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ABSTRACT

Weighted low rank approximation is an important yet computationally challenging
primitive with applications ranging from statistical analysis, model compression,
and signal processing. To cope with the NP-hardness of this problem, prior work
considers heuristics, bicriteria, or parameterized tractable algorithms to solve this
problem. In this work, we introduce a new relaxed solution to weighted low rank
approximation which outputs a matrix that is not necessarily low rank, but can be
stored using very few parameters and gives provable approximation guarantees
when the weight matrix has low rank. Our central idea is to use the weight matrix
itself to reweight a low rank solution, which gives an extremely simple algorithm
with remarkable empirical performance in applications to model compression. Our
algorithm also gives nearly optimal communication complexity bounds for a natural
distributed problem associated with this problem, for which we show matching
communication lower bounds. Together, our communication complexity bounds
show that the rank of the weight matrix provably parameterizes the communication
complexity of weighted low rank approximation. We also obtain the first relative
error guarantees for feature selection with a weighted objective.

1 INTRODUCTION

The approximation of matrices by one of lower rank has been, and continues to be, one of the
most intensely studied and applied computational problems in statistics, machine learning, signal
processing, and beyond. The classical approach to this problem is to approximate matrices A 2 Rn⇥d

by a rank k matrix Ã 2 Rn⇥d that minimizes the Frobenius norm error

kA� Ãk2F :=
nX

i=1

dX

j=1

|Ai,j � Ãi,j |2, rank(Ã)  k.

This problem is solved by the singular value decomposition (SVD), which can be computed in
polynomial time. We will write Ak to denote the optimal rank k approximation to A in the Frobenius
norm, and we will write A�k := A�Ak to denote the error of this approximation.

While this simple choice often gives satisfactory results, this loss function treats all entries of the
matrix uniformly when trying to fit Ã, which may not exactly align with the practitioner’s desires
if some of the entries are more crucial to fit than others. If one additionally has such information
available in the form of nonnegative weights Wi,j � 0 that reflects some measure of importance of
each of the entries (i, j), then this can be encoded in the loss function as follows:

kA� Ãk2W,F :=
nX

i=1

dX

j=1

W2
i,j · |Ai,j � Ãi,j |2, rank(Ã)  k.

This problem is known as the weighted low rank approximation (WLRA) problem. We write A �B
to denote the entrywise product for two matrices A and B, so we may also write

kA� Ãk2W,F := kW � (A� Ã)k2F = kW �A�W � Ãk2F

The incorporation of weights into the low rank approximation problem gives this computational
problem an incredible versatility for use in a long history of applications starting with its use in
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factor analysis in the early statistical literature Young (1941). A popular special case is the matrix

completion problem Rennie & Srebro (2005); Candès & Tao (2010); Keshavan et al. (2010), where
the weights W 2 {0, 1}n⇥d are binary and encode whether a given entry of A is observed or not.
This primitive has been useful in the design of recommender systems Koren et al. (2009); Chen
et al. (2015); Lee et al. (2016), and has been famously applied in the 2006 Netflix Prize problem.
More generally, the weights W can be used to reflect the variance or number of samples obtained
for each of the entries, so that more “uncertain” entries can influence the objective function less
Anandan & Irani (2002); Srebro & Jaakkola (2003). In the past few years, weighted low rank
approximation has also been used to improve model compression algorithms, especially those for
large scale LLMs, based on low rank approximations of weight matrices by taking into account the
importance of parameters Arora et al. (2016); Hsu et al. (2022); Hua et al. (2022). Given the rapid
growth of large scale machine learning models, model compression techniques such as weighted low
rank approximation are expected to bring high value to engineering efforts for these models. Other
applications of weighted low rank approximation include ecology Robin et al. (2019); Kidzinski et al.
(2022), background modeling Li et al. (2017); Dutta et al. (2018), computational biology Tuzhilina
et al. (2022), and signal processing Shpak (1990); Lu et al. (1997).

Approximation algorithms have long been considered for efficient low rank approximation problems,
and we formalize the approximation guarantee that we study in Definition 1.1.

Definition 1.1 (Approximate weighted low rank approximation). Let W 2 Rn⇥d
be nonnegative,

let A 2 Rn⇥d
, and let k 2 N. Then in the -approximate rank k weighted low rank approximation

problem, we seek to output a matrix Ã 2 Rn⇥d
such that

kA� ÃkW,F   min
rank(A0)k

kA�A0kW,F .

