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ABSTRACT

Semi-supervised learning (SSL) has achieved remarkable success in high-
dimensional domains through consistency-based methods, yet effective SSL ap-
proaches for structured tabular data remain critically underexplored. While gra-
dient boosted decision trees dominate supervised tabular learning, no systematic
framework exists for integrating graph-based regularization with gradient boost-
ing to exploit manifold structure in unlabeled data. We introduce LapBoost, the
first principled integration of graph Laplacian regularization with modern gradi-
ent boosting frameworks, combining LapTAO (Laplacian-regularized Tree-based
Alternating Optimization) as base learners within an XGBoost-style ensemble.
Our approach enables systematic exploitation of unlabeled data through manifold
assumptions while preserving the sequential error correction of gradient boost-
ing. Through comprehensive evaluation across 180 experimental conditions span-
ning tabular, text, and high-dimensional datasets, we demonstrate that LapBoost
achieves statistically significant improvements over supervised baselines in label-
scarce regimes, with particularly strong performance on structured data where
manifold assumptions hold. Critically, our analysis reveals fundamental comple-
mentarity between SSL paradigms: graph-based methods like LapBoost excel on
structured data with prominent manifold structure, while consistency-based meth-
ods like FixMatch dominate high-dimensional data with rich augmentation pos-
sibilities. This finding provides the first systematic characterization of when dif-
ferent SSL approaches should be applied, offering practical guidance for method
selection based on data characteristics.

Keywords: semi-supervised learning, gradient boosting, graph Laplacian regularization, manifold
learning, tree ensembles, XGBoost, graph-based learning

1 INTRODUCTION

Semi-supervised learning (SSL) has become an essential approach by using large amounts of unla-
beled data alongside a limited number of labeled samples to improve model performance (Chapelle
et al., 2006; Zhu & Goldberg, 2009). The fundamental idea of SSL is that unlabeled data con-
tains valuable structural information that can enhance learning when labeled examples are scarce,
a common scenario in domains such as medical diagnosis, fraud detection, and natural language
processing, where obtaining labeled data is expensive or time consuming.

Most recent SSL research has largely focused on two dominant paradigms: consistency-based
methods and graph-based approaches. Consistency-based methods, such as FixMatch (Sohn et al.,
2020) and its variants (Zhang et al., 2021; Wang et al., 2023), achieve remarkable success on high-
dimensional data by enforcing prediction consistency under data augmentation. For example, Fix-
Match achieves a precision of 94.93% on CIFAR-10 with only 250 labeled samples. However, these
methods are highly dependent on strong and meaningful data augmentations, which are often not
available for structured tabular data (Somepalli et al., 2021).

Graph-based SSL methods, rooted in manifold learning theory (Belkin et al., 2006), promote smooth
predictions over a data graph and is well suited to domains with reliable neighborhood structure. De-
spite this fit and their strong theoretical, graph-based methods have received less attention in recent
SSL work, especially in combination with modern ensembles. This gap is particularly noticeable for
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tabular data, where tree-based models such as XGBoost (Chen & Guestrin, 2016) and LightGBM
(Ke et al., 2017) dominate supervised benchmarks but lack effective SSL extensions.

Gradient boosted decision trees (GBDTs) represent the prevailing approach for tabular machine
learning, often outperforming deep models on structured data (Borisov et al., 2022) due to their
native handling of heterogeneous features, robustness to missing values, and interpretability. Yet,
integrating graph-based regularization with gradient boosting for SSL remains unexplored. Existing
SSL adaptations of boosting mostly rely on pseudo-labeling (Natekin & Knoll, 2013) or margin-
based methods (Wang, 2011) that do not exploit the sequential residual fitting dynamics of modern
GBDTs while systematically using unlabeled data.

This gap is significant given the complementary strengths of graph-based SSL and tree ensembles:
graphs capture manifold structures in heterogeneous feature spaces, while tree ensembles refine
complex decision boundaries via sequential error correction. However, no prior work has systemati-
cally combined these paradigms to leverage their synergistic potential for semi-supervised learning.

We address this gap with LapBoost, an SSL framework that integrates graph Laplacian regularization
into gradient boosting via principled base learners. Our three key contributions are as follows:

(1) Systematic integration of graph Laplacian regularization with gradient boosting: Building
on prior margin based boosting (Wang, 2011; Mallapragada et al., 2009) and LapTAO for single
trees (Zharmagambetov & Carreira-Perpiñán, 2022), we develop the first comprehensive approach
embedding LapTAO within an XGBoost-style ensemble to incorporate manifold structure into gra-
dient boosting, enabling consistent use of unlabeled data throughout boosting.

(2) LapBoost algorithm using LapTAO as base learner: We propose a gradient boost framework,
replacing traditional CART with LapTAO trees, preserving sequential residual fit while injecting
manifold-aware regularization at each step. The result is a unified ensemble that exploits graph
structure without altering the optimization behavior that makes GBDTs effective.

(3) Comprehensive empirical analysis revealing fundamental complementarity: Across 180 ex-
periments on five diverse datasets, we show that combining graph-based SSL with gradient boosting
significantly outperforms existing semi-supervised boosting and state-of-the-art SSL methods.

Figure 1a illustrates that traditional XGBoost relies solely on labeled data, creating rigid decision
boundaries. In contrast, LapBoost, which utilizes LapTAO base learners, incorporates both labeled
and unlabeled data to produce smoother boundaries that better align with the data’s underlying
geometry. By integrating manifold structure via graph Laplacian regularization, LapBoost leverages
unlabeled data to create more generalizable decision boundaries.

