
pydra: Probing Code Representations
With Synthetic Clones and Bugs

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce pydra: an open-source dataset of ∼9k Python examples with1

synthetic clones and buggy variants for each. Our augmentation pipeline generates2

both semantics-preserving and bug-injecting code variants via AST transforms and3

stores rich metadata for analysis. Using pydra, we probe state-of-the-art code4

embedding models and find a stark limitation in their ability to rank correct variants5

above incorrect ones. Our analysis suggests that embeddings remain dominated by6

token overlap and code length rather than true program semantics. We hope that7

pydra serves the research community by filling several gaps in the Python code8

dataset ecosystem as well as providing a general tool for training and evaluating9

code embedding models.10

1 Introduction11

In the era of agentic AI, the use of Large Language Models (LLMs) for code has expanded beyond12

single-step code generation to complex workflows that involve analysis, repair, and maintenance on13

the scale of full codebases. Embedding models, lighter weight and optimized for semantic similarity,14

are frequently leveraged alongside generative models to handle tasks such as clone detection [1],15

code search [2], retrieval augmented generation [3], code ranking/reranking [4], and fault localization16

[5]. These tasks benefit from high quality embeddings that meaningfully represent the functional17

semantics of the code. Despite this, evaluation of code embedding quality remains under-explored.18

Prominent code benchmarks (e.g. HumanEval [6], Mostly Basic Python Problems (MBPP) [7],19

BigCodeBench [8]) are geared towards generation and scored with pass@k [6], an execution-based20

metric that relies on high-coverage tests to assess the functional correctness of generated code. For21

tasks based on similarity, retrieval, or ranking, where fixed size vector embeddings are the relevant22

artifact rather than generated code, pass@k is is not directly applicable. Furthermore, execution-based23

approaches cannot generally evaluate partial generations or code fragments, further limiting their24

usefulness for such tasks.25

Instead, code embedding models are usually judged by their performance on downstream tasks. In26

particular, code clone detection is often treated as an indicator for code understanding. However, it is27

unclear to what extent performance on existing clone benchmarks is based on semantic equivalence28

versus surface-level syntactic or lexical similarities. For example, [9] found that many clones in29

BigCloneBench [10] shared the same identifier names, leading to misleading performance metrics on30

this benchmark. Other tasks similarly entangle semantic and syntactic features. For example, [11]31

investigates fault localization as a proxy for code understanding, and notes that performance degrades32

on the same bugs if semantics-preserving augmentations are also applied.33

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

To facilitate a more nuanced probe of code embeddings, we propose an AST-based augmentation34

pipeline that creates synthetic clones and/or injects synthetic bugs. We describe 10 “positive”35

(semantics-preserving) and 11 “negative” (bug-injecting) transforms for on-the-fly generation of Type36

II/III clones and buggy mutations, respectively, with fine-grained control over the type, frequency, and37

location of each. Using our approach, we build pydra,1 an open-source dual clone and bug dataset38

with extensive meta-data to enable precise analysis. Since existing datasets are primarily in Java39

and C, we focus on Python, but our approach can be extended easily. As a standalone contribution,40

we open-source our underlying dataset unified_code_contests_python,2 a de-duplicated,41

validated, quality-filtered superset of ∼9k Python examples from code competition sources.42

Additionally, we perform a preliminary empirical analysis across existing code embedding models. In43

Section 5.1, we determine each model’s baseline similarity for random, unrelated code pairs, finding44

large variance between models and significant dependence on both the overall and relative lengths45

of the code pairs. We then evaluate model performance on positive and negative pairs through a46

combined lens of similarity analysis (Section 5.2), binary classification (Section 5.3, and retrieval47

(Section 5.4).48

2 Base dataset construction49

We construct unified_code_contests_python by merging several existing code competition50

datasets along with additional data collected directly from competition websites. Table 1 describes51

the composition of our dataset, with a more granular breakdown by original source in Appendix B.1.52

We apply simple code normalization, thoroughly de-duplicate the merged dataset, and perform53

several additional quality filtering steps; we refer the reader to Appendix B.2 for full details. Some54

code competitions provide multiple verified solutions. For these, we choose the 2-3 most mutually55

dissimilar solutions, randomly picking one to be our main solution and the others to be alternates,56

using the process described in Appendix B.3. These alternates are included in the dataset to enable57

additional potential ablations e.g. layering augmentations on top of natural clones.58

