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ABSTRACT

The application of formulas is a fundamental ability of humans when addressing
numerical reasoning problems. However, existing numerical reasoning datasets
seldom indicate explicitly the formulas employed during the reasoning steps. To
bridge this gap, we construct a dataset for formula-based numerical reasoning
called FormulaReasoning, which consists of 5,420 reasoning-based questions.
We employ it to conduct evaluations of LLMs with size ranging from 7B to over
100B parameters utilizing zero-shot and few-shot chain-of-thought methods, and
we further explore using retrieval-augmented LLMs provided with an external for-
mula database associated with our dataset. We also experiment with supervised
methods where we divide the reasoning process into formula generation, param-
eter extraction, and numerical calculation, and perform data augmentation. Our
empirical findings underscore the significant potential for improvement in existing
models when applied to our challenging, formula-driven FormulaReasoning.

1 INTRODUCTION

Numerical reasoning constitutes one of the significant forms within natural language reason-
ing (Frieder et al., 2023). The study of numerical reasoning has seen substantial progress in recent
years, largely driven by the development of LLMs (OpenAI, 2023; Touvron et al., 2023; Li et al.,
2023c) and specialized datasets (Wang et al., 2017; Dua et al., 2019; Amini et al., 2019; Cobbe
et al., 2021a). Current datasets for numerical reasoning typically include simple, commonsense nu-
merical questions that do not reflect the complexity of real-world problems. These datasets have
not fully addressed the interpretability issue in numerical reasoning, as they often rely on implicit
commonsense knowledge without explicit guidance knowledge during the reasoning process. This
issue becomes particularly evident when LLMs meet hallucination (Frieder et al., 2023; Bang et al.,
2023). Consequently, one might naturally ask “What knowledge could be used to guide numerical
reasoning process?”. Formulas exactly represent such knowledge that has been largely overlooked
in previous research but is frequently utilized in real-life applications.

Take a question from the GSM8K (Cobbe et al., 2021a) as an example: “A robe takes 2 bolts of
blue fiber and half that much white fiber. How many bolts in total does it take?”. This example only
requires the use of implicit commonsense mathematical knowledge to solve without domain-specific
formula. However, in our FormulaReasoning dataset, we require domain-specific formulas to guide
the numerical reasoning process, such as the formula used to calculate the heat absorption of an
object.

Recently, Liu et al., 2023 constructed two formula-based datasets, Math23K-F and MAWPS-F.
However, the formulas in these datasets primarily consist of commonsense formulas (such as to-
tal amount = unit amount × total number), and only 33.5% and 38.4% of the questions in these
datasets, respectively, require the use of formulas.

To fill this gap, we constructed a dataset for numerical reasoning that requires the use of formu-
las called FormulaReasoning. We annotated formulas for each question in FormulaReasoning. An
example of FormulaReasoning is shown in Figure 1.1 The formula-based feature makes Formula-
Reasoning a more challenging dataset for developing systems that can tackle real-world numerical

1Please note that FormulaReasoning is originally in Chinese. For the convenience of understanding, we
translated Chinese into English in all the examples presented in this paper.
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Calculating the degree of temperature increase in water: [Degree of water temperature 
increase] = [Final temperature] - [Initial temperature] = 60 ℃ - 20 ℃ = 40 ℃. The degree 
of water temperature increase = 40 ℃. 
The heat absorbed by water is given by: [Heat absorbed by water] = [Mass of water] * 
[Specific heat capacity of water] * [Degree of water temperature increase] = 50 kg * 4.2 * 
10^3 J/(kg·℃) * 40 ℃ = 8400000 J.  The heat absorbed by water = 8400000 J.
The thermal efficiency of the water heater can be obtained from: [Thermal efficiency of 
the water heater] = [Heat absorbed by water] / [Total electrical energy consumed] * 100% = 
8400000 J / (1 * 10^7 J) * 100% = 84%. The thermal efficiency of the water heater = 84%. 
Answer = 84% 

There is a electric water heater, after 50kg of water is loaded into its tank, the water is 
heated from 20℃ to 60℃ by electricity. It is known that the specific heat capacity of 
water is C_water = 4.2×10^3J/(kg*℃). 
Q: If the total electrical energy consumed during the heating process is 1×10^7J, what is 
the thermal efficiency of the water heater?

Question

Explanation (Reasoning Steps)

Parameter Table

Parameter Symbol Value Unit

Degree of water temperature increase ∆𝑡 40 ℃
Final temperature 𝑡!"#$% 20 ℃

⋯ ⋯ ⋯ ⋯
Heat absorbed by water 𝑄$&'()&*+ 8400000 J

Mass of water 𝑚,$-*) 50 kg

Figure 1: An example taken from FormulaReasoning. Numerical values (including units) given in
the question and obtained from intermediate steps are highlighted in red and purple, respectively.
Formulas and their elements are in blue.

reasoning problems. Indeed, in fields such as mathematics and physics, formulas serve as an im-
portant vessel for representing domain knowledge. However, existing datasets scarcely consider
explicit incorporation of formulas into numerical reasoning.

Table 1: Statistics of Math23-F, MAWPS-F, GSM8K, MATH and our FormulaReasoning.

Dataset Math23K-F MAWPS-F GSM8K MATH FormulaReasoning

# questions 23,162 2,373 8,792 12,500 5,420
# formulas (and variants) 51 (131) 18 (46) 0 (0) 0 (0) 272 (824)
# questions requiring formula (proportion) 7,750 (33.46%) 911 (38.39%) N/A N/A 5,420 (100%)
Avg. # reasoning steps 1.16 1.01 3.59 Not Provided 2.37

We collected questions requiring formula-based numerical reasoning from Chinese junior high
school physics examinations. With the combined efforts of manual annotation and assistance from
LLMs, we annotated each question with an explanation text, a final answer, and a set of relevant
formulas (including formula structures, parameter names, symbols, numerical values, and units)
and built a consolidated formula database. The formula database functions as an external knowl-
edge base, which can be used to evaluate retrieval-based/augmented systems. In Table 1, we com-
pare FormulaReasoning with two existing formula-based datasets and the well-known GSM8K and
MATH (Hendrycks et al., 2021). In comparison to Math23K-F and MAWPS-F, FormulaReasoning
contains a larger number of formulas (272), whereas the other two datasets contain 51 and 18 for-
mulas. Additionally, all questions in FormulaReasoning require the use of formulas. The higher
average number of reasoning steps (2.37 vs. 1.16/1.01) implies that FormulaReasoning is more
challenging and better suited for evaluating existing models as a multi-step formula-based reasoning
task.

We used FormulaReasoning to evaluate LLMs ranging from 7B to >100B parameters, as well as
fine-tuned models such as Qwen-1.8B (Bai et al., 2023) and ChatGLM3-6B (Zeng et al., 2022) with
a proposed Chain-of-Thought supervised fine-tuned method and a data augmentation method. We
also trained an encoder for formula retrieval and experimented with retrieval-augmented generative
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models. Our empirical findings show that the best existing models only achieve an accuracy of
around 84%, lagging behind an accuracy 92% of humans, indicating that there is still significant
room for exploration in formula-based numerical reasoning.

Our contributions are summarized as follows:

• We construct a formula-based numerical reasoning dataset FormulaReasoning, with fine-
grained annotations for each question. As a formular knowledge-guided numerical reason-
ing dataset, it can be applied to tasks involving trustworthy and verifiable reasoning.

• We conduct evaluations on LLMs of various sizes, supervised fine-tuned models, and
retrieval-augmented generative models. The experimental results establish a strong base-
line for future research and also indicate that the task remains unresolved.