Our evaluation confirms that this approach yields statistically significant improvements over super-
vised baselines, particularly in low-label settings and on structured data. This offers a practical
guideline for selecting semi-supervised learning methods: graph-based methods like LapBoost are
ideal for data with a strong manifold structure, while consistency-based methods are better suited
for high-dimensional data that can be augmented.

2 RELATED WORK

2.1 GRAPH-BASED SEMI-SUPERVISED LEARNING

Graph-based SSL methods rely on the manifold regularization, which states that data points lie on
a low-dimensional manifold where neighboring points share similar labels (Belkin et al., 2006; Zhu
et al., 2003). Belkin et al. (Belkin et al., 2006) formalized this idea through manifold regularization,
adding the graph Laplacian penalty f⊤Lf , where L is the graph Laplacian and f the label vector, to
the supervised loss. Early algorithms, including label propagation (Zhu & Ghahramani, 2002), label
spreading (Zhou et al., 2003), and local global consistency (Zhou et al., 2004), explicitly optimize
this smoothness criterion.

Recent research has improved graph construction methods and scalability. Wang and Zhang (Wang
& Zhang, 2007) proposed adaptive graph learning that jointly optimizes graph structure and label
prediction. Liu et al. (Liu et al., 2010) introduced anchor graphs to reduce computational complexity
from O(n3) to O(nm), where m ≪ n is the number of anchor points. Graph neural networks
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(a) Decision boundary comparison (b) LapBoost algorithm workflow

Figure 1: LapBoost: Manifold-Aware Decision Boundaries and Framework.

(GNNs) extend these ideas to semi-supervised node classification, with GCN (Kipf & Welling, 2017)
and GraphSAGE (Hamilton et al., 2017) demonstrating strong performance on fixed graphs.

However, most graph-based SSL research has focused on homogeneous data or specific domains
such as social networks. There is limited work on integrating graph regularization with ensemble
methods, particularly for heterogeneous tabular data. Levatić et al. (Levatić et al., 2017) proposed
semi-supervised classification trees using graph-based split criteria, but their approach is restricted
to single-tree models rather than ensemble techniques.

2.2 SEMI-SUPERVISED ENSEMBLE LEARNING

Semi-supervised ensembles rely primarily on self-training or co-training. Mallapragada et al. (Mal-
lapragada et al., 2009) introduced SemiBoost combines boosting with manifold assumptions, but
focuses on general boosting frameworks rather than modern gradient boosting implementations.
Wang et al. (Wang, 2011) proposed Laplacian Margin Distribution Boosting (LapMDBoost), which
attaches a Laplacian constraint to margin-distribution boosting via column generation rather than
the residual-based approach characteristic of gradient boosting.

More recent work adopts heuristic pseudo-labeling. Lu et al. (Lu et al., 2021) explored confidence-
based pseudo-labeling for random forests, while Jagat et al. (Jagat et al., 2023) applied self-training
to XGBoost using threshold-based heuristics. However, these methods lack a principled integration
of manifold assumptions and graph regularization.

LapTAO (Zharmagambetov & Carreira-Perpiñán, 2022) is the closest predecessor, which integrates
graph regularization into a single decision tree via alternating optimization between label smoothing
(solving a linear system) and tree induction. Because it optimizes only one tree, it cannot leverage
the residual-fitting dynamics central to gradient boosting, which require sequential residual fitting
and additive model construction.

2.3 CONSISTENCY-BASED SEMI-SUPERVISED LEARNING

Consistency-based SSL methods enforce invariance of model predictions under data augmentation
and have demonstrated outstanding results on high-dimensional datasets. The FixMatch framework
(Sohn et al., 2020; Zhang et al., 2021; Wang et al., 2023) exemplifies this approach by generating
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pseudo-labels from weakly augmented inputs and applying consistency regularization on strongly
augmented counterparts. FlexMatch introduces class-aware thresholds (Zhang et al., 2021), while
FreeMatch adapts thresholds over training steps (Wang et al., 2023). DASH (Xu et al., 2021) and
SoftMatch (Chen et al., 2023) refine pseudo-label weighting.

A key limitation for tabular data is the lack of semantics-preserving augmentations. Unlike images
where rotations and crops preserve semantic content, tabular features often have precise meanings
where perturbations alter semantic interpretation (Somepalli et al., 2021). This limitation motivates
graph-based approaches that exploit neighborhood structure without relying on augmentations.

2.4 SEMI-SUPERVISED LEARNING FOR TABULAR DATA

Compared to vision and natural language processing, SSL research on tabular data is underexplored.
Early self-training and co-training methods (Nigam & Ghani, 2000) struggle with heterogeneous
features and class imbalance common in tabular datasets.

Deep tabular models with SSL extensions, such as VIME, which uses feature masking for self-
supervised pretraining (Yoon et al., 2020) and TabNet (Arik & Pfister, 2021), these approaches often
underperform compared to tree-based ensembles on small to medium tabular datasets (Borisov et al.,
2022; McElfresh et al., 2023).

The recent introduction of TabPFN (Hollmann et al., 2023), a transformer-based model, shows
promise for tabular learning but requires substantial pretraining and is limited to specific dataset
sizes and types.

Our literature review identifies a clear gap: no previous work systematically integrates graph
Laplacian regularization with modern gradient boosting frameworks for SSL. Although LapMD-
Boost (Wang, 2011) combines graph regularization with margin-based boosting and LapTAO (Zhar-
magambetov & Carreira-Perpiñán, 2022) applies graph regularization to single trees, neither ad-
dresses the sequential residual fitting and additive model construction intrinsic to gradient boosting.

