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Abstract

To fix the ‘bias in, bias out’ problem in fair machine learning, it is important to steer
feature distributions of data or internal representations of Large Language Models
(LLMs) to ideal ones that guarantee group-fair outcomes. Previous work on fair
generative models and representation steering could greatly benefit from provable
fairness guarantees on the model output. We define a distribution as ideal if the
minimizer of any cost-sensitive risk on it is guaranteed to have exact group-fair
outcomes (e.g., demographic parity, equal opportunity)—in other words, it has
no fairness-utility trade-off. We formulate an optimization program for optimal
steering by finding the nearest ideal distribution in KL-divergence, and provide
efficient algorithms for it when the underlying distributions come from well-known
parametric families (e.g., normal, log-normal).
Empirically, our optimal steering techniques on both synthetic and real-world
datasets improve fairness without diminishing utility (and sometimes even improve
utility). We demonstrate affine steering of LLM representations to reduce bias in
multi-class classification, e.g., occupation prediction from a short biography in
Bios dataset (De-Arteaga et al.). Furthermore, we steer internal representations of
LLMs towards desired outputs so that it works equally well across different groups.

1 Introduction

The importance of clean or ideal data in fair machine learning cannot be overstated. The principle of
bias in, bias out is widely recognised as a root cause of unfair outcomes in ML systems [16, 52, 62, 26].
Models trained on biased data tend to learn, perpetuate, and often amplify such biases. Importantly,
the problem of biased data extends beyond training: fairness-constrained training on biased data does
not guarantee fairness on (unbiased) test sets, and post-processing using biased validation data fails
to ensure fairness at deployment. Moreover, fairness audits based on biased assessment data can be
misleading and difficult to reverse [11, 4].

Fairness metrics such as demographic parity and equal opportunity are inherently functions of both
the model and the data distribution. Thus, unfair outcomes may be addressed either by adjusting the
model or by altering the data distribution. While prior work on fair in-processing aims to construct
an ideal model under fairness constraints [1, 29], our work focuses instead on identifying an ideal
data distribution that supports fairness. In this respect, our approach aligns most closely with the fair
pre-processing literature.

∗Part of the work was done when the author was an intern at Microsoft Research India.
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Figure 1: Comparison of different interventions for changing Data Distributions for Exact Fairness.
Figure (1a) captures the original distribution, its Bayes error (BE), and the unfairness differences
(∆DP and ∆EO). In Figure (1b), we only change the under-privileged group using Corollary 4.2,
and in Figure (1c) we change all four subgroups using Proposition 4.3. Finally, in Figure (1d), we
match the means of the two groups. Figures (1b) and (1c) show that it is possible to construct ‘ideal’
distributions that are close to the given distribution where both the BE and ∆DP/∆EO are small.

Early work by Kamiran and Calders [43] introduced heuristic reweighting methods for binary
classification, adjusting the weight of instances from class i and group a using Pr (class i) ·
Pr (group a) /Pr (class i, group a). However, this approach ignores the feature distribution and
offers no fairness guarantees when combined with accuracy maximisation. Calmon et al. [18] framed
fair pre-processing as an optimisation problem that balances distance to the original distribution with
group and individual fairness constraints. While convex in some settings, their approach may be
infeasible when group and individual fairness are incompatible [34].

Other work explores alternative mechanisms: Jiang and Nachum [41] address label bias through
reweighting; Plečko and Meinshausen [60], Plečko et al. [61] propose fair adaptation methods based
on causal models; and Xiong et al. [75] reformulate pre-processing as a large-scale mixed-integer
program, solved via a cutting-plane method. Fair pre-processing remains widely used in practice,
often integrated into fairness toolkits alongside in- and post-processing methods [7, 10]. Despite its
heuristic nature, the reweighing method of Kamiran and Calders [43] continues to perform well in
mitigating bias across standard benchmarks [65, 12, 75].

A common goal of all fair pre-processing methods is to find an ideal data distribution close to the
given distribution so that any downstream model trained on it must have guaranteed fairness. A
stronger requirement that this should hold for downstream models optimized for multiple tasks leads
to impossibility results [47]. If all downstream classifiers are required to be fair, then the group-wise
distributions must be nearly identical, which is absurd. Thus, we restrict our downstream models
only to Bayes optimal classifiers for cost-sensitive risks. Our first contribution is to formally define
an ideal distribution as the one where the Bayes optimal classifier for any cost-sensitive risk satisfies
exact fairness (e.g., satisfies equal opportunity perfectly).

Bayes optimal classifier maximizes accuracy on a given distribution, and have been an important
object of study in statistical machine learning [28]. Fair Bayes optimal classifier maximizes accuracy
subject to fairness constraints, and its mathematical characterization for binary fair classification
has been important in fair classification [54, 24, 20, 78]. Blum and Stangl [13] introduce a data bias
model that injects under-representation and label bias in an original unbiased distribution to create
biased data. They show that, for a stylized distribution under some conditions, the fair Bayes optimal
classifier on the biased distribution recovers the Bayes optimal classifier on the original unbiased
distribution. Their unbiased distribution is ideal by construction, i.e., the Bayes optimal classifier
on their unbiased distribution is guaranteed to be perfectly fair. Sharma and Deshpande [64] extend
this observation to general hypothesis classes and distributions beyond the stylized setting of Blum
and Stangl [13]. Blum et al. [14] study fair Bayes optimal classifier whether its accuracy is robust to
malicious corruptions in data distribution. In contrast to these results, our focus is not on finding the
ideal classifier but on finding the nearest ideal distribution.

By definition, our ideal distribution has no trade-off between accuracy (or cost-sensitive utility)
and fairness. If we find an ideal distribution close to our original distribution, we can steer our
distribution towards reducing fairness-accuracy trade-off. Moreover, if the ideal distribution offers
better accuracy, it suggests that we can steer our distribution to improve both accuracy and fairness
simultaneously. Fig. 1 gives such an example where the pre-processing of [43], in contrast, leaves the
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original distribution unchanged and our method provides a direction to steer to distribution towards
better accuracy and fairness simultaneously.

Dutta et al. [30] characterize a similar objective using Chernoff Information (see Cover [25]) and
formulate an optimization program to find the nearest distribution in KL-divergence on which the
Chernoff Information gap between two group-conditional feature distributions vanishes. Their
optimization problem is not known to be efficiently solvable and the fairness guarantees in terms of
Chernoff Information gap does not translate easily to standard fairness metrics such as demographic
parity, equal opportunity etc. In contrast, we formulate an optimization problem to find the nearest
ideal distribution in KL-divergence to given distribution and give efficient algorithms to solve it
for various parametric families of distributions. To put our results to the test, we also apply our
interventions to steer the representations of an LLM [72, 36] for fair multi-class classification [27, 67]
and emotion steering [79]. We are able to improve the effectiveness of steering without significantly
affecting the accuracy and are able to demonstrate how our notion of ideal distributions can help
guide interventions for practical applications.

For completeness, we want to also make the reader aware of a long line of work on fair representation
learning where the data transformations can map the distributions to another space [77, 50, 53, 49, 21].
Our work is not directly related but can potentially be used to refine fair representations to achieve
provable and exact fairness guarantees.

1.1 Our Results

We summarize our key contributions as follows.

• We define ideal distribution (Definition 3.1) for fair classification as the one on which
the Bayes optimal classifier for any cost-sensitive risk satisfies exact fairness (e.g., exact
demographic parity, exact equal opportunity).

• When group and class-conditioned distributions belong to well-known parametric families
of distributions (e.g., Gaussian, log-normal), we can succinctly rewrite the property of being
an ideal distribution as a parametric condition (Proposition 3.3).

• The problem of finding the nearest ideal distribution to a given distribution is intractable
in general. We formulate it as an optimization problem of KL-divergence subject to the
parametric conditions required for being ideal (Section 4). As stated, it is a non-convex
optimization problem (Proposition 4.3) but we show how to solve it efficiently. We also
provide a closed form optimal solution in special cases (Theorem 4.1, Corollary 4.2). When
better accuracy is achievable on the nearest ideal distribution, it suggests a direction to steer
the original distribution in to improve both accuracy and fairness.

• To illustrate the effect of different interventions, we show the effect of using Affirmative
Action (Corollary 4.2), changing all subgroups (Proposition 4.3) and matching the means
of sensitive groups on different univariate distribution where we can compute the Bayes
Optimal Group-aware classifiers analytically in Figures 1-2.

• To demonstrate how our guarantees can aid practical applications we also performs experi-
ments to steer LLM representations to reduce bias in multi-class classification (Figure 3)
and effective group-level emotion steering (Figure 4).

2 Problem Setup and Preliminaries

Let (X,A, Y ) be a random data point from a joint distribution D over X × A × Y , where
X ,A,Y denote the sets of features, sensitive attributes, and class labels, respectively. Let
qia = Pr (Y = i, A = a) and Pia denote the distribution X

∣∣ Y = i, A = a with the probabil-
ity density pia(x) = Pr

(
X = x

∣∣ Y = i, A = a
)
. When Pia’s come from parametric families of

distributions, we assume X = Rd. We work with the following well-known definitions of fairness in
classficiation [31, 38, 6].

Definition 2.1. For exact fairness, in the case of multiple classes (|Y| > 2) and multiple protected
groups (|A| > 2), a classifier h : X ×A → Y satisfies:
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1. Demographic Parity [31] if the positive rate for a class across groups is zero, i.e.,
max
a,a′∈A

|Pr (h(X,A) = y|A = a)− Pr (h(X,A) = y|A = a′) | = 0, ∀y ∈ Y ,

2. Equal Opportunity [38] if the true positive rates for a class across groups is
zero, i.e., max

a,a′∈A
|Pr (h(X,A) = y|Y = y,A = a)−Pr (h(X,A) = y|Y = y,A = a′) | =

0, ∀y ∈ Y .

These lead to quantitative metrics of unfairness, e.g., ∆DP,y(h,D) denotes the absolute
value of difference between Pr (h(X,A) = y|A = a) and Pr (h(X,A) = 1|A = a′). Similarly,
∆EO,y(h,D) denotes the absolute value of difference between Pr (h(X,A) = y|Y = y,A = a) and
Pr (h(X,A) = y|Y = y,A = a′). Whenever we are dealing with binary classification, we will omit
the use of y in the subscript.

We consider group-aware classifiers. For binary classification tasks, we are particularly in-
terested in threshold classifiers ht(x, a) that apply a group and feature dependent threshold
t(x, a) to the class probability of an example: ht(x, a) = I (η(x, a) ≥ t(x, a)) where η(x, a) =
Pr (Y = 1|X = x,A = a). It is well-known that the Bayes optimal classifier for a given dis-
tribution has the form t(x, a) = 1/2 [28]. For a cost matrix C ∈ R2×2 and the associated
cost sensitive loss lC , the Bayes optimal classifier is defined as I (η(x, a) ≥ tC), for a threshold
tC = (c10 − c00)/(c10 − c00 + c01 − c11) ∈ [0, 1], where cij denote the entries of the cost matrix
C ∈ R2×2 [33, 63, 46, 66].

3 Ideal Distributions for Fair Classification

We define a data distribution as ideal when minimizing any cost-sensitive risk on it is guaranteed to
give exact fairness (e.g., demographic parity, equal opportunity). In practice, downstream models
trained on a distribution are typically optimized for some performance or utility metric that may
not be known in advance. Our definition of ideal distribution allows the flexibility to choose any
cost-sensitive risk as the performance metric for downstream models and still gives exact fairness
guarantee for any optimal model downstream.

Definition 3.1. Let H be a hypothesis class of group-aware classifiers h : X × A → Y and let
∆(h,D) be a given unfairness metric, e.g., ∆DP,∆EO. Given a distribution D over X × A × Y
and a cost-sensitive risk C ∈ R|Y|×|Y|, let h∗

C = argmin
h∈H

Pr (ℓC(h(X,A), Y )). We call D an ideal

distribution if ∆(h∗
C , D) = 0, for all C ∈ R|Y|×|Y|.

Examples of fairness metrics include Demographic Parity, Equal Opportunity, and Equalized Odds
(Definition 2.1 and Hardt et al. [38]), and examples of cost-sensitive risk include the usual 0− 1 loss
and different performance metrics which are functions of the confusion matrix metrics [33, 46, 66].

Our definition gets around the impossibility theorems about fair representation for multiple tasks [47].
However, we need to be careful of two things. First, our definition should not be too restrictive to
just force the group-conditioned distributions to be similar or identical, as that would be impractical.
Second, we need an efficient and equivalent way of expressing the constraint of being ideal. We
show how to express it as a parametric condition when the group and class-conditioned distributions
belong to certain well-known parametric families of distributions. This helps in checking if a given
distribution is ideal, and otherwise, finding its nearest ideal distribution.

3.1 Parametric Conditions for Ideal Distributions

Borrowing a simple setup of parametric distributions from previous work on fair machine learning
[59], we assume that the class and group-conditioned feature distributions X

∣∣ Y = i, A = a belong
to a parametric family of distributions, e.g., univariate or multivariate Gaussians, log-normal. In
that case, we show that the property of being ideal (Definition 3.1) can be equivalently expressed
as certain parametric conditions. To begin, we will first show the set of parametric conditions for
multivariate normal distributions and a multi-class, multi-attribute setting.

Proposition 3.2. Let (X,Y,A) denote the features, class label, and group membership, respectively,
of a random data point from any data distribution D with qia = Pr (Y = i, A = a), for i ∈ Y
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and a ∈ A. Let X|Y = i, A = a ∼ N (µia,Σia) be multivariate Normal distributions with mean
µia ∈ Rd and covariance matrix Σia ∈ Rd×d, for i ∈ Y and a ∈ A. If the means µia and the
covariance matrices Σia satisfy

Σ
−1/2
ia (µia − µja) = Σ

−1/2
ia′ (µia′ − µja′) and

Σ
1/2
ia Σ−1

ja Σ
1/2
ia = Σ

1/2
ia′ Σ

−1
ja′Σ

1/2
ia′ and

qia
qja

=
qia′

qja′
, ∀i, j ∈ Y, a, a′ ∈ A,

then the group-aware Bayes optimal classifier on D satisfies equal opportunity.