Table 1: Composition of unified_code_contests_python

Source # Examples
Tests / Example # Solutions* / Example

Min Mean Min Mean

DeepMind Code Contests 5,459 1 2.2 1 6
Project CodeNet 1,536 1 2.5 1 6
LeetCode Dataset 1,379 3 100 1 1
GeeksForGeeks 293 3 10 1 1
Google Code Jam 82 1 1 1 4
Project Euler 19 1 1 1 1

Total 8,768

* after filtering for solution quality (Appendix B.2) and diversity (Appendix B.3)

3 Augmentation pipeline59

The original code is parsed into an Abstract Syntax Tree (AST), manipulated at the syntactic level,60

and then serialized back into code and re-verified. We use the tree_sitter3 library with Python61

grammar and add our own helpers to preserve scoping, indentation, protected names, etc. Our code62

transforms can be semantics-preserving (positive transforms), or semantics-altering in controlled63

ways, such as injecting subtle bugs (negative transforms). All transforms are initialized with a64

1LINK TO BE ADDED
2LINK TO BE ADDED
3https://github.com/tree-sitter/tree-sitter

2

https://github.com/tree-sitter/tree-sitter

sampling probability that controls how many valid nodes in a given code example are actually65

transformed, with a floor of 1 node and a default of p=1.0 (all valid nodes) if not otherwise specified.66

3.1 Positive transforms67

We define 10 semantics-preserving transforms in Table 2. In the terminology of clone literature,68

applying ChangeNames alone produces Type II clones, while the combination of ChangeNames69

and any of the other transforms (with the exception of CommentDeletion) produces Type III70

clones. Specific transforms can only be applied to certain nodes under certain conditions, and are71

thus not necessarily possible in every example. In practice, ChangeNames is always applicable.72

Figure 1 shows the distribution of valid examples and nodes for the other transforms. For all positive73

pairs, we verify that the positive augmented code has no syntax errors and still passes all tests.74

Table 2: Positive transforms

Transform Description
ArithmeticTransform Converts augmented assignments to expanded form and vice versa.

SwapCondition Swaps the operands of simple binary comparisons e.g. a < b → b > a,
x == y → y == x, etc.

ForInRangeToWhile Transforms for-loops where the iterator is range, xrange, enumerate, zip,
or tqdm into equivalent while loops.

CommentDeletion Removes comments.
ListCompToForLoop Rewrites list comprehensions into equivalent explicit for-loops.

BooleanSimplify Performs boolean simplifications by shortening comparisons e.g. x is
True → x, x is None → not x, not (x > y) → x <= y), etc.

ChainedComparisonToAnd Splits chained comparisons into boolean and expressions, e.g. a < b
<= c → (a < b) and (b <= c).

ConditionalExprToIfElse Converts ternary conditional expressions in assignments (e.g. var =
val_1 if cond else val_2) into multi-line if/else blocks.

FStringToFormat Converts simple f-strings into equivalent .format() calls.
ChangeNames Consistently renames functions/classes, variables, parameters, etc. while

preserving scope. Multiple strategies for name generation (Appendix B.4).

Arit
hm

eti
cT

ra
ns

for
m

Swap
Con

dit
ion

Fo
rIn

Ran
ge

To
Whil

e

Com
men

tD
ele

tio
n

Lis
tC

om
pT

oF
or

Lo
op

Boo
lea

nS
im

pli
fy

Cha
ine

dC
om

pa
ris

on
To

And

Con
dit

ion
alE

xp
rT

oIf
Else

FStri
ng

To
Fo

rm
at

0.0

0.2

0.4

0.6

0.8

Fr
ac

 E
xa

m
pl

es

Frac Examples With 1 Valid Nodes

Arit
hm

eti
cT

ra
ns

for
m

Swap
Con

dit
ion

Fo
rIn

Ran
ge

To
Whil

e

Com
men

tD
ele

tio
n

Lis
tC

om
pT

oF
or

Lo
op

Boo
lea

nS
im

pli
fy

Cha
ine

dC
om

pa
ris

on
To

And

Con
dit

ion
alE

xp
rT

oIf
Else

FStri
ng

To
Fo

rm
at

0

2

4

6

8

10

12

14

Av
g

N
um

 N
od

es

Avg Num Nodes In Examples With 1

Figure 1: Fraction of examples with at least one valid node for each positive transform (left) and
average number of nodes (right). ChangeNames is excluded as all examples have many valid nodes.