The dataset and code is currently available on anonymous GitHub https://anonymous.
4open.science/r/FormulaReasoning.

2 RELATED WORK

2.1 NUMERICAL REASONING DATASETS

Numerical reasoning is one of the fundamental capabilities of natural language reasoning. The
study of numerical reasoning in natural language has existed for several years. Numerous datasets,
such as DROP (Dua et al., 2019), GSM8K (Cobbe et al., 2021b), TSQA (Li et al., 2021) and
MATH (Hendrycks et al., 2021), have introduced natural language numerical reasoning. Another
line of research focusing on numerical reasoning in natural language is math word problem (MWP).
MWP tasks typically provide a short passage (i.e., a question) and require the generation of an arith-
metic expression that can compute an answer. Representative datasets include MAWPS (Koncel-
Kedziorski et al., 2016), Math23K (Wang et al., 2017), MathQA (Amini et al., 2019), etc. Several
works focus on specialized domains where some of the questions in their datasets require numer-
ical reasoning. Examples include GeoSQA (Huang et al., 2019), which focuses on the geography
domain, the STEM (Drori et al., 2023) dataset and the ScienceQA (Lu et al., 2022) which covers
multiple disciplines in science and technology. The distinguishing feature of our FormulaReasoning
is that the numerical reasoning questions within these datasets lack explicitly labeled formulas.

The recently introduced datasets (Liu et al., 2023) Math23K-F and MAWPS-F require formulas for
only 33.5% and 38.4% of the questions, respectively, and the formulas within these datasets are
all simple commonsense formulas (e.g., total cost = unit cost × total number). By contrast, our
FormulaReasoning dataset collects questions from junior high school physics examinations, with
every question accompanied by formulas. In addition, we also annotated a formula database for
FormulaReasoning that can serve as an external knowledge base, used to assess retrieval-augmented
systems.

2.2 NUMERICAL REASONING METHODS

The methods for solving numerical reasoning have evolved from statistical approaches (Hosseini
et al., 2014; Kushman et al., 2014) to those based on rules and templates (Shi et al., 2015; Wang et al.,
2019) and further to methods based on deep learning models (Gupta et al., 2019; Chen et al., 2022;
Kim et al., 2022; Li et al., 2023a). In the past two years, with the rapid development of LLMs, LLMs
have demonstrated strong capabilities in resolving numerical reasoning questions. Consequently,
several methods aimed at enhancing the reasoning abilities of LLMs have been proposed, including
the notable Chain of Thoughts (CoTs) method (Wei et al., 2022), along with many subsequent variant
approaches (Kojima et al., 2022; Wang et al., 2022; Zhou et al., 2022; Li et al., 2023b).

We established representative existing methods as baselines for FormulaReasoning, including
zero/few-shot CoTs prompting methods to LLMs ranging from 7B to over 100B parameters. We
trained a specialized formula retriever for retrieving formulas and explored retrieval-enhanced nu-
merical reasoning. We also divided the reasoning process into formula generation, parameter ex-
traction, and numerical calculation, and used data augmentation to enhance fine-tuned models with
fewer than 7B parameters.
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3 DATASET CONSTRUCTION

We collected raw questions from Chinese junior high school physics examinations from 2015 to the
present. We had a total of five postgraduate volunteer students, and they all hold a bachelor’s degree
in science and engineering. We then annotated the reasoning steps and corresponding formulas for
each question. This process involved a combination of manual annotation and the assistance of
LLMs to improve the efficiency of annotation. Each question is associated with an explanation of
the reasoning steps in natural language with a symbolic representation of the reasoning steps using
formulas, including the values and units for all the parameters within the formulas. Finally, we
compiled all the formulas and we merged those expressing the same meaning to create a formula
database. We describe this process to construct FormulaReasoning in detail below.

3.1 PREPROCESSING

We crawled 18,433 junior high school physics examination questions in China from 2015 to the
present from public sources, including only those with free-text answers and excluding multiple-
choice and true/false questions. Each raw question contains a question text and an explanation text
that includes the reasoning steps. We eliminated questions requiring diagrams.

Subsequently, we filtered the questions by assessing the presence of numerical values within the
explanation and confirming that the final answer was numerical. Utilizing a regular expression-
based approach, we extracted the final numerical answer, including its unit, from the explanation.
We found that for 487 questions, the regular expressions did not return results, so we manually
annotated the positions of their answers in the text explanations. Following the preprocessing phase,
we compiled an initial dataset comprising 6,306 questions.

Table 2: Original explanation and explanation with normalized formulas (highlighted in blue).

Original explanation.
The change in water temperature is 60 - 20 = 40 °C. Therefore, the heat absorbed by the water is
Q {absorbed}=50 kg × 4.2 ×103 J/(kg·°C) × 40 °C = 8.4 ×106 J. Given that the total electrical energy
consumed in the heating process is 1 × 107 J, the thermal efficiency of the water heater can be calculated
using the formula for the efficiency of a heat engine: η = Q {absorbed}}/W {total}×100% = (8.4 × 106

J)/(1.0× 107 J)×100% = 84%. Answer: If it is known that the total electrical energy consumed during the
heating process is 1× 107, the thermal efficiency of the water heater is 84%.

Explanation with normalized formulas.
1. Calculating the temperature increase in water: [Degree of water temperature increase] = [Final tempera-
ture] - [Initial temperature] = 60 °C - 20 °C = 40 °C. The degree of water temperature increase = 40 °C.
2. Calculating the heat absorbed by water: [Heat absorbed by water] = [Mass of water] × [Specific heat
capacity of water] × [Degree of water temperature increase] = 50 kg × 4.2 × 103 J/(kg·°C) × 40 °C =
8400000 J. The heat absorbed by water = 8400000 J.
3. The thermal efficiency of the water heater can be obtained from: [Thermal efficiency of the water heater]
= [Heat absorbed by water] / [Total electrical energy consumed] × 100% = 8400000 J / (1× 107 J) * 100%
= 84%. The thermal efficiency of the water heater = 84%.
Answer = 84%

3.2 FORMULA NORMALIZATION

We found that the reasoning steps (i.e. the explanation) in the obtained raw dataset lacked a normal-
ized format and were expressed quite casually. Some formulas mixed parameter names (e.g., “mass
of water”) and symbols (e.g., “mwater”), while others simply provided calculations in numerical
form without parameter names or symbols. In order to ensure that all explanations adopted a nor-
malized form of formulas, we normalized the formula annotations in the explanations. An example
can be found in Table 2. In this process, we need to identify the formulas used within the original
explanations and to correct any formatting issues. Manually undertaking such tasks would require
significant effort. However, since the process is not open-ended, but rather structured and verifi-
able, we could automatically, e.g., using a LLM, extract formulas from the explanations, calculate
each step, and compare the result with the given answer to ensure the accuracy of this normalization
process.
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Specifically, to enhance the efficiency of the annotation, we adopted a coarse-to-fine annotation
approach with the help of a LLM2. We first prompted the LLM in a few-shot manner to generate
accurate explanations of the reasoning process. Then, we used few-shot prompts to guide the LLM in
correcting minor errors within the normalized explanations, including formatting errors in formula
annotations and inaccuracies in the parameters used during computations. Both prompts can be
found in Appendix A.1.1. Next, we will provide a detailed description of this process.