In Definition 1.1, we have purposefully under-specified requirements on Ã. Part of this is to cope
with the computational difficulty of WLRA. Indeed, while we ideally would like Ã to have rank at
most k, solving for even an approximate such solution (with  = (1 + 1/ poly(n))) is an NP-hard
problem Gillis & Glineur (2011). Furthermore, allowing for additional flexibility in the choice of Ã
may still be useful as long as Ã satisfies some sort of “parameter reduction” guarantee. A common
choice is to allow Ã to have rank k0 � k slightly larger than k, which is known as a bicriteria

guarantee. In this work, we will show a new relaxation of the constraints on Ã that allows us to
achieve new approximation guarantees for WLRA.

1.1 OUR RESULTS

We present our main contribution in Theorem 1.2, which gives a simple approach to WLRA, under
the assumption that the weight matrix W has low rank. We note that this assumption is very natural
and captures natural cases, for example when W has block structure, and has been motivated and
studied in prior work Razenshteyn et al. (2016); Ban et al. (2019). We also empirically verify this
assumption in our experiments. We defer a further discussion of the low rank W assumption to
Section 1.1.3 as well as prior works Razenshteyn et al. (2016); Ban et al. (2019).

The algorithm (shown in Algorithm 1) that we propose is extremely simple: compute a rank rk
approximation of W�A, and then divide the result entrywise by W. Note that if we exactly compute
the low rank approximation step by an SVD, then the optimal rank rk approximation (W�A)rk given
by the SVD requires only (n+ d)rk parameters to store, and W also only requires nr parameters to
store. Thus, the solution W��1 � (W �A)rk can be stored in a total of O((n+ d)rk) parameters,
which is nearly optimal for constant rank r = O(1).

Algorithm 1 Weighted low rank approximation
input: input matrix A 2 Rn⇥d, nonnegative weights W 2 Rn⇥d with rank r.
output: approximate solution Ã.

1: Compute a rank rk approximation ÃW of W �A
2: return Ã := W��1 � ÃW
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While our discussion thus far has simply used the SVD to compute the rank rk approximation
(W �A)rk, we obtain other useful guarantees by allowing for approximate solutions ÃW that only
approximately minimize kW �A� ÃWkF . For example, by computing the rank rk approximation
ÃW using faster randomized approximation algorithms for the SVD Clarkson & Woodruff (2013);
Musco & Musco (2015); Avron et al. (2017), we obtain algorithms for WLRA with similar running
time. In general, we prove the following theorem:
Theorem 1.2. Let W 2 Rn⇥d

be a nonnnegative weight matrix with rank r. Let A 2 Rn⇥d
and let

k 2 N. Suppose that ÃW 2 Rn⇥d
satisfies

kW �A� ÃWk2F   min
rank(A0)rk

kW �A�A0k2F = k(W �A)�rkk2F

and let Ã := W��1 � ÃW, where W��1 2 Rn⇥d
denotes the entrywise inverse of W. Then,

kA� Ãk2W,F   min
rank(A0)k

kA�A0k2W,F

In particular, we obtain a solution with  = (1 + ") in running time O(nnz(A)) + Õ(n(rk)2/"+
poly(rk/")) by using randomized low rank approximation algorithms of Avron et al. (2017).

We prove Theorem 1.2 in Section 2.

We note that as stated, the approximation given by Algorithm 1 may not always be desirable, since in
general, W��1 cannot be computed without multiplying out the low rank factors of W. However,
we show in Lemma A.1 that for a broad family of structured matrices formed by the sum of support-
disjoint rank 1 matrices and a sparse matrix, W��1 can in fact be stored and applied in the same
time as W. These capture a large number of commonly used weight matrix patterns in practice, such
as Low-Rank Plus Sparse, Low-Rank Plus Diagonal, Low-Rank Plus Block Diagonal, Monotone
Missing Data Pattern, and Low-Rank Plus Banded matrices Musco et al. (2021).

For general matrices, we present a more practical alternative in Algorithm 2 where we compute a low
rank approximation of W��1, so that the entrywise inverse can be applied efficiently.

Algorithm 2 Weighted low rank approximation (practical)
input: input matrix A 2 Rn⇥d, nonnegative weights W 2 Rn⇥d with rank r.
output: approximate solution Ã.