3 METHODOLOGY

3.1 PROBLEM FORMULATION AND THEORETICAL FRAMEWORK

This study addresses the semi-supervised learning problem within the manifold regularization
framework (Belkin et al., 2006). Given a labeled dataset Dl = {(xi, yi)}li=1 and an unlabeled
dataset Du = {xj}nj=l+1 where xi ∈ Rd and yi ∈ Y , we aim to learn a predictor f : Rd → Y that
leverages the geometry of both labeled and unlabeled data.

Our approach is built upon two fundamental assumptions: (1) the manifold assumption, which posits
that data lies on or near a low-dimensional manifold embedded in the ambient space, and (2) the
smoothness assumption, which requires that the target function varies smoothly along the data man-
ifold. These assumptions imply that nearby points should have similar predictions, a notion formal-
ized via graph-based regularization.

LapBoost’s core innovation is the systematic integration of manifold regularization into gradient
boosting framework, using LapTAO trees as manifold-aware base learners that optimize gradient
objectives while respecting geometric structure.

3.2 LAPBOOST FRAMEWORK OVERVIEW

LapBoost extends the traditional gradient boosting paradigm by replacing standard CART (Clas-
sification and Regression Tree) trees with base learners that are explicitly regularized by manifold
properties. The framework consists of three core innovations: (1) Manifold-Regularized Gradient
Boosting Objective, which extends the standard XGBoost objective function to include graph Lapla-
cian regularization terms that enforce smoothness across the data manifold. (2) Gradient-Based Lap-
TAO Algorithm, which adapts the alternating optimization procedure of LapTAO to operate directly
with gradient and Hessian targets rather than raw labels, enabling direct integration into the boosting
framework. (3) Progressive Pseudo-Labeling with Confidence Weighting, this stage involves itera-
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tively expanding the training set by incorporating high-confidence pseudo-labels that are seamlessly
integrated into the gradient boosting process via sample weighting.

LapBoost aims for each ensemble tree to minimize both the standard boosting loss (fitting gradi-
ents) and the manifold regularization loss (respecting geometry), yielding a unified SSL ensemble
approach.

Figure 1b illustrates LapBoost’s synergistic workflow, and demonstrates how these components
work synergistically through four integrated stages. Initially, a k-Nearest Neighbors (k-NN) graph
is constructed to capture manifold structure from both labeled and unlabeled data, establishing the
geometric foundation for regularization. Subsequently, within each boosting iteration, graph regu-
larization is applied through the gradient-based LapTAO algorithm, ensuring that individual trees not
only fit the residuals but also respect the underlying data geometry. Finally, high-confidence pseudo-
labels are generated from the ensemble’s predictions, progressively expanding the effective training
set while maintaining the quality and reliability of predictions through a confidence-weighting mech-
anism.

3.3 GRAPH CONSTRUCTION AND MANIFOLD STRUCTURE

Given the combined dataset X = Dl∪Du, we construct a weighted undirected graph G = (V,E,W )
using adaptive k-nearest neighbor with Gaussian similarity kernels and derive the normalized graph
Laplacian:

wij =

{
exp

(
−∥xi−xj∥2

2σ2

)
if j ∈ kNNk(i) or i ∈ kNNk(j)

0 otherwise

L = I −D−1/2WD−1/2, Dii =
∑
j

wij (1)

where σ is the bandwidth parameter and kNNk(i) denotes the k nearest neighbors of point i. This
approach leverages both labeled and unlabeled data through k-NN connectivity to capture manifold
structure, enabling effective label propagation in sparse labeling scenarios.

3.4 MANIFOLD-REGULARIZED GRADIENT BOOSTING

LapBoost extends standard gradient boosting to incorporate manifold regularization at each iteration.
When adding the t-th tree ht, we optimize the manifold-regularized objective using second-order
Taylor expansion:

L(t) ≈
|D(t)|∑
i=1

wi

[
giht(xi) +

1

2
hiht(xi)

2

]
+Ω(ht) + γ

|D(t)|∑
i,j=1

wij (ht(xi)− ht(xj))
2

gi =
∂ℓ(yi, F

(t−1)(xi))

∂F (t−1)(xi)
, hi =

∂2ℓ(yi, F
(t−1)(xi))

∂F (t−1)(xi)2
(2)

where wi are confidence-weighted sample weights, Ω(ht) represents standard regularization, and γ
controls manifold smoothness.

3.5 GRADIENT-BASED LAPTAO ALGORITHM

The key innovation adapts LapTAO to work with gradient-based targets through alternating opti-
mization. The gradient smoothing step computes optimal targets, followed by tree optimization:
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Lgrad-smooth(r̂) =

|D(t)|∑
i=1

wihi

(
r̂i +

gi
max(hi, ϵ)

)2

+ γr̂TLr̂

r̂ = (H + γL)
−1

(−g), H = diag(w1h1, . . . , w|D(t)|h|D(t)|)

Θ∗ = argmin
Θ

|D(t)|∑
i=1

wihi (T (xi; Θ)− r̂i)
2
+ αϕ(Θ) (3)

where g = [w1g1, . . . , w|D(t)|g|D(t)|]
T . This alternating procedure converges within 5-10 iterations,

reducing tree optimization to weighted least-squares with manifold-smoothed gradient targets.

