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Abstract

We introduce pydra: an open-source dataset of ~9k Python examples with
synthetic clones and buggy variants for each. Our augmentation pipeline generates
both semantics-preserving and bug-injecting code variants via AST transforms and
stores rich metadata for analysis. Using pydra, we probe state-of-the-art code
embedding models and find a stark limitation in their ability to rank correct variants
above incorrect ones. Our analysis suggests that embeddings remain dominated by
token overlap and code length rather than true program semantics. We hope that
pydra serves the research community by filling several gaps in the Python code
dataset ecosystem as well as providing a general tool for training and evaluating
code embedding models.

1 Introduction

In the era of agentic Al, the use of Large Language Models (LLMs) for code has expanded beyond
single-step code generation to complex workflows that involve analysis, repair, and maintenance on
the scale of full codebases. Embedding models, lighter weight and optimized for semantic similarity,
are frequently leveraged alongside generative models to handle tasks such as clone detection [1],
code search [2], retrieval augmented generation [3]], code ranking/reranking [4]], and fault localization
[S]. These tasks benefit from high quality embeddings that meaningfully represent the functional
semantics of the code. Despite this, evaluation of code embedding quality remains under-explored.

Prominent code benchmarks (e.g. HumanEval [6], Mostly Basic Python Problems (MBPP) [7],
BigCodeBench [8]) are geared towards generation and scored with pass@£ [6], an execution-based
metric that relies on high-coverage tests to assess the functional correctness of generated code. For
tasks based on similarity, retrieval, or ranking, where fixed size vector embeddings are the relevant
artifact rather than generated code, pass@¥ is is not directly applicable. Furthermore, execution-based
approaches cannot generally evaluate partial generations or code fragments, further limiting their
usefulness for such tasks.

Instead, code embedding models are usually judged by their performance on downstream tasks. In
particular, code clone detection is often treated as an indicator for code understanding. However, it is
unclear to what extent performance on existing clone benchmarks is based on semantic equivalence
versus surface-level syntactic or lexical similarities. For example, [9] found that many clones in
BigCloneBench [10] shared the same identifier names, leading to misleading performance metrics on
this benchmark. Other tasks similarly entangle semantic and syntactic features. For example, [[L1]
investigates fault localization as a proxy for code understanding, and notes that performance degrades
on the same bugs if semantics-preserving augmentations are also applied.
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To facilitate a more nuanced probe of code embeddings, we propose an AST-based augmentation
pipeline that creates synthetic clones and/or injects synthetic bugs. We describe 10 “positive”
(semantics-preserving) and 11 “negative” (bug-injecting) transforms for on-the-fly generation of Type
II/III clones and buggy mutations, respectively, with fine-grained control over the type, frequency, and
location of each. Using our approach, we build pydra[ﬁ an open-source dual clone and bug dataset
with extensive meta-data to enable precise analysis. Since existing datasets are primarily in Java
and C, we focus on Python, but our approach can be extended easily. As a standalone contribution,
we open-source our underlying dataset unified_code_contest s_python a de-duplicated,
validated, quality-filtered superset of ~9k Python examples from code competition sources.

Additionally, we perform a preliminary empirical analysis across existing code embedding models. In
Section[5.1} we determine each model’s baseline similarity for random, unrelated code pairs, finding
large variance between models and significant dependence on both the overall and relative lengths
of the code pairs. We then evaluate model performance on positive and negative pairs through a
combined lens of similarity analysis (Section[5.2)), binary classification (Section[5.3] and retrieval

(Section[5.4).

2 Base dataset construction

We construct unified_code_contests_python by merging several existing code competition
datasets along with additional data collected directly from competition websites. Table[T]describes
the composition of our dataset, with a more granular breakdown by original source in Appendix
We apply simple code normalization, thoroughly de-duplicate the merged dataset, and perform
several additional quality filtering steps; we refer the reader to Appendix for full details. Some
code competitions provide multiple verified solutions. For these, we choose the 2-3 most mutually
dissimilar solutions, randomly picking one to be our main solution and the others to be alternates,
using the process described in Appendix [B.3] These alternates are included in the dataset to enable
additional potential ablations e.g. layering augmentations on top of natural clones.