3

3.2 Negative transforms75

We define 11 semantics non-preserving transforms in Table 3. In the terminology of test mutation76

literature, these are sometimes called “mutants.” For negative pairs, we verify that the augmented77

code fails to pass tests; this is to avoid accidental so-called “equivalent mutants.” Again, aside from78

DeletedStatement and TypoInName, the other transforms aren’t necessarily applicable to all79

code examples. Figure 2 shows the distribution of valid examples and nodes for the other transforms.80

Table 3: Negative transforms

Transform Description
WrongArithmeticOperator Replaces an operator ["+", "-", "*", "/", "%", "//",

"**"] with a wrong operator, chosen at random.
WrongComparisonOperator Replaces an operator [">", ">=", "<", "<=", "==", "!=",

"is", "is not", "in", "not in"] with a wrong operator, cho-
sen at random from the subset of operators most likely to produce a different
effect.

WrongBooleanValue Swaps True and False constants.
WrongBooleanOperator Swaps and and or operators.

WrongAugAssignOperator Similar replacement as WrongArithmeticOperator but for augmented as-
signments ["+=", "-=", "*=", "/="].

RangeOffByOne Introduces off-by-one errors in for-loops with range().
NumberWrongSign Flips signs of floats and ints.
NumberWrongValue Changes values of floats and ints (same order-of-magnitude).

RemoveNegation Removes not operators before expressions.
DeletedStatement Deletes a statement. Can either target statements where a variable is being

assigned for the first time or any statement.
TypoInName Randomly introduces typos in variable or parameter usages (not definitions)

by either deleting a character or swapping adjacent characters.

Wro
ng

Com
pa

ris
on

Ope
ra

tor

Num
be

rW
ro

ng
Sign

Wro
ng

Arit
hm

eti
cO

pe
ra

tor

Wro
ng

Aug
men

ted
Assi

gn
men

tO
pe

ra
tor

Ran
ge

OffB
yO

ne

Wro
ng

Boo
lea

nO
pe

ra
tor

Wro
ng

Boo
lea

nV
alu

e

Num
be

rW
ro

ng
Va

lue

Rem
ov

eN
eg

ati
on

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

 E
xa

m
pl

es

Frac Examples With 1 Valid Nodes

Wro
ng

Com
pa

ris
on

Ope
ra

tor

Num
be

rW
ro

ng
Sign

Wro
ng

Arit
hm

eti
cO

pe
ra

tor

Wro
ng

Aug
men

ted
Assi

gn
men

tO
pe

ra
tor

Ran
ge

OffB
yO

ne

Wro
ng

Boo
lea

nO
pe

ra
tor

Wro
ng

Boo
lea

nV
alu

e

Num
be

rW
ro

ng
Va

lue

Rem
ov

eN
eg

ati
on

0

2

4

6

8

10

12

14

16

Av
g

N
um

 N
od

es

Avg Num Nodes In Examples With 1

Figure 2: Fraction of examples with at least one valid node for each negative transform (left) and
average number of nodes (right). DeletedStatement and TypoInName are excluded as all
examples have many valid nodes.

4

4 Experimental setup81

4.1 Models82

We experiment on a wide set of state-of-the-art code embedding models, spanning a range of sizes,83

architectures, and pooling mechanisms. These models were chosen because they are top-performing84

across benchmarks in code clone detection (BigCloneBench [?]), fault detection (Devign [12]),85

and code-code search (CSN-CCR [13]). Recent work has focused around contrastive training on86

in-the-wild text-code pairs, and of our set of baselines, only CodeT5+ and StarEncoder were not87

fine-tuned in this manner. We exclude CodeBERT from our analysis due to its context window of88

512 tokens falling below the median length of examples in our dataset (see Figure 9).89

Table 4: Baseline embedding models

Embed Model Base Model Type Size Max Seq Demb Pooling
Nomic Embed Code
[14]