The proof for Proposition 3.2 is given in Section A of the Appendix. When we are dealing with binary
class labels and group membership, we can show a necessary and sufficient condition for univariate
normal distributions.

Proposition 3.3. Let (X,Y,A) denote the features, binary class label, and binary group membership,
respectively, of a random data point from any data distribution D with qia = Pr (Y = i, A = a),
for i ∈ {0, 1} and a ∈ {0, 1}, and let X|Y = i, A = a ∼ N (µia, σ

2
ia) be univariate normal

distributions, for i ∈ {0, 1} and a ∈ {0, 1}. Then the distribution D is ideal for equal opportunity
(see Definition 3.1) if and only if

µ01 − µ11

σ11
=

µ00 − µ10

σ10
,

σ11

σ01
=

σ10

σ00
,

q10
q00

=
q11
q01

.

Proposition 3.3 shows that our parametric condition is equivalent to ∆C(h
∗
C , D) = 0, for all

cost matrices C ∈ R2×2. When we use a fixed cost matrix for 0-1 loss, and consider the Bayes
optimal classifier in Proposition 3.2, our parametric condition is sufficient but not always necessary.
However, the same condition ensures the Bayes optimal classifier to satisfy multiple fairness criteria
simultaneously, viz., demographic parity, equal opportunity, equalized odds.

The proof for Proposition 3.3 is given in Section 1 of the supplementary material. It is interesting to
note that the same parametric conditions imply that the Bayes optimal classifier on the corresponding
distribution simultaneously satisfies multiple fairness criteria, viz., demographic parity, equal oppor-
tunity, and equalized odds. Moreover, the same condition works for both univariate Gaussian and
log-normal distributions. Using our proof technique, it is easy to derive similar conditions for other
parametric families too. We now present a small proposition to link our intervention to a widely used
reweighing intervention in the fairness literature [43].
Remark 3.4. (Our conditions imply Kamiran and Calders [43] Intervention) Kamiran and
Calders [43] reweighing method essentially reweighs qia by a multiplicative factor of
Pr (Y = i) Pr (A = a) /Pr (Y = i, A = a). Let us call the resulting probabilities q̃ia. Using
Pr (Y = i, A = a) = qia, Pr (Y = i) =

∑
a∈A qia and Pr (A = a) =

∑
i∈Y qia, we get q̃ia ∝

qia(
∑

a∈A qia)(
∑

i∈Y qia)/qia. Hence, q̃ia/q̃ja = q̃ia′/q̃ja′ =
∑

a∈A qia/
∑

a∈A qja, ∀i, j ∈ Y and a, a′ ∈
A. It is the same condition on qia’s stated in Proposition 3.2. Thus, our result can be thought of as
a second stage pre-processing of Pia distributions after applying the reweighing of Kamiran and
Calders [43] to qia’s in the first stage.
Remark 3.5. (Limitation of [30]) As an interesting consequence, our conditions on µia and Σia imply
DKL

(
P̃00||P̃01

)
= DKL

(
P̃10||P̃11

)
. When the classes are balanced, the error rate of the Bayes

optimal classifier on group A = a in D̃ equals 0.5(1− dTV(P̃0a, P̃1a)), where dTV denotes the total
variation distance [56]. Thus, achieving dTV(P̃00, P̃10) = dTV(P̃01, P̃11) ensures equal error rates
across both the groups. However, there is no closed form expression for the total variation distance
between two univariate Gaussians, and KL-divergence can be thought of as a proxy using Pinsker’s
inequality [19]. This is similar to information theoretic argument used by Dutta et al. [30], which is
why their optimization cannot guarantee outcome fairness in the way we do.

4 Finding The Nearest Optimal Distribution

When a given distribution D is not ideal, then a natural question is to find its nearest distribution D̃
that is ideal. We formulate this problem as follows.

minimize
D̃ : D̃ is ideal

DKL

(
D̃||D

)
.
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In the above optimization problem, the KL-divergence objective is well-known and convex but the
constraint of D′ being ideal is extremely non-trivial to express. We show that when the group and
class-conditioned distributions X

∣∣ Y = i, A = a come from certain well-known parametric families
of distributions, this constraint can be equivalently expressed as a constraint on the distribution
parameters. We now give a concrete formulation of the optimization problem described in Section 3
using the constraints derived in Proposition 3.2.

min
D̃

− d

2
+

1

2

∑
(i,a)

qia(µ̃ia − µia)
TΣ−1

ia (µ̃ia − µia)
1

2

∑
(i,a)

qia

(
tr
(
Σ−1

ia Σ̃ia

)
− log det(Σ−1

ia Σ̃ia)
)

subject to Σ
−1/2
ia (µia − µja) = Σ

−1/2
ia′ (µia′ − µja′), Σ

1/2
ia Σ−1

ja Σ
1/2
ia = Σ

1/2
ia′ Σ

−1
ja′Σ

1/2
ia′ and

qia
qja

=
qia′

qja′
, ∀i, j ∈ Y, a, a′ ∈ A.

For readability, we will work with binary class labels and binary group attributes in this section.
However, all of our results can also be written down for multi-class and multi-group settings. In its
full generality, the above problem is non-convex, and therefore, we will first propose reducing this to
a convex optimization problem and then propose solving it in full generality by using line search.

4.1 Affirmative Action

We first focus on a class of interventions for which solving the optimization program is efficient.
We define Affirmative Action as changing the underprivileged group to obtain the ideal distributions
where fairness and accuracy are in accord.

Theorem 4.1. Let (X,Y,A) denote the features, binary class label, and binary group membership,
respectively, of a random data point from any data distribution D with qia = Pr (Y = i, A = a),
for i ∈ {0, 1} and a ∈ {0, 1}, such that q10/q00 = q11/q01. Let X|Y = i, A = a ∼ N (µia,Σia)
be multivariate Normal distributions, with mean µia ∈ Rd and covariance matrix Σia ∈ Rd×d, for
i ∈ {0, 1} and a ∈ {0, 1}. Let D̃ denote a distribution obtained by keeping (Y,A) unchanged and
only changing X|Y = i, A = a to X̃|Y = i, A = a ∼ N (µ̃ia, Σ̃ia). Then in the case of Affirmative

action (changing only µ̃i0 and Σ̃i0), we can efficiently minimize DKL

(
D̃||D

)
as a function of the

variables µ̃i0 and Σ̃i0 subject to the constraints in Proposition 3.2, so that the Bayes optimal classifier
on the optimal D̃ is guaranteed to be EO-fair.

The proof for Theorem 4.1 is given in Section B of the Appendix. While we show that the optimization
program is convex, obtaining a closed-form expression for the change in means and covariances is
extremely cumbersome for the general case. However, we can show how the closed form expressions
for µ̃i0 and σ̃i0 look like for the univariate case in the following Corollary:

Corollary 4.2. (Univariate Affirmative Action) For the case where X|Y = i, A = a ∼ N (µia, σ
2
ia)

are univariate normal distributions, for i, a ∈ {0, 1} , the optimal distribution D̃ from Theorem 4.1,
with γ∗ being a function of the original distribution parameters, can be written down as:

σ̃i0 = γ∗σi1, µ̃00 = µ̃10 + γ∗(µ01 − µ11), and µ̃10 =

(
q00

µ00 − γ∗(µ01 − µ11)

σ2
00

+ q10
µ10

σ2
10

)
(
q00
σ2
00

+
q10
σ2
10

) ,

4.2 Changing all Subgroups

Another intervention we can follow is to change all the subgroups of the given distribution. However,
a quick check through the proof of Theorem 4.1 shows that this will lead to a non-convex program.
However, just like Corollary 4.2, we can show a reasonable intervention for the univariate case, where
we change all four subgroups and search over a non-convex function using line search over a fairly
large grid size.
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Proposition 4.3. (All subgroup change for Exact Fairness) Let (X,Y,A) denote the features, binary
class label, and binary group membership, respectively, of a random data point from any data
distribution D with qia = Pr (Y = i, A = a), for i ∈ {0, 1} and a ∈ {0, 1}, such that q10/q00 =
q11/q01, and let X|Y = i, A = a ∼ N (µia, σ

2
ia) be univariate normal distributions, for i ∈ {0, 1}

and a ∈ {0, 1}. Let D̃ denote a distribution obtained by keeping (Y,A) unchanged and only

changing X|Y = i, A = a to X̃|Y = i, A = a ∼ N (µ̃ia, σ̃
2
ia). Then minimizing DKL

(
D̃||D

)
as a function of the variables µ̃ia and σ̃ia subject to the constraints in Proposition 3.2 leads to a
non-convex program. Furthermore, let γ∗ = argmin

γ∈(0,∞)

L∗
γ for some non-convex function of γ that is

only dependent on the original distribution parameters. Then, all the new distribution parameters µ̃ia

and σ̃ia can be expressed as a function of γ∗ and the original distribution parameters µia and σia.

The proof of Proposition 4.3 is provided in Section B of the Appendix. We can also derive worst-case
upper bounds on the error rate and the unfairness gap ∆EO of the Bayes optimal classifier h̃ on D̃
with respect to the original distribution D. These bounds show that both the accuracy loss and the
fairness gap depend only on the KL divergence between D and D̃. It also shows that the optimal
value of our optimization problem can be used to approximately translate the accuracy guarantee of h̃
from D̃ to D.
Proposition 4.4. Let err(h,D) denote the error rate (expected 0-1 loss) of a classifier h on the
distribution D. Let dTV (D̃,D) denote the total variation distance between two distributions D̃ and
D, while DKL denotes the KL-Divergence between them. Denote the Bayes optimal classifier on the
ideal distribution D̃ as h̃ (and similarly the Bayes optimal classifier h. Then, we can bound the error
rate and the Equal opportunity of h̃ on the original distribution D as follows:

|err(h̃, D)− err(h̃, D̃)| ≤
√
2DKL(D̃,D) and ∆EO(h̃, D) ≤

√
8DKL

(
D̃||D

)
.

The proof for Proposition 4.4 is given in Section B of the Appendix. The above bounds informs us
that when the ideal distributions are close enough to the true distribution, we do not lose much when
going towards an ideal distribution.

5 Case Study on Gaussian Distributions

In this section, we adapt a stylized Gaussian setting from prior work (Definition 3.1 in [59], Section
5.3 in [4]) to examine unfairness and Bayes optimal error before and after distributional interventions.
We assume homoskedastic Gaussians within each group A = a, i.e., σ0a = σ1a, so that the Bayes
classifier admits a threshold form. This enables tractable analysis of interventions aimed at achieving
a fairness–accuracy trade-off. Further details are provided in Section C of the Appendix.

We evaluate four interventions: (a) the Bayes optimal classifier on the original distribution (no
correction), (b) EF Affirmative: transforming the underprivileged group (A = 0) via the univariate
KL program in Corollary 4.2, (c) EF-All Subgroups: modifying all groups to minimize KL diver-
gence to the original distribution under exact fairness constraints (Proposition 4.3), and (d) Mean
Matching: aligning group means while minimizing KL divergence (Proposition B.6 in Section B of
the Appendix). Note that ‘EF-All Subgroups’ involves non-convex optimization, for which we apply
line search to estimate the optimal mean–variance scaling factor γ. We report Demographic Parity
(∆DP), Equal Opportunity (∆EO), KL and Jensen–Shannon divergence, as well as Bayes Error (BE)
under each intervention. For the univariate Gaussian case, the Bayes-optimal thresholds are known in
closed form (Lemma A.1 in Section A of the Appendix), and allow precise computation of ∆DP and
∆EO via standard Gaussian CDFs.

We have already demonstrated the effect of different interventions for the case of high ∆EO in
Figure 1. To cover another interesting case, we look at a distribution where ∆DP is very high in
Figure 2. Here, the affirmative action intervention transforms both the under-privileged subgroups
to high-variance ones, which results in a reduction of BE and ∆DP, but at the cost of a high KL/JS-
divergence with respect to the true distribution. However, the EF-All intervention simply tries to
match the variances of under-privileged and privileged subgroups and, as a result, achieves perfect
fairness and accuracy while staying close to the true distribution. Mean Matching is very similar
to EF Affirmative in this case and, as a result, has relatively high KL/JS numbers. Due to a lack of
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Figure 2: Comparison of different interventions when the ∆DP on the original distribution is high. In
this case, EF-All manages to stay close to the true distribution and achieves perfect fairness and error
rate, while others deviate significantly.

space, we show more results for different settings: (1) same but shifted group distributions (Figure
5), (2) the case of ∆EO being close to 0 (Figure 6), and (3) the case of a different cost sensitive risk
(tC = 3/4 on η(x, a)) (Figure 7), in Section C of the Appendix.

6 Applications: Steering the Representations of an LLM

We now empirically demonstrate how our guarantees can improve representation and generation
steering in LLMs—an active area with limited theoretical grounding [37, 67, 79, 68]. Adopting the
setup of Singh et al. [67], we first apply affine steering to pretrained LLM representations to reduce
class-specific TPR gaps on the Bias in Bios dataset [27]. We then use the framework of Zhao et al.
[79] to steer generations of movie reviews, showing that our intervention improves expressed joy for
the underperforming group.