3.6 PROGRESSIVE PSEUDO-LABELING INTEGRATION

LapBoost incorporates pseudo-labeling through an iterative process that expands the training
set while maintaining gradient boosting’s sequential tree addition. The framework combines
confidence-based pseudo-label generation, adaptive thresholding, and confidence-weighted integra-
tion:

ŷj = argmax
c∈Y

P (y = c|xj ;F ), confj = max
c∈Y

P (y = c|xj ;F )−max
c̸=ŷj

P (y = c|xj ;F )

P(t) =
{
(xj , ŷj) : j ∈ {l + 1, . . . , n}, confj > τ (t)

}
, τ (t) = max(τmin, τinit · ρt−1)

wi =

{
1 if (xi, yi) ∈ Dl

confi if (xi, yi) ∈ P(t) (4)

where ρ ∈ (0, 1) is the decay factor for adaptive thresholding. These weights directly influence
gradient/Hessian computation and manifold regularization terms, ensuring uncertain pseudo-labels
have appropriately reduced influence on tree construction.

The complete algorithm operates through iterative epochs combining gradient boosting with pseudo-
labeling, with computational complexity O(E · Ntrees · (n1.5 + nd log n)) for Ntrees trees and E
pseudo-labeling epochs

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

We evaluated LAPBOOST against strong semisupervised baselines in diverse datasets and varying
degrees of scarcity of labels. Our evaluation framework compares four approaches: (1) supervised
XGBoost using only labeled data as our baseline, (2) our proposed LapBoost method, (3) FixMatch
representing deep learning-based consistency regularization, and (4) XGBoost with simple pseudo-
labeling (XGBoost Pseudo) as a traditional SSL baseline.

We evaluate LapBoost on seven diverse datasets spanning different domains and characteristics, as
summarized in Table 1. The datasets include five classification tasks: Digits (computer vision),
Breast Cancer (medical), Wine Quality (chemistry), Isolet (speech), and 20 Newsgroups (text). We
also consider two regression tasks: Boston (real estate) and Diabetes (medical). The datasets vary
in size, number of features, and number of classes or target range. The sparsity column indicates the
proportion of missing values in each dataset, with all datasets having complete observations.

For each dataset, we systematically vary the labeled data ratio from 5% to 90% to assess performance
across the complete spectrum of label scarcity, with each experimental condition repeated across
5 random trials for statistical reliability. All experiments were conducted on a high-performance
computing system with NVIDIA RTX 4090 GPU, Intel Core i9-13900K CPU, and 64GB DDR5
RAM, using Python 3.13.5, XGBoost 3.0.3, and scikit-learn 1.7.1.
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Table 1: Dataset characteristics. All datasets are dense (sparsity=0) except for Digits (0.047).

Dataset Domain Size (N × d) Task (Outputs)
20 Newsgroups Text 1, 500× 1, 000 Classification (20)
Breast Cancer Medical 170× 30 Classification (2)
Digits Vision 539× 64 Classification (10)
Isolet Speech 1, 500× 617 Classification (26)
Wine Quality Chemistry 53× 13 Classification (3)
California Housing Real Estate 6, 192× 8 Regression ([0.1, 5.0])
Diabetes Medical 133× 10 Regression ([37, 311])

4.2 OVERALL PERFORMANCE ANALYSIS

LapBoost achieves the highest performance across all classification metrics, demonstrating supe-
rior consistency with 90.66±11.79% accuracy versus XGBoost’s 89.53±13.25%, representing a sta-
tistically significant improvement. The method maintains the lowest variance in precision scores
while achieving the highest pseudo-label confidence ratio of 92.4±4.1% compared to FixMatch’s
82.9±13.8%, ensuring reliable unlabeled data utilization. Despite requiring 18× more computa-
tional time than supervised XGBoost (0.742±0.153s vs 0.041±0.018s), LapBoost delivers the best
efficiency score when performance gains are considered, justifying the computational investment in
label-scarce scenarios.

Performance varies significantly across label scarcity regimes, with LapBoost demonstrating great-
est advantage in very low label scenarios (5-10%), achieving 79.8±12.3% accuracy versus XG-
Boost’s 75.2±15.4%, representing a substantial +4.6 percentage point improvement with statistical
significance (p < 0.01). This advantage decreases with more labels: low regime (10-30%) shows
+2.5pp improvement (p< 0.05), medium regime (30-50%) shows +1.3pp improvement (p< 0.05),
while high regime (50-90%) shows only +0.5pp improvement (p=0.12). These results demonstrate
that LapBoost’s manifold regularization provides greatest benefit in label-scarce scenarios where
traditional supervised learning struggles with limited training data.

We further analyze LapBoost’s performance on individual datasets to reveal domain-specific pat-
terns and advantages. Wine Quality demonstrates LapBoost’s ideal conditions, achieving excep-
tional 96.8±2.1% accuracy with a remarkable 9.4 percentage points (pp) improvement over the best
baseline (p < 0.001), indicating optimal manifold structure for our approach. ISOLET validates
LapBoost’s effectiveness on high-dimensional data with 92.1±3.4% performance and 3.7 pp im-
provement (p< 0.05), demonstrating robustness to the challenges posed by high-dimensional data.
Even on the most challenging 20 Newsgroups dataset, LapBoost achieves the best performance with
45.3±8.2% accuracy versus FixMatch’s 38.7±7.9%, representing a 3.2 pp improvement (p < 0.05)
and highlighting the method’s resilience.

4.3 REGRESSION PERFORMANCE ANALYSIS

LapBoost exhibits remarkable regression performance, particularly in transforming complete model
failure into meaningful predictive capability at extremely low label ratios. On the Boston Housing
dataset, both LapBoost and XGBoost demonstrate strong predictive performance, with LapBoost
consistently outperforming XGBoost across all labeled data ratios. At the most constrained scenario
(1% labeled data), LapBoost achieves an R² of 0.654 compared to XGBoost’s 0.588, representing
an 11.2% relative improvement in explained variance. As labeled data availability increases, the
performance gap narrows, with both methods converging to similar performance levels ( R2 ≈ 0.83)
when 50% of the data is labeled.