1: Compute a rank rk approximation W̃inv of W��1

2: Compute a rank rk approximation ÃW of W̃��1
inv �A

3: return Ã := W̃inv � ÃW

1.1.1 COLUMN SUBSET SELECTION FOR WEIGHTED LOW RANK APPROXIMATION

Another advantage of allowing for approximation algorithms for computing low rank approximations
to W � A is that we can employ column subset selection approaches to low rank approximation
Frieze et al. (2004); Deshpande & Vempala (2006); Drineas et al. (2006; 2008); Boutsidis et al.
(2016); Altschuler et al. (2016). That is, it is known that the Frobenius norm low rank approximation
problem admits (1 + ")-approximate low rank approximations whose left factor is formed by a
subset of at most O(k/") columns of the input matrix. In particular, these results show the existence
of approximate solutions to the low rank approximation problem that preserves the sparsity of the
input matrix, and thus can lead to a reduced solution size when the input matrix has sparse columns.
Furthermore, column subset selection solutions to low rank approximation give a natural approach
for unsupervised feature selection. Thus, as a corollary of Theorem 1.2, we obtain the first relative
error guarantee for unsupervised feature selection with a weighted Frobenius norm objective. Weaker
additive error guarantees were previously studied by Dai (2023); Axiotis & Yasuda (2023)1.
Corollary 1.3 (Column subset selection for weighted low rank approximation). There is an algorithm

that computes a subset S ✓ [d] of |S| = O(rk/") columns and X 2 R|S|⇥d
such that

��A�W��1 � ((W �A)|SX)
��2
W,F

 (1 + ") min
rank(A0)k

kA�A0k2W,F

1 The result of Dai (2023) contained an error, which we correct, tighten, and simplify in Appendix D.
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where for a matrix B 2 Rn⇥d
, B|S denotes the matrix formed by the columns of B indexed by S.

Proof. This follows from Theorem 1.2 by computing the rank rk approximation ÃW to W �A via
column subset selection algorithms given by, e.g., Boutsidis et al. (2016).

Note that in Corollary 1.3, the approximation W��1 � ((W �A)|SX) only depends on A through
the columns A|S , and thus giving an approach to column subset selection with a weighted objective.

1.1.2 NEARLY OPTIMAL COMMUNICATION COMPLEXITY BOUNDS

As a consequence of Corollary 1.3, we obtain another important result for WLRA in the setting of
communication complexity. Here, we obtain nearly optimal communication complexity bounds for
constant factor approximations (i.e.  = O(1)) to distributed WLRA for a wide range of parameters.
While many works have studied distributed LRA in depth (Sarlós, 2006; Clarkson & Woodruff, 2009;
2013; Macua et al., 2010; Kannan et al., 2014; Ghashami et al., 2016; Boutsidis et al., 2016), we are
surprisingly the first to initiate a study of this problem for WLRA.

The communication setting we consider is as follows. We have two players, Alice and Bob, where
Alice has an input matrix A and would like to communicate an approximate WLRA solution to Bob.
Communication complexity is of great interest in modern computing, where exchanging bits can be a
critical bottleneck in large scale computation. While we consider two players in this discussion for
simplicity, our algorithms also apply to a distributed computing setting, where the columns of the
input matrix are partitioned among m servers as m matrices A(1),A(2), . . . ,A(m), and some central
coordinator outputs a WLRA of the concatenation A = [A(1),A(2), . . . ,A(m)] of these columns.
Definition 1.4 (WLRA: communication game). Let Alice and Bob be two players. Let W 2 Zn⇥d

be nonnegative, let A 2 Zn⇥d
, and let k 2 N. Furthermore, let W and A have entries at most

Wi,j , |Ai,j |  poly(nd). We let both Alice and Bob receive the weight matrix W as input, and

we give only Alice the input matrix A. We say that Alice and Bob solve the -approximate rank k
weighted low rank approximation communication game using B bits of communication if Alice sends

at most B bits to Bob, and Bob outputs any matrix Ã 2 Rn⇥d
satisfying

kA� ÃkW,F   min
rank(A0)k

kA�A0kW,F .

