et al.[(2025)), scalar-on-tensor regression Khavari and Rabusseau| (202 1));
Wang et al.| (2025)), and tensor-on-tensor regression Raskutti et al.| (2019); Luo and Zhang| (2024)
with constraints on Tucker ranks. However, these bounds are dimension dependent, while many re-
cent results in covariance estimation establish dimension-free bounds (see, for instance, Koltchinskii
and Lounici|(2017);/Bunea and Xiao|(2015);/Abdalla and Zhivotovskiy|(2022)); Zhivotovskiy|(2024);
Puchkin and Rakhuba) (2024)); Puchkin et al.| (2025)). To our knowledge, the existing dimension-
free results on tensor estimation only cover the case of simple rank-one tensors (Vershynin, 2020;
Zhivotovskiyl [2024; |Al-Ghattas et al.| [2025;|Chen and Sanz-Alonso,2025)). In the present paper, we
derive high-probability dimension-free bounds on the accuracy of estimation of third-order tensors
with low TT-ranks and of the covariance matrices, which can be well approximated by (3).

Contribution. Our main contribution is a comprehensive non-asymptotic analysis of this estima-
tion procedure. We first derive a general deterministic perturbation bound for our TT-SVD-like
algorithm, which may be of independent interest. We then leverage this result to establish a high-
probability error bound for our covariance estimator. The final bound clearly decomposes the error
into a bias term, related to how well the true ¥ can be approximated by our model, and a vari-
ance term. This variance term scales gracefully with the sample size n, the TT-ranks (J, K), and
data-dependent effective dimensions that capture the intrinsic complexity of the covariance struc-
ture. To our knowledge, this is the first work to provide a computationally efficient and theoretically
guaranteed method for covariance estimation with this flexible TT-based structure.

Paper structure. The rest of the paper is organized as follows. In Section [2] we present our
algorithm and main theoretical guarantees. We provide some practical analysis in Section [3] and
conclude with a discussion in Section[d] All proofs are deferred to the Appendix.

Notation. Given a matrix M € R% %92 we define its vectorization as
VeC(M)(afl)-dme = Ma,b, a < dl, b < ds.
For a tensor T of order k£ with dimensions dy, . .., dy, we define a multiplication x; on mode i by a
matrix M € R? *di a5 follows:
d;
(T X M)alaz...alaprl‘..ak = Z Elag“.ai,la;aprl‘..akMaia/i7
al=1
where a;,j # 1, takes values in {1, ..., d;} and q; takes values in {1, ...,d’}.

It will be convenient to assume that random vectors X, Xy, ..., X, lie in a tensor product space
RPQRI®RY, so ¥ = EXX " belongs to the space of SDP Hermitian operators H (R? @ RI@R")
from R? @ R? @ RY to itself. Then, we will define partial traces of 3 as follows. Given linear spaces
Ly, Ly and linear operators X : Ly — L1,Y : Ly — Lo, we define the partial trace Trz,, 7 = 1,2,
w.r.t. L; as follows:

Trr,( X®Y)=Tr(X) Y, Tr,,(X®Y)=X T (Y).

We extend Try, (+) to all operators from Ly ® Ly — L; ® Lo by linearity. In our case, for operators
from H (R? @ R?®R"), we define Try (-) as a partial trace w.r.t. RP, Try(-) as a partial trace w.r.t.
R? and Trs(-) as a partial trace w.r.t. R". Partial traces will play in important role in our theoretical
analysis. We define

5 — e L O] [Tri2(3)] o3 — o 2] [Tra5(2)]

(%) { = ’||Tr2<z>||}’ 2(%) { Bl ’Tr3<z>}’
(I [T [T
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where Tr; ;, ;. stands for the composition of the traces Tr;,,Tr;,,...,Tr; . Quantities
r1(X), r2(X), r3(X) play the role of effective dimensions. From (Rastegin, [2012| display (23)),
we know that r1(X) < p,ra2(X) < ¢q,r3(X) < r. We define them as maxima over ratios of some
partial traces to ensure that for any non-empty set S < {1, 2, 3} we have

s,
o <=

seS
2 2 2 . . .
For a tensor 7 € RP" *7" X" we introduce the unfolding operator with respect to the first mode as

(T )ayy = Ta,[y/r2],(y—1)%r2+1-
Similarly, the unfolding operators with respect to the second and the third modes are define as
follows:
w2(T oy = Ty-1)%p2 + 1.0 fy/p21 - B3(T oy = Ty/a?),(v-1)%a2 +1,2-

We denote the output of SVD algorithm with hard thresholding via rank J as SV D ;. We denote
matrices with orthonormal columns of size R4*" by Oy . In what follows, [m] stands for the set of
integers from 1 to m.

2 MAIN RESULTS

Let us return to the estimation of the covariance matrix X of the form (). As discussed in the
introduction, we can reshape ¥ into a third-order tensor R(X) using the rearrangement operator (7):

J K
R(Z) = 2 Z VeC(Uj) ®VeC(ij) ®VeC(Vk) c RPQXQQXTQ’
j=1k=1

where vectors vec(Uj ) are assumed to be linearly independent, as well as vectors vec(V},). Stacking
together vectors vec(U;), j = 1,...,J into a matrix U € RP* %7 vectors vec(Vi), k = 1,..., K
into a matrix V € R"**X and matrices Wi, j=1,...,J,k=1,..., K into a three-dimensional
tensor W e R7*4° XK e can rewrite the above decomposition in the following compact form:

R(Z) =W x5V x1 U. ©)

Note that this decomposition is not unique. In particular, multiplying U by an invertible matrix
Qu € R ; from the right and WV by Qal from the first mode does not change the right-hand side
of @]) The same true for the factor V. Hence, one can assume that the columns of U and V are
orthonormal, i.e. U € Q2 y and V € O, . In what follows, we always assume that this is the
case. For brevity, we set d; = p?, dy = ¢, and d3 = r2.

We extend the model (3) to the case when X can be approximated by decomposition (3)) up to some
error. Then, it is naturally to consider the best (J, K)-TT-rank approximation of R(X), which we

denote by 7*. We denote the misspecification shift R(X) — 7* by €. To approximate 3, we aim to
recover its structured part 7* from the noisy tensor ) = R(X), which can be represented as

y — 7'* +5 I= Rdlxdgxde,’

where the error tensor £ consists of the approximation part £ and the noise part £ = R(f)) —R(%).

Since 7* has TT-ranks (J, K), it can be decomposed as 7* = W* x3V* x U*, where U* € Q2 ;,

V* € Q2 x and W* € R/ xa*xK Thig decomposition suggests the following natural algorithm
for estimating 7* from ). Using truncated SVD, one estimates the image of U* which coincides
with Imm, (77*), then estimates the image of V* which coincides with Immg(7*), and then project
Y onto the estimated spaces. However, this estimation is not straightforward, and one should apply
truncated SVD iteratively to reach reasonable accuracy. In Section |3} we conduct numerical ex-
periments illustrating that additional iterations indeed improve the estimation. We summarized the
resulting procedure as Algorithm [T, We refer to it as the Hartth algorithm where the abbreviation
HardTTh stands for Hard Tensor Train Thresholding.
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Algorithm 1: HardTTh

Input: Tensor ) € R *%2*% TT-ranks  (J, K), number of steps T

Output: TT-approximation T =W x. 3 V x 1 U where U € Od,,7, Ve Ody, i
W e RJX dox K.

Find SVD of m; ()) truncated on the first .J singular values: (70, 0.1, Uy = SVD ;(m()))

Find truncated SVD of m3() x4 T?OT): Vo, %02, Vo = SVD g (m3 (Y x4 (j'OT))
fort=1,...,Tdo

Set ﬁt7 Zt,ly ﬁt = SVDJ(lnl(y X3 ‘//\;Il))
Set Vi, 340, Vi = SVD g (m3(Y x1 U,"))

SetU =Up, V=VrpandW =Y x3 VT x, UT.

Notice that computational complexity of Algorithm [I] is determined by the complexity of trun-
cated SVD applied to the matricizations. The truncated SV D at the first step of HardTTh takes
O(dydads - min{dy, dsds}). Other steps require either O(Jdszds - min{ds, Jdo} + Jdidad3) or
O(Kdyde min{dy, Kds} + Kdydads) flops, so the overall complexity of the algorithm is

O((J + K)Td1d2d3 + TKdds - min{dl, Kdg} + T Jdsds - HliIl{dg, Jdg}
+ dydods - min{dl, dgdd})

If the misspecification is not too large, the number 7' of iterations can be taken logarithmical in the
ambient dimensions, see discussion below after Theorem [2.2}

In practice, randomized truncated SVD could be used (Halko et al., 2011) or other approximate
algorithms (Baglama and Reichel, [2005).

Given the output T of Algorithm |1 I applied to Y = R(Z ) define the estimator 3 of X as 3 =
R‘l(T) To analyze rates of convergence for this estimator, we impose some assumption on the
distribution of X.

Assumption 2.1. There exists w > 0, such that the standardized random vector ¥.~'/?X satisfies
the inequality

log E exp {(2_1/2X)TV(2_1/2X) - Tr(V)} <w?V3 (10)
forall Ve R4, such that |V ¢ < 1/w.

In (Puchkin et al., [2025), the authors showed that Assumption@ holds for a large class of distribu-
tion. Indeed, Assumption[2.T]is a weaker version of the Hanson—Wright inequality. In particular, if
the Hanson—Wright inequality is fulfilled for ¥~/2X, then X satisfies Assumption Therefore,
Assumption can be used when X~ /2X is multivariate standard Gaussian, consists of i.i.d. sub-
Gaussian random variables, satisfies the logarithmic Sobolev inequality or the convex concentration
property (Adamczak, [2015).

Under Assumption [2.1] we establish the following theorem. We give its proof in Appendix [E| The
proof sketch is given in Appendix

Theorem 2.2. Fix § € (0,1). Grant Assumption Suppose that singular values
oy(mi(R(X)), ok (m3(R(X)) satisfy

r2 I'2 r2 (6]
0 (R(2)) > 250 ()] + o)y ST I o (6)0)

%) + JT3(%) + £3(%) + log(48/6)

n

o (m3(R(E))) = 25|m3(E)] + 768w|2¢ L

Then, we have

>~ — Jr2(Z JKri(X) + Kr2(X) + log(48/5 ~
||Z—Z||F<b+960.)|2\/ rl( )+ r2( )+ r3( )+ Og( /)+<>2+'FT

n
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with probability at least 1 — 0, provided n > Rgs, where
= [Elle + 5V T w1 (E)] + 5V K [m3 (E)],

and Rs and remainder terms <~>2, 7T are defined in Table

Variable Expression

ay [mi (€ >3 (V)T + 32w\|EH\/r2(2)+Kr§<E>+log(48/5)

B SUP gz |my (€ x5 V)| + 32w||2‘\|\/ (D) +Kr2(z)+i(r3(2)+1og(48/é)
Vi<t

ay [m3 (€ <1 (U*)T)] + 32wHEH\/IQ(Z)JFJ%(E)H%MS/&)

Ev SUPyy e x 7 [m3(E x1 UT)| + 32WHEH\/ Z)JrJrl(E)Jr;flrg(2)+10g(48/5)
IUl<1

S VEBy & VIBua

@2 %6 <UJ(m1(7‘€(EU))) UK("“:;(%(;))))

N T

R 2008v 3

o VI +VE) - (smmeiemsy )

x <|m1(5) |+ 32w\/ I(E)H%(E)lf(mﬂogw/&)

Rs Jr3(2) + JKT3(X) + Kri(X) + r3(X)r3 () + log(48/6)

Table 1: List of ancillary variables

The upper bound on |5 — ¥||r provided by the above theorem can be decomposed into the bias term
b due to model misspecification, the leading variance term

2 2 2
V= 96w||2|\/‘]r1(2) + JKT3(3) + Kr3(%) + log(48/0)

\%
n

)

and remainder terms 5, 7. Note that after T = O(log(JKr,(X))) iterations, the variance part

o T
. ' 2008y Bu
r = (VI + VE) (oJ(ml(R(Z)))O’K(ms(R(E))))

< 3[BT S + 0]

n

of 77 will be dominated by V.