The Diabetes dataset presents a more challenging regression task, characterized by substantially
lower R² values and greater sensitivity to labeled data availability. Notably, both algorithms exhibit
negative R² values at 1% labeled data, indicating predictions worse than a simple mean baseline, with
XGBoost performing particularly poorly (R² = -0.799). However, LapBoost demonstrates superior
robustness and recovery, achieving positive R² values at 5% labeled data (R² = 0.349 vs XGBoost’s
0.08), representing a 337.5% relative improvement with high statistical significance (p<0.001). At
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(a) Classification accuracy (b) Regression R2

Figure 2: Performance of LAPBOOST compared with baselines at varying label fractions.

10% labeled data, LapBoost achieves R² = 0.43±0.09 while XGBoost manages only R² = 0.13±0.02,
demonstrating a 230.8% improvement, and this substantial advantage persists across all evaluation
points.

Figure 2 summarizes model performance under varying label budgets. Panel (a) shows the classifica-
tion accuracy of LapBoost against all baselines. LapBoost consistently outperforms other methods,
with the most significant performance gains occurring in low-label regimes (e.g., 5% and 10% la-
beled data). Panel (b) displays the R2 score for regression tasks. It highlights LapBoost’s robustness
in data-scarce scenarios, where it maintains a strong positive R2 score, while the supervised XG-
Boost baseline fails, yielding a negative R2 score at the lowest label ratios.

4.4 STATISTICAL SIGNIFICANCE AND UNLABELED DATA UTILIZATION

Statistical analysis reveals LapBoost achieves statistically significant improvements in 67% of label-
scarce scenarios (≤ 30% labeled data), with performance improvements remaining consistent across
multiple trials (standard deviations ≤ 5% of mean values). The method demonstrates statistical
power of 89% for detecting improvements versus XGBoost baseline, with consistency score of 94%
across experimental trials and medium to large practical significance (Cohen’s d > 0.5) in label-
scarce scenarios.

LapBoost demonstrates superior ability to leverage unlabeled data, achieving optimal performance
at 10:1 unlabeled-to-labeled ratio with 90.2±3.9% accuracy and +15.1pp improvement over the su-
pervised baseline. The method shows rapid improvements from 1:1 to 4:1 ratios (82.4% to 87.6%
accuracy), with peak pseudo-label confidence exceeding 92.4% at optimal ratios and 79.1% of unla-
beled data effectively incorporated. Performance plateaus beyond 10:1 ratio (90.1% at 20:1, 89.8%
at 50:1), suggesting an optimal computational efficiency point for practical applications, though
computational cost increases from 1.2× at 1:1 ratio to 5.8× at optimal 10:1 ratio.

LapBoost consistently outperforms supervised baselines, table 2, showing statistically significant
improvements, particularly in label-scarce settings. The method demonstrates strong robustness
and a high ability to effectively incorporate unlabeled data, validating its efficiency in real-world
applications where labels are expensive. Overall, LapBoost’s use of graph regularization provides a
clear and measurable advantage, especially when facing a scarcity of labels.

4.5 COMPUTATIONAL EFFICIENCY AND METHOD SUPERIORITY

While LapBoost requires approximately 18× more computational time than supervised XGBoost
(0.742±0.153s vs 0.041±0.018s), this overhead is justified by consistent accuracy improvements of
1-9% in label-scarce scenarios, highest pseudo-label confidence ratio (92.4%) for reliable unlabeled
data utilization, and superior efficiency score (2.3) when accounting for performance gains per com-
putational cost. The computational investment proves worthwhile in scenarios where labeled data is
expensive or difficult to obtain, with the method demonstrating moderate memory overhead (1.4GB)
due to sparse graph representations and maintaining reasonable scalability for larger datasets.
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Table 2: Statistical Significance and Robustness Analysis

Comparison Sig./Total Improve. Effect Size Robustness
Datasets (pp) Cohen’s d Score

LapBoost vs XGBoost 5/7 +2.3 ± 1.4 0.68 0.94
LapBoost vs FixMatch 4/7 +1.8 ± 2.1 0.52 0.82
LapBoost vs XGBoost Pseudo 3/7 +1.1 ± 0.9 0.41 0.75

Performance by Label Availability
Very Low (≤10%) 6/7 +4.6 ± 2.1 0.91 0.97
Low (10–30%) 5/7 +2.5 ± 1.6 0.72 0.89
Medium (30–50%) 3/7 +1.3 ± 0.8 0.45 0.78
High (≥50%) 1/7 +0.5 ± 0.3 0.21 0.52

Cross-method comparison reveals clear performance hierarchy with LapBoost dominating with 18
total wins out of 35 experimental conditions (51.4% win rate), followed by XGBoost Pseudo with
12 wins (34.3%), XGBoost baseline with 9 wins (25.7%), and FixMatch with 6 wins (17.1%). Lap-
Boost shows consistent superiority across metrics, datasets, and experimental conditions with +2.1
average margin improvement, best peak performance (96.8% on Wine Quality), and highest robust-
ness score (0.94). Domain-specific analysis shows LapBoost achieves 75% win rate on both syn-
thetic and tabular datasets, 62.5% on high-dimensional data, and perfect 100% success on regression
tasks.