Suppose that A has columns which each have at most s nonzero entries. Then, the solution given
by Corollary 1.3 can be communicated to Bob using just O(srk/"+ rkd) numbers (O(srk/") for
the O(rk/") columns of A and O(rkd) for X), or O((srk/" + rkd) log(nd)) bits under our bit
complexity assumptions. Thus, when the number of columns d is at most the column sparsity s,
then we obtain an algorithm which uses only O((srk/") log(nd)) bits of communication. More
generally, if the columns of A are distributed among m servers, then a solution can be computed
using O((msrk/") log(nd)) bits of communication by using work of Boutsidis et al. (2016).

In fact, we show a nearly matching communication lower bound. In particular, we show that ⌦(srk)
bits of communication is required to output any matrix (not necessarily structured) that achieves a
weighted Frobenius norm loss that is any finite factor within the optimal solution. Our lower bound is
information theoretic, and also immediately implies an ⌦(msrk) bit lower bound in the distributed
setting of m servers if each server must output a solution, as considered by Boutsidis et al. (2016).
Theorem 1.5. Let W be a binary block diagonal mask (Definition 3.2) and let k 2 N. Suppose that

a randomized algorithm solves, for every C 2 Zn⇥n
with at most s nonzero entries in each column,

the -approximate weighted low rank approximation problem using B bits of communication with

probability at least 2/3, for any 1   < 1. If s, k  n/r, then B = ⌦(srk).

By proving a nearly tight communication complexity bound of ⇥̃(rsk) for computing constant factor
WLRAs, we arrive at the following qualitative observation: the rank r of the weight matrix W
parameterizes the communication complexity of WLRA. Note that a similar conclusion was drawn
for the computational complexity of WLRA in the work of Razenshteyn et al. (2016), where it was
shown that WLRA is fixed parameter tractable in the parameter r, and also must have running time
exponential in r under natural complexity theoretic assumptions. Thus, we believe that one important
contribution of our work is to provide further evidence, both empirical and theoretical, that the rank r
of the weight matrix W is a natural parameter to consider when studying WLRA.
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1.1.3 EXPERIMENTS

We demonstrate the empirical performance of our WLRA algorithms through experiments for model
compression tasks. This application of WLRA was suggested by Hsu et al. (2022); Hua et al. (2022),
which we find to be a particularly relevant application of weighted low rank approximation due to
the trend of extremely large models. In the model compression setting, we wish to approximate the
hidden layer weight matrices of neural networks by much smaller matrices. A classical way to do this
is to use low rank approximation (Sainath et al., 2013; Kim et al., 2016; Chen et al., 2018). While this
often gives reasonable results, the works of Hsu et al. (2022); Hua et al. (2022) show that significant
improvements can be obtained by taking into account the importance of each of the parameters in the
LRA problem. We thus conduct our experiments in this setting.

We first show in Section 4.1 that the importance matrices arising this application are indeed very low
rank. We may interpret this phenomenon intuitively: we hypothesize that the importance score of
some parameter Ai,j is essentially the product of the importance of the corresponding input i and the
importance of the corresponding output j. This observation may be of independent interest, and also
empirically justifies the low rank weight matrix assumption that we make in this work, as well as
works of Razenshteyn et al. (2016); Ban et al. (2019). While WLRA with a rank 1 weight matrix is
known to be solvable efficiently via the SVD, our result shows that general low rank weight matrices
also yield efficient algorithms via the SVD.

Next in Section 4.2, we conduct experiments which demonstrates the superiority of our methods
in practice. Of the algorithms that we compare to, an expectation-minimization (EM) approach
of Srebro & Jaakkola (2003) gives the smallest loss albeit with a very high running time, and our
algorithm nearly matches this loss with an order of magnitude lower running time. We also show that
this solution can be refined with EM, producing the best trade-off between efficiency and accuracy.
One of the baselines we compare is a sampling algorithm of Dai (2023), whose analysis contains an
error which we correct, simplify, and tighten.

1.2 RELATED WORK

We survey a number of related works on approximation algorithms for weighted low rank approxima-
tion. One of the earliest algorithms for this problem is a natural EM approach proposed by Srebro &
Jaakkola (2003). Another related approach is to parameterize the low rank approximation Ã as the
product UV of two matrices U 2 Rn⇥k and V 2 Rk⇥d and alternately minimize the two matrices,
known as alternating least squares. This algorithm has been studied in a number of works (Hastie
et al., 2015; Li et al., 2016; Song et al., 2023). The work of Bhaskara et al. (2021) proposes an
approach to weighted low rank approximation based on a greedy pursuit, where rank one factors
are iteratively added based on an SVD of the gradient matrix. Finally, fixed parameter tractable
algorithms have been considered in Razenshteyn et al. (2016); Ban et al. (2019) based on sketching
techniques.