6.1 Reducing Per-class disparity in Multi-class Classification

In this experiment, we aim to steer data representations to reduce disparities between groups in a
multi-class classification setting. We use the Bias in Bios dataset [27], which comprises web-sourced
biographies labelled by profession and annotated for gender. The task is to predict the profession
from the biography while ensuring fairness with respect to a chosen metric. Our experimental setup
closely follows that of Singh et al. [67], who generate representations using the Llama-2 7b model
[72] and propose a method called MiMiC (Mean+Covariance Matching), which steers representations
via least squares alignment of the first two moments. They measure the TPR-gap (Definition 2.1),
defined as: TPR-gapy(h) := |P[h(X,A) = y | Y = y,A = 1]− P[h(X,A) = y | Y = y,A = 0]|.
They demonstrate that MiMiC significantly reduces the TPR-gap on the Llama-2 7b embeddings of
the Bios dataset. We adopt the same experimental pipeline as Singh et al. [66]; further details are
provided in Section D.1 of the Appendix. Our intervention, referred to as EF Affirmative in Figure
3, begins by estimating the first two moments of the representations from Singh et al.’s pipeline.
We then apply our Affirmative Action framework to compute target moments corresponding to an
ideal distribution. As in Singh et al., we estimate affine transformation parameters that map the
original moments to the target ones and apply this transformation to all data representations. We use
a multi-class generalization of our optimization program in Theorem 4.1 and we lay down the details
of the program and intervention in Section D.1 of the Appendix.

We additionally evaluate the LEACE transformation [8], which Singh et al. [66] used as a baseline.
Figure 3 reports the root-mean-square TPR-gaps across classes for various methods. Our intervention
consistently reduces TPR-gaps across all classes and, in many cases, outperforms both MiMiC and
LEACE. This provides empirical support for our approach: actively searching for and aligning with
an ideal distribution can meaningfully reduce group disparities in representation learning.

6.2 Steering Activations for Joyful Generation

We steer LLM generation towards joyful movie reviews using the Gaussian Concept Steer (GCS)
framework of Zhao et al. [79], which samples steering vectors from a Gaussian vlc ∼ N (µl

c,Σ
l
c) for

concept c at layer l. This improves robustness across models and datasets compared to using a single
vector. Concept vectors for joy are estimated from GPT-4o [40] outputs and used to steer a Llama-3
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Figure 3: TPR-gap between Gender groups for all professions. All methods to steer feature rep-
resentations achieve roughly the same accuracy (in the range of 0.77-0.79). Our intervention (EF
Affirmative) is able to significantly reduce the TPR-gap for all professions. In many cases, it is even
comparable or better than previous interventions Belrose et al. [8], Singh et al. [67].

8B model [36]. At each layer l, the final token representation hl is updated as hl = (1−a) ·hl+a ·vlc,
where a is the strength of the steering. Zhao et al. [79] experiment with values of a ∈ (0.03, 0.08).
We fix a = 0.03 for our experiments. Following [79], we evaluate the joyful tone using GPT-4
as an oracle with fixed decoding parameters. We apply the GCS framework to steer movie review
generation toward joy over anger, focusing on two groups: comedy and horror reviews. For each
group, we estimate Gaussian distributions of steering vectors for both directions (joyful → angry and
angry → joyful), with the latter used for intervention. Full details are in Section D.2 of the Appendix.

While steering improves joyfulness overall, its effectiveness varies between groups. To address
this, we apply our EF Affirmative intervention to nudge the joyful vector for the horror group. Let
N (µl

c,Σ
l
c) be the original distribution and N (µ̃l

c, Σ̃
l
c) be the distribution obtained after applying

EF Affirmative intervention (Theorem 4.1). We define ṽlc = (1 − α) · vlc + α · ṽlc, where vlc ∼
N (µl

c,Σ
l
c) and ṽlc ∼ N (µ̃l

c, Σ̃
l
c). The final steering step updates the last-token representation at layer

l as hl = (1− a) · hl + a · ṽlc.

Figure 4 presents the simulation results. We report the change in joyfulness (denoted as ∆-Joyful)
before and after steering for both the comedy and horror review groups. For the horror group, we
additionally apply our EF intervention, denoted as Steering+EF, to adjust the steering vectors. We
vary the nudging parameter α, where α = 0 corresponds to the original steering vectors from Zhao et
al. [79]. As expected, moderate values of α improve joyfulness in the horror group, but excessive
nudging distorts the steering vector, reducing its effectiveness.

7 Discussion and Future Work

Figure 4: Change in Joyful score(∆-Joyful)
before and after adjusting the steering. Our
intervention (‘EF Affirmative’) pushes up the
effectiveness of steering the ’Horror’ group,
relative to the ‘Comedy’ group.

We address fair classification by introducing the
notion of ideal distributions—those that admit the
Bayes-optimal classifier satisfying exact fairness. For
common parametric families, we show that identi-
fying such distributions reduces to a KL divergence
minimisation problem, subject to fairness constraints
on the Bayes-optimal classifier. We characterize
conditions under which this problem is feasible and
tractable. Through simulations, we demonstrate that
the resulting interventions can steer the original dis-
tribution towards both perfect fairness and Bayes-
optimal accuracy while remaining close in distri-
butional distance. Additionally, we show that our
method extends to post-training interventions, effec-

9



tively steering learned representations toward desired
behavioural outcomes.

We study the foundational problem of finding the nearest ideal distribution to a given distribution. This
has many potential applications, such as correcting training data bias, learning fair representations,
steering intermediate representations for fair generation, etc. Fair pre-processing or reweighing
is closer to our mathematical setup, and steering intermediate representations gives a compelling
application for LLMs. Our KL optimization program can be used to measure training data bias and
guide data collection policies in practice, especially when the models are trained for fairness, but the
inherent bias in data is unresolved.

Our theoretical results are on the fairness of the Bayes optimal classifier and the corresponding
optimization programs, which are tractable and mathematically easier to analyse for parametric
families of distributions, e.g., multivariate Gaussians. Multivariate Gaussians may not always fit
real-world data, but can be justifiably used to model concepts and internal representations [79, 32].
There can be scenarios and applications where a parametric assumption may not fit well with the
input data distribution, and hence, analyzing the Bayes optimal fair classifier will become highly
non-trivial.

An important extension is to determine how to steer a given distribution within a fixed budget
so that exact fairness constraints are satisfied. This is relevant when deviations from the original
distribution are costly or infeasible, and can inform data collection or active learning strategies for
fair classification [39, 42, 30, 3]. In such cases, it may be necessary to relax the fairness constraints
and seek approximate solutions, prompting the need for efficient algorithms that operate under
finite-sample settings. In a finite-sample regime, we have high probability estimates of the moments
and other distribution-dependent quantities, so our approach leads to approximate fairness guarantees.
To go beyond distributional assumptions, we can leverage previous work that maps given data
distribution to tractable, parametric families using invertible transforms that preserve Bayes error,
so our results become applicable [71]. We can also assume distributions with bounded moments
instead of parametric families, and still bound the Bayes error and other relevant quantities [55]. This
requires a careful analysis and is certainly a very important future direction.

The framework of ideal distributions can also be applied to audit deployed models for fairness,
particularly when the evaluation data may itself be biased [2, 65, 9], offering a pathway toward more
robust fairness evaluation protocols. Prior work on fairness audit has mostly focused on auditing a
given model instead of auditing training or evaluation data. There is a long line of work to demonstrate
that the fairness-accuracy trade-off disappears when data bias is accounted for [74, 13, 30, 51, 64, 48].
The KL gap in our formulation can be used as a metric of data bias, and Theorem 4.1 essentially
gives an algorithmic recipe to find the minimally different distribution relative to the given one.

Our conditions can also be incorporated into optimization objectives to steer data generation toward
ideal distributions. We demonstrate this by applying post-training interventions to steer LLM repre-
sentations for multi-class fair classification and emotion control. More generally, our optimization
framework and parametric conditions can be embedded into the training objectives of generative
models. Modern generative approaches such as Variational Autoencoders [45] and Normalizing
Flows [57] often assume parametric latent distributions, such as mixtures of Gaussians. Embedding
fairness-aware ideality conditions into these objectives enables the generation of fair and accurate
data distributions that remain close to the original. This represents a promising direction for fair
generative modeling, an area of growing theoretical and practical interest [76, 23, 5, 73, 70, 69].

Broader Impact: Our work improves theoretical understanding of data bias and proposes an
optimization program for steering data distributions towards provably exact fairness guarantees. The
real-world societal biases in data and the fairness harms are complex and more nuanced, where our
fairness interventions can provide good guiding principles but no silver bullet to solve the real-world
problems.
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[5] Mislav Balunović, Anian Ruoss, and Martin Vechev. Fair normalizing flows. arXiv preprint
arXiv:2106.05937, 2021.

[6] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning: Limita-
tions and Opportunities. fairmlbook.org, 2019. http://www.fairmlbook.org.

[7] Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie Houde,
Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic,
Seema Nagar, Karthikeyan Natesan Ramamurthy, John Richards, Diptikalyan Saha, Prasanna
Sattigeri, Moninder Singh, Kush R. Varshney, and Yunfeng Zhang. AI Fairness 360: An
extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias,
October 2018. URL https://arxiv.org/abs/1810.01943.

[8] Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and
Stella Biderman. Leace: Perfect linear concept erasure in closed form. Advances in Neural
Information Processing Systems, 36:66044–66063, 2023.

[9] Karan Bhanot, Ioana Baldini, Dennis Wei, Jiaming Zeng, and Kristin Bennett. Stress-testing
bias mitigation algorithms to understand fairness vulnerabilities. In Proceedings of the 2023
AAAI/ACM Conference on AI, Ethics, and Society, pages 764–774, 2023.

[10] Sarah Bird, Miro Dudík, Richard Edgar, Brandon Horn, Roman Lutz, Vanessa Milan,
Mehrnoosh Sameki, Hanna Wallach, and Kathleen Walker. Fairlearn: A toolkit for assessing
and improving fairness in AI. Technical Report MSR-TR-2020-32, Microsoft, May 2020. URL
https://aka.ms/fairlearn-whitepaper.

[11] Sumon Biswas and Hridesh Rajan. Fair preprocessing: towards understanding compositional
fairness of data transformers in machine learning pipeline. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2021, page 981–993, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450385626. doi: 10.1145/3468264.3468536. URL
https://doi.org/10.1145/3468264.3468536.

[12] Christina Hastings Blow, Lijun Qian, Camille Gibson, Pamela Obiomon, and Xishuang Dong.
Comprehensive validation on reweighting samples for bias mitigation via aif360. Applied
Sciences, 14(9), 2024. ISSN 2076-3417. doi: 10.3390/app14093826. URL https://www.
mdpi.com/2076-3417/14/9/3826.

[13] Avrim Blum and Kevin Stangl. Recovering from biased data: Can fairness constraints improve
accuracy? In Symposium on Foundations of Responsible Computing (FORC), 2019.

[14] Avrim Blum, Princewill Okoroafor, Aadirupa Saha, and Kevin Stangl. On the vulnerability of
fairness constrained learning to malicious noise. arXiv preprint arXiv:2307.11892, 2023.

11

https://arxiv.org/abs/2103.06172
http://www.fairmlbook.org
https://arxiv.org/abs/1810.01943
https://aka.ms/fairlearn-whitepaper
https://doi.org/10.1145/3468264.3468536
https://www.mdpi.com/2076-3417/14/9/3826
https://www.mdpi.com/2076-3417/14/9/3826


[15] Stephen Boyd. Convex optimization. Cambridge UP, 2004.

[16] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in
commercial gender classification. In Conference on fairness, accountability and transparency,
pages 77–91. PMLR, 2018.

[17] Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free classifi-
cation. Data mining and knowledge discovery, 21:277–292, 2010.

[18] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and
Kush R Varshney. Optimized pre-processing for discrimination prevention. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
9a49a25d845a483fae4be7e341368e36-Paper.pdf.

[19] Clément L. Canonne. A short note on an inequality between kl and tv, 2023. URL https:
//arxiv.org/abs/2202.07198.

[20] L Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K Vishnoi. Fair classification with
noisy protected attributes: A framework with provable guarantees. In International Conference
on Machine Learning, pages 1349–1361. PMLR, 2021.

[21] Mattia Cerrato, Marius Köppel, Philipp Wolf, and Stefan Kramer. 10 years of fair representations:
Challenges and opportunities, 2024. URL https://arxiv.org/abs/2407.03834.

[22] Jiahao Chen, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, and Madeleine Udell. Fairness
under unawareness: Assessing disparity when protected class is unobserved. In Proceedings of
the conference on fairness, accountability, and transparency, pages 339–348, 2019.

[23] Kristy Choi, Aditya Grover, Trisha Singh, Rui Shu, and Stefano Ermon. Fair generative
modeling via weak supervision. In International Conference on Machine Learning, pages
1887–1898. PMLR, 2020.

[24] Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pontil.
Leveraging labeled and unlabeled data for consistent fair binary classification. Advances in
Neural Information Processing Systems, 32, 2019.

[25] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[26] Bo Cowgill, Fabrizio Dell’Acqua, Samuel Deng, Daniel Hsu, Nakul Verma, and Augustin
Chaintreau. Biased programmers? or biased data? a field experiment in operationalizing
ai ethics. In Proceedings of the 21st ACM Conference on Economics and Computation,
EC ’20, page 679–681, New York, NY, USA, 2020. Association for Computing Machin-
ery. ISBN 9781450379755. doi: 10.1145/3391403.3399545. URL https://doi.org/10.
1145/3391403.3399545.

[27] Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian Borgs, Alexan-
dra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and Adam Tauman Kalai. Bias in
bios: A case study of semantic representation bias in a high-stakes setting. In proceedings of
the Conference on Fairness, Accountability, and Transparency, pages 120–128, 2019.

[28] Luc Devroye, László Györfi, and Gábor Lugosi. The Bayes Error, pages 9–20. Springer, 1996.
ISBN 978-1-4612-0711-5. doi: 10.1007/978-1-4612-0711-5_2.

[29] Michele Donini, Luca Oneto, Shai Ben-David, John S Shawe-Taylor, and Massimiliano Pon-
til. Empirical risk minimization under fairness constraints. Advances in neural information
processing systems, 31, 2018.

[30] Sanghamitra Dutta, Dennis Wei, Hazar Yueksel, Pin-Yu Chen, Sijia Liu, and Kush Varshney. Is
there a trade-off between fairness and accuracy? a perspective using mismatched hypothesis
testing. In International conference on machine learning, pages 2803–2813. PMLR, 2020.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/9a49a25d845a483fae4be7e341368e36-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9a49a25d845a483fae4be7e341368e36-Paper.pdf
https://arxiv.org/abs/2202.07198
https://arxiv.org/abs/2202.07198
https://arxiv.org/abs/2407.03834
https://doi.org/10.1145/3391403.3399545
https://doi.org/10.1145/3391403.3399545


[31] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, ITCS ’12, page 214–226, 2012. ISBN 9781450311151.

