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Abstract
Automating the generation of accurate and reliable radiological reports from chest X-

ray images represents a significant challenge in medical image computing. In this context,
Vision-Language Models (VLMs), particularly the Flamingo architecture which achieves
state-of-the-art performance across various vision-language tasks, offers promising solu-
tions. This study evaluates the effectiveness of OpenFlamingo and its medical adaptation
MedFlamingo, a version further pre-trained on medical data, in generating radiological
reports. Our evaluation compares the zero-shot capabilities of OpenFlamingo and Med-
Flamingo against fine-tuning and training from scratch. Our results demonstrate that
fine-tuning consistently boosts model performance, with fine-tuned MedFlamingo outper-
forming its OpenFlamingo counterpart. Moreover, while training Flamingo from scratch
does not match the efficacy of fine-tuning, it nevertheless surpasses zero-shot performance.
This study underscores the potential of domain-specific fine-tuning in enhancing automated
radiological report generation, paving the way for more accurate and efficient diagnostic
workflows.
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1. Introduction

In recent years, Vision-Language Models (VLMs) have emerged as powerful tools with
promising applications across various domains (Liu et al., 2024; Achiam et al., 2023), in-
cluding medicine (Chen et al., 2024; Wu et al., 2023; Hyland et al., 2023). Notably, the
interpretation of chest X-ray images, the most commonly performed diagnostic examination
in the USA (Iyeke et al., 2022), presents a significant area for the application of these tech-
nologies. This study evaluates the report generation capabilities of different versions of a
state-of-the-art VLM architecture called Flamingo (Alayrac et al., 2022), focusing on their
ability to produce findings from chest X-ray images. In particular, we compare the zero-
shot capabilities of two open-source Flamingo models from the natural and medical domain
and fine-tune them on the MIMIC-CXR dataset (Johnson et al., 2019). We highlight the
benefits of different pre-training pathways for specialized medical tasks.
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<image> Provide a description of the findings in the radiology image given the 

following indication: Fever. Evaluate for pneumonia. Findings:

Figure 1: Flamingo architecture and report finding generation task. In this paper, we only
train the Flamingo-specific modules which are indicated with a .

2. Methods

Data We utilize the MIMIC-CXR dataset (Johnson et al., 2019) for our experiments. It
consists of 227k studies for over 65k patients. Using the official MIMIC-CXR codebase1,
we extract the indication and findings sections of the written reports. We use the provided
MIMIC-CXR dataset splits and filter for studies with frontal view. Additionally, we only
utilize the first study of a patient to prevent hallucinations (Hyland et al., 2023) originating
from longitudinal data. We provide the resulting splits file in the linked repository2.

Models & training OpenFlamingo (Awadalla et al., 2023) is used as the starting point
for the evaluation. It uses CLIP’s ViT (Radford et al., 2021) as vision encoder and LLaMA
(Touvron et al., 2023) as language model. The embeddings from the vision transformer
are first passed through a Perceiver Resampler and then fed into the language model via
Gated Cross-Attention layers (cf. Figure 1). Originally, OpenFlamingo was trained on the
two open-source web-scraped image-text datasets LAION-2B (Schuhmann et al., 2022) and
MMC4 (Zhu et al., 2024). The domain-specific medical model, MedFlamingo (Moor et al.,
2023), was obtained by further fine-tuning OpenFlamingo on data originating from over
4500 medical text books.
In this work, we further fine-tune both OpenFlamingo and MedFlamingo checkpoints on
the previously described subset of the MIMIC-CXR dataset. Following the training scheme
of Flamingo, we only train the weights of the Perceiver Resampler and the Gated Cross-
Attention layers. As in Hyland et al. (2023) our input prompt is ”<image> Provide a
description of the findings in the radiology image given the following indication:
<INDICATION> Findings: ” if an indication exists, otherwise if the indication is not pro-
vided the input prompt is ”<image> Provide a description of the findings in the
radiology image. Findings: ”. Here, <image> is the image token and <INDICATION>

1. https://github.com/MIT-LCP/mimic-cxr
2. https://doi.org/10.5281/zenodo.10953053
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Table 1: Zero-shot ( ) and fine-tuned ( ) performance of different Flamingo ( ) models
on the report generation task on our MIMIC-CXR test split. For all metrics a
higher score is better except for the RadCliQ metric, which is indicated by an ↓.

XXXXXXXXXXXModel
Metric Lexical Semantic Clinical

BLEU-1 BLEU-2 BLEU-4 METEOR ROUGE-L BERTScore RadGraphF1 CheXbert RadCliQ (↓)
Open 0.106 0.032 0.000 0.072 0.073 -0.176 0.041 0.186 5.677
Med 0.148 0.071 0.012 0.123 0.122 0.122 0.097 0.217 4.685

from scratch 0.191 0.140 0.044 0.210 0.222 0.347 0.218 0.291 3.773
Open 0.204 0.146 0.047 0.218 0.228 0.360 0.216 0.304 3.714
Med 0.216 0.153 0.048 0.220 0.228 0.355 0.218 0.327 3.683

will be replaced by the report’s indication. We train the model on the task of next token
prediction. Additionally, we train from scratch using the OpenFlamingo architecture and
randomly initializing the Flamingo-specific modules. We select the checkpoint with minimal
validation loss for all trained models, which is reached after three epochs for OpenFlamingo
and MedFlamingo and after six epochs for the model trained from scratch.

Evaluation For evaluation, we consider lexical and radiology-specific metrics, as well
as the BERTScore (Zhang et al., 2019). For lexical metrics we compare BLEU-{1,2,4}
(Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005) and ROUGE-L (Lin, 2004)
using huggingface’s evaluate library3. The radiology-specific metrics include RadGraphF1
(Delbrouck et al., 2022), CheXbert (Smit et al., 2020) and RadCliQ (Yu et al., 2023)4.

3. Results and Discussion

The results are summarized in Table 1. Both fine-tuned models outperform their zero-
shot counter parts, indicating that generalist models benefit from fine-tuning for chest X-
ray report generation. Furthermore, zero-shot MedFlamingo outperforms zero-shot Open-
Flamingo on all metrics evaluated, showcasing the benefits of in-domain pre-training. Train-
ing from scratch outperforms the zero-shot performance of OpenFlamingo and MedFlamingo,
which is remarkable since the whole representation alignment between the image and lan-
guage modality is solely done with the MIMIC-CXR data. However, the fine-tuned models
achieve the best scores across the board, presumably because they build upon their al-
ready aligned representations from their pre-training. This is also supported by pre-trained
models reaching minimal validation loss in half the epochs compared to the model trained
from scratch. Overall, MedFlamingo performs best across all evaluated metrics except for
the BERTScore. This indicates that the in-domain pre-training facilitates the down-stream
fine-tuning capabilities.
In conclusion, we want to highlight the benefits of using a diverse and already domain-
specific pre-trained model like MedFlamingo as a basis for fine-tuning to a specialized
clinical downstream task.

3. https://github.com/huggingface/evaluate
4. https://github.com/rajpurkarlab/CXR-Report-Metric & https://pypi.org/project/radgraph
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