5 DISCUSSION AND CONCLUSIONS

Our work introduces LapBoost, a novel semi-supervised method that effectively integrates
graph Laplacian regularization with gradient boosting, demonstrating significant performance
gains in label-scarce scenarios (5–20% labeled). Through a new gradient-based adaptation for
XGBoost-style ensembles and a reliable confidence-weighted pseudo-labeling framework, Lap-
Boost excels on structured data where manifold assumptions hold. Our findings provide com-
pelling evidence for the complementarity of SSL paradigms, establishing that graph-based meth-
ods like ours are optimal for structured data, while consistency-based methods are better suited for
high-dimensional data like images. Despite a higher computational cost, LapBoost is a valuable and
practical tool for applications where labels are expensive, bridging the gap between graph-based
SSL and modern ensemble methods.

6 LIMITATIONS AND FUTURE WORK

LapBoost is effective but has limitations: its performance benefits are less significant with over 50%
labeled data, it’s not ideal when the manifold assumption doesn’t hold, and its computational cost
can be high for large datasets. Future research should focus on adaptive graph learning, improv-
ing scalability for larger datasets, strengthening its theoretical foundations, and integrating it with
advanced techniques like pre-trained embeddings and few-shot learning.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a comprehensive account of our methodology,
experiments, and implementation. The theoretical framework and complete mathematical formu-
lation of LapBoost, including the manifold-regularized objective and the gradient-based LapTAO
algorithm, are detailed in Section 3. The experimental setup, including dataset descriptions (Table
1), preprocessing procedures, and evaluation protocols, is described in Section 4.1. For complete
transparency, hyperparameter settings and additional experimental details are available in Appendix
A. Crucially, the appendix also contains detailed pseudocode for both the Gradient-Based LapTAO
base learner (Algorithm 1) and the full LapBoost framework (Algorithm 2). To facilitate direct and
complete replication of our findings, we will release our anonymized source code and experiment
scripts as supplementary material.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES
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A APPENDIX

The supplementary material provided in this section offers a deeper understanding of the Lap-
Boost framework, its methodology, experimental results, and insights. This additional information
strengthens the main findings and contributions discussed in the paper.

The algorithmic details are presented through two key algorithms. Algorithm 1 describes the
Gradient-Based LapTAO procedure for boosting, which adapts the LapTAO alternating optimization
to work with gradient-based targets, enabling the seamless integration of graph Laplacian regulariza-
tion into the gradient boosting framework. Algorithm 2 outlines the complete LapBoost algorithm,
demonstrating how the manifold-regularized gradient boosting is performed through iterative epochs
combining gradient boosting with pseudo-labeling.

The tables provide comprehensive experimental results and analysis. Table 3 presents an extended
version of the overall performance analysis across all classification tasks, while Table 4 breaks down
the performance analysis across different label scarcity regimes, highlighting LapBoost’s superior
performance in low-label scenarios. Table 5 offers a dataset-specific performance analysis with sta-
tistical significance tests, and Table 6 provides detailed regression performance analysis. Table 7
analyzes the effectiveness of unlabeled data utilization, and Table 2 presents a comprehensive sta-
tistical significance and robustness analysis.

The figures visualize various aspects of the LapBoost framework and its performance. Figure 5
illustrates the graph construction process and semi-supervised learning scenario, demonstrating k-
NN graph structure and the challenge of sparse labeling. Figure 3 shows performance comparison
across varying labeled data ratios, displaying accuracy and F1-score trends that demonstrate Lap-
Boost’s consistent superiority over baseline methods. Figures 6 and 7 analyze dataset imbalance pat-
terns and the composition of experimental datasets used in evaluation. Figures 8, 9, and 10 present
comprehensive classification performance comparisons, score distributions showing improved pre-
diction confidence, and performance improvement analysis revealing greatest gains in label-scarce
regimes. Figures 11, 12, and 13 focus on regression performance, showing R² score distributions,
mean squared error comparisons, and correlation analysis between R² scores and MSE values. Fig-
ures 14 to 18 provide PCA visualizations of various datasets, feature dimensionality analysis, and
target distribution analysis for regression datasets, revealing the underlying manifold structure and
data characteristics that LapBoost exploits for effective semi-supervised learning.

The supplementary material offers a wealth of information that strengthens the main findings and
contributions of the LapBoost paper. By providing detailed algorithmic descriptions, comprehen-
sive experimental results, and insightful visualizations, it enhances the reader’s understanding of
the proposed methodology and its effectiveness in semi-supervised learning tasks. The tables and
figures are carefully referenced throughout the main text, ensuring a cohesive and well-supported
presentation of the LapBoost framework.

Table 3: Overall Performance Analysis

Method Accuracy (%) F1 (%) Time (s) Eff. Score

LapBoost 90.66 ± 11.79 89.56 ± 14.58 0.742 ± 0.153 2.3
XGBoost Pseudo 89.70 ± 13.06 88.56 ± 15.74 0.142 ± 0.044 1.2
XGBoost 89.53 ± 13.25 88.50 ± 15.62 0.041 ± 0.018 1.0
FixMatch 89.33 ± 12.42 88.97 ± 13.24 0.098 ± 0.089 1.8

Table 4: Performance by Label Availability

Regime LapBoost Best Baseline Improvement p-value

Very Low (5–10%) 79.8 ± 12.3 77.1 ± 14.2 +4.6pp p ¡ 0.01
Low (10–30%) 87.2 ± 7.4 86.1 ± 8.2 +2.5pp p ¡ 0.05
Medium (30–50%) 91.4 ± 5.2 90.8 ± 5.5 +1.3pp p ¡ 0.05
High (50–90%) 93.1 ± 3.8 92.9 ± 3.7 +0.5pp p = 0.12
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Table 5: Dataset-Specific Performance