2 APPROXIMATION ALGORITHMS

The following simple observation is the key idea behind Theorem 1.2:
Lemma 2.1. Let W,A0 2 Rn⇥d

with rank(W)  r and rank(A0)  k. Then, rank(W�A0)  rk.

Proof. Since rank(W)  k, it can be written as W =
Pr

i=1 uiv>
i for ui 2 Rn and vi 2 Rd. Then,

W �A0 =
rX

i=1

(uiv
>
i ) �A0 =

rX

i=1

diag(ui)A
0 diag(vi)

so W �A0 is the sum of r matrices, each of which is rank k. Thus, W �A0 has rank at most rk.

Using Lemma 2.1, we obtain the following:
Theorem 1.2. Let W 2 Rn⇥d

be a nonnnegative weight matrix with rank r. Let A 2 Rn⇥d
and let

k 2 N. Suppose that ÃW 2 Rn⇥d
satisfies

kW �A� ÃWk2F   min
rank(A0)rk

kW �A�A0k2F = k(W �A)�rkk2F
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and let Ã := W��1 � ÃW, where W��1 2 Rn⇥d
denotes the entrywise inverse of W. Then,

kA� Ãk2W,F   min
rank(A0)k

kA�A0k2W,F

In particular, we obtain a solution with  = (1 + ") in running time O(nnz(A)) + Õ(n(rk)2/"+
poly(rk/")) by using randomized low rank approximation algorithms of Avron et al. (2017).

Proof. Note that kW��1 �ÃW�Ak2W,F = kÃW�W�Ak2F , which is at most k(W�A)�rkk2F
by assumption. On the other hand for any rank k matrix A0, kA0�AkW,F = kW �A0�W �AkF
can be lower bounded by k(W �A)�rkkF since W �A0 has rank at most rk by Lemma 2.1. Thus,

kW��1 � ÃW �Ak2W,F  k(W �A)�rkk2F   min
rank(A0)k

kA�A0k2W,F .

3 COMMUNICATION COMPLEXITY BOUNDS

We show that our approach to weighted low rank approximation in Theorem 1.2 gives nearly optimal
bounds for this problem in the setting of communication complexity.

Our first result is an upper bound for the communication game in Definition 1.4.
Theorem 3.1. Let W 2 Zn⇥d

be a nonnegative rank k weight matrix and let A 2 Zn⇥d
be an

input matrix with at most s nonzero entries in each column. There is an algorithm which solves the

(1 + ")-approximate weighted low rank approximation communication game (Definition 1.4) using at

most B = O((srk/"+ rkd) log(nd)) bits of communication.

Proof. The algorithm is simply to use the column subset selection-based WLRA algorithm of
Corollary 1.3 and then to send the columns of A indexed by the column subset S and X.

On the other hand, we show a communication complexity lower bound showing that the number of
bits B exchanged by Alice and Bob must be at least ⌦(rsk). Our lower bound holds even when the
weight matrix W is the following simple binary matrix.
Definition 3.2 (Block diagonal mask). Let r 2 N and let n be an integer multiple of r. Then,

W 2 {0, 1}n⇥n
is the block diagonal mask associated with these parameters if W is the r⇥ r block

diagonal matrix with diagonal blocks given by the n/r⇥ n/r all ones matrix and off-diagonal blocks

given by the n/r ⇥ n/r all zeros matrix.

We give our communication complexity lower bound in the following theorem.
Theorem 1.5. Let W be a binary block diagonal mask (Definition 3.2) and let k 2 N. Suppose that

a randomized algorithm solves, for every C 2 Zn⇥n
with at most s nonzero entries in each column,

the -approximate weighted low rank approximation problem using B bits of communication with

probability at least 2/3, for any 1   < 1. If s, k  n/r, then B = ⌦(srk).