Initially, we introduced the question along with its original explanation and the corresponding an-
swer to guide the LLM through few-shot prompting to revise the original explanation. We observed
that the ability of the LLM to revise explanations towards normalized explanations remained sat-
isfactory. To assess the correctness of the revised explanations, we extracted formulas from these
explanations and then computed the answer using the numbat tool3. In addition to providing expla-
nations, we also required the LLM to present the values, symbols, and units of each parameter in the
formulas in the form of a table. An example is shown in Figure 1.

At this stage, we checked the correctness of the formula format in the explanations by automatic
rules, including whether there were omissions in parameter names, parameter symbols, or corre-
sponding units, and these issues were all correctable. Therefore, if our program detected that the
LLM had not successfully generated an accurate normalized explanation, we used few-shot prompt-
ing to identify and correct these specific errors. More details can be found in Appendix A.1.1. We
observed that the questions which remained incorrect despite multiple attempts by the LLM were
of notably poor quality, including missing important reasoning steps, unclear question formulation,
and so on. Some examples of these questions can be found in Appendix A.1.2. These questions
were removed from our dataset. Following this step, our dataset contains a remaining total of 5,420
questions.

3.3 FORMULA DATABASE CONSTRUCTION

Table 3: Changes in the number of formulas after
each merging step.

Step # Formulas
Before merging 12,906
After symbolic rules based merging 1,163
After semantic-based merging 439
After manual review and error correction 272

Our next step was to construct a unified formula
database for the entire dataset. Given that pa-
rameters in the same formula can be expressed
differently across various problem contexts, for
instance, the two formulas “[weight of water] =
[mass of water] * [gravitational acceleration]”
and “[weight] = [mass] * [gravitational acceler-
ation]” both calculate the weight of an object,
we need to merge these formulas into a single
representation.

We divided the construction process of the formula database into three steps: 1) Merge the formulas
through symbolic rules. 2) Merge the formulas through semantic-based method. 3) Manual review
and error correction. In Table 3, we present the initial number of formulas and the remaining number
of formulas after each step.

Symbolic rules based merging. In this step, we merged formulas through symbolic rules. Specif-
ically, this was achieved by comparing the structure of the formulas and the symbols. Take the
following as an example of judging whether two formulas have the same structure: the formulas
“f1 : a1 = (b1 + c1)/d1”, “f2 : a2 = (b2 + c2)/d2” and “f3 : b1 = a1 ∗ d1 − c1” have the same
structure because f2 can be derived from f1 by renaming parameters, and f3 can be obtained from f1
by transformation. Moreover, in physics, certain physical quantities are conventionally represented
by specific symbols. For example, the mass of an object is often denoted by “m” and the density
of an object is frequently represented by the symbol “ρ”. Subscripts are then used to distinguish
which specific object a physical quantity refers to, such as “ρwater” for the density of water. For
any two formulas, we first computed all the transformations of each formula to obtain a set of all
its variants. Then, we compared the formula structures in the two sets to determine if two formulas
were structurally equivalent. If they shared the same structure, we then compared whether their

2During dataset construction, we accessed Qwen-max via API (https://help.aliyun.com/zh/dashscope/developer-
reference/quick-start). Qwen-max is a LLM with over 100B parameters and a strong capability in Chinese.

3https://numbat.dev. Numbat is designed for scientific computations with support for physical units.
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symbols, with subscripts removed, were identical. If they were, we considered these two formulas
to be mergeable. When merging, we retained the parameter with the shorter length from the two.
After merging based on symbolic rules, we reduced the number of formulas in the formula database
from 12,906 to 1,163.

Semantic-based merging. In the symbolic rules based merging process, the semantic information
of the parameter names was neglected. This led us to perform merges grounded on the semantics
of the parameter names. For instance, two formulas that were not merged during the symbolic
fusion stage, “[density] = [mass] / [volume]” and “[density of water ] = [mass of water] / [volume
of water]”, can actually be merged. We would carry out the merging of these two formulas based
on the semantic information of the parameter names (for example, ”density” and ”density of water”
are semantically similar). Specifically, for formulas with identical structures, we tokenized each
pair of corresponding parameters to create two sets of words4. When the two sets overlapped, the
parameters were considered to have semantic connection, and the formulas became candidates for
merging. Utilizing this approach, we identified a set of pairs of potentially mergeable formulas
and then consulted the LLM for a thorough evaluation of each pair. The prompts can be found in
Appendix A.1.3. After this step, the number of formulas in the formula database was reduced to
439.

Manual review and error correction. Upon completing the aforementioned merging process, we
manually inspected the correctness of the results, rectified instances where errors occurred during
merging, and manually merged formulas that were overlooked by the LLM. In this process, there
were two human volunteers cross-validating the results of manual review and annotation. Finally,
we obtained a formula database consisting of 272 formulas.

4 EXPERIMENTS SETUP

In this section, we explore several methods for handling the questions within FormulaReasoning,
including prompting LLMs using zero-shot and few-shot chain-of-thought (CoT, Wei et al., 2022;
Kojima et al., 2022), and training a formula retriever to retrieve formulas to be incorporated into
LLM prompts. Additionally, we employed two approaches to enhancing the reasoning abilities of
fine-tuned models with fewer than 7B parameters. The first approach involved dividing the reasoning
process into distinct steps: formula generation, parameter extraction, and numerical calculation. The
second approach leveraged data augmentation to improve the models’ reasoning ability.

4.1 DATASET SPLIT

We divided FormulaReasoning into into subsets for training, id (in-distribution) test, and ood (out-
of-distribution) test, comprising 4,608, 421 and 391 questions, respectively. We required that all
formulas in the id test must appear in the training set, whereas in the ood test, each question involves
at least one formula that has not been seen in the training set. This division is designed to evaluate
the generalizability of fine-tuned models on formulas that they have not previously encountered.

4.2 EVALUATED METHODS

4.2.1 HUMAN PERFORMANCE

We recruited 108 students from a high school, with each student being assigned 7–8 questions. Each
student was given 40 minutes to complete these questions. These questions were used as part of their
in-class exercises, and at the end, each student received a gift. The final statistics were collected to
evaluate human performance, which was consented by all the students.

4.2.2 LLMS

Following Kojima et al., 2022, we incorporated the phrase “Let’s think step by step” into the zero-
shot prompt to guide LLMs in generating the reasoning steps. For the few-shot setting, we randomly

4We used jieba: https://github.com/fxsjy/jieba.
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sampled five questions from the training set to serve as examples for in-context learning. Each
example includes the question text and the reasoning steps (i.e., the explanation). Examples of the
prompts can be found in Appendix A.2.2.

We conducted experiments on GPT-4o, GPT-4-turbo, GPT-3.5-turbo, GLM-4-plus, GLM-4-
flash (GLM et al., 2024), and Qwen-max. We also evaluated on Qwen2.5-7B/14B (Yang et al.,
2024) and Llama3.1-8B (Meta, 2024).

4.2.3 FORMULA RETRIEVER

We trained a formula retriever on the training set. Specifically, we encoded each question using the
Chinese-BERT-wwm-base (Devlin et al., 2019; Cui et al., 2021) model to obtain the CLS vector
of the question. Each formula in the formula database was represented by a randomly initialized
vector. During training, we calculated the cosine score between the question vector and the formula
vector. The retriever was then trained with in-batch negatives and contrastive learning loss (Gao
et al., 2021). Subsequently, for each question in the id test, we retrieved the top five formulas with
the highest scores and included them in the prompt to observe the change in the performance of the
LLM when provided with relevant formulas. More details can be found in Appendix A.2.3.