Table 1: Composition of unified_code_contests_python

# Tests / Example  # Solutions” / Example

Source # Examples Min Mean Min Mean
DeepMind Code Contests 5,459 1 2.2 1 6
Project CodeNet 1,536 1 2.5 1 6
LeetCode Dataset 1,379 3 100 1 1
GeeksForGeeks 293 3 10 1 1
Google Code Jam 82 1 1 1 4
Project Euler 19 1 1 1 1
Total 8,768

* after filtering for solution quality (Appendix [B.2) and diversity (Appendix[B.3)

3 Augmentation pipeline

The original code is parsed into an Abstract Syntax Tree (AST), manipulated at the syntactic level,
and then serialized back into code and re-verified. We use the tree_s itterﬂlibrary with Python
grammar and add our own helpers to preserve scoping, indentation, protected names, etc. Our code
transforms can be semantics-preserving (positive transforms), or semantics-altering in controlled
ways, such as injecting subtle bugs (negative transforms). All transforms are initialized with a

'LINK TO BE ADDED
2LINK TO BE ADDED
Shttps://github.com/tree-sitter/tree-sitter
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sampling probability that controls how many valid nodes in a given code example are actually
transformed, with a floor of 1 node and a default of p=1.0 (all valid nodes) if not otherwise specified.

3.1 Positive transforms

We define 10 semantics-preserving transforms in Table 2] In the terminology of clone literature,
applying ChangeNames alone produces Type II clones, while the combination of ChangeNames
and any of the other transforms (with the exception of CommentDeletion) produces Type III
clones. Specific transforms can only be applied to certain nodes under certain conditions, and are
thus not necessarily possible in every example. In practice, ChangeNames is always applicable.
Figure [T] shows the distribution of valid examples and nodes for the other transforms. For all positive
pairs, we verify that the positive augmented code has no syntax errors and still passes all tests.

Table 2: Positive transforms

Transform Description
ArithmeticTransform Converts augmented assignments to expanded form and vice versa.
SwapCondition Swaps the operands of simple binary comparisonse.g. a < b —-b > a,
X == y—y == X,eftc.
ForInRangeToWhile Transforms for-loops where the iterator is range, xrange, enumerate, zip,
or tqdm into equivalent while loops.
CommentDeletion Removes comments.
ListCompToForLoop Rewrites list comprehensions into equivalent explicit for-loops.
BooleanSimplify Performs boolean simplifications by shortening comparisons e.g. x is

ChainedComparisonToAnd

ConditionalExprToIfElse

True - x,x 1is None — not x,not (x > y) —-x <= y), etc.

Splits chained comparisons into boolean and expressions, e.g. a < b
<= c— (a < b) and (b <= ¢).

Converts ternary conditional expressions in assignments (e.g. var =
val_1 if cond else val_2) into multi-line if/else blocks.

FStringToFormat Converts simple f-strings into equivalent .format() calls.
ChangeNames Consistently renames functions/classes, variables, parameters, etc. while
preserving scope. Multiple strategies for name generation (Appendix [B.4).
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Figure 1: Fraction of examples with at least one valid node for each positive transform (left) and
average number of nodes (right). ChangeNames is excluded as all examples have many valid nodes.
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3.2 Negative transforms

We define 11 semantics non-preserving transforms in Table[3] In the terminology of test mutation
literature, these are sometimes called “mutants.” For negative pairs, we verify that the augmented
code fails to pass tests; this is to avoid accidental so-called “equivalent mutants.” Again, aside from
DeletedStatement and TypoInName, the other transforms aren’t necessarily applicable to all
code examples. Figure [2] shows the distribution of valid examples and nodes for the other transforms.

Table 3: Negative transforms

Transform

Description

WrongArithmeticOperator

WrongComparisonOperator

WrongBooleanValue
WrongBooleanOperator
WrongAugAssignOperator

Replaces an Operator [ n + n , n_nmn , n * n , n / n , " % n , n / / n ,

"x "] with a wrong operator, chosen at random.
Replaces an operator [">", ">=",6 "<" o "<=",
"is", "is not", "in", "not in"] witha wrong operator, cho-
sen at random from the subset of operators most likely to produce a different
effect.

Swaps True and False constants.

n__mn nyi_mn
. ’

Swaps and and or operators.

Similar replacement as WrongArithmeticOperator but for augmented as-
signments ["+=", "- m/=ny.