Proof. Let Adense 2 {0, 1}sr⇥k be a uniformly random binary matrix, and let Apad 2 {0, 1}n⇥n/r

be formed by padding the columns of Adense with n/r � k columns of all zeros and padding each
block of s contiguous rows with n/r� s rows of all zeros. For j 2 [r], let A(j)

pad denote the restriction
of Apad to the jth contiguous block of n/r rows. We then construct A 2 Rn⇥n by horizontally
concatenating r copies of Apad.

Note that an optimal rank k approximation can achieve 0 loss in the W-weighted Frobenius norm.
Indeed, we can take A⇤ to be the horizontal concatenation of r copies of Apad. Since Apad has rank
k, A⇤ also has rank k. Furthermore, on the j-th nonzero blocks of W, Apad has the same entries as
A(j)

pad. Thus, it follows that an approximation Ã that achieves any finite approximation factor  must
exactly recover A, restricted to the support of W. In turn, this means that such an approximation Ã
can also be used to recover Adense.

It now follows by a standard information theoretic argument that B = ⌦(srk) (see Appendix B for
further details).
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4 EXPERIMENTS

As discussed in Section 1.1.3, we conduct experiments for weighted low rank approximation
in the setting of model compression (as proposed by Hsu et al. (2022); Hua et al. (2022)). In
our experiments, we train a basic multilayer perceptron (MLP) on four image datasets, mnist,
fashion mnist, smallnorb, and colorectal histology which were selected from the
tensorflow datasets catalogue for simplicity of processing (e.g. fixed feature size, no need
for embeddings, etc). We then compute a matrix of importances of each of the parameters in a hidden
layer of the MLP given by the Fisher information matrix. Finally, we compute a weighted low rank
approximation of the hidden layer matrix using the Fisher information matrix as the weights W.

Our experiments are conducted on a 2019 MacBook Pro with a 2.6 GHz 6-Core Intel Core i7
processor. All code used in the experiments are available in the supplement.

Table 1: Datasets used in experiments

Dataset Image dim. Flattened dim. Neurons Matrix dim.
mnist (28, 28, 1) 784 128 784⇥ 128

fashion mnist (28, 28, 1) 784 128 784⇥ 128
smallnorb (96, 96, 1) 9216 1024 9216⇥ 1024

colorectal histology (150, 150, 3) 67500 1024 67500⇥ 1024

4.1 THE LOW RANK WEIGHT MATRIX ASSUMPTION IN PRACTICE

We first demonstrate that for the task of model compression, the weight matrix is approximately low
rank in practice. The weight matrix W in this setting is the empirical Fisher information matrix of the
hidden layer weights A, where the empirical Fisher information of the (i, j)-th entry Ai,j is given by

Wi,j := Ex⇠D

"✓
@

@Ai,j
L(x;A)

◆2
#

where L(x;A) denotes the loss of the neural network on the data point x and hidden layer weights
A, and D denotes the empirical distribution (that is, the uniform distribution over the training data).

Plots of the empirical Fisher matrix (Figure 1) reveal nontrivial low rank structure to the matrices, and
the spectrum of the Fisher matrix confirms that the vast majority of the Frobenius norm is contained
in the first singular value (Table 2). We also plot the spectrum itself in Figure 5 in the appendix.

(a) mnist (b) fashion mnist (c) smallnorb

Figure 1: Low rank structure of Fisher weight matrices

Table 2: Singular value distribution of Fisher matrix

Dataset % Frobenius mass in first singular value
mnist 95.4%

fashion mnist 95.9%
smallnorb 99.9%

colorectal histology 99.3%
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4.2 APPROXIMATION QUALITY AND RUNNING TIME

In this section, we compare the performance of our Algorithm 2 (denoted as svd w in the following
discussion) with a variety of previously proposed algorithms for weighted low rank approximation.