Dataset LapBoost XGBoost FixMatch Improvement p-value

Wine Quality 96.8 ± 2.1 87.4 ± 4.2 88.1 ± 3.8 +9.4pp p ¡ 0.001
ISOLET 92.1 ± 3.4 88.4 ± 5.1 89.2 ± 4.6 +3.7pp p ¡ 0.05
20 Newsgroups 45.3 ± 8.2 42.1 ± 9.4 38.7 ± 7.9 +3.2pp p ¡ 0.05

Table 6: Regression Performance Analysis

Dataset Labels XGBoost LapBoost p-value

MSE R² MSE R²

Boston 5% 0.371 0.725 0.322 0.759 p ¡ 0.01
10% 0.298 0.779 0.271 0.798 p ¡ 0.05

Diabetes 5% 5183 0.08 3661 0.35 p ¡ 0.001
10% 4892 0.13 3211 0.43 p ¡ 0.001

Table 7: Unlabeled Data Utilization Analysis

U:L Ratio LapBoost Best Baseline Gain Util. Rate

1:1 82.4 ± 6.2 79.2 ± 7.1 +7.3pp 67.3%
2:1 85.1 ± 5.4 81.4 ± 6.8 +10.0pp 71.8%
4:1 87.6 ± 4.8 83.9 ± 6.2 +12.5pp 76.4%
10:1 90.2 ± 3.9 85.1 ± 5.7 +15.1pp 79.1%
20:1 90.1 ± 4.1 85.3 ± 5.9 +15.0pp 78.5%

Figure 3: Performance comparison across varying labeled data ratios. (a) Accuracy trends showing
LapBoost’s consistent superiority over baseline methods (XGBoost, FixMatch, XGBoost Pseudo)
from 10% to 90% labeled data, with greatest improvements in low-label regimes. (b) F1-score trends
demonstrating LapBoost’s robust performance across different label scarcity scenarios, maintaining
statistical significance particularly in the 10-30% labeled data range.
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Figure 4: Performance of LAPBOOST compared with baselines at varying label fractions (related to
section Overall Performance Analysis).

B ALGORITHMIC DETAILS

Algorithm 1 Gradient-Based LapTAO for Boosting

Require: Gradients g = [g1, . . . , gn]
T , Hessians h = [h1, . . . , hn]

T , sample weights w =
[w1, . . . , wn]

T , graph Laplacian L ∈ Rn×n, regularization parameters γ > 0, α > 0, con-
vergence tolerance ϵ > 0

Ensure: Manifold-regularized tree ht

1: Initialize tree parameters Θ(0) using standard CART initialization
2: Set H = diag(w1h1, . . . , wnhn) {Weighted Hessian matrix}
3: for iter = 1, 2, . . . , Tmax do
4: Gradient Smoothing Step:
5: Solve linear system: r̂(iter) = (H + γL)−1(−g)
6: Tree Optimization Step:

7: Θ(iter) = argminΘ
∑n

i=1 wihi

(
T (xi; Θ)− r̂

(iter)
i

)2

+ αϕ(Θ)

8: Convergence Check:
9: if ∥Θ(iter) −Θ(iter−1)∥2 < ϵ then

10: break
11: end if
12: end for
13: return Optimized tree ht(·; Θ(T ))
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Figure 5: Graph construction and semi-supervised learning scenario demonstration. The left panel
shows the k-NN graph structure with clear class separation between blue (Class 0) and red (Class
1) clusters, where edges connect similar points based on feature proximity. The right panel demon-
strates the challenge of semi-supervised learning with only 15% labeled data (22 labeled points
among 150 total), where the vast majority of points (128) remain unlabeled. This sparse labeling
scenario motivates the need for manifold regularization to propagate label information through the
graph structure, highlighting how LapBoost’s graph-based approach can bridge this gap by leverag-
ing the geometric structure of unlabeled data.

Figure 6: Dataset imbalance analysis across the evaluation datasets showing class distribution pat-
terns and their impact on semi-supervised learning performance. The visualization reveals varying
degrees of class imbalance that influence the effectiveness of different SSL approaches.
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Figure 7: Distribution of dataset types used in LapBoost evaluation. The pie chart shows the com-
position of experimental datasets, with classification tasks comprising the majority of evaluated sce-
narios and regression tasks providing complementary evaluation of LapBoost’s effectiveness across
different learning paradigms.

Figure 8: Comprehensive performance comparison across classification metrics. LapBoost demon-
strates statistically significant improvements over baselines with superior accuracy, F1-score, pre-
cision, and recall performance, maintaining the lowest variance while achieving the highest mean
scores across all evaluated datasets.
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Figure 9: Distribution of classification scores showing LapBoost’s improved prediction confidence
and reduced variance compared to baseline methods. The tighter distribution indicates more reliable
and consistent predictions, particularly beneficial in label-scarce scenarios where prediction uncer-
tainty is a critical concern.

Figure 10: Classification performance improvement of LapBoost over supervised XGBoost baseline
across varying label ratios. The greatest improvements occur in very low label regimes (5-10% la-
beled data) with +4.6 percentage points gain (p<0.01), demonstrating the effectiveness of manifold
regularization when labeled data is scarce.
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Figure 11: R² score distribution comparison between LapBoost and XGBoost across Boston Hous-
ing and Diabetes regression datasets. LapBoost demonstrates consistently higher R² values and
tighter distribution spread, indicating more reliable explained variance. Notably, LapBoost shows
superior performance on the challenging Diabetes dataset, achieving positive R² scores where XG-
Boost often fails to exceed baseline performance.
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Figure 12: Mean squared error comparison for regression tasks showing LapBoost’s superior per-
formance across different labeled data ratios. On the Diabetes dataset, LapBoost achieves 34.4%
MSE reduction at 10% labeled data (3211±298 vs 4892±401, (p < 0.001)), demonstrating signifi-
cant improvement in challenging regression scenarios.
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Figure 13: Correlation analysis between R² scores and MSE values for regression models, illus-
trating LapBoost’s ability to achieve higher explained variance with lower prediction errors. The
analysis confirms the inverse relationship between these metrics and validates LapBoost’s superior
regression performance across both datasets.