Compared to the known results in the literature, Theorem [2.2] has several advantages. First, it pro-
vides dimension-free bounds based on the effective dimensions r;(3) < d; instead of bounds in-
volving ambient dimensions d1, d2, d3 as in vast of literature on high-dimensional tensor estimation
(cf. (Zhang and Xial [2018;; |Qin et al., 2025} Han et al., [2022b; [Tang et al., 2025} [Luo and Zhang|
2024)). Second, we point out the following. Set r(X) = Tr(X)/||X|. It is known that, under some

assumptions, the sample covariance matrix X satisfies concentration inequalities

o r(X) + log(1/6 +log15
18— 3 5 oy SELEEUD sy gy P+ sl

with probability at least 1 — ¢ (see (Zhivotovskiyl 2024} Bunea and Xiaol, 2015, Hsu et al., [2012;
Puchkin et al., [2025))), where < hides some distribution-dependent constant. Hence, our effective
dimensions r;(3) naturally extends the effective dimension r(3) of sample covariance concen-
tration in the unstructured case. Third, while [Puchkin and Rakhubal (2024) prove dimension-free
bounds for the model and the estimator 3° = P‘l(é) defined by (B), they do not analyze the
misspecification case and bound the variance term with probability at least 1 — d as follows:

maxr2 (Pr) + maer(CI)k) + log(1/9)

|£° = Slle < VEw Z I‘I’kll‘lfkl\/ ,

n
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so they have rough variance proxy factor Z,[f:l [®s]| Py instead of |Z| = | Zszl D ® .
We improve their analysis to establish bounds on the variance involving variance proxy factor |X||
which seems to be tight.

To highlight the advances of Theorem [2.2] let us discuss how effective dimensions could be small
compared to the ambient dimensions. In Appendix [C] we prove the following proposition.

Proposition 2.3. Suppose that a covariance matrix 2 € H (RP @ R? @ R") can be represented in
the form

J K
=Y U Vi@ Wy
j=1k=1

for some symmetric positive semidefinite matrices Uy, Wy, Vi.. Then, we have
ri(X) < J -maxr(Uj), r(X)<JK- mz;xr(ij), r3(¥) < K - ml?xr(Vk).
J J

For example, Proposition @implies that if the spectra of matrices U;, W, and V}, decay quadrat-
ically, i.e. if max{o; (U;)/[U] o2 (W) /| Wykll, o: (Vi) /|Vi[[} < Coi™, then 71(X) < Com?/6 -
ik

J,r2(¥) < C,m?/6- JK and r3(¥) < C,72/6 - K.

The main drawback of Theorem [2.2]is the requirements o;(m;(R(X2))) 2 |Z[v/r3(X)ri(2)/n
and n = r3(X)r3(X). Indeed, the theory of tensor estimation by SVD-based algorithms developed
in (Zhang and Xia, 2018} |Tang et al.| 2025)) suggests that the minimax error can be achieved under
condition

o(m (R())) 2 |Z] /02 - (dods)®®, (11)

and there is strong evidence that the power 3/8 in the above inequality can not be taken smaller
for any polynomial-time algorithm (Barak and Moitra, 2016} [Hopkins et al., |2015; Zhang and Xia,
2018 |Luo and Zhang] [2024; Diakonikolas et al.,|2023). However, minimax bounds under conditions

of the type (TI)) were established when entries of & areiid. Roughly speaking, the estimation error
of the singular subspaces corresponds to the impact of the term m; (€)m; (£) " in the decomposition

m (V)my (V)" = my (T5)my (T*) T + m (T*)m (€) T +my (E)my (T7%) 7 + my (E)my (€)T

on the perturbation of eigenspace of my (7 *)m; (7*)7, see (Cai and Zhang, 2018). When entries of
€ are i.i.d., we have Emy (€)m;(€)" = aly, for some scalar , so the error of singular subspaces

estimation is determined by deviations of ml(g )Tml(f )T from its mean, which can be controlled
under conditions like (IT). This is clearly not the case of our setup, so Algorithm[T|requires debiasing
before applying SVD, which needs extra assumptions on the distribution of X; and is left for future
work.

Comparing Theorem @l with results of [Zhang and Xia (2018)), one can note that, in their paper,

upper bounds on the tensor estimation error do not involve second-order terms like {>o. The reason

is that their work imposes an assumption max{dy, dz, d3} < C'min{d;,ds,ds} for some absolute

constant C. Translated to our setup, it means that, assuming maxr;(X) < C'minr;(X), the term
3 3

<~>2 is dominated by the leading variance term v, which is exactly the case.

Finally, we briefly comment on the choice of J and K. If ¥ can be represented by (3)) for some
J, K, such that

r? r2 2 o
( (R(E))>cwz|\/ 1(%) + r3(B)r5(%) + log(6/0)

o g\m1 )
n

(ma(R(D)) > Culs]y| ZEEL T THE) i) + log(d/0)

n

for some large enough absolute constant C', and the following bounds hold
IZ1/2 < 5] < 3%]/2,
N 1
[Trg(X) — Trs(2)| < §|\Tr5(2)|| for all non-empty S < [3] (12)
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with probability at least 1 — §/6, then one can define estimators f K of J, K as

j\: max < .J' | O'J/(ml( ( Clw|2|\/ +I‘2 ) ( )+10g(6/5) ’ (13)

- o [JE2(E) + Jr2(E) + r2(S) + log(48/6)
(m3(R(%)) = C’wIEI\/ ' B
where C’ is some other absolute constant and w is assumed to be known. For example, one can

compute w explicitly when X; are linear transform of Gaussian random variables. For such J, we
will have

)+ r3(2)r3 () + log(6/6)

> [my (€)],

o +(m (R(X))) >768w|2|\/

with probability 1 — /6 (see Lemmamin Appendix), implying J < J.IfCis significantly larger
than C”, then the singular value o (m; (R(2))) = o (m1 (R(Z))) — |m1 (€)] satisfies the inequality
of the definition @ with probability at least 1 — /6, so J < j , and we conclude J = j with
probability at least 1 — /2. Analogously, one can show that K = K for suitable choice of c,c’
with probability at least 1 — ¢/2, yielding J = Jand K = K with probability at least 1 — 4.

Then, while applying Algorithm with J < J. K < K could lead to better bias-variance tradeoff,
using J > J will result in much worse convergence rate in our model.

However, this holds assuming that (T2) is fulfilled, so concentration bounds should be established
for the norms of partial traces, which we left for future research.

3 EXPERIMENTS

In the present section, we illustrate that additional iterations 7' of HardTTh indeed improve the
estimation of the covariance matrix X provided singular values of matricizations satisfy conditions
of Theorem [2.2]up to some constant. We also compare HardTTh with several other algorithms.

To illustrate our theory, we construct a sampling model with the covariance matrix ¥ satisfying (3))
as follows. Set J = 7, K =9andp = ¢ = r = 10. Let 9%, i e [n],j € [J],k € [K] ben - JK
tensors of shape (p, ¢, r) consisting of i.i.d. standard Gaussian entries. Let A; € RP*P Bj; €
R?%? () € R"™" be random symmetric matrices with diagonal and upper diagonal entries being
i.i.d. Gaussian as well. Then, random vectors Xy, ..., X,, are defined as vectorized tensors

J K
2 Z gisk X3 C X2 Bjk X1 Aj e RP*9*T,
j=1k=1
conditioned on A;, Bji, Cy. The covariance matrix ¥ of X; satisfies (see [Puchkin and Rakhuba
(2024))

J K
D= Y A2®BL,eCE
j=1k=1

We propose several algorithms for comparative analysis with HardTTh. Specifically, we consider
a version of Algorithm [T] with 7" = 0 additional steps, to which we refer as TT- HOSVD This

algorlthm computes an approximate Tucker-2 decomp051t10n of a noisy tensor R( ) &~ W X3

VO X1 Uo, and output the estimatior % X3 VO X1 Uo of R(X). We use this comparison to justify
whether additional iterations are indeed necessary.

Furthermore, we modify the algorithm proposed in|Tsiligkaridis and Hero|(2013)) for use in our con-
text. Instead of a single parameter A to control soft-thresholding, two distinct parameters are passed
for each of the first and third matricizations of R(X). Using the first one, soft-thresholding upon first
matricization is applied, then tensor is reshaped and soft-thresholding with another parameter upon
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third matricization is used. Then, we reshape the obtained tensor X back into a matrix R~ (é? ) of
size pgr x pqr. The pseudocode is given in Algorithm[2]in Appendix [H.1}

Finally, we compare HardTTh with the approximate Tucker decomposition with the Tucker ranks
(J, JK, K) using HOOI (Higher Order Orthogonal Iterations) algorithm of [Zhang and Xial (2018)).
If no additional iterations in this algorithm were applied, we refer to it as “Tucker” in our tables.
Otherwise, we refer to it as “Tucker+HOOI”.

We also include the sample covariance estimator into our comparative analysis.

We conduct several experiments varying the number of samples n. For n = 500, the result is given
in Table[2] Forn = 2000, the resultis given in Table[3] Other values of n are studied in Appendix [H}
For each estimator .S of %, we compute the relative error .S — 3| /| X||r in the Frobenius norm. For
each n, we tune parameters A1, Ay of the PRLS algorithm over a log-scale grid. We fix the number
of iterations 7" of HardTTh to 10.

Table 2: Performance comparison of tensor decomposition algorithms for n = 500.
Relative errors were averaged over 32 repeats of the experiment, empirical standard
deviation is given after + sign. The best results are boldfaced.

. Algorithm

Metric
Sample Mean =~ TT-HOSVD HardTTh
Relative Error 1.22 4+ 0.02 0.269 + 0.008 0.238 +0.013
Time (seconds) 0.007 + 0.003 1.9+0.8 2.7+£0.8
Metric Algorithm
Tucker Tucker+HOOI PRLS

Relative Error  0.252 + 0.007  0.240 £ 0.013 0.238 + 0.017
Time (seconds) 41.3+ 1.7 81.6 + 3.5 0.7+0.3

Table 3: Performance comparison of tensor decomposition algorithms for n. = 2000.
Relative errors were averaged over 16 repeats of the experiment, empirical standard
deviation is given after + sign. The best results are boldfaced.

. Algorithm

Metric
Sample Mean TT-HOSVD HardTTh
Relative Error  0.611 + 0.009 0.154 + 0.006 0.082 + 0.005
Time (seconds) 0.010 + 0.007 1.7+£0.6 4.1+1.1
Metric Algorithm
Tucker Tucker+HOOI PRLS

Relative Error ~ 0.150 + 0.005 0.082 + 0.005 0.216 + 0.012
Time (seconds) 39.9+5.2 74.2 £ 8.1 0.6 +£0.3

Note that while the sample size increases by 4, the relative error of HardTTh decreases by 3,
contradicting the 1/4/n dependence between estimation error and the sample size. The reason is
that for n = 500 neither TT-HOSVD nor HardTTh is able to reconstruct bases of Imm; (R(X))
and Imm3(R (X)), so the leading error is determined by the lost components of these bases.
Hence, one indeed needs some condition on the least singular values of matricizations of R(X).
When n = 2000, HardTTh is able to approximate these bases, yielding a much better perfor-
mance, while TT-HOSVD cannot approximate them. It is instructive to look at sin O-distance
between Im Uy, Im Ur and ImU*. If n = 500, then boAth Im ﬁo,Im Ur have sin ©-distance
to ImU* around 1. But for n = 2000, while sin ©(Im Uy, Im U*) is still around 1, we have

sin ©(Im Uz, ImU*) = 0.33 + 0.08. Therefore, additional iterations of HardTTh indeed help.
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The fact that noise in singular values is larger than the estimation error is illustrated by the fact
that PRLS performs worse than TT-HOSVD. Indeed, to remove noise in singular values, PRLS
applies soft-thresholding with A1, A2 being around the noise level in singular values of matriciza-
tions. Then, soft-thresholded SVD has each singular value decreased by either A;/2 or Ay/2. This
yields the estimation error around the maximum of A\; and A5, which dramatically affects the algo-
rithm performance. This highlights the difference between low-rank tensor estimation problem and
low-rank matrix estimation problem, since for the latter there is no significant difference between
soft-thresholding and hard-thresholding estimation.

We conduct experiments on image denoising task between mentioned tensor methods. The idea
behind such comparison is the following: comparing covariance estimation through long pipelines
is unfair, since other blocks might need additional tuning and it is hard to solve credit assignment
between such changes. So we have decided to estimate the denoising abilities of our algorithm
across one-shot methods (neural nets are out of scope, due to the training process in which they
interact with tons of data). One can see results in Figure |l We chosen p, g, r as (8,4, 4) to match
the dimension 256 of a given picture. Then we apply gaussian noise to the picture and pass it as
sample covariance to the denoising algorithms. We search best hyperparameters to minimize the
error and obtain J, K = 32, 32.

Hardtth Tucker Tucker + HOOI
Error: 0.1020 Error: 0.1084 Error: 0.1077

Figure 1: Performance of tensor decomposition algorithms on image denoising task.

4 CONCLUSION

In the present paper, we suggest a computationally efficient algorithm for estimation of high-
dimensional covariance matrix based on HOOI algorithm of|De Lathauwer et al.|(2000). We provide
a comprehensive theoretical analysis of this algorithm, establishing sufficient conditions for its ap-
plication and rigorous guarantees that take into account both bias and variance of the proposed
estimator. Our analysis is non-asymptotic and relies on the intrinsic dimensions of the covariance
matrix associated to our algorithm, without involving the ambient dimension. We illustrate our
theory with numerical experiments.