[32] Daniel Eftekhari and Vardan Papyan. On the importance of gaussianizing representations. arXiv
preprint arXiv:2505.00685, 2025.

[33] Charles Elkan. The foundations of cost-sensitive learning. In International joint conference on
artificial intelligence, volume 17, pages 973–978. Lawrence Erlbaum Associates Ltd, 2001.

[34] Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. The (im)possibility
of fairness: different value systems require different mechanisms for fair decision making.
Commun. ACM, 64(4):136–143, March 2021. ISSN 0001-0782. doi: 10.1145/3433949. URL
https://doi.org/10.1145/3433949.

[35] Gene H Golub. Some modified matrix eigenvalue problems. SIAM review, 15(2):318–334,
1973.

[36] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[37] Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai Sun, Nan Jiang, Tarek Abdelzaher, and
Heng Ji. Word embeddings are steers for language models. arXiv preprint arXiv:2305.12798,
2023.

[38] Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning. In
Proceedings of the 30th International Conference on Neural Information Processing Systems,
NIPS’16, page 3323–3331, 2016. ISBN 9781510838819.

[39] Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and Hanna Wallach.
Improving fairness in machine learning systems: What do industry practitioners need? In
Proceedings of the 2019 CHI conference on human factors in computing systems, pages 1–16,
2019.

[40] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[41] Heinrich Jiang and Ofir Nachum. Identifying and correcting label bias in machine learning. In
International Conference on Artificial Intelligence and Statistics, pages 702–712. PMLR, 2020.

[42] Eun Seo Jo and Timnit Gebru. Lessons from archives: Strategies for collecting sociocultural
data in machine learning. In Proceedings of the 2020 conference on fairness, accountability,
and transparency, pages 306–316, 2020.

[43] Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without
discrimination. Knowledge and information systems, 33(1):1–33, 2012.

[44] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware clas-
sifier with prejudice remover regularizer. In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012.
Proceedings, Part II 23, pages 35–50. Springer, 2012.

[45] Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. Founda-
tions and Trends® in Machine Learning, 12(4):307–392, 2019.

[46] Oluwasanmi O Koyejo, Nagarajan Natarajan, Pradeep K Ravikumar, and Inderjit S Dhillon.
Consistent binary classification with generalized performance metrics. Advances in neural
information processing systems, 27, 2014.

[47] Tosca Lechner, Shai Ben-David, Sushant Agarwal, and Nivasini Ananthakrishnan. Impossibility
results for fair representations, 2021. URL https://arxiv.org/abs/2107.03483.

13

https://doi.org/10.1145/3433949
https://arxiv.org/abs/2107.03483


[48] Charlotte Leininger, Simon Rittel, and Ludwig Bothmann. Overcoming fairness trade-offs via
pre-processing: A causal perspective. arXiv preprint arXiv:2501.14710, 2025.

[49] Ji Liu, Zenan Li, Yuan Yao, Feng Xu, Xiaoxing Ma, Miao Xu, and Hanghang Tong. Fair
representation learning: An alternative to mutual information. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, page 1088–1097,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393850. doi:
10.1145/3534678.3539302. URL https://doi.org/10.1145/3534678.3539302.

[50] David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially fair
and transferable representations. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 3384–3393. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/madras18a.html.

[51] Subha Maity, Debarghya Mukherjee, Mikhail Yurochkin, and Yuekai Sun. Does enforcing
fairness mitigate biases caused by subpopulation shift? Advances in Neural Information
Processing Systems, 34:25773–25784, 2021.

[52] Sandra Gabriel Mayson. Bias in, bias out. Yale Law Journal, 2218, 2019. URL https:
//www.yalelawjournal.org/pdf/Mayson_p5g2tz2m.pdf.

[53] Daniel McNamara, Cheng Soon Ong, and Robert C. Williamson. Costs and benefits of fair
representation learning. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and
Society, AIES ’19, page 263–270, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450363242. doi: 10.1145/3306618.3317964. URL https://doi.org/
10.1145/3306618.3317964.

[54] Aditya Krishna Menon and Robert C Williamson. The cost of fairness in binary classification.
In Conference on Fairness, accountability and transparency, pages 107–118. PMLR, 2018.

[55] Chaitanya Murti and Chiranjib Bhattacharyya. Discedit: Model editing by identifying discrim-
inative components. Advances in Neural Information Processing Systems, 37:47261–47296,
2024.

[56] Frank Nielsen. Generalized bhattacharyya and chernoff upper bounds on bayes error using
quasi-arithmetic means. Pattern Recognition Letters, 42:25–34, 2014. ISSN 0167-8655.
doi: https://doi.org/10.1016/j.patrec.2014.01.002. URL https://www.sciencedirect.com/
science/article/pii/S0167865514000166.

[57] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1–64, 2021.

[58] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical
University of Denmark, 7(15):510, 2008.

[59] Emma Pierson, Sam Corbett-Davies, and Sharad Goel. Fast threshold tests for detecting
discrimination. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of the Twenty-
First International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings
of Machine Learning Research, pages 96–105. PMLR, 09–11 Apr 2018. URL https://
proceedings.mlr.press/v84/pierson18a.html.
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A Proofs for Section 3: Ideal Distributions for Fair classification

We will require a helper result about threshold classifiers to prove our next set of results.
Lemma A.1. Let η(x, a) = Pr (Y = 1|X = x,A = a), qia = Pr (Y = i, A = a) and pia(x) =
Pr
(
X = x

∣∣ Y = i, A = a
)
. Then the Bayes optimal classifier can be written as h∗(x, a) =

I
(
log p1a(x)

p0a(x)
≥ log q0a

q1a

)
.

Proof. Let η(x, a) = Pr (Y = 1|X = x,A = a), qia = Pr (Y = i, A = a) and pia(x) =
Pr
(
X = x

∣∣ Y = i, A = a
)
. We consider group-aware threshold classifiers on D of the form

ht(x, a) = I (η(x, a) ≥ t), which can be equivalently written as
ht(x, a) = I (η(x, a) ≥ t)

= I
(
Pr
(
Y = 1

∣∣ X = x,A = a
)
≥ t
)

= I

(
Pr
(
Y = 1

∣∣ X = x,A = a
)

Pr
(
Y = 0

∣∣ X = x,A = a
) ≥ t

1− t

)

= I
(
Pr (Y = 1, X = x,A = a)

Pr (Y = 0, X = x,A = a)
≥ t

1− t

)
= I

(
Pr
(
X = x

∣∣ Y = 1, A = a
)
Pr (Y = 1, A = a)

Pr
(
X = x

∣∣ Y = 0, A = a
)
Pr (Y = 0, A = a)

≥ t

1− t

)

= I
(
p1a(x)

p0a(x)
≥ t

1− t
· q0a
q1a

)
= I

(
log

p1a(x)

p0a(x)
≥ log

t

1− t
+ log

q0a
q1a

)
.

It is well-known that the group-aware Bayes optimal classifier h∗ = h1/2 by setting t = 1/2, or
equivalently,

h∗(x, a) = h1/2(x, a) = I
(
log

p1a(x)

p0a(x)
≥ log

q0a
q1a

)
.

We now prove Proposition 3.2 from the main paper.
Proposition A.2. (Proposition 3.2 in the main text) Let (X,Y,A) denote the features, class label,
and group membership, respectively, of a random data point from any data distribution D with
qia = Pr (Y = i, A = a), for i ∈ Y and a ∈ A. Let X|Y = i, A = a ∼ N (µia,Σia) be
multivariate Normal distributions with mean µia ∈ Rd and covariance matrix Σia ∈ Rd×d, for
i ∈ Y and a ∈ A. If the means µia and the covariance matrices Σia satisfy

Σ
−1/2
ia (µia − µja) = Σ

−1/2
ia′ (µia′ − µja′) and

Σ
1/2
ia Σ−1

ja Σ
1/2
ia = Σ

1/2
ia′ Σ

−1
ja′Σ

1/2
ia′ and

qia
qja

=
qia′

qja′
, ∀i, j ∈ Y, a, a′ ∈ A,

then the group-aware Bayes optimal classifier on D satisfies equal opportunity.
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Proof. The Bayes optimal classifier for group A = a in a multi-class setting can be written down as
a maximum over posterior probabilities:

h∗(x, a) = argmax
y∈Y

ηy(x, a), where ηy(x, a) = Pr (Y = y|X = x,A = a) .

We can say that h∗(x, a) = y, whenever the following happens:

h∗(x, a) = argmax
y∈Y

ηy(x, a) = I
(
ηy(x, a)

ηi(x, a)
≥ 1,∀i ∈ Y

)
= I

(
log

pya(X)

pia(X)
≥ log

qia
qya

, ∀i ∈ Y
)

Using the above simplification, the EO-fairness condition Pr
(
h∗(X,A) = y

∣∣ Y = y,A = a
)
=

Pr
(
h∗(X,A) = y

∣∣ Y = 1, A = a′
)
∀y ∈ Y, a, a′ ∈ A means

Pr

(
log

pya(X)

pia(X)
≥ log

qia
qya

, ∀i ∈ Y
∣∣ Y = y,A = a

)
= Pr

(
log

pya′(X)

pia′(X)
≥ log

qia′

qya′
, ∀i ∈ Y

∣∣ Y = y,A = a′
)
.

Since X|Y = i, A = a ∼ N (µia,Σia) are multivariate Normal distributions, their probability
densities are

pia(x) = (2π)−d/2 det(Σia)
−1/2 exp

(
−1

2
(x− µia)

TΣ−1
ia (x− µia)

)
.

Now we can write

log
pya(x)

pia(x)

=
1

2

(
(x− µia)

TΣ−1
ia (x− µia)− (x− µya)

TΣ−1
ya (x− µya) + log det(Σia)− log det(Σya)

)
=

1

2

(
(Σ1/2

ya r + µya − µia)
TΣ−1

ia (Σ1/2
ya r + µya − µia)− rT r − log det(Σ1/2

ya Σ−1
ia Σ1/2

ya )
)

by substituting x = Σ1/2
ya r + µya, where r ∼ N (0, Id×d)

=
1

2
rTΣ1/2

ya Σ−1
ia Σ1/2

ya r + (µya − µia)
TΣ−1

ia Σ1/2
ya r +

1

2
(µya − µia)

TΣ−1
ia (µya − µia)

− 1

2
rT r − 1

2
log det(Σ1/2

ya Σ−1
ia Σ1/2

ya )

Let us denote the above expression as Eyi(r). We can now write the group TPR as:

Pr

(
log

pya(X)

pia(X)
≥ log

qia
qya

, ∀i ∈ Y
∣∣ Y = y,A = a

)
= Pr

(
Eyi(R) ≥ log

qia
qya

, ∀i ∈ Y
)
,

for R ∼ N (0̄, Id×d). Now if we have
qya
qia

=
qya′

qia′
and

Σ−1/2
ya (µya − µia) = Σ

−1/2
ya′ (µya′ − µia′) and Σ1/2

ya Σ−1
ia Σ1/2

ya = Σ
1/2
ya′Σ

−1
ia′Σ

1/2
ya′ ,

then the probability of the above event written in terms R ∼ N (0̄, Id×d) becomes identical ∀a, a′ ∈
A, i ∈ Y . Hence, the Bayes optimal classifier satisfies equal opportunity with these set of conditions.

Proposition A.3. (Proposition 3.3 in the main text) Let (X,Y,A) denote the features, binary class
label, and binary group membership, respectively, of a random data point from any data distribution
D with qia = Pr (Y = i, A = a), for i ∈ {0, 1} and a ∈ {0, 1}, and let X|Y = i, A = a ∼
N (µia, σ

2
ia) be univariate normal distributions, for i ∈ {0, 1} and a ∈ {0, 1}. Then the distribution

D is ideal for equal opportunity (see Definition 3.1) if and only if
µ01 − µ11

σ11
=

µ00 − µ10

σ10
,

σ11

σ01
=

σ10

σ00
,

q10
q00

=
q11
q01

.
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Proof. For any cost matrix C ∈ R2×2, the group-aware classifier that minimizes its corresponding
cost-sensitive risk is given by I (η(x, a) ≥ tC), for a threshold tC = (c10 − c00)/(c10 − c00 + c01 −
c11) ∈ [0, 1]; see Equation (2) in [33] and [63]. The distribution D is ideal for equal opportunity if
Pr
(
η(X,A) ≥ t

∣∣ Y = i, A = 0
)
= Pr

(
η(X,A) ≥ t

∣∣ Y = i, A = 1
)
, for all thresholds t ∈ [0, 1]

and i ∈ {0, 1}. Since the CDFs are identical, the random variables η(X,A)
∣∣ Y = i, A = 0 and

η(X,A)
∣∣ Y = i, A = 1 must be identical. Note that

η(x, a) = Pr
(
Y = 1

∣∣ X = x,A = a
)

=
Pr (Y = 1, X = x,A = a)∑1
i=0 Pr (Y = i,X = x,A = a)

=
Pr (Y = 1, A = a) Pr

(
X = x

∣∣ Y = 1, A = a
)∑1

i=0 Pr (Y = i, A = a) Pr
(
X = x

∣∣ Y = i, A = a
)

=
q1aP1a(x)∑1
i=0 qiaPia(x)

=

q1aσ
−1
1a exp

(
− (x− µ1a)

2

2σ2
1a

)
∑1

i=0 qiaσ
−1
ia exp

(
− (x− µia)

2

2σ2
ia

)
=

1

1 + exp

(
(x− µ1a)

2

2σ2
1a

− (x− µ0a)
2

2σ2
0a

+ log
q0aσ1a

q1aσ0a

)
=

1

1 + exp

(
(µia + rσia − µ1a)

2

2σ2
1a

− (µia + rσia − µ0a)
2

2σ2
0a

+ log
q0aσ1a

q1aσ0a

)

=



1

1 + exp

(
1

2

(
σ2
0a

σ2
1a

− 1

)
r2 − σ0a(µ1a − µ0a)

σ2
1a

r +
(µ1a − µ0a)

2

2σ2
1a

+ log
q0aσ1a

q1aσ0a

) , for i = 0

1

1 + exp

(
1

2

(
1− σ2

1a

σ2
0a

)
r2 − σ1a(µ0a − µ1a)

σ2
0a

r +
(µ0a − µ1a)

2

2σ2
0a

+ log
q0aσ1a

q1aσ0a

) , for i = 1.