_n w,_n
- *=Ty

RangeOffByOne Introduces off-by-one errors in for-loops with range().
NumberWrongSign Flips signs of floats and ints.
NumberWrongValue Changes values of floats and ints (same order-of-magnitude).
RemoveNegation Removes not operators before expressions.
DeletedStatement Deletes a statement. Can either target statements where a variable is being
assigned for the first time or any statement.
TypoInName Randomly introduces typos in variable or parameter usages (not definitions)

by either deleting a character or swapping adjacent characters.
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Figure 2: Fraction of examples with at least one valid node for each negative transform (left) and
average number of nodes (right). DeletedStatement and TypoInName are excluded as all
examples have many valid nodes.
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4 Experimental setup

4.1 Models

We experiment on a wide set of state-of-the-art code embedding models, spanning a range of sizes,
architectures, and pooling mechanisms. These models were chosen because they are top-performing
across benchmarks in code clone detection (BigCloneBench [? ]), fault detection (Devign [12]),
and code-code search (CSN-CCR [13]). Recent work has focused around contrastive training on
in-the-wild text-code pairs, and of our set of baselines, only CodeT5+ and StarEncoder were not
fine-tuned in this manner. We exclude CodeBERT from our analysis due to its context window of
512 tokens falling below the median length of examples in our dataset (see Figure [J).

Table 4: Baseline embedding models

Embed Model Base Model Type Size MaxSeq D,y Pooling

Nomic Embed Code Qwen2.5-Coder- Decoder 7B 8192 768 Last

[14] TB-Instruct

CodeXEmbed-7B Mistral-7B- Decoder 7B 4096 4096 Last

[15] Instruct-v0.3

SFR-Embedding- Google-Gemma- Decoder 2B 32k 2048 Last

Code-2 [I15] 2-2B

CodeSage-large [16] - Encoder 1.3B 2048 1024 Mean
E _

CodeT5+ [17] TS D‘;ﬁggg 770M 5121 1024 Mean

Jina-Code-v2 [18]] - Encoder 161M 8192 768 Mean

StarEncoder [19]] - Encoder 125M 1024 768 Mean

"Extended to 4096 with relative positional encodings

4.2 Augmentation settings

For our experiments, we apply all possible positive transforms maximally, in order to create the
most adversarial pairs. These settings are shown in Listing [5a We further filter to examples with
at least 5 transforms applied, since this still leaves over 60% of our dataset, as shown in Figure
For negative transforms, we choose a reasonably aggressive set of transforms and filter to examples
with at least six transforms applied (see Figure 4] and Listing [5b); in contrast to the positive pairs,
we are deliberately not making negative pairs maximally adversarial. In our analysis, we chose to
generate and analyze one positive and one negative pair for each example, though we note that our
augmentation pipeline allows us to generate many pairs, which we do for the construction of pydra.

S Experimental results

5.1 Similarity of random pairs

The average cosine similarity between random code pairs in our dataset, modulated by model and
token bin, are shown in Figure [f] We begin by noting that different embedding models exhibit
different baseline similarities for random pairs. These baseline values are not standardized or
inherently interpretable (e.g., they do not necessarily cluster around 0 or 0.5), which is an artifact
of the model training, in which there is no explicit enforcement of a specific similarity distribution
for unrelated examples. Critically, we also find that all models are, to varying degrees, sensitive to
code length, with most models predicting higher similarity between random pairs of longer code. For
some, such as Nomic Embed Code, this increase is dramatic.

Other models, such as CodeT5+ 770M, do not show much dependence on code length as long as the
two codes are of similar length, but we find that they are very sensitive to relative length differences.
In Figure[7] we calculate the average similarity between pairs from potentially different token bins for
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Figure 3: Positive transforms

Figure 4: Cumulative number and fraction of examples with at least N types of transforms applied.

Listing (2) NegativePipeline

Listing (1) PositivePipeline

WrongArithmeticOperator (sample_p=0.05) with p=0.5,

CommentDeletion (), WrongComparisonOperator (sample_p=0.1) with p=0.5,
ArithmeticTransform(), WrongBooleanValue (sample_p=0.5),
SwapCondition(), WrongBooleanOperator (sample_p=0.5),
ForInRangeToWhile (), WrongAugmentedAssignOperator (sample_p=0.25) with p=0.5,
ListCompToForLoop (), RangeOffByOne (sample_p=0.5),
ConditionalExprToIfElse (), NumberWrongSign (sample_p=0.1) with p=0.5,
ChainedComparisonToAnd(), NumberWrongValue (sample_p=0.5) with p=0.01,
BooleanSimplify (), RemoveNegation (sample_p=0.5),
FStringToFormat (), DeletedStatement (statement_type="simple_def", sample_p=0.08),
ChangeNames (rename_strategy="funky") TypoInName (typo_type="missing_char", sample_p=0.08) with p=0.5

(a) Positive pipeline settings (b) Negative pipeline settings

Figure 5: The experimental settings chosen for the positive and negative augmentation pipelines.