4.2.4 SUPERVISED FINE-TUNED MODELS

We found that directly prompting models possessing fewer than 7B parameters failed to produce
satisfactory outcomes (for example, ChatGLM3-6B attained merely 8.99 points in a zero-shot set-
ting). Therefore, we conducted supervised fine-tuning of models with fewer than 7B parameters,
yet discerned that, dissimilar to larger models (such as GLM-4-plus), smaller models did not exhibit
proficient performance in numerical extraction and calculation. In order to augment the reason-
ing capabilities of smaller models, we explored two approaches for improvement. We conducted
experiments on Qwen-1.8B (Bai et al., 2023) and ChatGLM3-6B (Zeng et al., 2022).

Chain-of-Thought Supervised Fine-Tuning (CoT-SFT) We decomposed the reasoning process
into several steps. First, we instructed the model to generate the formulas required to solve the ques-
tion. Subsequently, the parameter names within the formulas were extracted, allowing the model to
retrieve the corresponding values and units from the context. Next, the formulas and the associated
parameter values were provided to a calculator to obtain the final result. This approach relieved the
model from numerical calculation, allowing it to concentrate on the reasoning aspect.

Data Augmentation (DA) We augmented the training dataset with the assistance of larger models.
Firstly, we utilized a few-shot approach to prompt a LLM (Qwen-max) to generate new question-
answer pairs. The correctness of the computation process generated by the LLM was meticulously
verified using a calculator. Subsequently, the formulas generated by the model were extracted and
normalized. More details could be found in Appendix A.2.1.

4.3 METRIC

We utilized numbat to evaluate the predictions generated by the model against the gold-standard
answers. A prediction is deemed correct if the relative error (prediction - gold) / gold is less than
1%. We employed accuracy, which is the proportion of questions answered correctly, as our metric.

4.4 IMPLEMENTATION DETAILS

We accessed to GPT-4o (gpt-4o-2024-08-06 version), GPT-4-turbo (gpt-4-1106-preview ver-
sion), GPT-3.5-turbo (gpt-3.5-turbo-1106 version)5, GLM-4-plus, GLM-4-flash6, Qwen-max and
Qwen2.5-7B/14B7 through API calls with the default hyper-parameters. For Llama3.1, we con-
ducted experiments on NVIDIA V100-32G GPUs. These LLMs generated using nucleus sampling
with top p=0.8. Models that require fine-tuning were experimented on NVIDIA V100 GPUs with

5https://platform.openai.com/docs
6https://open.bigmodel.cn/
7https://help.aliyun.com/zh/dashscope/developer-reference/quick-start
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Huggingface Transformers and Pytorch 2.0. For Qwen-1.8B, we used a learning rate of 1e-5 and a
batch size of 32, and tested the model after training for 10 epochs. For ChatGLM3-6B, we fine-tuned
with LoRA (Hu et al., 2021) with r=8, alpha=32 and learning rate of 5e-5, batch size of 1. The max
input length and output length are both set to 512. We utilized nucleus sampling with top p=0.8 for
generation. In the case of CoT-SFT, which directly outputted formulas along with corresponding pa-
rameter values and units, if the generation output contained formatting errors, we allowed the small
model to retry up to 5 times until a correctly formatted output was generated. Training Qwen-1.8B,
ChatGLM3-6B models required 12 and 24 hours respectively.

5 EXPERIMENTS RESULTS

5.1 HUMAN PERFORMANCE

In FormulaReasoning, humans achieved impressive performance, with a score of 93.49 on the id
test, 90.47 on the ood test, and an average score of 92.03.

5.2 RESULTS OF LLMS

Table 4: Results of LLMs with zero-shot and few-shot prompting.

Model Size zero-shot CoT few-shot CoT
id test ood test Avg. id test ood test Avg.

GPT-4o unknown 77.20 72.38 74.88 76.01 73.66 74.88
GPT-4-turbo unknown 70.07 72.89 71.43 71.50 77.49 74.38
GPT-3.5-turbo unknown 26.13 25.58 25.87 32.07 29.92 31.03
GLM-4-plus >100B 84.32 81.07 82.76 82.90 85.68 84.24
GLM-4-flash unknown 71.50 71.87 71.68 61.76 67.01 64.29
Qwen-max >100B 57.24 60.10 58.62 55.82 61.38 58.50
Qwen2.5 14B 61.28 64.71 62.93 61.28 65.22 63.18
Qwen2.5 7B 42.04 43.73 42.38 59.62 65.73 62.56
Llama3.1 8B 13.06 9.74 11.46 9.74 9.72 9.73

Human - 93.49 90.47 92.03 93.49 90.47 92.03

The evaluation results on LLMs are shown in Table 4. GLM-4-plus exhibited the best performance
in both zero-shot and few-shot settings, surpassing the second-ranked GPT-4o by an average of 7.88
points in zero-shot setting and 9.36 in few-shot setting. Among models with size not exceeding
20B, Qwen2.5-14B demonstrated commendable performance in both zero-shot and few-shot set-
tings. The subpar performance of Llama3.1 might be due to its pre-training data being primarily in
English. After incorporating few-shot examples, GPT-4-turbo, GPT-3.5-turbo, GLM-4-plus and
Qwen2.5 demonstrated performance improvements, ranging from 0.25 to 20.18. However, similar
performance changes were not observed on other LLMs. Surprisingly, the open-source Qwen2.5-
14B model outperformed the closed-source Qwen-max model8.

Human performance surpassed the performance of the flagship model GLM-4-plus with zero-shot
setting and few-shot setting by margins of 9.27 and 7.79 points, respectively. Such results demon-
strated that there remained a substantial gap between the current capabilities of state-of-the-art LLMs
and human performance. This was even more pronounced when considering smaller-scale models.
These findings underscored the challenging nature of FormulaReasoning as an unresolved dataset,
and that there was significant room for improvement in LLMs as they struggled to match human
levels of reasoning.

We also compared the chain of thought (CoT) and program of thought (PoT, Chen et al., 2023)
methods, with the results presented in Appendix A.2.4. The results indicated that CoT and PoT
demonstrated varying performances between different models and under different settings.

8We have not yet found clear information indicating whether the closed-source Qwen-max is also based on
version 2.5.
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5.3 RESULTS OF LLMS WITH FORMULA RETRIEVER

Table 5: Results of LLMs with Formula Retriever
on the id test.

Model zero-shot few-shot

GLM-4-flash 71.50 61.76
+ formula retriever 70.55 62.95

Qwen2.5-7B 42.04 59.62
+ formula retriever 52.96 63.66

The results of LLMs utilizing the formula re-
triever are shown in Table 5. We found that the
impact on performance varied among different
LLMs when incorporating retrieved formulas
into prompts. We observed a positive enhance-
ment on Qwen2.5-7B, with score increments of
10.92 and 4.04 with zero-shot and few-shot, re-
spectively, on the id test. However, we found
that the performance was essentially on par on
the GLM-4-flash. Specifically, we found that
the top 5 retrieved formulas often included ir-
relevant ones, as the number of formulas re-
quired varies for each problem. The presence
of these extraneous formulas affected the model’s performance, indicating that there is considerable
room for further research in retrieving from a formula database.

5.4 RESULTS OF SUPERVISED FINE-TUNED MODELS

Table 6: Results of supervised fine-tuned models
on FormulaReasoning.

Model Size id test ood test Avg.