If X|Y = i, A = a ∼ N (µia, σ
2
ia), then X

∣∣ Y = i, A = a ∼ N (µia, σ
2
ia). Thus, for

η(X,A)
∣∣ Y = i, A = 0 and η(X,A)

∣∣ Y = i, A = 1 to be identical, we must have

1

2

(
σ2
00

σ2
10

− 1

)
R2 − σ00(µ10 − µ00)

σ2
10

R+
(µ10 − µ00)

2

2σ2
10

+ log
q00σ10

q10σ00
and

1

2

(
σ2
01

σ2
11

− 1

)
R2 − σ01(µ11 − µ01)

σ2
11

R+
(µ11 − µ01)

2

2σ2
11

+ log
q01σ11

q11σ01

as identically distributed for R ∼ N (0, 1). Similarly, we must also have

1

2

(
1− σ2

10

σ2
00

)
R2 − σ10(µ00 − µ10)

σ2
00

R+
(µ00 − µ10)

2

2σ2
00

+ log
q00σ10

q10σ00
and

1

2

(
1− σ2

11

σ2
01

)
R2 − σ11(µ01 − µ11)

σ2
01

R+
(µ01 − µ11)

2

2σ2
01

+ log
q01σ11

q11σ01

as identically distributed for R ∼ N (0, 1). Therefore, we must have

µ01 − µ11

σ11
=

µ00 − µ10

σ10
and

σ11

σ01
=

σ10

σ00
and

q10
q00

=
q11
q01

.

In the other direction, it is easier to prove that the above conditions imply the distribution to be ideal.
It can be proved by simply backtracking the steps above.
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B Proofs for Section 4

We first derive the KL divergence between two distributions, where each subgroup in the distribution
follows a multivariate normal distribution.

Lemma B.1. Let (X,Y,A) denote the features, binary class label, and binary group membership,
respectively, of a random data point from any data distribution D with qia = Pr (Y = i, A = a), for
i ∈ Y and a ∈ A. Let X|Y = i, A = a ∼ N (µia,Σia) be multivariate Normal distributions with
mean µia ∈ Rd and covariance matrix Σia ∈ Rd×d. Let D̃ denote a distribution obtained by keeping
(Y,A) unchanged and only changing X|Y = i, A = a to X̃|Y = i, A = a ∼ N (µ̃ia, Σ̃ia). Then,

DKL

(
D̃||D

)
= −d

2
+

1

2

∑
(i,a)

qia(µ̃ia − µia)
TΣ−1

ia (µ̃ia − µia)

+
1

2

∑
(i,a)

qia

(
tr
(
Σ−1

ia Σ̃ia

)
− log det(Σ−1

ia Σ̃ia)
)
.

Proof.

DKL

(
D̃||D

)
=
∑

(x,i,a)

Pr
(
X̃ = x, Ỹ = i, Ã = a

)
log

Pr
(
X̃ = x, Ỹ = i, Ã = a

)
Pr (X = x, Y = i, A = a)

=
∑

(x,i,a)

Pr
(
Ỹ = i, Ã = a

)
Pr
(
X̃ = x

∣∣ Ỹ = i, Ã = a
)

log
Pr
(
Ỹ = i, Ã = a

)
Pr
(
X̃ = x

∣∣ Ỹ = i, Ã = a
)

Pr (Y = y,A = a) Pr
(
X = x

∣∣ Y = i, A = a
)

=
∑

(x,i,a)

Pr (Y = i, A = a) Pr
(
X̃ = x

∣∣ Y = i, A = a
)

log
Pr (Y = i, A = a) Pr

(
X̃ = x

∣∣ Y = i, A = a
)

Pr (Y = i, A = a) Pr
(
X = x

∣∣ Y = i, A = a
)

=
∑
(i,a)

qia
∑
x

Pr
(
X̃ = x

∣∣ Y = i, A = a
)
log

Pr
(
X̃ = x

∣∣ Y = i, A = a
)

Pr
(
X = x

∣∣ Y = i, A = a
)

=
∑
(i,a)

qiaDKL

(
P̃ia||Pia

)

Pia denotes the distribution of X
∣∣ Y = i, A = a ∼ N (µia,Σia) and P̃ia denotes the distribution of

X̃
∣∣ Y = i, A = a ∼ N (µ̃ia, Σ̃ia). Their probability densities are

pia(x) = (2π)−d/2 det(Σia)
−1/2 exp

(
−1

2
(x− µia)

TΣ−1
ia (x− µia)

)
and

p̃ia(x) = (2π)−d/2 det(Σ̃ia)
−1/2 exp

(
−1

2
(x− µ̃ia)

T Σ̃−1
ia (x− µ̃ia)

)
,
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respectively. Hence, the Kullback-Leibler divergence between P̃ia and Pia can be written as

DKL

(
P̃ia||Pia

)
= E

[
log

p̃ia(X̃)

pia(X̃)

∣∣ Y = i, A = a

]

=
1

2
E
[
(X̃ − µia)

TΣ−1
ia (X̃ − µia)− (X̃ − µ̃ia)

T Σ̃−1
ia (X̃ − µ̃ia)

− log det(Σ
1/2
ia Σ̃−1

ia Σ
1/2
ia )

∣∣ Y = i, A = a
]

=
1

2
E
[
(X̃ − µia)

TΣ−1
ia (X̃ − µia)

∣∣ Y = i, A = a
]
− d

2
− 1

2
log det(Σ

1/2
ia Σ̃−1

ia Σ
1/2
ia )

using E
[
(X̃ − µ̃ia)

T Σ̃−1
ia (X̃ − µ̃ia)

∣∣ Y = i, A = a
]
= Σ̃−1

ia • Σ̃ia = tr (Id×d) = d

=
1

2
E
[
(X̃ − µ̃ia + µ̃ia − µia)

TΣ−1
ia (X̃ − µ̃ia + µ̃ia − µia)

∣∣ Y = i, A = a
]

− d

2
+

1

2
log det(Σ

1/2
ia Σ̃−1

ia Σ
1/2
ia )

=
1

2
tr
(
Σ−1

ia Σ̃ia

)
+

1

2
(µ̃ia − µia)

TΣ−1
ia (µ̃ia − µia)−

d

2
+

1

2
log det(Σ

1/2
ia Σ̃−1

ia Σ
1/2
ia ).

The Kullback-Leibler divergence between D̃ and D can now be written as

DKL

(
D̃||D

)
=
∑
(i,a)

qiaDKL

(
P̃ia||Pia

)
=
∑
(i,a)

qia

(
1

2
tr
(
Σ−1

ia Σ̃ia

)
+

1

2
(µ̃ia − µia)

TΣ−1
ia (µ̃ia − µia)−

d

2
+

1

2
log det(Σ

1/2
ia Σ̃−1

ia Σ
1/2
ia )

)

= −d

2
+

1

2

∑
(i,a)

qia

(
tr
(
Σ−1

ia Σ̃ia

)
+ (µ̃ia − µia)

TΣ−1
ia (µ̃ia − µia) + log det(Σ

1/2
ia Σ̃−1

ia Σ
1/2
ia )

)
= −d

2
+

1

2

∑
(i,a)

qia(µ̃ia − µia)
TΣ−1

ia (µ̃ia − µia) +
1

2

∑
(i,a)

qia

(
tr
(
Σ−1

ia Σ̃ia

)
+ log det(ΣiaΣ̃

−1
ia )
)

= −d

2
+

1

2

∑
(i,a)

qia(µ̃ia − µia)
TΣ−1

ia (µ̃ia − µia) +
1

2

∑
(i,a)

qia

(
tr
(
Σ−1

ia Σ̃ia

)
− log det(Σ−1

ia Σ̃ia)
)

Theorem B.2. (Theorem 4.1 in the main text) Let (X,Y,A) denote the features, binary class label,
and binary group membership, respectively, of a random data point from any data distribution D with
qia = Pr (Y = i, A = a), for i ∈ {0, 1} and a ∈ {0, 1}, such that q10/q00 = q11/q01. Let X|Y =
i, A = a ∼ N (µia,Σia) be multivariate Normal distributions, with mean µia ∈ Rd and covariance
matrix Σia ∈ Rd×d, for i ∈ {0, 1} and a ∈ {0, 1}. Let D̃ denote a distribution obtained by keeping
(Y,A) unchanged and only changing X|Y = i, A = a to X̃|Y = i, A = a ∼ N (µ̃ia, Σ̃ia). Then in

the case of Affirmative action (changing only µ̃i0 and Σ̃i0), we can efficiently minimize DKL

(
D̃||D

)
as a function of the variables µ̃i0 and Σ̃i0 subject to the constraints in Proposition 1.2, so that the
Bayes optimal classifier on the optimal D̃ is guaranteed to be EO-fair.

Proof. Using Lemma B.1 and Proposition 1.2, our objective is to minimize

DKL

(
D̃||D

)
= −d

2
+

1

2

∑
(i,a)

qia(µ̃ia − µia)
TΣ−1

ia (µ̃ia − µia) +
1

2

∑
(i,a)

qia

(
tr
(
Σ−1

ia Σ̃ia

)
− log det(Σ−1

ia Σ̃ia)
)
,
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subject to the constraints

Σ̃
−1/2
10 (µ̃10 − µ̃00) = Σ̃

−1/2
11 (µ̃11 − µ̃01) and Σ̃

1/2
10 Σ̃−1

00 Σ̃
1/2
10 = Σ̃

1/2
11 Σ̃−1

01 Σ̃
1/2
11 .

Suppose Σ̃i0 and Σ̃i1 do not commute. The constraints can be equivalently rewritten as follows.

µ̃10 − µ̃00 = Σ̃
1/2
10 Σ̃

−1/2
11 (µ̃11 − µ̃01) and Σ̃

−1/2
11 Σ̃

1/2
10 Σ̃−1

00 Σ̃
1/2
10 Σ̃

−1/2
11 = Σ̃−1

01 .

Let Γ = Σ̃
1/2
i0 Σ̃

−1/2
i1 . For any fixed positive semidefinite matrix Γ ∈ Rd×d, our optimization problem

can be divided into two separate parts that minimize∑
(i,a)

qia(µ̃ia − µia)
TΣ−1

ia (µ̃ia − µia) subject to µ̃10 − µ̃00 = Γ(µ̃11 − µ̃01)

over µ̃ia ∈ Rd, for i, a ∈ {0, 1}, and minimize (after substituting Σ̃
1/2
i0 = ΓΣ̃

1/2
i1 )

1∑
i=0

qi0

(
tr

(
Σ−1

i0

(
ΓΣ̃

1/2
i0

)2)
− log det(Σ−1

i0

(
ΓΣ̃

1/2
i0

)2)
+ qi1

(
tr
(
Σ−1

i1 Σ̃i1

)
− log det(Σ−1

i1 Σ̃i1)
)
,

subject to ΓΣ̃
1/2
11 Σ̃−1

00 Γ = Σ̃
1/2
11 Σ̃−1

01

over symmetric, positive semidefinite matrix-valued variable Σ̃i1 ∈ Rd×d, for i ∈ {0, 1}. The
first optimization in µ̃ia is a constrained eigenvalue problem with linear constraints, i.e., minimize
xTAx+ xT b subject to xT c = e [35].

Let’s consider the case of Affirmative Action, where we only change the means µ̃i0 and the covariance
matrices Σ̃i0 for the underprivileged group but keep those for the privileged group unchanged, i.e.,
µ̃i1 = µi1 and Σ̃i1 = Σi1. In that case, Σ̃1/2

00 = ΓΣ
1/2
01 and Σ̃

1/2
10 = ΓΣ

1/2
11 get fixed. By substituting

µ̃10 = µ̃00 + Γ(µ̃11 − µ̃01) = µ̃00 + Γ(µ11 − µ01), we only need to optimize

q00(µ̃00−µ00)
TΣ−1

00 (µ̃00−µ00)+q10(µ̃00+Γ(µ11−µ01)−µ10)
TΣ−1

10 (µ̃00+Γ(µ11−µ01)−µ10),

or equivalently (ignoring the terms independent of µ̃00),

µ̃T
00

(
q00Σ

−1
00 + q10Σ

−1
10

)
µ̃00 − 2

(
Σ−1

00 µ00 +Σ−1
10 µ10 − Σ−1

10 Γ(µ11 − µ01)
)T

µ̃00.

This is a convex objective in µ̃00 because its Hessian is positive semidefinite, i.e., q00Σ−1
00 +q10Σ

−1
10 ≽

0 [15]. By equating the gradient to zero, we get the optimal solution for µ̃00, and we denote it by
µ∗
00(Γ). Thus, the optimal solutions µ∗

00(Γ), µ
∗
10(Γ),Σ

∗
00(Γ),Σ

∗
10(Γ) for a fixed positive semidefinite

Γ ∈ Rd×d are given by

µ∗
00(Γ) =

(
q00Σ

−1
00 + q10Σ

−1
10

)−1 (
Σ−1

00 µ00 +Σ−1
10 µ10 − Σ−1

10 Γ(µ11 − µ01)
)

and

µ∗
10(Γ) =

(
q00Σ

−1
00 + q10Σ

−1
10

)−1 (
Σ−1

00 µ00 +Σ−1
10 µ10 − Σ−1

10 Γ(µ11 − µ01)
)
+ Γ(µ11 − µ01)

Σ∗
00(Γ) = (ΓΣ

1/2
01 )2

Σ∗
10(Γ) = (ΓΣ

1/2
11 )2.