5 REPRODUCIBILITY STATEMENT

We provide the code in Supplementary Material. We give a proof sketch of Theorem in Ap-
pendix [D] The proof of Theorem[2.2]is given in Appendix [E|
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A USAGE OF LLM

We used DeepSeek to polish and aid writing. All mathematical derivations and numerical experi-
ments were performed solely by the authors.

B ADDITIONAL NOTATIONS AND BASIC TOOLS

For proofs, we need some extra notation. First, we adapt the Einstein notation for tensors, omitting
the summation symbol and assuming that the summation holds across repeated indices, e.g. for the
matrix product

(AB)ab = Z Aachba

we will write as

(AB)ab = Aachb .

Second, we will widely use the following identities for a tensor 7~ € R% *92%ds and a matrix X of
suitable shape
my (T x3X) =m (T)(Ig, ® X 1),
m (7 x1 X)=X-m(T),
m3(TX x1 X) =m3(T)(XT ®1,),
m3(7 x3 X) =X -m3(7).
While the second and the fourth identities are straightforward, the first and the last one should be

verified. Let us prove the first identity for X e R% %93 Choosing indices a € [d,],b € [ds], ¢ € [d'],
we obtain

(ml(T X3 X))a)(b_l).d?’.i,-c = (T X3 X)abc = ch’l];bc’

=01 (T)a,(r—1)ds+ (Tas ® X ) (0 —1)ds 4/, (b—1)ds +c-
The third idenitty of can be checked analogously.

(14)

For a matrix U € Qgq,,, we denote the projector UUT onImU by IIy.

C PROOF OF PROPOSITION

Proof. The proposition follows from the following bound on the partial trace. Let ¥, : L; —

Li,®4:Ly — Ly,g=1,...,G, be positive semidefinite operators. Define
G
H=> 9,0,
g=1

Then, we have

Tr(¥,) ¢
|ITrr, (H \—HZTr )@y < Z [, [T, [ @, < maxr Z AL
< G : mgaxr(%) - max Wl @g] < G- mgaxr( 9) IIHH-

The result follows by applying the above to each partial trace Trg(X), S < [3], with a proper choice
of L1, ¥, and . O

D PROOF SKETCH FOR THEOREM 2.2]

In this section, we provide the sketch of the proof of Theorem [2.2] The proof develops the ideas
of Zhang and Xial (2018)) and Puchkin and Rakhuba (2024). First, we consider the problem of

14



Under review as a conference paper at ICLR 2026

estimating a tensor 7* = W* x3 V* x; U* from a noisy observations ) = T* + £, without
any assumptions on the error term £. Let T be the estimator obtained by Algorithm |1| on the
input Y. The noise £ influence the estimation of 7 in several ways. First, one need to impose

some assumptions depending on the norms of m; (£) and m3(& x ﬁo) on the singular values of
matricizations m; (7*), m3(7*) to be able to recover left singular subspaces of these matricizations

up to a sin O-error at most 1/4. Second, we show by induction on ¢ = 1,...,T that Im (7,5, Im 17t
improves the estimation of singular subspaces and establish the dependence of the estimation error

on & at step 7. Finally, we decompose the error H7A' — T*|r into terms depending on the singular
subspaces estimation and the error of estimating V*. Combining all types of errors, we obtain the
following theorem. Its proof if postponed to Section [F]

Theorem D.1. Given model (16), suppose that singular values o j(m1 (T*)), ok (mg(T*)) satisfy
oy(m1(7T%)) = 24|m (€)|| and ox(m3(T*)) =24 sup , [ms(ENU®14,)]-  (15)

Put
ay = [my (€ x5 (V¥)T), Bu= sup [m(ExsVT)],

ay = [m3(€ x1 (U*)T)], By = sup [m3(& x, UM
UGRdli
[U]<1
Then, we have

1T —T*|p < sup 1€ xs VT x1 U g + WEKay + W Jay + Oz + 11,
U€®d1,J=VE©d2‘K

where

e [ VEBvau VJBuav
%“<mmwm+wmwm>

_ , 6453y o
e =307+ VE) I GE

oy(m1(T*))ok (m3

Then, we decompose the error £ into the bias part £ and the varaince part E. Using the trian-
gle inequality, we bound each error term appearing in Theorem into the bias and variance
parts, and bound the variance parts with high probability using the variational PAC-Bayes approach
(see (Catoni and Giulinil |2017; Zhivotovskiy, 2024} |Abdalla and Zhivotovskiy} [2022; Puchkin and
Rakhubal, [2024)) for other applications of this technique).

E PROOF OF THEOREM

Proof of Theorem2.2] For clarity, we divide the proof into several steps. For brevity, we denote

R(m;(+)), ¢ = 1,3, by R;(-).

Step 1. Sensititivty analysis of Algorithm [T} First, we establish deterministic bounds on the

reconstruction of the tensor 7* from a noisy observation ) by Algorithm[I} denoting
Y=T"+¢&, (16)

where 7% = W* x5 V* x; U* is the best (J, K)-TT-rank approximation of R(X), U* € Qg, s,

V* e Qgy 10, W e RI*¥2XE and Y = ’R(f]) Let 7 be the output of Algorithmwith input ).
Then, Theorem [D.T]is applicable. But we need first to check its conditions.

Step 2. Checking conditions of Theorem [D.1} We deduce Theorem[2.2]from Theorem Let us
start with conditions of Theorem and bound right-hand sides of inequalities from above.
Consider the lower bound on o 7(m; (7*)). By the triangle inequality, we have

Jm1 (E)] < Jmy ()] + [my (E)]-

The second term of the above can be upper bounded using the following lemma.

15
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Lemma E.1. Fix § € (0,1). Suppose that n > r3(%) + r3(X)r3(X) + log(4/5). Then, under
Assumption[2.1) we have

< 320[5] \/ ) + r3(D)r3(2) + log(1/5)

Jmy (€) -

with probability at least 1 — 0.
Define the event

el={|m1< PENSNGEEST n(z)*log<6/5)}. a7

Since n = Rs = r3(3) + r3(X)ri(2) + log(24/6), due to LemmalE.1} we have Pr(€;) > 1 — §/6.
Hence, if

oy(m(7T%)) = 24|m (E)] + 768wz|\/r?(2) +r3(X)ri(E) + 10g(6/6)’

n

the first inequality of (T3) is fulfilled on the event £;. Since o7 (m1(7*)) = 0;(R1(X)) — [my (€)],
on &1, to fulfill the first inequality of (T3)), it is enough to ensure that

%) + r3(Z)ri(X) + log(6/9)

2
— r
1 (Ra(S) > 251 B)] + To5wl5y |
as guaranteed by the conditions of the theorem.
To satisfy the second inequality of (I3)), we use the triangle inequality again and obtain

sup [ms(E)(U®1Ia,)| < sup [ms(E)URIa)| + sup [ms(E)(U @ Ia,)|-
UeR%1 >/ UeRrd1 %7 Uerd1x7
[Ul<1 [Ul<1 [Ul<1

We bound the second term, using the following lemma. Its proof is given in Section[E.2]

Lemma E.2. Fix § € (0,1). Suppose that n > Jr2 () + Jr3(X) + r3(X) + log(8/0). Then, with
probability at least 1 — §, we have

sup |ms(€)(U @ I, )| <32w||z|\/"r%(z)+Jr5(2>+r§<2)+log(8/6)'

UERdl xJ
[U]<1

Analogously, ifn > r3(X) + Kr3(X) + Kr3(X) + log(8/4), then, with probability at least 1 — 6,
it holds that

2
sup Imy (E)(Ig, @ V)| < 32w|2\/ il

VeRds*K |V|<1

n

¥) + Kr3(2) + Kr3(X2) + log(8/4)

Define the event

) + Jr2 (D) + Jri(2) + log(48/
E2={ s (U@ L) < 2wy B )+ I ¢ loglis/0)
UeRrd1xJ n
IUl<1

It has probability Pr(€5) > 1 — §/6, since n > Ry satisfies conditions of Lemma [E.2) with §/6 in
place of 4. Due to conditions of the theorem, we have
Y) + Jr2(2) + Jr3 () + log(48/6)

c(Ra(5)) > 25]ma(E)] + TO8 ]y - ,

so conditions of Theorem is satisfied on £1 N E,.

Step 3. Bounding oy, ay, Sy, By. Then, we bound ay, ay, By, By. We start by the former two
quantities. By the triangle inequality, we have

ay < Jmy (€ x5 (V)T + Jmi (€ x5 (V)T
v < [ma(€ x1 (U7 + [ma(E x5 (U7

To bound the second terms of the right-hand sides of the above, we use the following lemma. Its
proof is given in Section[E.3]
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Lemma E.3. Fixd € (0,1). Suppose thatn > 13 (%) + Kr3(X) +log(8/5). Then, with probability
at least 1 — 9, we have

Jmy (€ x5 (V) 1) < 32w2|\/r1(2) + Kr3(%) + log(8/9)

n

Analogously, if n > r3(X) + Jr3(X) + log(8/6), then, with probability at least 1 — 6, we have

~ r2 I‘2 o
[m3 (€ x5 (U*)T)] < 32w|2||\/ 5(2) +J Q(nE) + log(8/9)

Define events

E3 = {m(é x3 (VHT| < w2|\/r%(z) + Kr%f]) + log(6/9) } 7

E4= {ms(é x3 (U*)T]| < w|g|\/r§(2) + Jr3(¥) + log(6/4) } .

n

Since n > Rg satisfies the conditions of Lemma with §/6 in place of ¢, the lemma and the union
bound imply Pr(€3 n €4) = 1 — §/3. On the event £5 N €4, we have

ay <ay and ay < ay,
where dy, ay are defined in Table [T}

Next, we bound Sy, By . Applying the triangle inequality, we get

o< swp [mExsV[+ sup [mi(€ x5 VT,

VeR2* VeRrd2x
IVi<i [Vi<1
By < sup (&) (U Ia)| + sup |m3(E)(U R Ia,)|-
UeR¥1*J UeR¥1 >
U|<1 U<t

Note that on the event €5, we have By < EV, where EV is defined in Tablem To bound By, we use
Lemma [E.2] again. Define an event

PN r?(%) + Kr3(%) + Kr3(2) + log(48/8
£i= ) s |m1(5X3VT)<32w|EM 1) + Kx3(8) + Kx3(3) + log(48/0)
VeRrd2x K n
IVi<1

Since n > Ry satisfies the conditions of the lemma with §/6 in place of 0, we have Pr(€5) > 1—4/6,
and on this event 8y < SBy.

Step 4. Bounding sup;rco, ; veo,, |€ x3 VT x1 UT|p. Using the triangle inequality again, we
get '

sup |Exs VT x U |p < sup IExs VT x 1 UT|p
UG@dle,V€©d2yK U€©d1,,]gve©d2,K
+ sup IE x5 VT x, UT||p.

Ue@dl,‘;,Ve@dQ,K

We bound the second term of the right-hand side using the following lemma. Its proof is given in

Section[E.4]

Lemma E4. Fix § € (0,1). Suppose that n > Jr3 (%) + JK3(3) + Kri(X) + log(8/3). Then,
with probability at least 1 — 0, we have

1€ x5 VT 5 UT | < 32w|z\/‘]r%(2) + JKT3(%) + Krj(%) + log(8/9)
n

sup
Ue@dl y],Ve@d21K
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Define the event

E = sup 1€ x5 VT x1 UT|p
Ue@dlyJ,Ve(OJd?,K

< 32|z\/*’r%(2> + JKT3(Y) ;Krg(E) T log(48/6) } |

Since n > Ry satisfies the conditions of Lemma with 6/6 in place of 4, it implies Pr(Eg) =
1-4/6.

Step 5. Establishing bias and variance leading terms. The event £ = ﬂ§ &, has probability

=
at least 1 — § due to the union bound. On the event £, conditions of Theorem are satisfied, so

we have

ay <dy, av <dy, fu<pPu, Bv <Py

and

~ 2 2 2
sup  |Exz VT x U [p < 32w|2|\/Jr1(2) + JKT3(2) + Kri(%) + log(48/6)

UG@dl ,J1V€®d2,K n

The conclusion of Theorem yields

1T = T*p < sup IExs VT <1 UT|p
UE@dl,J»VE©d2,K

4wz \/ Jr3 () + JKr3(Y) ; K13(X) + log(6/9)
+ 4\/?aU + 4\/354[] + Qo+

Substituting expressions for &, &y from Table[I] we obtain

1T = T*r < sup [€ x5 VT 51 Ul + 4V K [mi (€ x5 (V)]

E@le,VG@dzyK
+ 4V T |ms (€ x1 (UHT)]
2 2 2
+ 32015 \/ Jr3(8) + JKr3(Y) —7|—1Kr3(2) + log(48/0)

N 32\/jw|2\/r%(2) + Kr%(f) + log(48/6)

+ 32\/Ew2|\/r§(2) i Jrg(i) +108U48/0) | oy 4 v

Note that the fifth and sixth terms of the right-hand side are dominated by the fourth term. Using
£ =Sl =T = T*+T* =R O)le < |7 = T*le + [E],

sup IExs VT x UT|gp < sup  sup [UTm(E)(Ig, ®V)|r
Ue@dl,(],Ve@)dg,K UE@dl’J VE@d&K
<VJ  Sup Imy (&) (Ig, ® V)| < VJ|m1(E)],
€43, Kk
Im3(& x1 (U*)T)] < [ms(E)],
[my (€ x5 (V)T < [mi ()],
we derive
~ — Jri(T JKri(% Kri(Z log(48/6
HZ_ZHF <b+96w2|\/ rl( )+ r2( )'; r3( )+ Og( / ) +<>2+7"T (18)
on &g.