Qwen-1.8B
1.8B

55.91 44.58 50.25
+ DA 56.16 45.32 50.74
+ CoT-SFT 73.65 74.38 74.00

ChatGLM3-6B
6B

52.95 40.64 47.02
+ DA 53.44 45.32 49.53
+ CoT-SFT 74.63 73.89 74.23

Table 6 shows the results for the supervised
fine-tuned models, with and without CoT-SFT
and DA, which were detailed in Section 4.2.4.
In most settings, both models achieved higher
scores on the id test than the ood test, yet they
still exhibited considerable performance on the
ood test. This indicates that 1) the ood formu-
las indeed challenged model performance and
2) the models still demonstrated a certain level
of generalizability. We hope that the division of
id test and ood test will be helpful for assessing
the generalization ability of fine-tuned models
in future work.

It was noteworthy that with CoT-SFT, Qwen-1.8B and ChatGLM3-6B, with a mere parameter count
of 1.8B and 6B, respectively, achieved performance comparable to GPT-4o (though such a com-
parison may not be entirely fair). This indicated that the incorporation of CoT-SFT and the use of
calculators could significantly enhance the reasoning capabilities of small models. Our findings re-
vealed that focusing on reasoning with CoT while delegating numerical calculation to a calculator
could enhance the performance of small models, given their limited calculating capability. The as-
sistance of LLMs for data augmentation could also enhance smaller models’ reasoning capability.
This finding provides valuable insights for future deployment of numerical reasoning systems with
small models.

5.5 CASE STUDY AND ERROR ANALYSIS

We sampled 50 error cases from the id test (few-shot setting) of GPT-3.5-turbo and manually cat-
egorized the types and proportions of errors. We divided the error types into two main categories:
formula errors and calculation errors. Formula errors encompass inappropriate formulas and omit-
ted formulas, while calculation errors primarily involve inaccuracies in numerical calculation and
unit errors. We found that 38% of errors were caused by incorrect formulas, while the remaining
62% were attributable to calculation errors. We provide one example for each of the two types of
errors listed in Figure 2. It could be observed that FormulaReasoning poses challenges to existing
models in terms of formula application and numerical calculation (including unit calculation and
arithmetic calculation).
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Question
The maximum power of a tank engine is 7.2×10^5W. During a certain mission, the tank traveled 3000m on a straight road at a 
constant speed using its maximum power for 300 seconds, consuming 15kg of diesel fuel. (q_diesel = 4.0×10^7J/kg) Q: The 
efficiency of the tank's engine.

Solution: 1. Calculate the time it takes for the tank to travel: … omitted …
3. Calculate the engine efficiency: [Engine efficiency] = [Engine output power] / [Heat energy consumed by fuel] … omitted …

Output of  GPT-3.5-turbo (wrong formula highlighted in red)

Solution: 1. Calculate the heat released by the complete combustion of diesel fuel: … omitted …
3. Calculate the efficiency of the tank's engine: [Tank engine efficiency] = [Work done by the engine] / [Heat released by 
complete combustion of diesel fuel] × 100% Equation … omitted …

Gold Explanation (correct formula highlighted in green)

(a) An error case caused by wrong formulas.
Question
Given that the calorific value of natural gas is 3.8×10^7 J/m^3 and the specific heat capacity of water is 4.2×10^3 J/(kg·°C). 
If the efficiency of a natural gas stove in heating water is 50%, then at standard atmospheric pressure, how many degrees 
Celsius can 10L of natural gas, burning completely, heat 3.0kg of water initially at 60°C?

Solution: 1. Calculate the heat content of natural gas: [Heat content of natural gas] = [Calorific value of natural gas] × 
[Volume of natural gas] Calculation = 3.8×10^7 J/m^3 × 10 L = 3.8×10^8 J Heat content of natural gas = 3.8×10^8 J … omitted …

Output of  GPT-3.5-turbo (wrong calculation highlighted in red. Note that 1 L = 10^{-3} m^3)

Solution: 1. Calculate the heat released from the complete burning of natural gas:
   [Heat released from complete combustion of natural gas] = [Volume of natural gas] × [Calorific value of natural gas] 
Calculation = 10 L × 3.8×10^7 J/m³ = 3.8 × 10^5 J … omitted …

Gold Explanation (correct calculation highlighted in green)

(b) An error case caused by wrong calculation.

Figure 2: Error cases.

6 CONCLUSION AND LIMITATIONS

We introduced FormulaReasoning, a dataset for formula-based numerical reasoning. We annotated
the reasoning steps with formulas for each question with both manual and LLM-assisted efforts. Fur-
thermore, we constructed a formula database after merging formulas with similar meanings, serving
as an external knowledge base for subsequent retrieval-based/augmented approaches. We evalu-
ated FormulaReasoning across various sizes of LLMs, supervised fine-tuned models, and retrieval-
augmented LLMs, demonstrating its challenging nature as an unresolved task. Our findings indicate
substantial room for improvement of existing models on formula-based numerical reasoning, thus
motivating future research efforts.

In the future work, we plan to utilize the formula knowledge from FormulaReasoning to improve the
numerical reasoning capabilities of LLMs. Possible approaches include enhancing reasoning abili-
ties through knowledge-driven methods, preference learning methods based on formula feedback.

One limitation of this work is that our evaluation results reported in the paper were obtained from the
original Chinese version of FormulaReasoning. We have employed a combination of LLM-based
translation and manual review to release an English version of FormulaReasoning. Currently, we
provide a preview English version in our GitHub repository, and we will release the official English
version of FormulaReasoning after completing the manual review process. Another limitation is
that, our dataset is limited to the domain of physics. Although junior high school physics is not
overly complex and can be understood by most people which would benefit evaluation efforts, it is
still possible to explore formula-based question answering data in other domains.
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A APPENDIX

A.1 DATASET CONSTRUCTION

A.1.1 PROMPTS IN FORMULA NORMALIZATION

The process of formula normalization is delineated into three distinct stages: the generation of natu-
ral language explanations, the extraction of the associated parameters from the explanations, and the
subsequent error correction phase. The initial two stages are illustrated in Figures 3 and 4. The third
stage is further splited into three specific error categories, each addressed by a dedicated prompt:
input errors, where the parameters mentioned in the explanation are absent from the question; cal-
culation errors, which occur when the calculator reports an error during the computation process;
and output errors, where the final computed answer is incorrect. We provide an example here fo-
cusing on prompts for correcting calculation errors, while prompts for the other two error types can
be found in our code submission. The prompts designed to correct calculation errors are depicted in
Figure 5. The entire normalization procedure employs a 6-shot prompting, an instance of which is
provided herein for illustrative purposes.

A.1.2 EXAMPLES OF DELETED QUESTIONS

The questions which remained incorrect despite multiple attempts by the LLM were of notably poor
quality, including missing important reasoning steps, wrong reference answer, and so on. Here is an
example of these questions in Figure 6.

A.1.3 SEMANTIC-BASED MERGING FOR FORMULA DATABASE CONSTRUCTION

Semantic-based merging primarily employs the LLM to comprehend formulas, ascertain if two for-
mulas are semantically equivalent, and subsequently determine whether they can be merged into a
single formula. The prompt for this procedure is illustrated in Figure 7. This approach ensures that
the nuanced meanings embedded within formulas are accurately captured and evaluated for potential
merging, thereby enhancing the quality of formula database.
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A.2 EXPERIMENTS

A.2.1 DATA AUGMENTATION (DA) FOR FORMULAREASONING

There have been several studies utilizing large language models (LLMs) for data augmentation (Ding
et al., 2024). The data generated in these related works (Zheng et al., 2023; Whitehouse et al., 2023)
primarily focus on daily conversations or sentiment analysis and do not require rigorous numerical
calculations. Some research on data augmentation involving numerical calculations (Shum et al.,
2023) employs LLMs to generate solutions to questions to aid in training, rather than creating com-
plete questions. In contrast to these approaches, our work generates complete questions that involve
numerical calculations (particularly formula calculations), along with automatic improvement and
selection to ensure data quality.