Nomic Embed Code and CodeT5+ 770M. While Nomic Embed’s length sensitivity appears along the
vertical and main diagonal, there is only minor variance along the horizontal direction, implying that
the model does not rely on length mismatches as a signal that two codes are dissimilar. In contrast,
CodeT5+ similarities do not show much length sensitivity as long as the codes are similar length, but
vary with the relative difference, becoming more dissimilar the more mismatched the lengths are.

5.2 Similarity of positive and negative pairs

We investigate how models score the similarity of positive pairs PP = {(Zorig,i, Zpos,i) } and negative
pairs NP = {(Zorig,i> Tneg,s) } relative to random pairs RP = {(Zorig,i; Torig,j) }i£;- The mean and
standard deviation for each model are given in Table[5|and also visualized in Figure[§]

In addition to (RP), we calculate (RP),, a weighted average of the 2D token-binned (RP)y ,,, values
that we derived in the analysis of the previous section:

N Torig,s € token bin k,

1
RP), = — RP k,m S.L. (1)
< > N ;< > l‘pos,i S tOken b1n m

The reason we use the positive pairs to set the bin weighting is that the positive augmentations tend
to shift and broaden the token distribution (see Figure[9]in Appendix ??) due to the extra characters
added by the default renaming strategy, whereas the negative augmentations do not. The average
values of (RP) and (RP), are only marginally different, since the positive augmentations tend to only
shift by one token bin, but we nevertheless use (RP), when appropriate to disentangle the influence
of our augmentations from the effects of simply comparing two codes of differing lengths.
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Figure 6: The cosine similarity of code embeddings generated by each model, averaged across
random pairs of original code within token bins.
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Figure 7: The cosine similarity of code embeddings from CodeT5+ 770M (left) and Nomic Embed
Code (right), with the (4, 7)th bin averaged across all random pairs of original code where one
example’s length falls within token bin ¢ and the other’s within token bin j.

129 A separate benefit to our length normalization is that it effectively up-weights the token bins where
130 most of the examples lie and down-weights the noisier bins with fewer examples, hence why (RP)
131 has significantly larger standard deviation than (RP),.
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Table 5: Cosine similarities of embedding pairs

Model Cosine Similarity (Mean + Std Dev)

(PP) (RP) (RP), (NP)
CodeSage-large 040+0.10 030=£0.13 029+£0.02 0.90+0.08
Nomic Embed Code 0.61 £0.08 037£0.13 041+£0.06 0.97+0.02
SFR-Embedding-Code-2  0.83 £0.07 0.54 £0.07 0.57+£0.04 0.93 +0.05

Jina-Code-v2 0.65+0.08 0.55=+£0.13 0.58+0.04 0.98+0.02
CodeXEmbed-7B 0.83+0.06 0.77£0.06 0.76 £0.01 0.98 £ 0.02
StarEncoder 0.82+0.13 0.77£0.13 0.77+£0.01 0.99 £ 0.02

CodeT5+ (770M) 0.83+0.05 0.84=£0.08 0.83+0.04 0.99+0.01

PP = Positive Pairs, RP = Random Pairs, NP = Negative Pairs, ()¢ = Length Normalized
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Figure 8: For each embedding model, we plot the average similarity of the embeddings of all positive
pairs, negative pairs, and random pairs, with error bars representing the standard deviation.

5.3 Classification of positive vs. negative pairs

In order to perform binary classification on the positive and negative pairs using their respective
pair-wise cosine similarities, we must carefully choose the classification threshold, since cosine
similarities are model- and scale-dependent, as demonstrated in Section[5.1] The most principled
threshold is each model’s (RP), the length-normalized average cosine similarity between random
pairs defined in the previous section. Alternatively, we can calculate the ROC-AUC, which measures
how well positives and negatives can be distinguished by the model across all thresholds. Both sets
of results are given in Table[6]

Recall, defined as the ratio of positives that are correctly classified, is a key evaluation metric for
clone detection benchmarks such as BigCloneBench. In those benchmarks, there are a set of clone
pairs (analogous to our positive pairs) and a larger set of non-clone pairs (analogous to our random
pairs), but no matching “hard negative” pair for each clone pair (our negative pairs). As such, it
is generally discouraged to report accuracy or precision, as those metrics depend on the count of
true and false negatives. Using random non-clones for the negative class is both noisy and often
misleading because there are typically many more non-clones than clones. We note that our classes
are perfectly balanced, with every example belonging to exactly one positive pair PP and one negative
pair NP. Our setup is unique in that it allows us to report accuracy and precision, which contain
considerably more information about performance than recall alone.
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Table 6: Classification of positive vs. negative