18
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Step 6. Bounding the remainder terms. Since <o,rr depend on 1/0;(mi(T*))
and 1/ok (m3(7*)), we will bound singular values o;(mi(7%)),0x(m3(7*)) below using
07(R1(%)), 0k (R3(X)). By the conditions of the theorem, we have o7(R1 (X)) = 25|m;(E)]
and o (R3(X)) = |m3(E)], so, by the Weyl inequality, we deduce

24

o7(m(T%)) = 0;(Ri(E)) — [m(E)] = 35 97 (Ri(2)),
o (m3(T%)) = ok (R3(%)) — |mz(E)| = % ok (R3(¥)).

On the event &, it implies
_ .« [ YEBvau VJBray
O <‘7J(m1(T*)) " UK(ms(T*))>
<50 VK Byay VI Buéy x
- o7(Ri(T*))  orx(Rs(¥))

and

rr = 3(VT + VE) ( 645v bu Iy (€)]

UJ(ml(T*))JK(mS(T*))>

~ o~ T
2008y B
<WIHVE) <aJ<R1<z>>aVKEJR3<z>>> @l

Using definition of the event £1, £y = &1, and the trinagle inequality |m; (&)| < [mi(E)] +
|m1(£)|, we obtain

~

ry < rT,

where 77 is defined in Table Substituting the above bounds on s, rr into (18) finishes the
proof. O

E.1 PROOF OF LEMMA[ET]
Proof. Step 1. Reduction to the PAC-bayes inequality. The analysis will be based the following
lemma, which is known as the PAC-Bayes inequality (see, e.g., /Catoni and Giulini|(2017)).

Lemma E.5. Ler X, X4,...,X,, be i.i.d. random elements on a measurable space X. Let © be a
parameter space equipped with a measure [ (which is also referred to as prior). Let f : X x© — R.
Then, with probability at least 1 — 6, it holds that

x.0) , KL, ) +log(1/5)
n

1 n
Eo~p— ; f(X;,0) < Eg,logExe’
simultaneously for all p < p.

Let us rewrite ||lm; (£)] as the supremum of a certain empirical process. We have

Im (E)]| = sup x'm (E)y = sup (m (€),xy ")
xeSd1—1 yeSdadz—1 xeSd1—1 yeSdadz—1
= sup (BN Ry(xy ')

xeS§d1—1 ,yESdZ dz—1

1 ¢ _ -
= sup — Y XX R (xy ") - ECGXT R (xby 7))

xeS41—1 ye§dadz—1 n o

1 & _ _
= sup =Y X R (xy X — EX] Ry (xy )X

xeSd1—1 yeSdadz—1 n r

19
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Define the following functions:
filx,y) = MXI R (xy X — EX/ R (xy )X}
fx(xy) = MX"R ' (xy )X —EXTR; ' (xy )X},
where the positive factor A to be chosen later. We will apply Lemma [E.5|to the empirical process

Mm@l = s =Y fixy)

xeSd1—1 yeSdadz—1 n izl

with R% ® R?9s ag the parameter space and the centered Gaussian distribution N (0,021,,) ®

N(0,021,,4.) as the prior i, where o, o2 will be defined in the sequel. Consider random vectors
2+azas p M q

¢, with mutual distribution py  such that E¢énT = xy . Since fi(x,y), fx(x,y) are linear in

xy',wehave E,__f;(&,m) = fi(x,y),s0 Lemmayields

1 n
sup  — Y filx,y) < sup {pr,y log Ex exp fx (&, 1)
xegdi-1 T i=1 xe§d1—1

yesdzdz—1 yesdada—1

+ (19)

Kﬁ(ﬂx,yv M) + log(l/&) }

n

with probability at least 1 — §. Then, we construct py , such that the right-hand side of the above
inequality can be controlled efficiently.

Step 2. Constructing px . Suppose for a while that py y-almost surely we have
AIZVPRI (En)ZY e < 1/w. (20)
Then, Assumption 2.T|implies
E,, , logEx exp fx(&mn) = E,, , log Ex exp {/\ (XTRfl(XyT)X — EXTRfl(xyT)X)}
< NWE,,  [SYVPRT (En SR 1)

So, to control the above and keep the left-hand side of bounded, we do the following. Define
independent random vectors G; ~ N'(0,0%14,), G2 ~ N(0,0314,4,), and consider a function

g(xy") = [SVPRIN K (y) SV e (22)
By the triangle inequality, we have
g(x+ Gy + G2) < g(x,y) + 9(x,G2) + 9(G1,y) + 9(G1,G2),
SO
g°(x + Gr,y + G2) <4g°(x,y) + 49%(x,G2) + 4¢%(G1,y) + 49°(G1, Ga).

Then, the distribution p , of the random vector (£, 1) is equal to the distribution of (x+G1,y+G2)
subject to the condition

(G1,G2) € T = {g%(a,b) < 4Eg*(a,b) | (a,) € ({x,G1} x {y, G2})\{(x,¥)}} -
Note that by the union bound and the Markov inequality, we have
Pr((G1,G2) ¢ T) < > Pr (¢%(a,b) > 4Eg*(a,b))
(a;b)e({x,G1}x{y,G2H\{(x,¥)}
1 3
< > — (23)
(a;b)e({x.Gi}x{y,G2H\{(*,¥)}

Let us check, that ]pr’yEnT = xy . Since the Gaussian distribution is centrally symmetric and the
function g does not change its value when multiplying any of its argument by —1, we have

(&m) 2 (x+e1(€—x),y +ea(n—y)) (24)

20
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where €1, €5 are i.i.d. Rademacher ramdom variables independent of (£, 7). Then, we obtain

E¢n' =xy' +EaE(€ —x)y' +Eelx(n—y)' +EaEaE(E —x)(n-y) =xy'.
Hence, to satisfy the assumption (20) and use (Z1)), it is enough to bound expectations Eg?(a, b) for
(CL, b) € {X, Gl} X {Y7 GQ}

Step 3. Bounding expectations Eg?(-, -). Let us start with g%(x,y). From the definition (22)), we
have

Fxy) = [EPRI (xy DEV2 R = Te(EV2R (xy NERT T (xy 1) E?)
= Tr(SRy (xy DER; T (xy ) (25)
Since Tr(AB) < | A|lr||B||r for any matrices A, B, we have
g*(x,y) < [ERT (xy DIl ERT T (xy D < |2 =y TE = I3,
where we used the fact that R;*(-) does not change the Frobenius norm and that |[xy'|r =

x|yl = 1.

It will be convenient for future purposes to rewrite (23)) in a slightly different form. We introduce
the following tensors, that are reshapings of the matrix X and vectors x,y, G1, Ga:

SPIQ1T1PZQ2T2 = E(p1—1)q7“+((h—1)7"+7“1,(Pz—l)qT+(Q2—1)T+T27
1 2
gl(72;273 = (Gl)(P2—1)'P+P3’ glg2t)13T2T3 = (Gz)(‘12—1)‘17’2+((13—1)T2+(T2—1)7’+T’3’

Xpops = X(pa—1)p+ps>  Yqagsrars = Y(g2—1)qr2+(gz—1)r2+(ra—1)r+r3-

Following the Einstein notation, we obtain
g (xy) = Tr(ER; H(Gry IRy T (xy ')
= X(p1—1)gr+(r1—1)r+r1,(pa—1)gr+(ga—1)r+rs
X (XY) (pa—U)p+pas(az—1)ar+(qa—1)r2 +(ra—D)r 472
X B(pg—1)gr+(gs—1)r+7a,(pa—1)gr+(@a—1)r+rs
x (Xy)g;l*1)p+p4,(q1*1)qr2+(q4*1)r2+(n*1)T+T4'
= Spraur1p2azra¥paps Y a2asrars Opaqsrapaqara ¥p1pa Y a1 qarira (26)
Note that the above holds for any x € R% |y € R%2ds,
Then, we bound Eg?(G1,y). Following (26)), we get

2 = (1) (1)
Eg (Gl,}’) - ESP1q1T1PZQ2T2gpgpgyQ2q:3T27‘38p3Q3T3p4Q4T4gp1p4ythlI4T1?”4

_ 2

=0 61)2101 5;0313481)1 q17T1p2q272 ny2(137"27”3Spsq:s?"sm%mytll qariTa
_ 2

- Ulsplq17'1111‘127'2YQ2(137'27'3Sp3qs7'3PSQ47'4YQ1(I4T'17'4

where ¢ is the Kronecker delta symbol. The above can be rewritten as the following trace:
Eg*(G1,y) = o7 - Tr(Try (2)Y Try (R)Y 1),
where entries of the matrix Y are defined by Y4, —1)r4rs,(g3—1)r+rs = Ygagsrars- Lhen, we have

Eg*(G1,y) < of|Tri(D)Y [ - [ Try (2)Y T g < o7 | Tey (8) 2 - [V E = o7 | Tri (2)].
Next, we bound Eg?(x, G2). Using (26)), we derive

2 - (2) (2)
Eg*(x,Gz2) = ESPl(Il7’11’242"“2XP2P3quQ3T2’r’3‘Sp3qu3p4Q4’f’4XP1P4gq1q4'r17‘4

2

= 030034104394 Or>r1 Orsr4Spr s rip2g2ra Xpaps Spaasrapaqara¥pipa
2 T

gy TI'(TI‘ng(E)XTI‘Q’g(E)X ),

where entries of the matrix X are defined by X,,, ;. = Xp,p,. Then, we have

Eg*(x,G2) < 03| Tra3(2) X [ - [Tra3(2) X e < 03] Tra(D)] - [ X[F = 03 - [Tra,a(S)]%.
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Finally, we bound Eg?(G1,G2). Using (26), we get

E92 (G1,G2) = ESp, g171p2927 g[si;)g g(gz)]g?“g rs Spaasrspagara gg(:i %:4 g§f214r1 T4

_ 2 2
=0 026P1p2 51)31945111112 6!13(1467‘17“257“37“481)1(11 7‘11726127‘2Sp3qa7‘3P4Q47’4

= olo2 - Tr3 (D).

Hence, we have py ,-almost surely:

9(§,m) < 2\/HEH2 + 07 [Tey (D)2 + 03| Tra 3(2) 2 + 003 Tr* (%)

Set 07 = r;%(¥) and 03 = r,%(X)r; 2(X). By the definition of r;(X), for this choice of o1, o9,
the function g(£€, n) is bounded by 4[| almost surely. Thus, using (20) and (21)), we deduce that
for any A satisfying

A< (4wlm) 7,
we have

E,. ., logEx exp fx(&,m) < Nw? - E,  g°(&,m) < 16X°w°|Z]> Q27)

Due to (T9), it remains to bound the Kullback-Leibler divergence KL (px.y, it).
Step 4. Bounding the Kullback-Leibler divergence. The density of py  is given by
B (27T)7(d1+d2d3)/201—d1 02—d2d3 1 9 1 9
Py (T, y) = Pr((Gr. Gy € T) XD T 3,2 |z —x| 207 ly =yl
< 1@ —x,y—y) e T}
The density of the prior p is given by

B (2m)~(ditdads)/2 1 9 1 )
u(z,y) = g exp 2G%le\ 2Uglly\l :

Then, the KL-divergence can be computed as follows:

Pxy (T, y
KL(pxy, 1) = J Px.y () log dedy
Rd1xd2dg u(x, y)
1
= log

PI‘((Gl, GQ) € T)
1 2 2 1 2 2
%,y (T, ——(|z — — - —(ly - — dzxdy.
# [ et { gl = xIP = LolP) = 5o (=12 = [y1)  dady
Due to (23)), the first term is bounded by log 4. Note that the second term is equal to:

lyl?
203

= 2
_ —(E _
20_% + 20_% < Px,y£7 X>

2
—(E .
+ 20_%< Px-,yn’y>
Using (24), we get

E,. & =x+Ee E(€ —x) = x,
Epeyn =y +Es2E(n—y) =y,

so we have
||XH% HYH% _ 2 2 2
KL(px,y, ) <log4+ 202 + 9052 log4 + r1(X)/2 + r3(¥)r3(X)/2.
1 2

Step 5. Final bound. Substituting the above bound and bound (27) into (#6) and using

A 1 1 <
m@)l =5 sw ) fiy),
xeSd1—1 ni=1
yesd2ds—1

22



Under review as a conference paper at ICLR 2026

we get
1(%)/2 + r3(2)r3()/2 + log(4/9)
An
for any positive A < (4w|X|)~! with probability at least 1 — §. Since n > r?(X) + r3(2)r3(X) +
log(4/0), we choose

r2 r2 2 o
A= (4w|2)1\/ 1(2)/2 4+ 75(%) i(z)p +log(4/3)

It ()] < 1622 + =

i

and get

E.2 PROOF OF LEMMA[EZ]
Proof. We deduce Lemma [E.2] from the following theorem. Its proof is posteponed to Section [G]
Theorem E.6. Let S|, So, S3 be sets of linear operators
Sic{Ai: L — R%, such that |A;|| < 1},i = 1,3,
So = {Ae Li @ R™ ® Lg such that | A|p < 1}.
For brevity, put Ly = L1 ® L3. Denote dim L; as l;. Then, we have

sup
A1€S8y,
Ag€Sy,A3€ES3

3 . o
N - 2(2) - ;,log [S;|} + log(8/6)
AT xy AT, Ay < 275y | Rzt 2indri (2) - &
(€ x3 Az x1 A, Az) W |\/ p

with probability at least 1 — §, provided n > 2?21 min{r?(3) - ;,log |S;|} + log(8/). Here we
assume that min{z;(X) - l;,log |S;|} = 1:(X) - I; if S; is infinite.