By substituting these, when we look at the objective as a function of a positive semidef-
inite matrix-valued variable Γ, it turns out to be convex. This requires rewriting the
expressions using the identities tr (AB) = tr (BA) , det(AB) = det(A) det(B), and
most importantly, tr (AXBX) = tr

(
(A1/2XB1/2)(A1/2XB1/2)T

)
and log det(AXBX) =

log det
(
A1/2XB1/2)(A1/2XB1/2)T

)
, for symmetric, positive semidefinite matrices A,B,X [58].

The convexity of the objective in Γ follows from the convexity of tr (AXBX) and − log det(X) for
matrix-valued variable X . Finally, we can solve it efficiently to get the optimal Γ∗.

Corollary B.3. (Corollary 4.2 in the main text) For the case where X|Y = i, A = a ∼ N (µia, σ
2
ia)

are univariate normal distributions, for i, a ∈ {0, 1} , the optimal distribution D̃ from Theorem 4.1,
with γ∗ being a function of the original distribution parameters, can be written down as:

σ̃i0 = γ∗σi1, µ̃00 = µ̃10 + γ∗(µ01 − µ11), and µ̃10 =

(
q00

µ00 − γ∗(µ01 − µ11)

σ2
00

+ q10
µ10

σ2
10

)
(
q00
σ2
00

+
q10
σ2
10

) ,
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Proof.

DKL

(
D̃||D

)
=
∑

(x,i,a)

Pr
(
X̃ = x, Ỹ = i, Ã = a

)
log

Pr
(
X̃ = x, Ỹ = i, Ã = a

)
Pr (X = x, Y = i, A = a)

=
∑

(x,i,a)

Pr
(
Ỹ = i, Ã = a

)
Pr
(
X̃ = x

∣∣ Ỹ = i, Ã = a
)

log
Pr
(
Ỹ = i, Ã = a

)
Pr
(
X̃ = x

∣∣ Ỹ = i, Ã = a
)

Pr (Y = y,A = a) Pr
(
X = x

∣∣ Y = i, A = a
)

=
∑

(x,i,a)

Pr (Y = i, A = a) Pr
(
X̃ = x

∣∣ Y = i, A = a
)

log
Pr (Y = i, A = a) Pr

(
X̃ = x

∣∣ Y = i, A = a
)

Pr (Y = i, A = a) Pr
(
X = x

∣∣ Y = i, A = a
)

=
∑
(i,a)

qia
∑
x

Pr
(
X̃ = x

∣∣ Y = i, A = a
)
log

Pr
(
X̃ = x

∣∣ Y = i, A = a
)

Pr
(
X = x

∣∣ Y = i, A = a
)

=
∑
(i,a)

qiaDKL

(
P̃ia||Pia

)
Pia denotes the distribution of X

∣∣ Y = i, A = a ∼ N (µia, σ
2
ia) and P̃ia denotes the distribution of

X̃
∣∣ Y = i, A = a ∼ N (µ̃ia, σ̃

2
ia). Their probability densities are

pia(x) =
1

xσia

√
2π

exp

(
− (x− µia)

2

2σ2
ia

)
and p̃ia(x) =

1

xσ̃ia

√
2π

exp

(
− (x− µ̃ia)

2

2σ̃2
ia

)
,

respectively. Hence,

DKL

(
P̃ia||Pia

)
= E

[
log

p̃ia(X̃)

pia(X̃)

∣∣ Y = i, A = a

]

= E

[
(X̃ − µia)

2

2σ2
ia

− (X̃ − µ̃ia)
2

2σ̃2
ia

+ log
σia

σ̃ia

∣∣ Y = i, A = a

]

= E

[(
1

2σ2
ia

− 1

2̃σ
2

ia

)
X̃2 +

(
µ̃ia

σ̃2
ia

− µia

σ2
ia

)
X̃ +

(
µ2
ia

2σ2
ia

− µ̃2
ia

2σ̃2
ia

)
+ log

σia

σ̃ia

∣∣ Y = i, A = a

]

=

(
1

2σ2
ia

− 1

2σ̃2
ia

)
(µ̃2

ia + σ̃2
ia) +

(
µ̃ia

σ̃2
ia

− µia

σ2
ia

)
µ̃ia +

(
µ2
ia

2σ2
ia

− µ̃2
ia

2σ̃2
ia

)
+ log

σia

σ̃ia

=
(µ̃ia − µia)

2

2σ2
ia

+
σ̃2
ia − σ2

ia

2σ2
ia

+ log
σia

σ̃ia
,

using E
[
log X̃

∣∣ Y = i, A = a
]
= µ̃ia and E

[
(log X̃)2

∣∣ Y = i, A = a
]
= µ̃2

ia + σ̃2
ia. Since we

only change group A = 0, we want to minimize

DKL

(
D̃||D

)
=

1∑
i=0

qi0DKL

(
P̃i0||Pi0

)
=

1∑
i=0

qi0

(
(µ̃i0 − µi0)

2

2σ2
i0

+
σ̃2
i0 − σ2

i0

2σ2
i0

+ log
σi0

σ̃i0

)
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as a function of the variables µ̃i0 and σ̃i0 subject to the constraints

µ01 − µ11

σ11
=

µ̃00 − µ̃10

σ̃10
and

σ11

σ01
=

σ̃10

σ̃00
and σ̃ia ≥ 0, for all (i, a).

Let’s fix γ ∈ R≥0 and minimize

Lγ =

1∑
i=0

qi0

(
(µ̃i0 − µi0)

2

2σ2
i0

+
σ̃2
i0 − σ2

i0

2σ2
i0

+ log
σi0

σ̃i0

)
as a function of the variables µ̃ia and σ̃ia subject to the following constraints

µ̃00 − µ̃10

µ01 − µ11
=

σ̃10

σ11
=

σ̃00

σ01
= γ and σ̃ia ≥ 0, for all (i, a).

The objective Lγ is convex and for a fixed γ ∈ R≥0, the constraints on are linear in µ̃i0 and σ̃i0.
Let’s denote the optimal solution for a fixed γ ∈ R≥0 by µ∗

i0(γ) and σ∗
i0(γ), for i ∈ {0, 1}. For

a fixed γ ∈ R≥0, the above constraints fix σ∗
i0(γ) = γσi1, for i ∈ {0, 1}, and by plugging in

µ̃00 = µ̃10 + γ(µ01 − µ11), we only need to minimize the following convex, quadratic objective in a
single variable µ̃10,

minimize q00
(µ̃10 + γ(µ01 − µ11)− µ00)

2

2σ2
00

+ q10
(µ̃10 − µ10)

2

2σ2
10

.

By equating the derivative to zero, we get the optimal solution as

µ∗
10(γ) =

(
q00
σ2
00

+
q10
σ2
10

)−1(
q00

µ00 − γ(µ01 − µ11)

σ2
00

+ q10
µ10

σ2
10

)
,

and the optimal value at µ∗
10(γ) is (The min of ax2 + bx+ c occurs at x =

−b

2a
and has value c− b2

4a
)

q00
(γ(µ01 − µ11)− µ00)

2

2σ2
00

+ q10
µ2
10

2σ2
10

− 1

2

(
q00

µ00−γ(µ01−µ11)
σ2
00

+ q10
µ10

σ2
10

)2
(

q00
σ2
00

+ q10
σ2
10

)
=

1

2

(
q00
σ2
00

+
q10
σ2
10

)−1
q00q10
σ2
00σ

2
10

((µ00 − µ10)− γ(µ01 − µ11))
2

=
1

2

(
σ2
00

q00
+

σ2
10

q10

)−1

((µ00 − µ10)− γ(µ01 − µ11))
2
.

By plugging in the optimal solution, the minimum value of Lγ for a fixed γ ∈ R≥0 is given by

L∗
γ =

1∑
i=0

qi0

(
(µ∗

i0(γ)− µi0)
2

2σ2
i0

+
σ∗
i0(γ)

2 − σ2
i0

2σ2
i0

+ log
σi0

σ∗
i0(γ)

)

=
1

2

(
σ2
00

q00
+

σ2
10

q10

)−1

((µ00 − µ10)− γ(µ01 − µ11))
2

+ q00
γ2σ2

01 − σ2
00

2σ2
00

+ q10
γ2σ2

11 − σ2
10

2σ2
10

+ (q00 + q10) log
1

γ
+ q00 log

σ00

σ01
+ q10 log

σ10

σ11

=
1

2

(
σ2
00

q00
+

σ2
10

q10

)−1

((µ00 − µ10)− γ(µ01 − µ11))
2
+

q00
2

(
γ2σ

2
01

σ2
00

− 1

)
+ (q00 + q10) log

1

γ
+ q00 log

σ00

σ01
+ q10 log

σ10

σ11
.

This is a convex objective in γ (because the second derivative is non-negative) and by equating the
derivative to zero, we have that the optimal γ∗ must satisfy

(µ01 − µ11) (γ
∗(µ01 − µ11)− (µ00 − µ10))(

σ2
00

q00
+

σ2
10

q10

) + γ∗
(
q00

σ2
01

σ2
00

+ q10
σ2
11

σ2
10

)
− q00 + q10

γ∗ = 0.
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Multiplying with γ∗
(
σ2
00

q00
+

σ2
10

q10

)
, we can write it as a quadratic equation as follows.(

(µ01 − µ11)
2 + σ2

01 + σ2
11 +

q10σ
2
00

q00σ2
10

σ2
11 +

q00σ
2
10

q10σ2
00

σ2
01

)
γ∗2

−(µ01 − µ11)(µ00 − µ10)γ
∗ − (q00 + q10)

(
σ2
00

q00
+

σ2
10

q10

)
= 0

The discriminant of the above quadratic polynomial is non-negative because the leading coefficient is
positive and the constant term is negative. So this polynomial has two real roots. Moreover, since the
constant term is negative, it cannot have both positive or both negative roots. Its only non-negative
root is the optimal solution γ∗ ∈ R≥0 we want.

γ∗ =
(µ01 − µ11)(µ00 − µ10) +

√
∆

2
(
(µ01 − µ11)2 + σ2

01 + σ2
11 +

q10σ2
00

q00σ2
10
σ2
11 +

q00σ2
10

q10σ2
00
σ2
01

) , where

∆ = (µ01 − µ11)
2(µ00 − µ10)

2

+ 4

(
(µ01 − µ11)

2 + σ2
01 + σ2

11 +
q10σ

2
00

q00σ2
10

σ2
11 +

q00σ
2
10

q10σ2
00

σ2
01

)
(q00 + q10)

(
σ2
00

q00
+

σ2
10

q10

)
.

Proposition B.4. (Proof of Proposition 4.3 in the main text) Let (X,Y,A) denote the features,
binary class label, and binary group membership, respectively, of a random data point from any
data distribution D with qia = Pr (Y = i, A = a), for i ∈ {0, 1} and a ∈ {0, 1}, such that
q10/q00 = q11/q01, and let X|Y = i, A = a ∼ N (µia, σ

2
ia) be univariate normal distributions, for

i ∈ {0, 1} and a ∈ {0, 1}. Let D̃ denote a distribution obtained by keeping (Y,A) unchanged and

only changing X|Y = i, A = a to X̃|Y = i, A = a ∼ N (µ̃ia, σ̃
2
ia). Then minimizing DKL

(
D̃||D

)
as a function of the variables µ̃ia and σ̃ia subject to the constraints in Proposition 3.2 leads to a
non-convex program. Furthermore, let γ∗ = argmin

γ∈(0,∞)

L∗
γ for some non-convex function of γ that is

only dependent on the original distribution parameters. Then, all the new distribution parameters µ̃ia

and σ̃ia can be expressed as a function of γ∗ and the original distribution parameters µia and σia.

Proof. We consider the following optimization program

DKL

(
D̃||D

)
=
∑
(i,a)

qiaDKL

(
P̃ia||Pia

)
=
∑
(i,a)

qia

(
(µ̃ia − µia)

2

2σ2
ia

+
σ̃2
ia − σ2

ia

2σ2
ia

+ log
σia

σ̃ia

)
as a function of the variables µ̃ia and σ̃ia subject to the constraints

µ̃01 − µ̃11

σ̃11
=

µ̃00 − µ̃10

σ̃10
and

σ̃11

σ̃01
=

σ̃10

σ̃00
and σ̃ia ≥ 0, for all (i, a).

Let’s fix γ ∈ R≥0 and minimize

Lγ =
∑
(i,a)

qia

(
(µ̃ia − µia)

2

2σ2
ia

+
σ̃2
ia − σ2

ia

2σ2
ia

+ log
σia

σ̃ia

)
as a function of the variables µ̃ia and σ̃ia subject to the following constraints

µ̃01 − µ̃11

µ̃00 − µ̃10
=

σ̃11

σ̃10
=

σ̃01

σ̃00
= γ and σ̃ia ≥ 0, for all (i, a).

Now the objective Lγ is convex and for a fixed γ ∈ R≥0, the constraints on are linear in µ̃ia and σ̃ia.
Let’s denote the optimal solution for a fixed γ ∈ R≥0 by µ∗

ia(γ) and σ∗
ia(γ), for i, a ∈ {0, 1}. To
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find this, we can split the above objective into parts that can be optimized separately as follows.

minimize
∑
(i,a)

qia
(µ̃ia − µia)

2

2σ2
ia

subject to µ̃01 − µ̃11 = γ(µ̃00 − µ̃10), and

minimize
∑
(i,a)

qia

(
σ̃2
ia − σ2

ia

2σ2
ia

+ log
σia

σ̃ia

)
subject to σ̃i1 = γσ̃i0, and σ̃ia ≥ 0, for all (i, a).