Threshold: (RP),

Model Acc(%) Precision (%) Recall (%) ROCAUC(%)
CodeSage-large 44.0 46.8 87.9 0.79
Nomic Embed Code 49.1 49.5 98.2 0.16
SFR-Embedding-Code-2 49.4 49.7 98.8 11.5
Jina-Code-v2 40.2 44.6 80.4 0.51
CodeXEmbed-7B 40.9 45.0 81.8 0.80
StarEncoder 29.4 37.0 48.7 5.33
CodeT5+ (770M) 9.3 15.6 18.4 0.30

PP = Positive Pairs, RP = Random Pairs, NP = Negative Pairs, (), = Length Normalized Mean

Most of the models we considetE] achieve 80% or above on recall in the (RP),-thresholded classifi-
cation setting. SFR-Embedding-Code-2 and Nomic Embed Code score the highest on recall by a
significant margin. These two models also have the clearest visual separation between PP and (RP),
in Figure|8] On the other hand, all models score at or below random performance when it comes to
precision and accuracy, where the misclassification of the negative pairs as false positives dominates.
Since nearly all negative pairs are misclassified, we see 50% accuracy/precision when recall is close
to 100% and lower than 50% when some positive pairs are also misclassified.

This behavior is even more apparent in the ROC-AUC values, where only SFR-Embedding-Code-v2
and StarEncoder achieve greater than 1%. Looking at Figure[8] we see that the other models not only
fail to rank negative pairs below positive pairs, but they in fact cleanly separate the two groups in
the wrong direction, consistently predicting cosine similarities close to 1 for negative pairs. Here,
AOC-ROC captures the fact that, at certain thresholds > (RP),, those models misclassify all samples,
both positive and negative. SFR-Embedding-Code-v2 and StarEncoder are the only models that show
any overlap between positive and negative pairs, though still in the wrong direction.

We posit in Section [5.5]that this may be due to negatives having substantially higher token overlap
with the original examples than positives because of the renaming augmentation. This suggests that
name-preserving, semantics-changing transforms have significantly less effect on similarity than
semantics-preserving, name-changing transforms.

5.4 Ranking of positive vs. random pairs

We also evaluate the models on a retrieval-style formulation of the task, with results given in Table 7]
Top-1 accuracy is the fraction of queries for which the true clone ¢; is the top-ranked candidate, while
Mean Reciprocal Rank (MRR) is the average over the reciprocal of the rank of the true clone:

n

1 1
MRR = — —— x1 2
(%) n ; rank(c;) X 100 @

Mean Average Precision (MAP), another common retrieval metric, is equivalent to MRR in our
setting since there is only one clone for each query. Since MRR explicitly depends on the size of the
non-clone pool, we set it to a fixed value of n = 100; for each positive pair, i.e. an original example
and its clone, we take the 100 random examples with the greatest similarity to the original as the rest
of our candidate pool. Since we already know from Section [5.3]that the models almost always rank
negative pairs above positive pairs, we exclude them.

Instead, we wish to probe how the models rank positive pairs relative individual random pairs. The
recall statistic in Section[5.3]is related but subtly different, as it measures how well the models capture
positive pairs relative to a threshold set by the average similarity of random pairs. Interestingly, we

*Except StarEncoder and CodeT5+, notably the only two of our baselines not contrastively fine-tuned.
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Table 7: Ranking of positive vs. 100 randoms

Model Top-1 Acc (%) MRR
CodeSage-large 10.3 17.2
Nomic Embed Code 19.9 28.0
SFR-Embedding-Code-2 78.3 84.1
Jina-Code-v2 3.75 7.32
CodeXEmbed-7B 32.0 42.8
StarEncoder 19.2 22.6
CodeT5+ (770M) 1.46 2.96

PP = Positive Pairs, RP = Random Pairs

find that these two metrics do not perfectly correlate. While SFR-Embedding-Code-v2 outperforms
all other models on both, CodeXEmbed-7B achieves higher top-1 accuracy than Nomic Embed Code
despite achieving lower recall, and the same is observed for StarEncoder vs. both Codesage-large and
Jina-Code-v2. This highlights that overall performance is related not only on the relative averages of
similarities across PP, NP, and RP, but also their relative spreads.