Note that
sup  [m3(E)(U®Ia,)| = sup  [mg(& x1 U]
UeR1 %/ UeR1x/
IU]<1 IU]<1
= sup XTm3(c‘,A’ x1UMy.

xeR%3 yeR’2 UeR 1%/
IxlI<1,lyli<1,|U]<1

can rewritten as the following supremum over scalar product:

sup (€ x3 A x1 Al Ao,
A€S8y,
A2€§2,A3€S3
where
S = {Al R/ > R% | HA1|| < 1}’
Sy = {Az e R7*%X1 | || Ag|lp < 1},
S5 = {43 :R—>R" | |43 < 1}.

Then, Theoremimplies that for any ¢ € (0, 1), with probability at least 1 — 4, we have

N Jr2(L) + Jri (%) + rZ(X) + log(8/6
sup |m3(8)(U®Id2)<27w|E|\/ 1( ) 2( ) 3( ) g( / )7
UeR% *J n
[Ull<1
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ifn > Jri(X) + Jri(X) + r3(2) + log(8/9).

Analogously, we have

+ K13(%) + Kri(2) + log(8/9)

2(%
sup |m1 (€)1, ® V)| < 32w||2|\/r1( )

VeR% > K V[ <1

with probability at least 1 — 6, if n > r?(X) + Kr3(3) + Kr2(X) + log(8/5). This completes the
proof. O

E.3 PRroOOF oF LEMMAI[EJ]

Proof. Note that the norm
I (€ x3 (V)= sup  xmi(E x5 (V) )y

xR ,ye]RKd2
IxlI<1,lyl<1

can be rewritten as the following supremum over scalar product:
sup <8A xg Ad x1 Al Ay,
A1€Sq,
Ao€So,A3€S3

where

Si={A1:R—>R" | |4 <1},

Sy = {Ay € RFX®X | [ Ao < 1},

Ss = {V*}.
Hence, Theoremimplies that for any § € (0, 1), with probability at least 1 — §, we have

Imi (& x5 (V)T)] < 32w2|\/r1(2) + Krzf) +log(8/9)

b

ifn > r3(X) + Kr3(X) + log(8/4). Analogously, we have

Ims (€ x1 (UH)T)] < 32w|2“\/r3(2) + Jrg(nz) + log(8/9)

with probability at least 1 — &, if n > Jr3(X) + r3(X) + log(8/d). This completes the proof. [

)

E.4 PrOOF OF LEMMA [E.4

Proof. Using the variational representation of the Frobenius norm, we observe that
sup IEXx3 VT x U |p = sup ExsVTx U, W)H.
Ue@dl,J,Ve(O)dQ,K UE@dl,J7VE©d2.K
WERJXd?XK,”WHp‘Sl

Then, we apply Theoremwith S1 = Qu,,7,Se = {W € R/>*XE /W < 1},S3 = O, x
and get the desired result. O

F PROOF OF THEOREM [D.1
Proof of Theorem|D.1} The proof follows that of Theorem 1 by [Zhang and Xia (2018). For clarity,
we divide it into several steps.
Step 1. Reduction to spectral norm of random matrices. We have
IT = T*% = W xa V s U = W* x5 V¥ xy U*[}
= W xa V s U = W* 53 V* xy (DUTU*[E + [W* x5 V¥ x1 (I = Tl )U* [
= HW\ X3 V — W* x3 V* x, (UTU*)H% + [IW* x3 V* xq (I — HU)U*H%
= W= W* g (VTVF) sy (UTU*) |2 + [W* x5 (I =TI )V* xy (U707
+[W* x3 VF xy (I =T U*|3. (28)
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By the construction of 17\/\, the first term is equal to
1V xs VT s U7 = T* xs VT x  UT |2 = [Ex3 VT x, UT|2. (29)
We rewrite the second term as follows:
[W* x5 (I =TIp)V* x1 (TTU*)|e = |(I =T )ma(T* x1 T7)|.

Due to (14), we have m3(7* x4 UT) = ms(T*)(U ®Iy,), soms(T* x1 UT) has rank at most K
and

I(I = T ma(T*) (U © I, )| e < VE (I = Tl )mg(T*)(U ® L4,

= VE|(I = Tg)mg(T* <, U7))|

< VE|(I = Ty )ms(Y x T + VE(I = T )ms (€ x1 T
Since V consists of K leading left singular vectors of mg( x1 U) and ms(7* x; U] has rank K,

we have | (I — I )m3(Y x U0 = ox+1(m3(Y x1 U1)) < |m3(E x Uy)|| by the Weyl inequality .
It yields

IW* s (I =Tp)V* x1 (TTU*) e < 2VK]|ma(€ x1 TT)]. 30)

Then, we bound the third term of (28). We have

IW* x3 V¥ xy (I —g)U*|p HW* x1 (I =) U*|p
VT VW) 3 (VT V) < (I =Tg)U* e
VI VI = Tg)ma (T x5 Vi) e

//\

IIll n (

mll’l(

The matrix my (7* x3 VTT_l) =m (7T*)(Ig, ® VT,l) has rank at most .J, so

(=Tl )ma (T s Vi) e < V(T = Tlg)ma (T x5 Vi )|
< VI =Tlg)m (¥ x5 Vi) + VI = Tg)mi (€ x5 Vo))

Since U consists of .J leading left singular vectors of m; () 3 VTT_l) andm; (7% x3 VTT_l) has the

rank at most .J, we have |[(1 — I )m; () x3 17;_1) | = 0J+1(m1(37 X 3 XA/TT_l)) < |my(€) x3 ‘A/T—r_l)H
by the Weyl inequality. It implies

20/ J ~
IW* x5 VF xy (I = Hp)U¥|lr < m“ml(g x3 Vp_1)|.
min\ V7 _q

Combining (28) with (29), (30) and the above display, we get
IT = T*2 < 1€ xs VT <1 UT|f + 4K |ms(€ 2 T

+ mm(égIV*)MNE X3 VTTA)H
< sup 1€ x x3VT x  UT|3
Ue0q,,s,VEQ,, Kk
AR (€ 5 02+ ———at——mi (€ xs D)% G
Tonin (V11 V)

Step 2. Bounding o (V1 V*), |m1 (€ x5 ViI_ )|, |ms(€ x1 UT)]. To obtain the theorem, we
need to bound amin(‘A/TT_l x3 &), m1 (€ x3 ‘A/TT_I)H, Im3(€ x1 UT)|. We start with the latter two

norms. We have

lm3(€ >3 U] = |m3(E)(U @ La,)|| < 3 (&) WU @ La,)| + s (E)(( — L) U @ I, () J'z)
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Since I« = U*(U*)T, the first term of the above is at most
lma(E)U* (U*)TT © 1) | = s (E)(U* @ La,)(U*) T @ L, )|
< Ims (E)(U* @ I, )| (U*)TU ® I, )|
< [m3(E)(U* @ La,) |- (33)

For the second term, we have

~ (I —Tyx) ~
[ms (E) (I — Iy )U @ Lg,)|| < [m3(E) (- @ La,)| - |(I — L) U||
I(I = Ty=)U||
< sup [m3(E)(V®Ig,)| - [(L =y )U].
VeRd x|
[Vi]=1

Then, we have
I(I =y )U| = (I = Wy ) | = [(Iy — s )5 | < [T — s,

where we used Im U T = RX and orthogonality of U for the first equality. To bound the latter norm
of the difference, we rely on the following standard proposition, which is proved

Proposition F.1. For two orthogonal matrices Uy,Us € Qg p, a = b, define the following semidis-
tance

— inf Uy —0U,0).
p(Ur, Uz) o.le%b,bHUl U0

Then, we have
HHU1 - HU2 H <2 p(Ulv UQ)
The proposition implies

s (E)((1 =Ty )T @ I, <2 sup [mg(E)(V @ a,)| - (T, U*).

Combining the above with (32)) and (33), we get
Im3 (T x1 )] < Ims () (U* @I, )| + 2 sup Nms(E)(V @ 1a,)] p(O,U%). G4

Analogously, we have

Imi (V-1 x5 €)] < [m(€)(Ta, ® VF)[ +2  sup ma(E)(La, ® V) p(Vro1, V¥). (39)

Finally, we bound O‘min(‘A/j-w[lV*) below. We have
min(VI—1V*) = Aain (V) TVVTVH) = A (W= ITp, - Tys),

Omin

where we used the fact that V*A(V*)T has the same singular values as A for any Hermitian A €

]RKXK. Since HV* H‘A/HV* = HV* —HV* (I_HVT_l)HV* = HV* —HV* (Hv* —H‘;.T_l)nv*,
the Weyl inequality implies
A (vl Iys) = Ag (Iys) — [y (Hys — g )ys| > 1 — g, — Dy« |.
Then, Proposition |F.1fyields [[Iy — — Iy« | < 20(Vp_1,V*)}, s0
Omin(V V%) = A/1 = 20(Dp_1, V%), (36)

provided p(Vy_q, V¥) < 1/2.

Step 3. Bounding p(l}t, U*), p(‘A/t, V*) recursively. We provide a recursive bound on p(ﬁt, U*)

and p(V;, V*). We widely use the following lemma, which is a weaker variant of the Wedin sin ©—
theorem:
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Proposition F.2. Let A, B be matrices, such that A has rank r, and denote B = A + E. Let L be
left singular vectors of A and L be r leading left singular vectors of B. Then

L 29B|
P L) < =T

By Proposition[F2} we have

ooy < 2V2[m (€))]

To bound p(‘z, V*), we note the following. Since ‘A/t are leading K left singular vectors of mg () %1
U') = mg(T* x1 U) + m3(€ x1 U,"), and there exists an orthogonal matrix O € O such

that V*O are the left singular vectors of mg(7* x4 ﬁ;) = V*mg(W* x4 U*)(ﬁt ® I4,), by the
definition of p(-, -) and Proposition|[F.2] we have

2v/2m3 (€ x;1 Up)| 2v2[us(€ %1 U,)]
ox (w3 (T* x Uy )) ox (ms(T* %1 U}))

fort =1,...,T. Let us bound p(‘A/t, V*) using p(ﬁt, U*). First, we have
ok (ms(T* %1 U)) = o (ma(T*)(Ur ® 1)) = 0k (ms(T*)(U* @ 1o, ) (U*) T ® 1,))

p(\A/O,V*) < and p(f/t,V*) <

(38)
> 0k (m3(T*)(U* ® 14,))0min (U*) T U) =

~

= o (w3 (T*) (Mps ® Ia,))omin (U*)T0) = 0 (ms(T%)) - /1 = 20(Tr, U*),

provided p(U;, U*) < 1/2. Second, we bound |m3(& x; U,")||. Following the derivation of (34), we
obtain

w3 (€ %1 U] = Jms(E)(Ur ® Las) |
< [ms(8) My @ La,)(Ur @ Ly )| + [ms(E)((I = Ty#) @ 1a, ) (Ur ® La, )|
< [m3(E)(UF @ La)| + sup  [ms(E)(U @ La,)] - (I — My ) Uy
UeR41 >/
[U]<1
Since U, is orthogonal, we have || (I — Iy« ) Uy | = (I — My )g, [, so
(I = Tlye) 0] = (T, — Tl )T, | < Mg, — Ty < 2p(0, U%),
due to Proposition[F1] and

Ims (& x1 U] < Jms(E)(U* @ La,)| + 2 sup [m3(E)(U @ I, (U, U*). (39)
UeR*1*
[U]<1

Following the notation of the theorem, we get

A 22 (av + 28y - p(01, U*))
p(V, V) < . (40)

o1 (m3(T*))\/ 1 — 2p(Uy, U*)