In order to enhance the capabilities of models, we use LLM to generate more data for fine-tuning.
We divide the process of data generation into the following several steps.

First, we randomly generated 17,000 prompts. Each prompt was obtained by stacking five question-
answer pairs sampled form training set. At the end of the prompt, LLM was required to generate the
sixth question-answer pair. Second, we normalized the generated formulas. Except for the absence
of manual review, the remaining steps were consistent with those in Section 3.2. At last, we unitized
the calculator to check whether the calculation process in the data generated by the LLM is correct,
and discarded the generated data with incorrect calculation processes. After the above steps, we
finally retained more than 2500 questions.

We found that mixing the newly generated data into the original training set did not always bring
positive improvement, perhaps because the newly generated data has not undergone manual re-
view. We found that randomly selecting a small portion of the newly generated data can enable
the model to have performance improvement. We set several different mixing ratios selected from
{5%, 10%, 15%, 20%, 2%, 30%, 35%, 40%}. We fine-tuned each model using the augmented data
set. After training for a fixed number of steps (150k and 200k), we selected the checkpoints with the
smallest loss among models of different mixing ratios.

A.2.2 ZERO-SHOT AND FEW-SHOT PROMPTS

Zero-shot and few-shot prompts are shown in Figure 8.

A.2.3 FORMULA RETRIEVER

Let the number of formulas in the formula database be N . During training, we randomly initialized
a matrix F ∈ RN×d, where d is the hidden size and the i-th row in F represented the initial repre-
sentation of the i-th formula in formula database. We denoted a batch of questions with a batch size
of B as Q = {q1, q2, ..., qB}. The indices of the gold-standard formulas corresponding to these B
questions were denoted as L = {l1, l2, · · · , lB} (i.e. the label of qi is li, where 1 ≤ i ≤ B).

BERT was utilized to encode each question,

hi
cls,h

i
1, · · · = BERT(qi), 1 ≤ i ≤ B. (1)

Subsequently, we took the CLS vector hi
cls as the representation for the i-th question.

We utilized in-batch negatives and contrastive learning loss,

L = − 1

B

∑
1≤i≤B

log
exp(cos(hi

cls,Fli))∑
1≤j≤B exp(cos(hi

cls,Flj ))
. (2)

Each question might correspond to multiple correct formulas, and we ensured that the same question
did not appear twice in the same batch when loading the data. Based on the implementation of
Chinese-BERT-wwm-base, we tested the retrieval performance on the id test set and found that
Recall@5 reached 97.69%.

Models were evaluated with top-5 retrieved formulas. Prompts can be found in Appendix A.2.5. We
utilized zero-shot CoTs.
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Table 7: Results of LLMs with zero-shot and few-shot chain of thought (CoT) and program of
thought (PoT).

Model zero-shot few-shot
id test ood test Avg. id test ood test Avg.

GPT-4o (CoT) 77.20 72.38 74.88 76.01 73.66 74.88
GPT-4o (PoT) 80.76 73.91 77.46 81.47 82.61 82.02

GLM-4-plus (CoT) 84.32 81.07 82.76 82.90 85.68 84.24
GLM-4-plus (PoT) 84.08 78.51 81.40 86.70 84.91 85.84

Human 93.49 90.47 92.03 93.49 90.47 92.03

A.2.4 COMPARISON OF COT AND POT PROMPTS

Results are shown in Table 7. In the PoT approach, we utilized a Python interpreter to execute the
code and obtain the final results. We found that the performance comparison between CoT and PoT
varies across models. GPT-4o consistently demonstrated superior performance with PoT across all
settings, achieving improvements of 2.58 points on average in the zero-shot setting and 7.14 points
on average in the few-shot setting. In contrast, GLM-4-plus showed an average decline of 1.36
points in the zero-shot setting but showed an average improvement of 1.60 points in the few-shot
setting. The finding might be related to the code capabilities of the models.

A.2.5 PROMPTS FOR LLMS WITH FORMULA RETRIEVER

We added the formulas before each question in the few-shot setting. For the examples sampled from
the training set, gold-standard formulas were added before each question. For the final question
from the test set in both zero-shot and few-shot prompts, we included the top 5 retrieved formulas.
The prompts are shown in Figure 9.
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Prompt actually used English translation
我需要你修改问题原有的解析，给出规范格式的新解析，要求
如下：
1.请逐步地进行思考,如果有公式组合的部分需要一步步地拆分
成基本公式进行求解
2.公式中的计算符号，如“+”、“-”、“×”、“/”和“^”不能省略
3.公式需要同时给出符号和有具体含义的两种形式，然后代入
数值计算得出答案
4.涉及到单位换算的部分需要展示出来具体过程
5.使用"[]"标注公式中的变量，其中科学计数法形式的数字
"a×10^b"以及复杂的单位，需要使用"()"标注
6.如果有latex格式的公式，比如“\frac{Q_吸}{Q_放}”需要改成
正常算式的形式：“Q_吸/Q_放”
7.解析开始如果给出“（解析可能存在错误）”表明给出的解析中
可能存在错误
下面是一些例子：
input:
问题：在某次测试中该车匀速行驶时受到的阻力是车重的 0.02 
倍，在 0.5h 内行驶了 28km 的路程，求：行驶的平均速度为多
少？
解析：解：车辆在0.5h内行驶了 28km 的路程，所以行驶的平
均速度为：V=s/t=28km/0.5h=56km/h。
output:
解：
原始解析比较清晰，下面将其转换为规范格式：
第一步，先计算平均速度:
v=s/t
[平均速度]=[路程]/[时间]
算式=28km/0.5h=56km/h
平均速度=56km/h
答案=56km/h
...omitted...
下面是一个新的问题：
问题：{{question}}
解析：{{explanation}}

I need you to modify the original explanation of the question and 
provide a new explanation with the following requirements:
1. Please think step by step. If there has formula combination, you 
need to decompose the combination into basic formulas step by step.
2. Calculation symbols such as "+", "-", "×", "/" and "^" in formulas 
cannot be omitted.
3. The formula needs to be given in both symbolic and concrete 
forms. After that, you need to substitute into the numerical 
calculation to obtain the answer.
4. The part related to unit conversion needs to show the specific 
process.
5. Use "[]" to label variables in formula, "()" for numbers like 
"a×10^b" in scientific notation and for complex units.
6. If you have a latex formula such as \frac{Q_in}{Q_out}, change 
it to a normal formula: "Q_in /Q_out".
7. Start with  "(Explanation may be wrong)" indicates that there 
may be an error in the given explanation.
Here are some examples:
input:
Question: In a test, the resistance of the car at a constant speed is 
0.02 times the weight of the car, and the car traveled a distance of 
28km in 0.5h. What is the average speed?
Explanation: The car has traveled a distance of 28km in 0.5h.The 
average speed of the vehicle is  V=s/t=28km/0.5h=56km/h.
output:
Solution:
The raw parsing is clear, so let's convert it to a canonical format:
1.we compute the average speed:
v=s/t
[Average speed]=[distance]/[time]
expression=28km/0.5h=56km/h
Average speed =56km/h
Answer=56km/h
...omitted...
There’s a new question:
Question: {{question}}
Explanation: {{explanation}}