Qwen2.5-Coder-
7B-Instruct

Decoder 7B 8192 768 Last

CodeXEmbed-7B
[15]

Mistral-7B-
Instruct-v0.3

Decoder 7B 4096 4096 Last

SFR-Embedding-
Code-2 [15]

Google-Gemma-
2-2B

Decoder 2B 32k 2048 Last

CodeSage-large [16] - Encoder 1.3B 2048 1024 Mean

CodeT5+ [17] T5
Encoder-
Decoder 770M 512† 1024 Mean

Jina-Code-v2 [18] - Encoder 161M 8192 768 Mean
StarEncoder [19] - Encoder 125M 1024 768 Mean

†Extended to 4096 with relative positional encodings

4.2 Augmentation settings90

For our experiments, we apply all possible positive transforms maximally, in order to create the91

most adversarial pairs. These settings are shown in Listing 5a. We further filter to examples with92

at least 5 transforms applied, since this still leaves over 60% of our dataset, as shown in Figure 4.93

For negative transforms, we choose a reasonably aggressive set of transforms and filter to examples94

with at least six transforms applied (see Figure 4 and Listing 5b); in contrast to the positive pairs,95

we are deliberately not making negative pairs maximally adversarial. In our analysis, we chose to96

generate and analyze one positive and one negative pair for each example, though we note that our97

augmentation pipeline allows us to generate many pairs, which we do for the construction of pydra.98

5 Experimental results99

5.1 Similarity of random pairs100

The average cosine similarity between random code pairs in our dataset, modulated by model and101

token bin, are shown in Figure 6. We begin by noting that different embedding models exhibit102

different baseline similarities for random pairs. These baseline values are not standardized or103

inherently interpretable (e.g., they do not necessarily cluster around 0 or 0.5), which is an artifact104

of the model training, in which there is no explicit enforcement of a specific similarity distribution105

for unrelated examples. Critically, we also find that all models are, to varying degrees, sensitive to106

code length, with most models predicting higher similarity between random pairs of longer code. For107

some, such as Nomic Embed Code, this increase is dramatic.108

Other models, such as CodeT5+ 770M, do not show much dependence on code length as long as the109

two codes are of similar length, but we find that they are very sensitive to relative length differences.110

In Figure 7, we calculate the average similarity between pairs from potentially different token bins for111

5

0 1 2 3 4 5 6 7 8 9 10 11
N (Num Transform Types Applied)

0

1000

2000

3000

4000

5000

6000

7000

8000

C
um

ul
at

iv
e

N
um

 E
xa

m
pl

es
 (>

N
) positive

negative

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

 E
xa

m
pl

es
 (>

N
)

Figure 3: Positive transforms

Figure 4: Cumulative number and fraction of examples with at least N types of transforms applied.

Listing (1) PositivePipeline
CommentDeletion(),
ArithmeticTransform(),
SwapCondition(),
ForInRangeToWhile(),
ListCompToForLoop(),
ConditionalExprToIfElse(),
ChainedComparisonToAnd(),
BooleanSimplify(),
FStringToFormat(),
ChangeNames(rename_strategy="funky")

(a) Positive pipeline settings

Listing (2) NegativePipeline
WrongArithmeticOperator(sample_p=0.05) with p=0.5,
WrongComparisonOperator(sample_p=0.1) with p=0.5,
WrongBooleanValue(sample_p=0.5),
WrongBooleanOperator(sample_p=0.5),
WrongAugmentedAssignOperator(sample_p=0.25) with p=0.5,
RangeOffByOne(sample_p=0.5),
NumberWrongSign(sample_p=0.1) with p=0.5,
NumberWrongValue(sample_p=0.5) with p=0.01,
RemoveNegation(sample_p=0.5),
DeletedStatement(statement_type="simple_def", sample_p=0.08),
TypoInName(typo_type="missing_char", sample_p=0.08) with p=0.5

(b) Negative pipeline settings

Figure 5: The experimental settings chosen for the positive and negative augmentation pipelines.