Next, we will bound p(ﬁt, U*) using p(IA/t_l, V*) fort > 1. Since U, are leading J left singular
vectors of my (Y X3 ‘7{[1) = m (T* X3 ‘A/tzl) +m (€ x3 f/t—il), and there exists an orthogonal
matrix O € @ ; such that U*O are the left singular vectors of mq (7* x3 f/;l) = U*m; (W* x3
V)14, ® Vi_1), by Proposition and the definition of p(-, -), we have

2v/2|mi (€ x5 V,Ty)|

P(ﬁt—la U*) < =
oy7(m(T* x3Vi_1))
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Analogously to (38), we have

oy (m(T* x5 1)) = oy (T 1 = 2p(Pi 1, V),
provided p(V;_1, V*) < 1/2. Analogously to (39), we have
mi (€ x5 Viet)| < [ma(€)(Ta, @VH)| 42 sup [m(€)(La, @ V)| p(Vie1,VF).  (41)

VeR¥1xK
[Vi<1

Thus, using the notation of the theorem, we get
2V/2 (CYU + 280 - p(Vi1, V*))

o (@ (T 1 = 2p(Vir, V)

p(Uy, U*) < (42)

Step 4. Solving the recursion. We claim that for each ¢t = 0, ..., T, we have
p(U,,U*) <1/4 and p(V, V¥) < 1/4. 43)
Let us prove it by induction. From (37) and conditions of the theorem, we have
5 3m (&) _ 1
p(Up, U*) < o @ (7)) <7
Suppose that we have p(Uy, U*) < 1/4. Let us prove that p(V;, V*) < 1/4 and p(Uypy1, U*) < 1/4.
First, applying bound (40), we deduce

o 2V2av +28y p(0nU*) _ Aov+Bv/2) _ 6B 1

p(Ve, V) o (TN — 2000, U") = ook(mg(T*)  ox(ms(T*) — 47

where we used
ay = [m(E)(U* ®@1a,)| < sup  [m3(E)(U @ 1a,)| = Bv

UERleJ
[Uf<1

and o (m3 (7)) = 248y due to conditions of the theorem. Similarly, from [@0), we deduce
< 2v2(au +28u - p(Vi, V¥))

0. (mi (T*)\/1 = 2p(V3, V*)
- 4(av + Bu/2) - 68u - 6|m1 (E)|| 1

oym(T*) = oy@(T*)) ~ oym(T*)) ~ 4’
by the conditions of the theorem and the definition of oy, Sy. Hence, for each ¢t = 0,...,T, we
have p(U, U*) < 1/4 and p(V;, V*) < 1/4.

Hence, we can simplify bounds {0),([@2) as follows:
4. (04\/ + 2By 'P(ﬁt,U*)>

P(ﬁt+17 U*)

p(Vi, V¥) <

KET)
b, ey < 10w 280001 V)
T )

We solve these recursive inequalities using the following proposition.
Proposition F.3. Suppose that a sequence of numbers (p;,n;) satisfies

Pt S T1+ TN,

N < Y1+ Y2pe-1
Sor some x1,y1, T2, Yo such that xoys < 1/2 and x4, ys = 0. Then, we have
2(x1 + @2y1) + w2 (w2y2) N0,
2(y1 + z1y2) + (z2y2)'n0.
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Applying Propositionto pr = p(‘A/t, V*),m = p(ﬁt, U*), we obtain

~ % 80[\/ 16BVQU
PVe V) < S T @ T )o@ (7))
( 646y fu > L 2By |m(E)] 44)
o7(mi(T*))ok (m3(T*)) ok (m3(T*))os(mi(T*))’
~ % 8aU 165(]&\/
U < i) ¥ oy @ (T))ow @a(7™)
648y By Lo 3m(9)]
§ (oxml(’r*))aK(ms(T*))) s m (%)’ )

where we used (37) to bound g = p(Up, U*).

Step 4. Final bound. Let us return to the bound (31). Using 4/, a; < >, 1/a; suitable for any
positive numbers a;, we get

|7 —T*|r < sup 1€ xs VT x1 U |
U€@d1,JaV€@d2>K

~ 2/ J ~
+2VEK |m3(€ x, UT)| + = [m1 (€ x3 V7 y)|-
Trmin ( -1V )

Combining (@3) and (36), we obtain
|7 —T*[r < sup 1€ x5 VT 1 UTp +2VE |ms(€ x1 UT)| + 3V Ty (€ x5 V_y)].

UE@dl,.],VE(DdQ,K
Then, applying (34) and (33)), we get
H7A'—T*HF < sup 1€ xs VT x1 U g + 2VEK (o —&-QBVp(ﬁT,U*))

Ue@dl,J,Ve(UJd%K
+ 3\/j(OéU + 20y - p(‘//\YT_l, V*))
Then, we substitute bounds [@3)),([@4) into above, and get

||’%—T*HF < sup 1E x3 VT x1 UT|g + 2VK (ay + vy + v2)
UE@dl,J7VE@d2,K

+ 3V J (o + u1 + uy),

where
_ ) 168u v
o= T o s (T)
vy — 168y ay N 68y |m1 (&) y < 648y By >T
oy(m(7T%))  osm(T*)) oy (T#))ox(ms(T*))
uy =20y - 166vay
o (m (T%))ox (m3(T*))
_ 16fvay 645y By T .
27 a7 (aj(ml(T*))aK(mg»,(T*))) [ ()]

Since o7 (m1 (T*)) = 24|my (€)] = 248y and ok (m3(T*)) = 248y, we have v; < ay, u; < ay/3
and

168y ay N ( 648y Bu )T
27 oym(T%) T \ oy (m(T#)ok (ms(T*))

Combining the above, we obtain

H%*T*\Ipé sup 1€ xs VT x1 U g + WEKay + W Jay + Oz + 11,
UG@dl,J’VE@dz,K

[m1 (E)]-

(%

where {5 and r7 are introduced in the statement of the theorem. O
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F.1 PROOF OF PROPOSITION [F.]]

Proof. For any matrix O € Oy 5, we have
| — Hys| = |[OUT —U*@©*)7| = |OUT —TOW*)T + TOWU*)T —U*(U*)T|
< |UOWO —U*)T| + (U0 — U*)(U*)T| < 2|U0 — U*|.

Taking the infimum over O € Qy, 3, we obtain the proposition. O

F.2 PROOF OF PROPOSITION[F.2]

Proof of Proposition|F2] For two subspaces X, Y define:
Isin®(X,Y)| = |[(I — ILx)Iy|.
Then, the following theorem holds.
Theorem F.4 (Wedin sin ©-theorem (Wedin, [1972) ). Let P,Q be R**® matrices. Fix r <
mm{a b}. Consider the SVD decomposition of P = UpySoVy' + UiXi V)T, Q = UpSoVy +

U1 21 V1 , where ¥, Eo corresponds to the first r singular values of P, Q) respectively. Suppose that
Omm(zo) Omax(21) = 9. Then, we have

L max{| (P — QViT 1L 105 (P — Q)[}.

| sin ©(Im Uy, Im Uy)|| < 3

To apply the above theorem, consider two cases. If 0,.(A) = 2| F|, then we apply the above theorem
with § = 0,.(4)/2, P = Band Q = A, and get

2| E|
or(A)

| sin ©(Im L, Im f/)

| <

If 0.(A) < 2| E|, then
~ 2| F
[sinO®(Im L, ImL)| <1< 0,,|(A)'
Hence, in either case, we have
N 2| F
[sin©(Im L, Im L)| < UJ(A).

Finally, Lemma 1 of (Cai and Zhang| 2018) implies that
2V2|E|
Or (A) 7

and the proposition follows. O

p(L,L) < V2| sin©®Im L,Im L)| <

F.3 PROOF OF PROPOSITION[E.3]

Proof of Proposition|F:3] Combining the initial inequalities, we get

Nt < y1+ yer1 + (T2y2)Ni-1-
Iterating the above inequality ¢ — 1 times, we get
t—1

e < (@2y2)'n0 + (Y1 + y2m1) ) (@21)" <
i=0

% + (z2y2)"10-
Using xz2y2 < 1/2, we obtain

ne < 2(y1 + y2x1) + (22y2)" po-
Combining the above with the bound p; < z; + x27;, we derive

pr < T1 4 2(y122 + T2y2x1) + T2(2y2) po0 < 2(w1 + T211) + T2(T292) PO,
where we used xoys < 1/2 again. O
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G PROOF OF THEOREM

Proof. Step 1. Reduction to the PAC-bayes inequality. Let us rewrite the core expression, as a
supremum of a certain empirical process. We have:

sup (€ x3 A] x1 A] | Ay) = sup (Ay x3 AT x1 AT &)
(A1,A2,Az)el 2, S; (A1,A2,A5)el3_, S:
= sup (Ag x3 Az x1 A1,§>
(A1,A2,A3)e[ 3., S:
n 1
= sup AQ X3 Ag X1 Al, Z 7R(XZX;|— — E(XXT))
(A1,A2,A3)e[ 3, Si o
1 n
= sup <R1(A2 x3 Az x1 A1), — Z X, X! - ]E(XXT)>
(A1,A2,Az)el[3_, S, [
1 n
= sup - Z {XTR7(As x5 Az x1 A1)X;
(A1, A2, A5)el T3, 8: T i

~EXTR™ (A2 x3 A3 x1 A1)X} .

Define the following functions:
fi(As x5 Az x1 A1) = MXT RN (A x5 Az x1 A)X; —EX]R7H(Ay x5 A3 x1 A1) X},
fx(Az x3 Az x1 A1) = MXTR Ay x3 Az x1 A))X —EXTR™(As x3 A3 x1 41)X},
where the positive factor A will be chosen later. We will apply Lemma|E.5|to the empirical process

n
sip = fi(Ar, Ag, Ag)
(A1,A2,A3)€e] 51 Si n i=1
with the parameter space defined by the target spaces L; dimensionalities and the prior distribution
1, constructed as a product of independent measures for each subspace separately. Choosing bases
in Ly, Lo, L3, we identify Ay, A5 with corresponding matrices and A3 with a corresponding tensor.
Define linear spaces L; = R%*1 L, = Riixd2xls and L = R¥*!3_ and consider distributions
D; over LL; defined as follows:

L N(07 UiIlidi)a if lz : I‘Z(Z) < log |Sz|a
* | Uniform(S;), ifl; - ri(X) > log |Sy],

for some o1, 09,03 to be chosen later, assuming that samples from the normal distribution have
appropriate shapes. Then, we put

t=D; ®Dy® Ds.

Consider random vectors P, (), R with mutual distribution p4, 4, 4, such that EQ x3 R x1 P =
AQ X3 A3 X1 A1~ Since fi(Ala Ag,Ag), fx(Al,Ag, A3) are linear in A2 X3 A3 X1 Al, we have
Epa, aga, [i(PQ, R) = fi( A1, As, A3), so LemmalE.5) yields

A2 ESz 7./43 ESg

< sup {IE,OAI_AQ,A3 IOgEX €xXp fX(PaQaR)
A1€8q,
A26S27A3683

(46)

N KL(pa, Az, 1) +log(1/6) }
n

with probability at least 1 — 6. Then, we construct p4, a,, 4, such that the right-hand side of the
above inequality can be controlled efficiently.

Step 2. Constructing p4, 4, 4,. Suppose for a while that p4, 4, a,-almost surely we have

ASY2RYHQ x5 R x4 P)SY2|p < 1w, (47)
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Then, Assumption 2.T]implies
EPAI,AQ.A3 log Ex exp fx (P, Q, R)
= IEZPALAQA3 log Ex exp {)\ (XTR_I(Q x3 R x1 P)X
—EXTRHQ x3 R x1 P)X)}
IRY2RYQ x5 R x1 P)SY2|2.