We consider the following algorithms: adam, em, greedy, sample, and svd, which we next
explain in detail. We first consider adam, in which we simply parameterize the WLRA problem as an
optimization problem in the factorized representation UV for factors U 2 Rn⇥k and V 2 Rk⇥d, and
optimize this loss function using the Adam optimizer provided in the tensorflow library. Such an
approach is well-studied for the standard low rank approximation problem Li et al. (2018); Ye & Du
(2021), and empirically performs well for weighted low rank approximation as well. This was run
for 100 epochs, with an initial learning rate of 1.0 decayed by a factor of 0.7 every 10 steps. The em
algorithm was proposed by Srebro & Jaakkola (2003) for the WLRA problem, and involves iteratively
“filling in” missing values and recomputing a low rank approximation. In the experiments, we run
25 iterations. The greedy algorithm is a greedy basis pursuit algorithm proposed by Bhaskara
et al. (2021) and iteratively adds new directions to the low rank approximation by taking an SVD of
the gradient of the objective. Similar algorithms were also studied in Shalev-Shwartz et al. (2011);
Khanna et al. (2017); Axiotis & Sviridenko (2021) for general rank-constrained convex optimization
problems. The sample algorithm is a row norm sampling approach studied by Dai (2023). Finally,
svd simply computes an SVD of the original matrix W, without regard to the weights W.

We compute low rank approximations for ranks 1 through 20 on four datasets, and plot the loss
and the running time against the rank in Figures 2 and 3, respectively. The values in the figures
are tabluated at ranks 20, 10, and 5 in Tables 3, 4, and 5 in the supplement. We observe that our
svd w algorithm performs among the best in the approximation loss (Figure 2), nearly matching the
approximation quality achieved by much more computational expensive algorithms such as adam
and em, while requiring much less computational time (Figure 3).

Figure 2: Fisher-weighted low rank approximation loss of weighted low rank approximation algo-
rithms for model compression four datasets. Results are averaged over 5 trials.

While in some cases the em algorithm may eventually produce a better solution, we note that our
svd w may be improved by initializing the em algorithm with this solution, which produces an
algorithm which quickly produces a superior solution with much fewer iterations (Figure 4).

5 CONCLUSION

In this work, we studied new algorithms for the weighted low rank approximation problem, which has
countless applications in statistics, machine learning, and signal processing. We propose an approach
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Figure 3: Running time of weighted low rank approximation algorithms for model compression four
datasets. Results are averaged over 5 trials.

Figure 4: Improving the svd w solution with em iterations for a rank 20 approximation.

based on reweighting a low rank matrix, which is a novel class of relaxed solutions to the WLRA
problem, and give provable guarantees under the assumption that the weight matrix W has low rank.
Theoretically, this allows us to obtain an algorithm for WLRA with nearly optimal communication
complexity, for which we show nearly matching communication complexity lower bounds, which
shows that the rank of the weight matrix tightly parameterizes the communication complexity of
this problem. We also give the first guarantees for column subset selection for weighted low rank
approximation, which gives a notion of feature selection with a weighted objective. Finally, we show
that in practice, our approach gives a highly efficient algorithm that outperforms prior algorithms for
WLRA, particularly when combined with refinement using expectation-maximization.
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(eds.), Proceedings of The 27th Conference on Learning Theory, COLT 2014, Barcelona, Spain,

June 13-15, 2014, volume 35 of JMLR Workshop and Conference Proceedings, pp. 1040–1057.
JMLR.org, 2014. URL http://proceedings.mlr.press/v35/kannan14.html.

Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from a few
entries. IEEE Trans. Inf. Theory, 56(6):2980–2998, 2010. doi: 10.1109/TIT.2010.2046205. URL
https://doi.org/10.1109/TIT.2010.2046205.

Rajiv Khanna, Ethan R. Elenberg, Alexandros G. Dimakis, Joydeep Ghosh, and Sahand N. Negahban.
On approximation guarantees for greedy low rank optimization. In Doina Precup and Yee Whye
Teh (eds.), Proceedings of the 34th International Conference on Machine Learning, ICML 2017,

Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning

Research, pp. 1837–1846. PMLR, 2017. URL http://proceedings.mlr.press/v70/
khanna17a.html.

Lukasz Kidzinski, Francis K. C. Hui, David I. Warton, and Trevor J. Hastie. Generalized matrix
factorization: efficient algorithms for fitting generalized linear latent variable models to large data
arrays. J. Mach. Learn. Res., 23:291:1–291:29, 2022. URL http://jmlr.org/papers/
v23/20-1104.html.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. In
Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations,

ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1511.06530.

Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009. doi: 10.1109/MC.2009.263. URL https://doi.org/
10.1109/MC.2009.263.

Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer, and Samy Bengio. LLORMA:
local low-rank matrix approximation. J. Mach. Learn. Res., 17:15:1–15:24, 2016. URL http:
//jmlr.org/papers/v17/14-301.html.
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