Nomic Embed Code and CodeT5+ 770M. While Nomic Embed’s length sensitivity appears along the112

vertical and main diagonal, there is only minor variance along the horizontal direction, implying that113

the model does not rely on length mismatches as a signal that two codes are dissimilar. In contrast,114

CodeT5+ similarities do not show much length sensitivity as long as the codes are similar length, but115

vary with the relative difference, becoming more dissimilar the more mismatched the lengths are.116

5.2 Similarity of positive and negative pairs117

We investigate how models score the similarity of positive pairs PP = {(xorig,i, xpos,i)} and negative118

pairs NP = {(xorig,i, xneg,i)} relative to random pairs RP = {(xorig,i, xorig,j)}i ̸=j . The mean and119

standard deviation for each model are given in Table 5 and also visualized in Figure 8.120

In addition to ⟨RP⟩, we calculate ⟨RP⟩ℓ, a weighted average of the 2D token-binned ⟨RP⟩k,m values121

that we derived in the analysis of the previous section:122

⟨RP⟩ℓ =
1

N

N∑
i

⟨RP⟩k,m s.t.

{
xorig,i ∈ token bin k,

xpos,i ∈ token bin m
(1)

The reason we use the positive pairs to set the bin weighting is that the positive augmentations tend123

to shift and broaden the token distribution (see Figure 9 in Appendix ??) due to the extra characters124

added by the default renaming strategy, whereas the negative augmentations do not. The average125

values of ⟨RP⟩ and ⟨RP⟩ℓ are only marginally different, since the positive augmentations tend to only126

shift by one token bin, but we nevertheless use ⟨RP⟩ℓ when appropriate to disentangle the influence127

of our augmentations from the effects of simply comparing two codes of differing lengths.128

6

0 512 1024 1536 2048 2560 3072 3584 4096

Token Bin

CodeSage-large

Nomic Embed

Jina-Code-v2

SFR-Embed-2

StarEncoder

CodeXEmbed-7B

CodeT5+ (770M)

0.30 0.32 0.32 0.40

0.36 0.38 0.46 0.50 0.53 0.58 0.57 0.77

0.54 0.56 0.61 0.68 0.68 0.72 0.74 0.63

0.56 0.54 0.59 0.61 0.66 0.64 0.78 0.75

0.75 0.78

0.82 0.77 0.76 0.76 0.77 0.82 0.75

0.94 0.88 0.87 0.88 0.92 0.93 0.94 0.98

Average Cosine Similarity Between Random Pairs

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: The cosine similarity of code embeddings generated by each model, averaged across
random pairs of original code within token bins.

51
2

10
24

15
36

20
48

25
60

30
72

35
84

40
96

Token Bin

0

512

1024

1536

2048

2560

3072

3584

4096

To
ke

n
B

in

CodeT5+ (770M)

51
2

10
24

15
36

20
48

25
60

30
72

35
84

40
96

Token Bin

0

512

1024

1536

2048

2560

3072

3584

4096

Nomic Embed

0.5 0.6 0.7 0.8 0.9 1.0 0.3 0.4 0.5 0.6 0.7

Average Cosine Similarity Between Random Pairs

Figure 7: The cosine similarity of code embeddings from CodeT5+ 770M (left) and Nomic Embed
Code (right), with the (i, j)th bin averaged across all random pairs of original code where one
example’s length falls within token bin i and the other’s within token bin j.

A separate benefit to our length normalization is that it effectively up-weights the token bins where129

most of the examples lie and down-weights the noisier bins with fewer examples, hence why ⟨RP⟩130

has significantly larger standard deviation than ⟨RP⟩ℓ.131

7

Table 5: Cosine similarities of embedding pairs

Model Cosine Similarity (Mean ± Std Dev)

⟨PP⟩ ⟨RP⟩ ⟨RP⟩ℓ ⟨NP⟩
CodeSage-large 0.40 ± 0.10 0.30 ± 0.13 0.29 ± 0.02 0.90 ± 0.08

Nomic Embed Code 0.61 ± 0.08 0.37 ± 0.13 0.41 ± 0.06 0.97 ± 0.02
SFR-Embedding-Code-2 0.83 ± 0.07 0.54 ± 0.07 0.57 ± 0.04 0.93 ± 0.05

Jina-Code-v2 0.65 ± 0.08 0.55 ± 0.13 0.58 ± 0.04 0.98 ± 0.02
CodeXEmbed-7B 0.83 ± 0.06 0.77 ± 0.06 0.76 ± 0.01 0.98 ± 0.02