(48)
< )‘ZWQEPAI Ao, A3|

So, to control the above and keep the left-hand side of (7)) bounded, we do the following. Consider
random matrices G; € R% %1 G4 € R%*!s and a random tensor G5 € Ri1xd2%ls guch that

N(O7Ji-[dili)7 1frZ(Z) < log |SZ|,
vec(Gi) ~ {50, if1; - (D) > log [Si,

where 4 is the delta measure supported on 0 € R%! Then, define a function g : R4 >4 x R
g/, v w') = |[SVPRTI(W xgw' xq ) S22 (49)

Sequentially applying the triangle inequality for the Frobenius norm and using (a +b)? < 2a% + 202,
we obtain

f(AL + G1, Ay + Go, Az + G3) < 29(Aq, As + Go, A3 + G3) + 29(G1, Ay + Go, Az + G3)
< 4g(A1, Ag, A3 + G3) + 49(G1, Go, Az + G3)

+4g(A1,Ga, A3 + G3) + 49(G1, Ay, A3 + G3)
< 8g(A1, A3, Az) + 89(A1, Ga, G3) + 8g(A1, A3, G3) + 8g(A1, Ga, A2)

+ 8¢g(G1, As, A2) + 8¢(G1, G2,G3) + 8¢(G1, As, G3) + 8¢(G1, G2, Asg). (50)

Then, we define the distribution pa, 4, 4, of the random vector (P, @, R) as the distribution of
(A1 + G1, Az + G, A3 + G3) subject to the condition

(G1,G2,G3) € T = {8¢(a,b,c) < 8Eg(a,b,c) | (a,b,c) €T}, where
= ({A17 Gl} X {A27 GQ} X {A37 GS})\{(Ala A37A2)}'
Note that by the union bound and the Markov inequality, we have

Pr((G1,G2,G3) ¢ Y)< > Pr(f(a,b,c)>8Ef(a,b,c))
(a,b,c)el’

1 7
< == 1
2 573 (5D
(a,b,c)el’

Combining the definition of Upsilon with upper bound (50) implies the following bound on
9(P,Q, R):
9(P,Q, R) < 64(g(A1, Az, Az) + Eg(Ay, Az, G3) + Eg(A1, Ga, A3) + Eg(A1, G2, Gs)
+Eg(G1, A2, A3) + Eg(G1, A2, G3) + Eg(G1, G2, A3) + Eg(G1, G2, G3)),  (52)
which holds p 4, 4,,4,-almost surely.

Let us check that ]EPA g A Q x3Rx1 P = A; x3 A3 x1 A;. Since both the Gaussian distribution
and &g are centrally symmetrlc and the function f does not change its value when multiplying any
of its argument by —1, we have

(P,Q,R) £ (A1 +e1(P — A1), As + 62(Q — As), A3 + e3(R — A3)), (53)
where €1, €5, €3 are i.i.d. Rademacher random variables independent of (P, ), R). Then, we obtain
EQ x3 R x1 P=E(As +e2(Q — Az)) x3 (A3 + e3(R — A3z)) x1 4
+E(Ay +e2(Q — As)) x3 (A3 +e3(R — A3)) x1e1(P — Ay)
= E(Ay +e2(Q — Az)) x3 Az x1 Ay + E(Az + e2(Q — A2)) x3e3(R — A3z)) x1 Ay
= Ag x3 A3 x1 A1 + Eea(Q — As) x3 A3 x1 A; = Ag x5 Az x1 A5.
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Hence, to satisfy the assumption @7) and use @8), it is enough to bound expectations Ef(a, b, c)
fOf (G,, b, C) € {A17 Gl} X {Ag, Gg} X {Ag, GQ}

Step 3. Bounding expectations Eg(-, -, -). Let us start with g(A;, A3, As). From the definition @9),
we have

9(A1, Ag, Ag) = |SYPRTH(Ag x5 Az x1 A1)EY?|E
<IBIP R (A2 x5 A3z x1 A1)||f = |Z[? A2 x5 A3 x1 A1]F = |Z]?, (54)

where we used the fact that Ao has unit Frobenius norm and || 41| < 1,[|As| < 1 by the definition

In what follows, it will be useful to rewrite the function f(A4;, A2, As) in different notation. As in
the proof of Lemmal|E.T] define tensors

SP1Q1T1P2¢127’2 = Z(m—l)q?“-‘r(ch—1)7"+7“17(172—1)517"""((12—1)7"""7"2
(1) (3) _
Apzpsjl (Al)(pz—l)p-rps,jn Argrgk'l = (AS)(rz—l)rJrrg,kl,

(2 Ay

J1Q2Q3k1 J(g2—1)q+qs3,k1>

G

= (43),

= (Gy) ¥ = (Gy), .
P2P3J1 (p2—1)p+p3.j1> rorski 3)(ro—1)r+rs,k1>
]1Q2Q3k1 ( )

Gs J1,(q2—1)q+q3,k1-

Then, we obtain

9(A1, Ag, Ag) = [SYPRTH(Ag x5 Az x1 A1)EV?|E
=Tr (ER_l(AQ X3 A3 X1 AI)ER_T(AQ X3 A3 X1 Al))
_s RO () 4@ 46 (s

P149171P29272 pap3ji JlQ2Q3k1 Tar3ky P3‘I37’3p4’14T4AP1P4]2 j2q1q4k2 T1T4k2

Note that the above holds for any A; € LL;, so the formula remains true when replacing A;, A®) with
G;, G respectively.

Next, we bound Eg(A;, Az, G3). If vec(G1) ~ dg, we have Eg(A1, A2, G3) = 0, so it is enough
to consider the case vec(Gs) ~ N (0, 0314,,). Due to formula (33), it yields

Eg(A1, A2, Gs) = ES, A 4@ pB) g A 4@ o)

P19171P29272 pap3j1 T j1q2qsks T rarsks T P39373P494T4 p1py jo ]2Q1q4k2

_ 2 (1) (2) 1) (2)
= 050r5r1Orgr5 Ok ks Spraa 1 p2gars Apopsii Bt gaaska Spsasrspagars A paia o qiaaks

- 038 OS] S AL a@

P19171P29271 " pap3j1 - j192q3ks TP34373P494T3  p1paja T jaqiqaka

riraks

Define matrices A1) ¢ Rrx? AM3k) i — 1,2and j = 1,...,J, by 1411(712’,2)3 =AY and

N - P2P3J1
A(2Jvk) — A(Q)

42,05 ipapsk- 1hen, we have

1
Eg(A1, Ay, G3) =03+ > Tr (Trg(z) DAL @ ARdrk)

k1€[l3] Jji=1

b
x Trz(X) 2 (A072) ®g(27j2,k1))T>

j2=1
2
ggg Z Tr3(2)~ Z g(lvj1)®g(27jhk1)
k1€[ls] jielJ] F
<o3|Trs(D)2- D | D) At @ ARk, (56)

kIG[lg] jle[ll]
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where we used the Cauchy—Schwartz inequality for the scalar product (A, B) = Tr(ATB) <

| Allr| B|lr- Then, we introduce matrices A](lz(zz Datas = Birasasks k1 € [13], for which we have

1D AW @ARCHEIR = K ATACEIR < Y AT AR

kle[lg] j1€[l1] kle[lg] kle[l.'}]
< D) AR = 4sff <1
k‘le[lg]

where we used | A;]| < 1and |[Az|r < 1. Substituting the above into (56) yields
(Al,AQ,Gg) O’3HTI‘3( )H2 (57)
Analogously, we obtain

Eg(G1, Az, A3) < o7 Try (D) (58)

Next, we study the term Eg(A;, Ga, As). Obviously, if vec(G3) ~ &g, then Eg(A;, G, A3) = 0,
so we consider the case then vec(G2) ~ N(0,0314,,). Using (B3) with G2 in place of Ay and

(3,k1) rXT T(3,k1) (3 :
defining a matrix Al € R™" as Apjry" = A7 ., we obtain
— ) (2) (3) 1) (3)
Eg(Al’ Go, A3) - Esplq”lmq”? APzstl gjl q2q3klAr2r3k18PSQSTSP4Q47‘4 AP1P4J2 gj2q1 qako AT1T41€2
(1) (3) (1) (3)
= 0—26]1]2541‘125k’1k’28p1q1TpoQzTZApgpgjlA7273]€1SPSQJT3p4q4T4Ap1p4]2A7174k2

oS DB A0 4@

P19171P29172 P papsaji1 Crarsk; U P3427T3P492T4  p1paji Crira ks
=of Y (@) [N @A) Tn() - [0 @ AGR]T)
Ji€lla]kaells]
<of D M) (A @ AR,
Ji€[la]kaells]
where we used the Cauchy—Schwartz inequality on the last line. It yields
Eg(A1, G2, As) < o3| Tea(D)F D) AL @ ABMI|;
Ji€lla]kaells]
= Ta(®)> Y AR RAC)
Ji€lla] kaells]
= 03| T (D) | A7 As[F < o3lals] Tr2(2)], (59)
where we used || A;||2 < ;| A]|? < ; fori = 1,3.

Next, we bound Eg( A1, G2, G3). If either vec(G2) ~ &y or vec(G3) ~ g, then Eg(Aq, Go, G3) =
0, so we consider the case when both vec(G2) ~ N(0,0314,,) and vec(G3) ~ N(0,0%14,1,)-
Using (33) with G2, G5 in place of As, A3, we get

Eg(A1,Gs,G3) = ES AW g(Q) g(3) S AW g(Q) g(3)

P19171P29272pap3j1 ¥ j1q2q3k1 T rarsk, T P393T3P494T4 p1page Y jaquqaka T riraka?

_ (1) (1)
= 02 03 6k1 k1 Spl q17m1P2q17T1 Ap2p3j1 Sp3an'3p4QS7‘3 Ap1p4j1

L
= o202l3 Z Tr (Tr273(E)A(l,h)TYQ}S(Z)(A(LJI))T)

j1*1

L
< o303ls Z | Trg5(2) ATV |3 < 030313 Tra 3(2) D, AT}
Jji=1 ji=1
= 030313 Tra 3(3) %] A [ 3

Since | A1 |3 < 11] A|?, we obtain

(A17G27G3) 0‘20'?2)1113||TI‘273(Z)H2. (60)
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Analogously, we get

(Gh GQ, A3> Ulo'glllg”TrLQ(E)HQ. (61)
Then, we bound Eg(G1, Az, G3). Using (33) with G1, G in place of Ay, A3, we get
1 1 2 3
Eg(Gl’Az’ Gd) = ESPlQlTlp?‘I?T?gI(’QQ)Dsﬁ J1Q2q3k1gTzT3k1 pSQ3r3p4q4r4g(1zﬂ4jz §221144k2g7(‘1?)”4k2
= O'%O-g&mpz 6]'1]'25T1T2 5k1k25P3P4 67‘37“4
xS A? s A?
P19171P29272°% 51 qaqsky T P3937T3P494T4 " joqq qa ko
2 2
=0 USSP1Q1T1P1Q2T1 A§'1212q3k1SPSerspaqu‘sA;l)ql%kl
—o%? Y I (Tr1,3(z)ﬁ<2’jlv’ﬁ)Trl,g(z)(Zthl))T) .
J1€[l1],k1€[ls]
By the Cauchy—Schwartz inequality for the matrix product, we obtain
Eg(Gi,A2,Gs) <oiod D, [Trag(R)ACIMI%
Ji€[li],k1€(ls]
<ood|Tras(x) Y [A@EDR
ji€ll1],k1€[ls]
= 0703| Tra3(5)|*| A2 = o703 Tra3(2)[. (62)

Finally, we bound Eg(Gi,G2,G3). If some G; is distributed according to dp, then
Eg(G1,G2,G3) = 0, so it is enough to consider the case when Gy, G2, G5 are Gaussian. Us-
ing (3) with A4;, A® replaced by G;, G, we obtain

(3)
Eg(Gl’ G, GS) Esplqlrlmq”? gpzpsjl g]l QQQ3k1gT2T3k1 P393T3P4q4T4 gp1p4j2gj2q1fI4k2 gT’1T4k2
_ 422 o
=0 02U36]1]167€1 k28p1Q17“1p1Q17“1 SPSIISTSPSQST‘S
= a%agaglllgTr(Z)z. (63)

We summarized obtained bounds on Eg(-, -, -) in Table

Quantity Bound Ref
g(A13A27A3) HEH2
Eg(A1, A2, Gs) o3| Trs(2)]|
Eg(G1, Az, As) of | Try (2)[?

Eg(A1, G2, A3) o3lls] Try(X)]?
Eg(A1,G2,Gs) | 03030113 Tra5(2)|?
Eg(G1, G2, As) | ofo3lils|Try 2(3)]?

Eg(G1, A2, Gs) | 0703 Tras(2)|?

ZBEBEEAOQ

Eg(G1,G2,G3) | oio303l1l3Tr(X)?

Table 4: Bounds on Eg(-, -, ).