5.5 Digging deeper into the impact of renaming

For positive augmentations, we find that ChangeNames has by far the largest effect. With all
transforms except ChangeNames applied, the similarity of positive pairs is significantly closer to
1.0 across models. In Table[8] we examine this setting for the three models with the largest positive-
negative gap from Figure [§] (Jina-Code-v2, Nomic Embed Code, and CodeSage-large), and show that
the gap is mostly closed. We then examine two other settings in which only ChangeNames applied:
the first uses our default strategy FunkyRenamer (which creates long Docker-style “adjective_noun”
names), while the other uses a RandomRenamer strategy that replaces names with random strings
of the same length as the original names. The latter strategy, which by definition keeps the code
length fixed, scores higher similarity than the FunkyRenamer strategy, which introduces characters.

Table 8: Cosine similarity between PP under three ablations of the settings

Only Only Exclude

Model

FunkyRename RandomRename ChangeNames
Jina-Code-v2 0.71 0.81 0.98
Nomic Embed Code 0.65 0.73 0.96
CodeSage-large 0.49 0.55 0.94

6 Conclusions

We presented our AST-based pipeline for generating controlled positive and negative code variants,
and used it to build pydra, an open-source dataset of clones and bugs in Python. Our empirical
evaluation of leading code embedding models suggest that they remain dominated by surface-level
heuristics such as token overlap and relative length. We find that renaming-based augmentations have
the strongest influence on similarity scores, especially when renamings increase code length, whereas
models are insensitive to small but behavior-critical edits. Our negative pairs present a challenging
and subtle type of “hard negative” and we hope that pydra will serve the research community.
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A Related work

Measuring code similarity. Traditional similarity metrics such as ROUGE [20], BLEU [21]], and
CrystalBLEU [22]] primarily rely on n-gram overlap, rewarding lexical closeness rather than semantic
agreement. CodeBLEU [23]] incorporates data-flow graph (DFG) and abstract syntax tree (AST)
matching, but code clones usually have different AST and often different DFG as well (due to code
refactoring, intermediate variables, order of independent computations, etc), even when considering
clones in the same programming language. More recent methods such as BERTScore [24] and
CodeBERTScore [25] compare contextual embeddings at the token level. These metrics relax the
exact token match requirement but still hinge on semantic similarity between individual identifiers
and keywords, and have been shown to be poor predictors of functional equivalence or correctness
[26] 27]. Another approach is to use pooled embeddings of entire code fragments or units. Ideally,
these representations encode high-level abstractions and are invariant under semantics-preserving
perturbations. In practice, however, they may be dominated by surface-level features. Pooling also
introduces the potential risk of information loss on longer structured programs. Evaluating the quality
of pooled code embeddings is an open research challenge and the focus of our empirical study.

Probing semantic code understanding. A growing body of work investigates the ability of LLMs
to reason abstractly about code. Most of this analysis is focused on the generative setting [[11} 26|
281129, 130, 311,132} 1331 134} 35 36, 137]], though a handful of works investigate how well embedding
models capture code semantics, either by training linear, task-specific classifiers to probe the frozen
embeddings [38 39, 40]] or by inspecting the embeddings directly [41} 42].

Generative models. Multiple complementary approaches to evaluating LLMs for code understanding
have been proposed, including novel generative tasks based on predicting runtime behavior [30, 31,
30] or inferring semantic [32, [33]] or structural [28, |36] artifacts from input code. Several recent
works probe code understanding via controlled code perturbations that may be either semantics-
preserving [33]], semantics-altering [[L1]], or both [11} 26|34} 35|36} 37]. Tasks include predicting the
equivalence of a pair of codes [26]] or a code and its description [34], or localizing faulty lines [11]].
Others evaluate the LLM’s ability to correctly complete code after perturbing the docstrings [29] or
partial code prefixes [29,135]] in the prompt. In [37], the authors include a code summarization task
that uses the cosine similarity (under a text embedding model) of LLM-generated code summaries of
a code pair as a proxy for the semantic similarity of the code pair itself under the LLM. Across a
swathe of tasks and models, these works generally support the finding that LLMs are oversensitive to
semantics-preserving augmentations and under-sensitive to subtle semantics-altering augmentations.