Figure 3: Prompt of the formula normalization stage 1.
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Prompt actually used English translation
我需要你帮我从给定的问题和解析中提取出解决问题使用到的
公式，以及公式对应的参数表：
1.请逐步地进行思考,先对解析进行分析，然后生成提取结果，
如果有公式组合的部分需要一步步地拆分成基本公式进行求解
2.公式中所有的计算符号，如“+”、“-”、“×”、“/”和“^”不能省略
3.公式中的每个变量需要使用"[]"标注出来，而且变量需要使用
有意义的文字标识，尽量避免直接使用数值
4.如果有latex格式的公式，比如“\frac{Q_吸}{Q_放}”需要改成
正常算式的形式：“[Q_吸] / [Q_放]”，算式中的单位换算部分不
属于公式，不需要被提取
5.参数表中的参数是公式中使用到的参数（参数名称要与公式
中的参数一致），表格包括：概念、符号、数值、单位,使用"|"
分割单元格
6.参数表中的数值和单位来自于问题本身以及解析计算的中间
结果，如果参数进行了单位换算，参数表要给出原始的参数形
式（没有进行单位换算）
7.参数表中的参数如果没有单位或者是表示某个物体的数量，
比如“3盏灯”、“转了8圈”、“4个人”等等，那么单位写入“null”
8.提取结果中给出的公式和参数表中不需要任何额外的解释信
息
下面是一些例子：
input:
问题：在某次测试中该车匀速行驶时受到的阻力是车重的 0.02 
倍，在 0.5h 内行驶了 28km 的路程，求：行驶的平均速度为多
少？
解析：解：
原始解析比较清晰，下面将其转换为规范格式：
第一步，先计算平均速度:
v=s/t
[平均速度]=[路程]/[时间]
算式=28km/0.5h=56km/h
平均速度=56km/h
答案=56km/h
output:
提取分析：
1.解析中的公式格式符合要求，计算符号没有省略，变量使用
"[]"标注，而且变量使用有意义的文字标识
2.计算过程中没有进行单位换算，参数可以直接提取
下面给出提取结果（单位换算部分不属于公式，不需要被提取；
参数表中不需要额外解释信息）
提取结果：
1.先计算平均速度，根据路程和时间的关系:
[平均速度]=[路程]/[时间]
参数表:
概念| 符号| 数值| 单位
路程| s| 28| km
时间| t| 0.5| h
平均速度| v| 56| km/h
...omitted...
下面是一个新的问题：
问题：{{question}}
解析：{{explanation}}

I need you to help me extract the formula and parameters table for 
the formula from given question and explanation:
1. Think step by step, analyze the explanation first, and then 
generate the extracted results. If there is a combination of formulas, 
the combination needs to be split into basic formulas step by step.
2. All calculation symbols such as "+", "-", "×", "/" and "^" in the 
formula cannot be omitted.
3. Each variable in the formula needs to be labeled with "[]", and the 
variable needs to be identified with meaningful text instead of 
numbers.
4. If a latex formula such as \frac{Q_in}{Q_out} needs to be 
changed to a normal formula: [Q_in]/[Q_out]. The unit conversion 
does not need to be extracted.
5. The parameters table come from the parameters in formula (the 
parameter name should be consistent with the parameters in the 
formula), the table include: concept, symbol, numeric, unit, using 
cell division “|”.
6. The numeric and unit in the parameter table come from the 
problem itself and the intermediate results of analytical calculation. 
If the parameters are converted into different units, the parameter 
table should give the original parameter form (without unit 
conversion).
7. If the parameter in the parameters table has no units or represents 
the amount of an object, such as "3 lights", "8 revolutions", "4 
people", etc., then the units are written as "null".
8. Apart from formula and parameter table, no additional 
information is required in the extraction results.
Here are some examples:
input:
Question: In a test, the resistance of the car at a constant speed is 
0.02 times the weight of the car, and the car traveled a distance of 
28km in 0.5h. What is the average speed?
Explanation:
1.we compute the average speed:
v=s/t
[Average speed]=[distance]/[time]
expression=28km/0.5h=56km/h
Average speed =56km/h
Answer=56km/h
output:
Extraction analysis:
1. The formula format in the analysis meets the requirements. The 
calculation symbols are not omitted. Variables are labeled with "[]", 
and variables are expressed with meaningful text.
2. No unit conversion was performed during the computation, and 
parameters can be directly extracted.
Below is the extraction result (the unit conversion part does not 
belong to the formula and does not need to be extracted; no 
additional explanatory information is required in the parameter 
table).
Extraction result:
1. First calculate the average speed, based on the relationship 
between distance and time:
[average speed]=[distance]/[time]
Parameter table:
Concept | Symbol | Numeric | Unit
distance | s | 28 | km
time | t | 0.5 | h
average speed | v | 56 | km/h
...omitted...
There’s a new question:
Question: {{question}}
Explanation: {{explanation}}

Figure 4: Prompt of the formula normalization stage 2.
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Prompt actually used English translation
我需要你帮助我纠正解析中的错误，我会给出问题和错误信息，
下面是错误纠正的要求：
1.你需要先进行错误分析，分析如何修改来纠正错误，然后给
出错误纠正部分，纠正解析中的错误
2.错误纠正部分不需要任何额外解释信息，错误纠正部分的格
式为:"内容：修改前的内容->修改后的内容"，增加内容时"修改
前的内容"为null，删除内容时"修改后的内容"为null
3.问题缺失参数：如果问题中没有缺失的参数，那么向题目中
增加缺失的参数;如果问题中的参数与缺失参数的含义相同但格
式不同，修改题目中的参数与缺失参数相同
4.算式错误：算式存在错误需要对公式和错误的参数进行修改，
如果算式中存在“[参数]”或“null”，需要补齐缺失的参数；如果
参数没有问题可能需要对公式进行修改
5.公式的格式为“[待求解参数]=[参数1](+|-|×|/)[参数2]...”；参数
表的格式为:"概念|符号|数值|单位"，比如"水的沸点是100℃"，
表示为"水的沸点| t_沸| 100| ℃"

下面是一些例子：
input:
问题：假设13.0t烟煤在煤炉中完全燃烧，放出的热量部分被水
吸收，可以使4×10^5kg的水从20℃升高到100℃，求水吸收的
热量为多少J [c_水=4.2×10^3J／（kg·℃）]
错误信息：
算式错误: 1.计算水升高的温度差:
公式: [水升高的温度差]=[末温]-[初温]
算式=[末温]-[初温]
问题缺失参数: 水升高的温度差=80 ℃;
output:
错误分析：
1.根据错误信息：算式存在错误，而且算式中存在"[参数]"的情
况："[末温]"、"[初温]"，需要对参数表增加缺失的参数
根据错误错误信息，"[末温]-[初温]"，从题目中可以找到相关
文本"从20℃升高到100℃"，按照要求的参数格式表示为：
初温| t_0| 20| ℃
末温| t| 100| ℃
这样参数表增加缺失的参数后，代入1. 计算水升高的温度差的
公式可以得到：
算式=((100) ℃)-((20) ℃)=80 ℃
水升高的温度差=80 ℃
2.根据错误信息，问题缺失参数，由于分析1中纠正算式后计算
得到了"水升高的温度差=80 ℃"，所以问题不再缺失参数，不
需要进行修改

错误纠正：
参数表：null->初温| t_0| 20| ℃
参数表：null->末温| t| 100| ℃
...omitted...
下面是一个新的问题：
问题：{{question}}
错误：{{error}}