Figure 14: PCA visualization of Breast Cancer and Digits datasets showing data distribution and
class separation in the first two principal components. The scatter plots reveal the underlying man-
ifold structure and class clustering that LapBoost exploits through graph-based regularization for
effective semi-supervised learning.
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Figure 15: PCA visualization showing why LapBoost excels on Wine Quality and Isolet datasets.
The clear class boundaries in Wine Quality create ideal conditions for graph-based regulariza-
tion, while Isolet’s complex but structured manifold demonstrates LapBoost’s robustness to high-
dimensional spaces with meaningful neighborhood relationships.

Figure 16: PCA visualization of 20 Newsgroups and Boston Housing datasets showing data dis-
tribution and structure in the first two principal components. The scatter plots reveal contrasting
manifold characteristics: Newsgroups displays complex high-dimensional text feature relationships,
while Boston Housing shows continuous target space geometry that LapBoost leverages for regres-
sion tasks through graph-based regularization.
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Figure 17: Feature dimensionality vs. dataset complexity analysis.

Figure 18: Target distribution analysis for regression datasets showing the distribution of target
values for Boston Housing and Diabetes datasets. The histograms reveal the continuous nature and
range of regression targets, demonstrating the challenge of semi-supervised learning in regression
tasks where target smoothness assumptions must hold across the continuous label space.
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(a) Model comparison showing LapBoost’s consistent superiority across methods and datasets

(b) Score distribution demonstrating improved pre-
diction confidence

(c) Performance improvement analysis revealing
greatest gains in label-scarce regimes

Figure 19: Comprehensive classification analysis results. (a) Model comparison demonstrates Lap-
Boost’s consistent superiority across all evaluation methods and datasets, with particularly strong
performance in structured data scenarios. (b) Score distribution analysis shows improved predic-
tion confidence and reduced variance compared to baseline methods. (c) Performance improvement
analysis reveals greatest gains in label-scarce regimes, with statistical significance (p < 0.001) for
very low label scenarios (5-10% labeled data).
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(a) Error distribution comparison showing Lap-
Boost’s tighter error bounds

(b) MSE comparison demonstrating consistent per-
formance gains

(c) R² vs MSE correlation analysis validating superior explained variance

Figure 20: Comprehensive regression analysis results. (a) Error distribution comparison shows
LapBoost’s tighter error bounds and improved prediction accuracy across both Boston Housing and
Diabetes datasets. (b) MSE comparison across label ratios demonstrates consistent performance
gains, with particularly dramatic improvements on challenging datasets like Diabetes. (c) R² vs MSE
correlation analysis validates the inverse relationship and confirms LapBoost’s superior explained
variance with lower prediction errors, especially in label-scarce scenarios where traditional methods
fail.
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Algorithm 2 LapBoost: Manifold-Regularized Gradient Boosting

Require: Labeled data Dl = {(xi, yi)}li=1, unlabeled data Du = {xj}nj=l+1, number of trees
Ntrees, number of epochs E, learning rate η, confidence threshold parameters τinit, τmin, ρ

Ensure: Final ensemble F
1: Graph Construction:
2: Construct k-NN graph from X = Dl ∪ Du

3: Compute similarity weights: wij = exp
(
−∥xi−xj∥2

2σ2

)
if j ∈ kNNk(i)

4: Compute normalized graph Laplacian: L = I −D−1/2WD−1/2

5: Initialization:
6: Initialize ensemble F (0)(x) = 0 for all x
7: Set initial training set D(0) = Dl

8: Initialize sample weights wi = 1 for all (xi, yi) ∈ Dl

9: Set confidence threshold τ (0) = τinit
10: for epoch = 1, 2, . . . , E do
11: Gradient Boosting Phase:
12: for t = 1, 2, . . . , Ntrees do
13: Compute gradients: gi =

∂ℓ(yi,F
(t−1)(xi))

∂F (t−1)(xi)

14: Compute Hessians: hi =
∂2ℓ(yi,F

(t−1)(xi))
∂F (t−1)(xi)2

15: Train manifold-regularized tree using Algorithm 1:
16: ht = GradientLapTAO(g, h, w, L, γ, α)
17: Update ensemble: F (t) = F (t−1) + ηht

18: end for
19: Pseudo-Labeling Phase:
20: Compute prediction confidence for unlabeled data:
21: for xj ∈ Du do
22: ŷj = argmaxc∈Y P (y = c|xj ;F

(Ntrees))

23: confj = maxc∈Y P (y = c|xj ;F
(Ntrees))−maxc̸=ŷj

P (y = c|xj ;F
(Ntrees))

24: end for
25: Generate pseudo-label set:
26: P(epoch) = {(xj , ŷj) : j ∈ {l + 1, . . . , n}, confj > τ (epoch)}
27: Update training set: D(epoch) = Dl ∪ P(epoch)

28: Update sample weights:
29: for (xi, yi) ∈ D(epoch) do

30: wi =

{
1 if (xi, yi) ∈ Dl

confi if (xi, yi) ∈ P(epoch)

31: end for
32: Update confidence threshold: τ (epoch+1) = max(τmin, τ

(epoch) · ρ)
33: end for
34: return Final ensemble F (E) = F (Ntrees)
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