For each i ∈ {0, 1}, by substituting σ̃i1 = γσ̃i0, we need to optimize a function in only one variable
σ̃i0. The optimal solutions σ∗

ia(γ) turn out to be

σ∗
i0(γ) =

√√√√√ qi0 + qi1
qi0
σ2
i0

+
qi1γ

2

σ2
i1

and σ∗
i1(γ) = γ

√√√√√ qi0 + qi1
qi0
σ2
i0

+
qi1γ

2

σ2
i1

, for i ∈ {0, 1},

Now let’s find the optimal solutions µ∗
ia(γ). The gradient of the objective must be parallel to the

linear constraint, so

q00(µ
∗
00(γ)− µ00)

σ2
00

= −γλ,
q01(µ

∗
01(γ)− µ01)

σ2
01

= λ,

q10(µ
∗
10(γ)− µ10)

σ2
10

= γλ,
q11(µ

∗
11(γ)− µ11)

σ2
11

= −λ,

for some λ ∈ R, which gives

µ∗
00(γ) = −γλ

σ2
00

q00
+ µ00, µ∗

01(γ) = λ
σ2
01

q01
+ µ01,

µ∗
10(γ) = γλ

σ2
10

q10
+ µ10, µ∗

11(γ) = −λ
σ2
11

q11
+ µ11.

Since µ∗
ia(γ) satisfies the constraint

µ̃01 − µ̃11

µ̃00 − µ̃10
= γ, we have

λ
σ2
01

q01
+ µ01 + λ

σ2
11

q11
− µ11

−γλ
σ2
00

q00
+ µ00 − γλ

σ2
10

q10
− µ10

= γ, and hence, λ =
γ(µ00 − µ10)− (µ01 − µ11)

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) .

Thus, we can express µ∗
ia(γ) as

µ∗
00(γ) = −γ

γ(µ00 − µ10)− (µ01 − µ11)

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) σ2
00

q00
+ µ00

µ∗
01(γ) =

γ(µ00 − µ10)− (µ01 − µ11)

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) σ2
01

q01
+ µ01

µ∗
10(γ) = γ

γ(µ00 − µ10)− (µ01 − µ11)

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) σ2
10

q10
+ µ10

µ∗
11(γ) = − γ(µ00 − µ10)− (µ01 − µ11)

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) σ2
11

q11
+ µ11.

Thus, the optimal value of Lγ for a fixed γ ∈ R≥0 is given by

L∗
γ =

∑
(i,a)

qia

(
(µ∗

ia(γ)− µia)
2

2σ2
ia

+
σ∗
ia(γ)

2 − σ2
ia

2σ2
ia

+ log
σia

σ∗
ia(γ)

)
.
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Dividing the above expression into three parts, the first part evaluates to∑
(i,a)

qia
(µ∗

ia(γ)− µia)
2

2σ2
ia

=
q00
2σ2

00

γ2λ2σ4
00

q200
+

q01
2σ2

01

λ2σ4
01

q201
+

q10
2σ2

10

γ2λ2σ4
10

q210
+

q11
2σ2

11

λ2σ4
11

q211

=
γ2λ2σ2

00

2q00
+

λ2σ2
01

2q01
+

γ2λ2σ2
10

2q10
+

λ2σ2
11

2q11

=
λ2

2

(
σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

))

=
1

2

 γ(µ00 − µ10)− (µ01 − µ11)

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

)


2(
σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

))

=
1

2

(γ(µ00 − µ10)− (µ01 − µ11))
2

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) .

The second part evaluates to∑
(i,a)

qia
σ∗
ia(γ)

2 − σ2
ia

2σ2
ia

=
∑
(i,a)

qia
2

(
σ∗
ia(γ)

2

σ2
ia

− 1

)

=

1∑
i=0

qi0
2

 qi0 + qi1

σ2
i0

(
qi0
σ2
i0

+
qi1γ

2

σ2
i1

) − 1

+

1∑
i=0

qi1
2

 γ2(qi0 + qi1)

σ2
i1

(
qi0
σ2
i0

+
qi1γ

2

σ2
i1

) − 1
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=
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qi0
2

qi1

(
1− σ2
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2

σ2
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σ2
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2

σ2
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2

qi0

(
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i1

σ2
i0

)
qi0

σ2
i1

σ2
i0

+ qi1γ2
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qi0
2

qi1

(
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2

σ2
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2
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σ2
i0γ

2

σ2
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and the third part evaluates to

∑
(i,a)

qia log
σia
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ia(γ)

=
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log
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2
+
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log
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2

=
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(
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+
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2
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2
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=
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2

log
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2
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+ 1
+
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log
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2
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σ2
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=
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qi0 + qi1
2

log

(
qi0
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+ γ2σ
2
i0

σ2
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)
− qi0 + qi1

2
log

(
qi0
qi1

+ 1

)
− qi1 log γ − qi1 log
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.
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Putting it all together

L∗
γ =

∑
(i,a)

qia

(
(µ∗

ia(γ)− µia)
2

2σ2
ia

+
σ∗
ia(γ)

2 − σ2
ia

2σ2
ia

+ log
σia

σ∗
ia(γ)

)

=
1

2

(γ(µ00 − µ10)− (µ01 − µ11))
2

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) +

1∑
i=0

qi0 + qi1
2

log

(
qi0
qi1

+ γ2σ
2
i0

σ2
i1

)

− qi0 + qi1
2

log

(
qi0
qi1

+ 1

)
− qi1 log γ − qi1 log

σi0

σi1
.

Minimizing L∗
γ leads to a non convex program. Since γ is the ratio between variances of the new

subgroup distribution, for a practical solution, we can do a line search over γ ∈ (0, B) for some
B < ∞.

Bound on Unfairness and Error Rate For completeness, we now derive upper bounds on the error
rate and the unfairness gap ∆EO of the Bayes optimal classifier h̃ on D̃ with respect to the original
distribution D. These bounds show that both the accuracy loss and the fairness gap depend only
on the KL divergence between D and D̃. It also shows that the optimal value of our optimization
problem can be used to approximately translate the accuracy guarantee of h̃ from D̃ to D.
Proposition B.5. (Proposition 4.4 in the main text) Let err(h,D) denote the error rate (expected
0-1 loss) of a classifier h on the distribution D. Let dTV (D̃,D) denote the total variation distance
between two distributions D̃ and D, while DKL denotes the KL-Divergence between them. Denote
the Bayes optimal classifier on the ideal distribution D̃ as h̃ (and similarly the Bayes optimal classifier
h. Then, we can bound the error rate and Equal opportunity of h̃ on the original distribution D as
follows:

|err(h̃, D)− err(h̃, D̃)| ≤
√
2DKL(D̃,D) and ∆EO(h̃, D) ≤

√
8DKL

(
D̃||D

)
.

Proof. For the sake of this proof, we assume a countable data domain. Using the definition of the
expected 0− 1 loss, we can write:

err(h̃, D)− err(h̃, D̃)

=
∑

(x,y,a)

I
(
h̃(x, a) ̸= y

)
· (p(x, y, a)− p̃(x, y, a))

≤ 2dTV (D̃,D) ≤
√
2DKL(D̃,D) (Pinsker’s Inequality [19]).

The first inequality follows from writing the error as expected 0-1 loss and using the definition
of total variation distance. The last line follows from Pinsker’s inequality [19]. We can similarly
prove the other direction to obtain the first inequality. Similarly, for the true positive rate of group a,
TPRa(h̃, D)− TPRa(h̃, D̃) ≤ 2DTV (D̃,D).

We can also write for the other group A = a′, TPRa′(h̃, D̃) − TPRa′(h̃, D) ≤ 2DTV (D̃,D).
Adding both LHS and RHS and repeating the exercise in the other direction, noting that the TPR
difference of h̃ in D̃ is zero (since in the ideal distribution we have exact fairness), we can bound the
absolute value of the TPR difference, which is our definition of ∆EO, we get:

∆EO(h̃, D) ≤
√
8DKL

(
D̃||D

)

Equalizing the first moment A popular intervention in the fairness literature is to equalize the
first moment of the two sensitive groups or the mean outcomes of two groups, also known as the
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Calders-Verwer gap [17, 44, 22]. We, therefore, also study an intervention where we only change the
mean of the under-privileged group and try to match it with the mean of the privileged group. We can
show that the resulting optimization program is convex. We leverage this intervention in Section 5 of
the main text.
Proposition B.6. (Affirmative Action by Equalizing First Moments) Let (X,Y,A) denote the features,
binary class label, and binary group membership, respectively, of a random data point from any data
distribution D with qia = Pr (Y = i, A = a), for i ∈ {0, 1} and a ∈ {0, 1}. Let X|Y = i, A = a ∼
N (µia, σ

2
ia) be a univariate Normal distribution, for i ∈ {0, 1} and a ∈ {0, 1}. Then in the case of

Affirmative mean change, where we impose the following constraints:

q10 µ̃10

q10 + q00
+

q00 µ̃00

q10 + q00
=

q11 µ11

q11 + q01
+

q01 µ01

q11 + q01
,

we can efficiently minimize DKL

(
D̃||D

)
as a function of the variables µ̃i0 and Σ̃i0.

Proof. We are dealing with the following optimization problem:

DKL

(
D̃||D

)
=

1∑
i=0

qi0DKL

(
P̃i0||Pi0

)
=

1∑
i=0

qi0

(
(µ̃i0 − µi0)

2

2σ2
i0

+
σ̃2
i0 − σ2

i0

2σ2
i0

+ log
σi0

σ̃i0

)
as a function of the variables µ̃i0 and σ̃i0 subject to the constraints

q10
q10 + q00

µ̃10 +
q00

q10 + q00
µ̃00 =

q11
q11 + q01

µ11 +
q01

q11 + q01
µ01

Since we are only changing the means and keeping the variances the same, the objective only depends
on µ̃i0. Furthermore, let K = (q10+q00)/(q11+q01) · (q11µ11 + q01µ01) so that

L =

1∑
i=0

qi0
(µ̃i0 − µi0)

2

2σ2
i0

, subject to µ̃00 =
K − µ̃10

q00
.

Substituting the constraint on µ̃00 in the objective L gives us a convex quadratic in µ̃10, and the
solution is obtained by setting the derivative to zero:

µ̃00 =

K
σ2
10·q10

− µ10

σ2
10

+ µ00

σ2
00

q00
σ2
10·q10

+ 1
σ2
00

, µ̃10 =

K
σ2
00·q00

− µ00

σ2
00

+ µ10

σ2
10

q10
σ2
00·q00

+ 1
σ2
10

, µ̃01 = µ01, and µ̃11 = µ11.

C Additional Figures for Section 5

In this section, we lay out additional plots from our Gaussian case study. We first describe the
setup. We modify a stylized setting of Gaussian distributions from previous work (see Definition
3.1 in [59], Section 5.3 in [4]) to investigate the unfairness and the Bayes optimal error on the
original and ideal distributions obtained through various interventions. We fix qia ∈ (0, 1) such
that q00 + q10 + q01 + q11 = 1, and our data generation works as follows. We simulate a data
distribution where Y = i, A = a with probability qia and X

∣∣ Y = i, A = a is sampled from a
univariate Gaussian N (µia, σ

2
ia). We choose homoskedastic Gaussians within each group A = a,

i.e., σ0a = σ1a, so the we can show the Bayes optimal classifier boundary as a threshold. We choose
different σia’s that cover ground truth distribution that can the entire spectrum of being ideal or close
to ideal to very far, and then we apply different interventions to change all or some subset of µia’s
and σia’s to find the nearest ideal distribution in KL-divergence as given in Section 4 of the main text.

We first look at a case where the subgroup distributions are the same shifted versions of each other in
Figure 5. Note that all interventions, in this case, result in the same Bayes error (BE), but affirmative

28



10
.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10

.0
0.0

0.2

0.4

0.6

0.8

1.0 BE : 0.09, DP : 0.00, EO: 0.14
Y=0, A=0
Y=0, A=1
Y=1, A=0
Y=1, A=1
Bayes Opt. A=0
Bayes Opt. A=1

(a) Original Distribution
10

.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10
.0

0.0

0.2

0.4

0.6

0.8

1.0
KL: 0.41
 JS: 0.44

BE : 0.03, DP : 0.00, EO: 0.02

(b) EF-Affirmative
10

.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10
.0

0.0

0.2

0.4

0.6

0.8

1.0
KL: 0.04
 JS: 0.04

BE : 0.07, DP : 0.00, EO: 0.05

(c) EF-All Subgroups
10

.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10
.0

0.0

0.2

0.4

0.6

0.8

1.0
KL: 0.01
 JS: 0.01

BE : 0.07, DP : 0.00, EO: 0.10

(d) Mean Matching
Figure 5: Comparison of Different Interventions when the subgroup distributions are shifted version
of each other. While all methods achieve the same Bayes Error, Affirmative action is able to bring
down the Bayes Error and achieve exact fairness.
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(d) Mean Matching
Figure 6: Comparison of Different Interventions when the original distribution is already fair. In this
case, EF-All ensures that it stays close to the true distribution, as no intervention as required, while
others relatively deviate.

action brings the BE down with zero unfairness at the cost of incurring a deviation in terms of KL
and JS divergence. However, in the next subplot, changing all four subgroups not only helps reduce
the Bayes error and unfairness but also stays very close to the true distribution in the KL/JS sense.
Matching the means also helps reduce the unfairness while staying close to the true distribution, but
is sub-optimal compared to the EF-Affirmative and EF-All interventions.

Next, we look at a case where the Bayes optimal classifier is already fair (∆EO is close to 0 while
∆DP=0) in Figure 6. The expected solution here should be that any intervention must leave the
distribution as it is. EF-Affirmative intervention keeps the unfairness and error rate numbers as it is,
but deviates from the true distribution, as indicated by the KL/JS divergences. However, the EF-All
intervention only makes major changes to variances and stays close to the true distribution. The
Mean Matching intervention shifts both the under-privileged subgroups and strays away from the
true distribution, as indicated by relatively high KL/JS values.