Combining (52) with bounds (54),(58)-(63) implies the following pa, 4, a,-almost surely:
9(P,Q,R) < 64 (|| + 0703035011sTr(%)?
+03 | Tes(8)|* + 03l ls | Tra(8)|* + oF [ Tr1 ()
+0303013| Tra3(8)]* + 0703 lils | Tro 2 (8) | + 0103 Tra 5(2)[*) -
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Finally, we choose 0%, 03, 03 as follows:

g1 :rfl(Z), () :rgl(Z)/\/lllg, g3 :I‘gl(Z).
Then, pa, a,,a,-almost surely, we have
[SERTHP 1 B xs QBV2E = £(P,Q, R) <2723,

where we used [Trg(X)| < 2] - [ [,cg rs(X) for any non-empty S. Hence, if X satisfies

29w < 1, (64)
then (@7) is fulfilled and, due to (48], we have
Epa, ay.4, 108 Ex exp fx (P, Q, R) < 22X | 5. (65)

Step 4. Bounding the Kullback-Leibler divergence. Define I = {i € [3] | [;x;(2) > log|S;|}.
Then, for i € I, we have D; = Uniform(S;) and the density of pa, 4, a, is given by

—l.d;
o; " 1

pAl,Az,Ag 017027% H50 1_[ WQXP{—M“(M _Ai|12r}
iel i€[3\1 i

1 {((Ll — Al,ag — Ag,ag — A3) € T}
PI‘((Gl, GQ, Gg) € T)

By the definition of T, p A1 ,As, A, can be decomposed into product of the truncated Gaussian p_
and delta measures (X) ;- Hence, we have

zEI
Kﬁ(pAl,Ag,Ag ) /'l‘) = ICE(pfl ® ® 5Ai7 Dl ® D2 ® DS)
iel
= KL(p-1, & Di)+ > KL(Sa,, Uniform(S;))
i€[3]\I i€l

=KL(p-1, Q) Di)+ Zlog 1S3 (66)

i€[3]\I iel

Recap that for i € [3]\/, distribution D; is the centered Gaussian with the covariance matrix 021,,;,
up to the reshaping, so the density of (X)._; D; is given by

el
b = ] 2o exp (= ozl
—1\\Q3 )ig[3\1) = ToNdii; 2 X 5 2 IlAifF | -
ie[3]\I (2m)dits/ 20;
Hence, we have
KL(p-1,®ic3 1 Di) = f p—1((ai)ieapr)
Hie[B]\I]L7

x log n da;

ie[3]\I

[Ticpapr exp (lailg/207 — llai — Ail%/207)
Pr((G1,G2,G3) € Y)

1 1 iy
= log - — |47 + —(EE", Ay),
PG Ga G 21 2 2 IR 2y A

where &' is distributed as the i-th marginal of (P, Q, R) ~ pa,.a,.4,- Using (53) , we get B¢ = A
so bound (5T)) implies

KL(p-1,®iezpaDi) < log8 + 2 ‘ HA %

’L

<1og8+5 Z L (%),
ie[3]\I
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where we used the definition of o; and the fact that |A;|3 < l;|A:|?> < I; fori = 1,3. Then,
bound implies

1
K:ﬁ(pAhAz,Asuu’) < 1Og8 + 3 Z erg(z) + Zlog ‘Sl|

i€[3\1 i€l
3
<log8+ 2 min{r?(¥) - I;, log |S;|}. (67)
i=1

Step 5. Final bound. Then, we substitute bounds (63)),(67) into {6). It yields

1 n N
sup Y€ x5 AT x1 AT, Az) < 2200”5
A1€S17 n i=1
AQESQ,A3€S;3

N log 8 + Z?Zl min{r;(3) - I;,1og [S;|} + log
An

with probability at least 1 — 4, provided 26 \w||Z| < 1. Since n = 32>, min{r2(2) - I;, log |Si|} +
log(8/4), we can choose ) as

1YY min{r(2) -, log [S;]} + log(8/0)
2503 n

It implies

13 A 3 min{r2(X) -1, log [Si|} + log(8/8
sup = NE xy A] ><1A1T7A2><27w|2\/211mm{rl( ) -1, log [Sif} +log(8/0)

Alesl, n i=1 n
AQESQ,AgES3

with probability at least 1 — §. This completes the proof. O
H ADDITIONAL EXPERIMENTS

H.1 TENSOR-PRLS PSEUDOCODE

In this section, we give pseudocode for our version of PRLS adopted to order-3 tensors. See Algo-
rithm 2

Algorithm 2: PRLS Thresholding Algorithm

Require: Tensor X € R%*92xds regylarization parameters A1, \o
Ensure: Soft-thresholded tensor X

Step 1: Mode-1 Unfolding and Thresholding

Reshape initial tensor into matrix: X{;) = m; (X')

Perform SVD of matricization: U, S, VT = SVD(X(1))

Apply soft-thresholding: S" = max(S — A\1/2,0)

Combine soft-thresholded SVD into a matrix: /’\A,’(l) =U -diag(S") - VT
Reshape back into tensor: X’ = m[ ! (2?(1))

Step 2: Mode-3 Unfolding and Thresholding

Reshape new approximation into matrix: X(3) = m3(X”)

Perform SVD of matricization: U, S, VT = SVD(X(3))

Apply soft-thresholding: S’ = max(S — X2/2,0)

Combine soft-thresholded SVD into a matrix: /'?(3) = U -diag(S")- VT
10: Set XA = mgl(ﬂ?(g))

A

L RN
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Table 5: Performance comparison of tensor decomposition algorithms for n = 4000.
Relative errors were averaged over 16 repeats of the experiment, empirical standard
deviation is given after + sign. Best results are boldfaced.

Metri Algorithm
etric
Sample Mean TT-HOSVD HardTTh
Relative Error 0.430 +0.007  0.105+0.008 0.054 £+ 0.002
Time (seconds) 0.0039 +£0.0015  0.64 £ 0.15 3.2+33
Metric Algorithm
Tucker Tucker+HOOI PRLS
Relative Error  0.105 £ 0.007 0.054 + 0.002 0.217 £ 0.015
Time (seconds) 30.7+ 3.9 51.5+3.9 0.8+1.1

H.2 EXTRA EXPERIMENTS ON COVARIANCE ESTIMATION

Here we study the performance of tensor decomposition algorithms in the setup of Section[3] First,
we repeat experiments of Section 3] for n = 4000, see Table[5]

Second, we study the dependence of sin ©-distance of estimated singular subspaces to singular
subspaces of matricizations of 7* on the number of iterations 7" and the sample size n. Matrices
Uo, UT, VO, VT are defined in Algorithm |1 I As before, the number of additional iterations is taken
10. The results are presented in Table 6]

Table 6: The study of sin ©-distance from estimated singular subspaces to singular
subspaces of matricizations of R(X). Average errors and standard deviations are
obtained after 16 repeats of the experiment. The setup is defined in Section@

| n=500 n=2000 ~n=5000 n=6000 n=7000
sin®@(Im U, ImU*) [ 1.0+00 1.0+00 08+03 08+02 06+0.3
sin®(Im Vo, ImV*) | 1.0+00 1.0+00  1.0+00 090+0.14 09+0.2
sin©®(Im Uz, ImU*) | 1.0+ 0.0 0.33+0.08 0.17+0.04 0.13+0.03 0.13 +0.02
sin®(Im V7, ImV*) | 1.0+ 0.0 046 +0.17 0.21+0.03 0.18 +0.05 0.17 + 0.02

For scalability study we increase the number of parameters from 10 to 7.4 - 10® for 1000 samples.
One can see that our methods scales successfully, even winning comparison with Tucker+HOOI.
The results are shown in Table [7} Next, we increase number of parameters up to 4 - 10° for 1000
and 2000 samples. Unfortunately, Tucker+HOOI does not show ability for scaling due to enormous
time overhead, so results in Table ] are provided excluding it.

We provide ablation study on the effect of ranks on the error rate. We expect that large increase of
ranks leads to broken spectral gap condition, thus, models takes part of the noise as vital information.
Large decrease leads to loss of vital information, since relevant singular values may be erased.
Despite that, small perturbation in ranks may lead to better bias-variance tradeoff, thus, decreasing
error overall. See Figure 2] for details.

H.3 EXPERIMENTS ON TENSOR ESTIMATION

This section is devoted to experiments that did not have enough space in the main text. In particular,
we numerically study the impact of additional iterations of Algorithm [I] in the tensor estimation
problem. We do not consider the misspecified case, and, given (J, K) and p, ¢, r, generate T* as
follows. First, we generate matrices U, Wy, V3, from model @) according to the matrix initialize
method - random, random symmetric, symmetrlc with special spectrum decay (i.e. inverse quadratic,
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Table 7: Performance comparison of tensor decomposition algorithms for n = 1000,
p = q = r = 30. Best results are boldfaced.

. Algorithm
Metric
Sample Mean TT-HOSVD HardTTh
Relative Error 4.448 0.216 0.065
Time (seconds) 3.504 867.756 1007.069
Metric Algorithm
Tucker Tucker+HOOI PRLS
Relative Error 0.192 0.110 4.422

Time (seconds) 14601.442 31256.665 703.230

Table 8: Performance comparison of tensor decomposition algorithms for p = ¢ =
r = 40. Best results are boldfaced.

Metric (n = 1000) Algorithm

Sample Mean TT-HOSVD HardTTh  Tucker PRLS
Relative Error 6.86 0.21 0.055 0.19 6.82
Time (seconds) 20.94 5095.54 6873.25 84360.27 5872.09
Metric (n = 2000) Algorithm

Sample Mean TT-HOSVD HardTTh  Tucker PRLS
Relative Error 4.87 0.19 0.038 0.1845 4.83
Time (seconds) 20.63 5839.20 6889.42  84476.38 5825.16

exponential, linear, etc.). We will refer to these matrices U;, Wy, Vj, as sub-components of matrix
J K

S = Z Z Uj@ij®Vk EquTquT,
j=1k=1

and reshape it to a tensor 7* = R(S). It is ease to see that such procedure is equivalent to the direct
assignment of TT factors, due to Equation (8). Then, choosing a noise level o, we generate a noise

tensor £ as a random normal with o as its standard deviation and compute
Y=T"+E.

Our code supports some other testing regimes: one can choose the S structure directly (block-
Toeplitz, structure (T)), etc.) supporting misspecification case, and rank selection method (via hard
thresholding, effective rank, absolute error). For more information on rank selection see display

(13).

For the specific experiment, we vary the algorithms to test, as well as the actual ranks and sizes of the
components Uj, Wy, Vi.. For PRLS algorithm, due to its special setup, we tune A1, Ao parameters
on a log-scale. In the Table 0] one can see, that our method also shows less variance, compared to
the previous algorithms, such as sample mean or Algorithm 2] with noise variance equal to 0.3.

Now consider the case of a low SNR setting (high-noise regime, fast spectrum decay). This case
violates the assumptions of Theorem [2.2] It can be seen that the methods perform poorly and do not
restore the signal (the relative error remains at the level of 0.3), thus, demonstrating the necessity of
theorem’s conditions. The experiment below was conducted for the case when sub-components of
S spectra decrease as inverse square sequence (see Table[I0]|for details).

It may be useful to examine the spectrum of matrix .S and matricizations in order to understand how
the behavior of algorithms varies in different scenarios. Figure [3|illustrates this. These plots were
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Mean * Std Relative Error for Hardtth Variations (J vs K ranks)

0.24

0.1802 0.1659 0.1732
+0.0094 +0.0094 +0.0090

0.22

0.1549 0.1604
+0.0075 +0.0057
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0.16

0.14
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Figure 2: Rank ablation study for covariance with parameters (J, K) = (7,9), p =
q = r = 10, averaged by 32 runs.

Table 9: Performance comparison of tensor decomposition algorithms under medium
noise conditions. The best results are boldfaced.

Algorithm
Sample Mean TT-HOSVD HardTTh

Relative Error ~ 0.3643 £ 0.0135 0.0449 £ 0.0018 0.0357 &+ 0.0015
Time (seconds) 0.0204 £ 0.0096 4.4732 £1.8079  7.5522 4+ 2.1386

Metric

Algorithm
Tucker Tucker+HOOI PRLS

Relative Error 0.0439 + 0.0016 0.0357 £ 0.0015 0.1130 #+ 0.0037
Time (seconds) 56.7830 £ 16.3132  106.5766 &+ 25.2531 0.7076 £ 0.1160

Metric

constructed for tensor-train rank (J, K) pairs of 7 and 9, respectively, with sub-components having
a size of 10 x 10. The total matrix size was 1000 x 10000, composed of these sub-components.

To experimentally confirm the necessity of the conditions of our theorem, we plotted the relationship
between singular values and noise levels, as well as the relative error and noise levels. Our findings
indicate that, after a certain threshold, our algorithm no longer effectively mitigate noise but instead
overfit to it, resulting in inferior performance compared to one-step methods such as TT-HOSVD
(see Figure[).
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Absolute Eigenvalue

Table 10: Performance of tensor decomposition algorithms under inverse quadratic
decay of spectrum. In case of low SNR we observe that iterative methods perform
worse than one-shot and both do not restore signal. The best result is boldfaced.

Metric

Algorithm

Sample Mean TT-HOSVD

HardTTh

Relative Error

Time (seconds)

0.3508 £ 0.0004 0.0251 £+ 0.0001 0.0279 + 0.0003
0.0509 £ 0.0166  13.9748 4+ 4.1845  282.7375 + 145.8327

Spectrum of the Original Matrix

0 200

400

Index

600

Mode 0 . Mode 1

Singular Value
Singular Value

Mode 2

10t

Singular Value

10°
0 20 4 6 8 100 0 20 40 60
Index Index

10°
8 100 0 20 4 6 8 100
Index

o . (b) Singular values of matricizations

(a) Matrix S spectrum

Figure 3: Spectrum of the objectives in case of random sub-components. As one can
see, dense spectrum of matrix S with noise become separable for matricizations.
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Figure 4: Performance of tensor decomposition algorithms and spectrum behavior
under noise increase.
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