Embedding models. Both [38]] and [39] include downstream tasks classifying correct vs. incorrect
code wherein the incorrect code was produced by injecting various types of errors into the correct
code, and both report poor performance across models for those tasks. [40] focuses on cross-lingual
embeddings, suggesting that language-specific syntactic features and language-agnostic semantic
features can be decoupled, and that eliminating the former improves performance on code retrieval.
In [41], the authors measure “semantic grounding” by comparing two dissimilarity matrices, the first
across a set of source codes from CodeNet, the second across the corresponding set of their natural
language descriptions. In [42], embedding models are evaluated on an evolved version of POJ-104
[43]] constructed by using ChatGPT to generate multiple augmented versions of each example.

Clone datasets. BigCloneBench [? ] has long served as the canonical code clone dataset in the
clone detection literature. However, BigCloneBench is Java only, and significant concerns about its
use in Al research have been raised [44, 45| 46, citing issues of noise and ambiguity, high rates of
false positives, and pervasive data leakage. Additionally, [9] showed that many Type III/IV clones in
the dataset share identifier names, leading to inflated performance numbers. More recently, Seman-
ticCloneBench [47] provides 1000 function-level pairs each for Java, C, C#, and Python, collected
from StackOverflow. Hoping to scale this to a size more suitable for deep learning applications,
GPTCloneBench [48] prompts GPT-3 to generate additional semantic clones, including cross-lingual
clones, for the examples in SemanticCloneBench. Since the goal of SemanticCloneBench/GPT-
CloneBench is to focus on semantic (Type IV) clones, both attempt to filter out syntactic clones using
a combination of tools such as NiCAD [49] and manual review by human judges. Nevertheless, there
are no guarantees that all clones are true semantic clones or even clones at all. Aside from potentially
introducing noise and false positives, the data collection process inherently restricts the controllability
and diversity of the resulting clones, and the focus on semantic clones, while useful in many respects,
inhibits analyses aiming to disentangle semantic and syntactic factors in model performance.
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Bug/defect/fault datasets. Most datasets and benchmarks related to debugging and code repair are
execution-based and rely on in-the-wild code, revision histories, and patches, often with “tangled
changes” (see e.g.[50] and references therein). Classic examples include Defects4J [? ], which
aggregates real-world Java bugs and developer fixes, and its newer Python equivalent, BugsInPy
[51]] and PyTraceBugs. While these datasets benefit from capturing realistic bug scenarios from
real libraries, they miss the advantage of paired “ground-truth” variants that differ by controlled,
fine-grained, and self-contained transforms.

B Dataset details

B.1 Base dataset by data source

The largest subset is sourced from DeepMind Code Contests [52], which is itself composed of prob-
lems from Project CodeNet [53] (scraped from AIZU [54] and AtCoder [55]]) and Description2Code
[56] (scraped from CodeChef [57]], HackerEarth [58]], and Codeforces [59]), along with additional
problems scraped from Codeforces. The second largest part of our dataset is the LeetCode Dataset
[60]. Finally, we add extra problems from Project CodeNet and from scraping the GeeksForGeeks
[61], Google Code Jam [62], and Project Euler [63]] websites.

Table 9: Detailed composition of unified_code_contests_python by source

# Tests / Example # Solutions” / Example

Source # Examples Min Mean Min Max
DeepMind Code Contests 5,459 1 2.2 1 6
- AIZU 1215 1 1.4 1 3
— AtCoder 1114 1 2.9 1 3
— Codeforces 3130 1 2.2 1 6
Project CodeNet 1,536 1 2.5 1 6
- AIZU 676 1 1.7 1 3
— AtCoder 860 1 3.0 1 6
LeetCode Dataset 1,379 3 100 1 1
GeeksForGeeks 293 3 10 1 1
Google Code Jam 82 1 1 1 4
Project Euler 19 1 1 1 1
Total 8,768

* after filtering for solution quality (Appendix [B.2) and diversity (Appendix[B.3)

B.2 Normalization, de-duplication, and filtering

Normalization. Submissions are first normalized by applying NFC (Normalization Form C) Unicode
normalization to ensure consistent character representation. Line endings are standardized by
converting carriage return (CR, \r) and carriage return + line feed (CRLF, \ r\n) sequences to a
single line feed (LF, \n). Byte Order Marks (BOMs) and other non-standard whitespace characters
are removed. Shebang lines (e.g., #! /usr/bin/env python) and encoding cookies (e.g., #
-x— coding: utf-8 -«-) are stripped. Tabs are converted to four spaces. All comments
are removed, and module/class/function docstrings are pruned. Trailing whitespace is trimmed,
consecutive blank lines are collapsed into one, and a single trailing newline is enforced. This
standardized form is then used for de-duplication.