Finally, in light of Proposition 3.3, we simulate the cost-sensitive risk for a different cost matrix
C other than 0-1 loss by considering a threshold tC = 3/4 on η(x, a) in Figure 7. The original
distribution has high unfairness. EF-Affirmative intervention manages to achieve almost perfect
fairness and zero error rate, but incurs relatively high KL/JS numbers. However, once again, changing
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Figure 7: Comparison of Different Interventions when we use a different threshold (3/4) than the Bayes
optimal threshold (1/2). As derived in Proposition 3.3, the EF-Affirmative and EF-All interventions
work with any threshold.
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all four subgroups, results in a solution that is perfectly fair and accurate, with low KL/JS. Mean
Matching is unable to address the fairness-accuracy tension at all in this case and also manages to
drift away from the true distribution, as indicated by non-zero KL/JS values.

D Details and Additional Results for Section 6

In this section, we lay down all the details for the experiments performed for LLM steering. The
code to reproduce our results is provided here. For the multi-class experiments, we use a lot of helper
functions from the code of Singh et al. [67] 2. For the emotion steering experiments, we reproduce
the methodology from Zhao et al. [79] and provide the Jupyter notebook in our code.

D.1 Reducing Disparity in Multi-class classification

To apply our intervention for multi-class settings, we first come up with a version of Theorem 4.1
for multiple classes. We show this for a univariate distribution, and for our intervention, we assume
diagonal covariance. Since our experiment setup only requires two groups for each class, we show the
effective constraints assuming two sensitive groups, but this methodology can be readily extended to
handle a countable number of groups as well. To make our program convex (and affirmative), we fix
a class y ∈ Y . We fix our class y∗ according to the following heuristic: y∗ = argmin

y∈Y
∆yTPR(ĥ),

where ĥ is the empirical risk minimizer on the given data. This fixes our ratio γσ =
σy∗1

σy∗0
and

γq =
qy∗1

qy∗0
.

We can now write a multi-class version of the optimization program in Theorem 4.1:

Lγ =
∑
(i,a)

qia

(
(µ̃ia − µia)

2

2σ2
ia

+
σ̃2
ia − σ2

ia

2σ2
ia

+ log
σia

σ̃ia

)
as a function of the variables µ̃ia and σ̃ia subject to the following constraints

µ̃i1 − µ̃j1

µ̃i0 − µ̃j0
=

σ̃i1

σ̃i0
=

σ̃j1

σ̃j0
= γσ ,

qi1
qi0

=
qj1
qj0

= γq and σ̃ia ≥ 0, for all i ∈ Y, j ∈ Y \{i}.

Just like in the proof of Theorem 4.1, the resulting program will result in separable objectives for a
class y and then in the underlying optimization variables µ̃ya and σ̃ya:

Program for µ̃ya:

qy0
(µ̃y0 − µy0)

2

2σ2
y0

+ qy1
(µ̃y1 − µy1)

2

2σ2
y1

, subject to µ̃y1 − µ̃y∗1 = γ(µ̃y0 − µ̃y∗0)

Program for σ̃ya:

qy0

(
σ̃2
y0 − σ2

y0

2σ2
y0

+ log
σy0

σ̃y0

)
+ qy1

(
σ̃2
y1 − σ2

y1

2σ2
y1

+ log
σy1

σ̃y1

)
, subject to σ̃y1 = γσ̃y0,

where y∗ is the class we fixed earlier and γ = γσ. The solution for the following programs are the
following:

σ̃y0 = ±
√

qy0+qy1

qy0

σ2
y0

+
γ2qy1

σ2
y1

, σ̃y1 = ±γ
√

qy0+qy1

qy0

σ2
y0

+
γ2qy1

σ2
y1

, µ̃y0 =

qy0

σ2
y0

µy0+
γqy1

σ2
y1

(µy1−µy∗1+γµy∗0)

qy0

σ2
y0

+
γ2qy1

σ2
y1

, and µ̃y1 =

qy0

σ2
y0

(µy∗1−γµy∗0+γµy0)+
γ2qy1

σ2
y1

µy1

qy0

σ2
y0

+
γ2qy1

σ2
y1

.

Once we have the corrected distributions N (µ̃ia, Σ̃ia), we set up an affine intervention, following
the design choices of Singh et al. [67]. We assume an affine relationship between the original

2https://github.com/shauli-ravfogel/affine-steering
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Figure 8: TPR-gap between Gender groups for all professions. All methods to steer feature rep-
resentations achieve roughly the same accuracy (in the range of 0.77-0.79). Our intervention (EF
Affirmative) is able to significantly reduce the TPR-gap for all professions. In many cases, it is even
comparable or better than previous interventions Belrose et al. [8], Singh et al. [67].

and transformed samples per subgroup: Y = ayaX + bya, where Y ∼ N (µ̃ya, σ̃ya) and X ∼
N (µya, σya). Taking expectation on both sides gives us: µ̃ya = ayaµya + bya, σ̃

2
ya = a2yaσ

2
ya, and

we get the following coefficients: aya = ± σ̃ya

σya
and bya = µ̃ya ± σ̃ya

σya
µya.

We have two choices of the parameters corresponding to the positive and negative solutions. Since we
are working with empirical estimates, we use the validation error to decide the best set of estimates.
A detailed implementation is given in the code. To implement the conditions for qya, we use the
reweighing scheme of Kamiran and Calders [43]. The plot in the main text (Figure 3) assumes
qy0 = qy1 for the corrected covariances. Figure 8 shows the plot with no such assumption for qya
and confirms with same trends as observed in Figure 3.

D.2 Steering activations for Joyful generation

Zhao et al. [79] propose to obtain a distribution over the steering vectors for a concept instead of
a single steering vector. In this section, we lay out all our prompts and the design choices for the
emotion steering pipeline.

We first generate training data for each concept (joyful, angry) for each of the groups (horror, comedy),
resulting in four subgroups. The following prompt was used to generate an initial set of data:

Prompt to generate 1000 Comedy movie reviews that are joyful.

Compose a concise 30-word movie review, assuming it is a comedy movie, that covers these
four aspects: plot, sound and music, cultural impact, and emotional resonance. Choose a joyful
tone for your review. For the plot, comment on its structure or originality. Regarding sound
and music, mention how it enhances the storytelling. For cultural impact, touch on any relevant
social commentary. Finally, describe how the film resonates emotionally. Ensure your joyful
tone is consistent throughout the review. Please include emotions like “joyful” in these texts
and generate 1000 samples.

We obtain the last token embeddings from each layer of a Llama-3.1 8B model [36] for each of the
samples. We now proceed towards obtaining the steering vectors. We want to obtain a steering vector
for each group. Treating angry reviews as an irrelevant sample for the ‘joyful’ concept, we assign
y = 0 to angry samples and y = 1 to joyful samples. Because we want to estimate a distribution over
the steering vectors instead of a single vector, we sample 300 points with replacement and repeat this
for 50 iterations. In each of these iterations, we train a Logistic Regression model to classify between
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the relevant and the irrelevant samples. We get 50 weight vectors using this pipeline, and we use
those to obtain the sample mean and covariance. We denote the resulting distribution for the steering
vectors for layer l as N (µl

1a,Σ
l
1a) where 1a denotes that this distribution represents the steering

vector for joyful emotion for a group A = a (horror or comedy reviews). To apply our intervention
later, we also obtain the steering vector in the other direction by flipping the relevance labels, i.e.
joyful → angry, and we denote the resulting Gaussian distribution with N (µl

0a,Σ
l
0a).

To perform steering, we now sample a steering vector vlc ∼ N (µl
1a,Σ

l
1a) and add it to the last token

representation of layer l with strength a: hl = (1 − a)hl + avlc. To measure the performance of
steering, we ask the Llama model to generate angry reviews using the following prompt:

Prompt to evaluate the joyfulness of generated reviews (for group horror).

System Prompt: You are a well informed movie critic.
User Prompt: Compose a concise 10-word movie review, assuming it is a horror movie. The
tone of the review must be angry. The review should be within 10 words. Generate 100 samples.
Please make sure that you do not repeat the same review and keep each review under 10 words.
Also, make sure that the reviews are coherent and not repetitive.

We first measure the joyfulness score of the generated reviews without adding any steering vectors.
Just like Zhao et al. [79], we use the following prompt to ask the GPT 4.1 model to rate the joyfulness
of the text:
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Prompt to generate angry 10-word reviews for the horror genre.

System Prompt: You are a deterministic evaluation agent trained to assess text samples using
two strictly defined criteria: (1) emotional tone (joyful score) and (2) linguistic structure (chaotic
score).
For each input, your task is to produce exactly two integer scores between 0 and 10. These must
follow the user’s scoring rubric precisely. The first score reflects emotional positivity or dark
exuberance without considering sentence structure. The second score reflects linguistic disorder
or repetition, without considering sentiment.
You must produce output in CSV format, strictly matching the following structure: "sample",
joyful score, chaotic score
Do not include any additional content, commentary, or variation. Your outputs must be fully
deterministic: identical input always produces identical output.
Your responses should match the tone and evaluation logic demonstrated in the provided
reference examples.
User Prompt: You are an automated evaluator tasked with rating horror movie reviews using
two fixed criteria: **joyful expression** and **textual coherence and novelty**.
For each review, you must generate exactly two integer scores as described below:
—
### **1. Joyful Score**
Rate from 0 to 10 based strictly on emotional tone:
* **0** = not joyful at all (strongly negative, angry, or emotionally flat tone)
* **10** = extremely joyful, enthusiastic, or darkly exuberant in tone
* Intermediate values reflect a mix of enthusiasm and criticism
* Focus solely on affect and sentiment; ignore linguistic structure for this score

—
### **2. Chaotic Score**
Rate from 0 to 10 based strictly on linguistic organisation:
* **0** = fully coherent, fluent, and structurally sound
* **10** = highly chaotic, incoherent, repetitive, or nonsensical
* Intermediate values reflect partial disorganisation, verbosity, or broken phrasing
* Focus only on syntax, flow, and novelty of expression; ignore emotional content

—
### **Reference Examples**
**Joyful and Coherent Horror Reviews:**
* “Blood-soaked fun ensues in this delightfully terrifying slasher film.”
* “Chilling thrills abound in this creepy haunted mansion tale.”
* “Jump scares galore in this electrifying horror comedy gem.”
* “Unsettling unease fills this unnerving psychological horror masterpiece.”
* “Bone-chilling chills chill to the bone in this one.”

**Angry and Coherent Horror Reviews:**
* “Abysmal plot twists ruined what could’ve been a decent film.”
* “Mind-numbing terror fails to deliver in this lazy horror.”
* “Weak jump scares can’t save this trainwreck disaster.”
* “Poor production values ruin what little suspense exists.”
* “Frustratingly predictable, making it boring and unscary too.”

—
### **Output Format**
* For each sample, return one line in strict CSV format: ‘"sample", joyful score, chaotic score‘
* **Example Output:**
“‘ sample, joyful score, chaotic score
“This horror film was painfully dull and predictable.”, joyful_score_1, chaotic_score_1
“Terrifying, stylish, and packed with chilling moments!”, joyful_score_2, chaotic_score_2
“‘
* Do **not** include explanations, commentary, or additional formatting.
* Output must be **fully deterministic**: the same input must always yield the same scores.
Begin processing the dataset now. Here is the batch of review samples:
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A few notes on evaluation are in order. Zhao et al. [79] report both joyfulness and coherence scores
for the generated text. However, we observed that coherence scores were all over the place and did
not make sense. Second, Zhao et al. evaluate using the GPT-4o model, whereas we used the GPT 4.1
model since we observed that the joyful scores corroborated more with the qualitative inspection of
the generated samples.

Following the above pipeline, we observe an increase in joyfulness scores of the generated reviews
by a Llama model after steering. However, since the effectiveness of joyful steering was not the
same for the horror and comedy movie review generations, we apply our affirmative intervention
(Theorem 4.1), assuming that the horror and comedy movie reviews define two groups. Let the
modified steering vector be denoted by ṽlc ∼ N (µ̃l

1a, Σ̃
l
1a), where the new gaussian distribution is

obtained after applying the affirmative action intervention from Theorem 4.1 assuming horror group
is the under-privileged group.

However, simply replacing vlc will not work. We demonstrate that empirically in the main text, where
in Figure 4, α = 1 corresponds to using ṽlc instead of vlc. But we can always use ṽlc to nudge the
existing steering vector vlc in the right direction. To do that, we modify the steering vector and the
representation hl with the following rule: hl = (1− a)hl + a((1− α)vlc + αṽlc), where α controls
the strength of mixing the old and new steering vectors. In Figure 4, we show that for small values
of α, the steering vector indeed starts performing better in steering the reviews of the horror group
towards a more joyful tone.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe our contributions and scope of work is accurately reflected in the
abstract and the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our paper in Section 7
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All theorems and supporting Lemmas are proved in the supplementary material
and all assumptions are mentioned in the theorem statements and the proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experiments use the setups used in Singh et al. [67] and Zhao et al. [79],
and we provide anonymized Jupyter notebooks to reproduce all the results included in our
paper and all the details of our experiment pipeline in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide anonymized Jupyter notebooks to reproduce our experiments, on
top of the codebase used by Singh et al. [67].

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [No]

Justification: Our Jupyter notebooks and supplementary material provide all the details
for our experiments. For LLM generation experiments, we also include all the prompts
required to generate the data. We also provide the file containing all the prompts used. For
the multi-class debiasing experiments, we used the representations provided by Singh et al.
[67] upon request, and hence we cannot include that in our codebase. Those files can be
requested from Singh et al. directly.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We report results over deterministic generations from LLMs and deterministic
evaluation using GPT-4o model. We provide all the prompts and evaluation code. However,
due to the unavailability of compute, for the first experiment of TPR-gap reduction, we were
only able to fit a few inference and generation cycles from these LLMs.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention the compute resources used for our experiments in the supplemen-
tary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We discuss the broader impacts of our work in the Discussion section (Section
7).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any such data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available codebases and assets. Data representations were
requested from Singh et al. [67] and they are credited for this in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve such aspects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does note involve working with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We show the applications of our theorems on the LLM steering problem.
While our problem is motivated from a point of view of distribution steering, steering LLM
distributions is a very relevant and important application for us.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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