I need your help to correct the error in the explanation. I will 
provide the question and error information. The following are the 
requirements for error correction:
1. You need to first conduct error analysis, analyze how to modify to 
correct the error, and then provide the error correction to correct the 
error in the explanation.
2. The error correction section does not require any additional 
explanatory information. The format of the error correction section 
is: "Content: Pre modified Content ->Modified Content". When 
adding content, "Pre modified Content" is null, and when deleting 
content, "Modified Content" is null.
3. Missing parameters in the question: If there are no missing 
parameters in the question, add the missing parameters to the 
question; If the parameters in the question have the same meaning 
as the missing parameters but different formats, modify the 
parameters in the question to be the same as the missing parameters.
4. Expression error: The formula and incorrect parameters need to 
be modified. If there is "[parameter]" or "null" in the expression, the 
missing parameters need to be filled in; If there are no issues with 
the parameters, it may be necessary to modify the formula.
5. The format of the formula is "[parameter to be 
solved]=[parameter 1] (+|-| ×|/) [Parameter 2]… "; The format of the 
parameter table is: “concept | symbol | numeric | unit", for example, 
"The boiling point of water is 100 ℃", which is represented as “the 
boiling point of water | t_boiling | 100 | ℃"
Here are some examples:
input:
question: Assuming that 13.0 tons of bituminous coal is completely 
burned in a coal furnace, the heat released is partially absorbed by 
water, which can make 4×10^5kg of water is raised from 20 ℃ to 
100 ℃, how much heat is absorbed by the water ? 
[c_water=4.2×10^3J/(kg · ℃)]
Error message:
Expression error: 1. Calculate the temperature difference of water 
rise: Formula: [temperature difference of water rise]=[final 
temperature] - [initial temperature]
expression=[final temperature] - [initial temperature]
Question missing parameter: Temperature difference of water 
rise=80 ℃; 
output:
Error analysis:
1. According to the error message: there is an error in the formula, 
and there are cases of "[parameter]" in the formula: "[final 
temperature]" and "[initial temperature]". It is necessary to add them 
to the parameter table.
According to the error message, "[Last Temperature] - [Initial 
Temperature]", the relevant text "Increase from 20 ℃ to 100 ℃" 
can be found in the title. According to the required parameter format, 
it is represented as:
Initial temperature | t_ 0 | 20 | ℃
Final temperature | t | 100 | ℃
After adding missing parameters to the parameter table, substitute 
them into the formula for calculating the temperature difference can 
be obtained as follows:
expression=((100) ℃)-((20) ℃)=80 ℃
temperature difference of water rise=80 ℃
2. According to the error message, the question is missing 
parameters. After analyzing the correction equation in 1 step, it was 
calculated that "the temperature difference of water rise=80 ℃", so 
the question is no longer missing parameters and does not need to 
be modified.
Error correction:
Parameter table: null ->Initial temperature | t_ 0 | 20 | ℃
Parameter table: null ->final temperature | t | 100 | ℃
...omitted...
There’s a new question:
Question: {{question}}
Error: {{error}}

Figure 5: Prompt of the formula normalization stage 3: error correction for “calculation error”.
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Question:
As shown in the figure, the Xuelong 2 scientific research icebreaker designed in China.
...omitted... When traveling at a constant speed of 3.6km/h in thick ice covered waters, the 
resistance experienced by the icebreaker is approximately 2×10°N. Calculate the 
propulsion power of the icebreaker at this time.
Reference answer:  2×10^7 W
Formula:
[thrust]=[resistance]
[propulsion power]=[thrust]×[constant speed]
Parameter table:

Parameter symbol value unit
resistance f 2×10^7 N
ship speed v 1 m/s

Explanation:
1.Calculate thrust:
thrust=resistance=2×10^7N
2.Calculate propulsion power:
propulsion power=thrust×constant speed=2×10^7N×constant speed(cannot find value)

Error:
1. The parameter "resistance" in the question is in the incorrect format.
2. "constant speed" could not be located in the parameter table.

Figure 6: An example of deleted questions.

English translation
下面我会给出两个公式，每个公式由参数和运算符号
构成，[]中的表示参数。
你需要判断我给出的两个公式中对应参数表达含义是
否相同，是否是同一个公式：
如果含义不相同，不是同一个公式，只需要回答不是；
如果各个参数含义相同，是同一个公式，则需要给出
最终的公式，并且给出一个三行的表格来表示参数的
对应关系，每个单元格内容是一个参数，前两行填写
两个公式的参数，第三行填写统一后的公式参数。
下面是公式1：
{公式 1}
下面是公式2：
{公式 2}
通过表达含义判断，是否是同一个公式：

I will give two formulas below. Each formula consists of 
parameters and operation symbols. The text in [] represent 
parameter.
You need to judge whether the corresponding parameters in the 
two formulas I gave have the same meaning and whether they 
are the same formula:
If the meaning is different, and they are not the same formula, 
just answer no;
If each pair of parameters have the same meaning, and they are 
the same formula, the final formula needs to be given, and a 
three-row table needs to be given to indicate the corresponding 
relationship between the parameters. The content of each cell is a 
parameter, and the first two rows are filled with two formulas. 
Parameters, fill in the unified formula parameters in the third row.
Here is formula 1:
{formula 1}
Here is formula 2:
{formula 2}
Judge whether they are the same formula by their meanings:

Prompt actually used 

Figure 7: Prompt for semantic-based merging.
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Prompt actually used English translation
这是一个初中物理题目，根据问题给出计算的过程，
让我们一步一步地地思考，在最后用“###”作为开始
给出最终答案（一个数字）和答案的单位。

Question: {{问题}}
Answer:

This is a junior high school physics question. Based on the given
question, provide the calculation process and let’s think step by
step. Finally, use "###" to start giving the final answer (a number)
and the unit of the answer.

Question: {{question}}
Answer:

(a) Zero-shot prompt for LLMs.

这是一个初中物理题目，根据问题给出计算的过程，
用公式表示。

Question: {{样例1问题}}
Answer: {{样例1解析}}

…omitted…

Question: {{问题}}
Answer:

This is a junior high school physics question. Based on the given
question, provide the calculation process.

Question: {{question of example 1}}
Answer: {{explanation of example 1}}

…omitted…

Question: {{question}}
Answer:

Prompt actually used English translation

(b) Few-shot prompt for LLMs.

Figure 8: Zero-shot and few-shot prompts for LLMs.

这是一个初中物理题目，根据问题给出计算的过
程，用公式表示。

可能用到的公式有: {{top 5检索到的公式}}
Question: {{问题}}
Answer:

This is a junior high school physics question. Based on the given
question, provide the calculation process.

The formulas that may be used include: {{top 5 retrieved formulas}}
Question: {{question}}
Answer:

English translationPrompt actually used 

(a) Few-shot prompt for LLMs with formula retriever.

这是一个初中物理题目，根据问题给出计算的过
程，用公式表示。

可能用到的公式有: {{用到的公式}}
Question: {{样例1问题}}
Answer: {{样例1解析}}

…omitted…

可能用到的公式有: {{top 5检索到的公式}}
Question: {{问题}}
Answer:

This is a junior high school physics question. Based on the given
question, provide the calculation process.

The formulas that may be used include: {{used formulas}}
Question: {{question of example 1}}
Answer: {{explanation of example 1}}

…omitted…

The formulas that may be used include: {{top 5 retrieved formulas}}
Question: {{question}}
Answer:

English translationPrompt actually used 

(b) Zero-shot prompt for LLMs with formula retriever.

Figure 9: Zero-shot and few-shot prompts for LLMs with formula retriever.
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