De-duplication. An AST-level SHA-256 hash is first computed over a version of the code stripped of
docstrings and attribute names. This captures semantically identical submissions that differ only in
formatting or comments. A second SHA-256 hash is computed over the problem statement text to
eliminate any residual textual duplicates.
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Validation and basic filtering. Safety and testability gates are then applied. Only code that parses
successfully is retained. Submissions that import or call sensitive APIs—such as os, subprocess,
socket, requests, or direct calls to open, eval, exec, os.system, subprocess. *,
Path.open, and sys.exit—are excluded. Finally, only solutions with paired, non-empty
input/output examples are kept to ensure they can be validated.

Validation is execution-based and occurs in an isolated Python environment with memory and time
limits. The program’s output is compared against the expected output, and only submissions that pass
all provided tests are retained.

Additional quality filtering. Additional filters are applied to weed out solutions that are trivially
constructed to “hack® the competition environment; along with programs that simply print the
expected test outputs (i.e. print ("a\nb\nc\nd")), the cleaning process filters out “lookup-
table” solutions that bypass computation by relying on precomputed answers. We also remove sources
dominated by oversized literals, and highly repetitive code containing few unique lines.

B.3 Choosing dissimilar natural solutions

For problems with multiple solutions, the solutions are aggressively de-duplicated in two stages.

First, one solution is randomly selected as the “gold” reference. The other solutions are embedded
with all available models (as long as the given solution does not exceed that model’s maximum
sequence length) and their cosine similarity with the gold solution is calculated. Solutions whose
similarity exceeds the model-specific threshold for any model are removed as duplicates.

Then, the surviving alternate solutions (those judged dissimilar from the gold) then undergo pairwise
de-duplication to detect near-duplicates amongst themselves:

* Similarity graph construction: Within each problem, we build an undirected graph where
nodes represent surviving submissions. Two submissions are connected by an edge if their
cosine similarity exceeds the model-specific threshold for any model. The union of edges
from all models forms a single combined similarity graph per problem. Edge creation is
transitive: if Model 1 links A«> B and Model 2 links B+« C, all three solutions belong to
the same component.

* Single-linkage clustering: Depth-first search identifies connected components in the com-
bined graph. Each component represents a cluster of near-duplicate solutions. Within each
cluster, we retain a single solution as the canonical representative and prune all others.

Model-specific thresholds are calibrated by starting with each model’s baseline similarity (RP) (see
Table5)) and then systematically relaxing each threshold until the pipeline admitted at most one or two
alternate solutions per problem. The calibrates thresholds are 0.8, 0.6, 0.5, 0.9, 0.9, 0.9, and 0.9 for
Salesforce/SFR-Embedding-Code-2B_R, nomic-ai/nomic-embed-code, codesage/codesage-large-v2,
Salesforce/SFR-Embedding-Mistral, bigcode/starencoder, jinaai/jina-embeddings-v2-base-code, and
Salesforce/codet5p-220m, respectively.

B.4 Different strategies for ChangeNames augmentation
Three main renaming strategies are implemented:

* random_chars: Generates new names using random letters. Name length can either be
fixed to a user-specified positive integer value, sampled uniformly between 1 and 10, forced
to be equal to the original name length, or restricted to the shortest possible unique name.

* shuffle_original: Shuffles the characters of the original name (single-character
names remain unchanged).

* funky: Generates “Docker-style” adjective-noun names using the funkyb obE] package.
All generated names are by default lower-case. For strategies that preserve name length (i.e.

shuffle_original or random_chars with the original length setting), additional user options
include matching the casing pattern and/or underscore index locations of the original name.

Shttps://github.com/andreacorbellini/funkybob
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s45  All strategies ensure generated names are unique within the relevant scope. If a valid new name
s46 cannot be generated, the original name is retained.

547 B.5 Other dataset statistics
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Figure 9: Distribution of token lengths of original, positively augmented, and negatively augmented
code, under experimental settings described in Section [1;2] and using Jina-Code-v2 tokenizer.
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Figure 10: Scaling of tokens with LOC from original examples using Jina-Code-v2 tokenizer.
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Figure 11: Lines of code statistics for positive and negative transforms.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [TODO]
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: [TODO]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [TODO]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: [TODO]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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11.

12.

13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [TODO]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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