StarEncoder 0.82 ± 0.13 0.77 ± 0.13 0.77 ± 0.01 0.99 ± 0.02
CodeT5+ (770M) 0.83 ± 0.05 0.84 ± 0.08 0.83 ± 0.04 0.99 ± 0.01

PP = Positive Pairs, RP = Random Pairs, NP = Negative Pairs, ⟨⟩ℓ = Length Normalized

CodeT5+ (770M) StarEncoder CodeXEmbed-7B Jina-Code-v2 SFR-Embed-2 Nomic Embed CodeSage-large
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
os

in
e

Si
m

ila
rit

y

RP
PP
NP

Figure 8: For each embedding model, we plot the average similarity of the embeddings of all positive
pairs, negative pairs, and random pairs, with error bars representing the standard deviation.

5.3 Classification of positive vs. negative pairs132

In order to perform binary classification on the positive and negative pairs using their respective133

pair-wise cosine similarities, we must carefully choose the classification threshold, since cosine134

similarities are model- and scale-dependent, as demonstrated in Section 5.1. The most principled135

threshold is each model’s ⟨RP⟩ℓ, the length-normalized average cosine similarity between random136

pairs defined in the previous section. Alternatively, we can calculate the ROC-AUC, which measures137

how well positives and negatives can be distinguished by the model across all thresholds. Both sets138

of results are given in Table 6.139

Recall, defined as the ratio of positives that are correctly classified, is a key evaluation metric for140

clone detection benchmarks such as BigCloneBench. In those benchmarks, there are a set of clone141

pairs (analogous to our positive pairs) and a larger set of non-clone pairs (analogous to our random142

pairs), but no matching “hard negative” pair for each clone pair (our negative pairs). As such, it143

is generally discouraged to report accuracy or precision, as those metrics depend on the count of144

true and false negatives. Using random non-clones for the negative class is both noisy and often145

misleading because there are typically many more non-clones than clones. We note that our classes146

are perfectly balanced, with every example belonging to exactly one positive pair PP and one negative147

pair NP. Our setup is unique in that it allows us to report accuracy and precision, which contain148

considerably more information about performance than recall alone.149

8

Table 6: Classification of positive vs. negative

Model
Threshold: ⟨RP⟩ℓ

ROC-AUC (%)Acc (%) Precision (%) Recall (%)
CodeSage-large 44.0 46.8 87.9 0.79

Nomic Embed Code 49.1 49.5 98.2 0.16
SFR-Embedding-Code-2 49.4 49.7 98.8 11.5

Jina-Code-v2 40.2 44.6 80.4 0.51
CodeXEmbed-7B 40.9 45.0 81.8 0.80

StarEncoder 29.4 37.0 48.7 5.33
CodeT5+ (770M) 9.3 15.6 18.4 0.30

PP = Positive Pairs, RP = Random Pairs, NP = Negative Pairs, ⟨⟩ℓ = Length Normalized Mean

Most of the models we consider4 achieve 80% or above on recall in the ⟨RP⟩ℓ-thresholded classifi-150

cation setting. SFR-Embedding-Code-2 and Nomic Embed Code score the highest on recall by a151

significant margin. These two models also have the clearest visual separation between PP and ⟨RP⟩ℓ152

in Figure 8. On the other hand, all models score at or below random performance when it comes to153

precision and accuracy, where the misclassification of the negative pairs as false positives dominates.154

Since nearly all negative pairs are misclassified, we see 50% accuracy/precision when recall is close155

to 100% and lower than 50% when some positive pairs are also misclassified.156

This behavior is even more apparent in the ROC-AUC values, where only SFR-Embedding-Code-v2157

and StarEncoder achieve greater than 1%. Looking at Figure 8, we see that the other models not only158

fail to rank negative pairs below positive pairs, but they in fact cleanly separate the two groups in159

the wrong direction, consistently predicting cosine similarities close to 1 for negative pairs. Here,160

AOC-ROC captures the fact that, at certain thresholds > ⟨RP⟩ℓ, those models misclassify all samples,161

both positive and negative. SFR-Embedding-Code-v2 and StarEncoder are the only models that show162

any overlap between positive and negative pairs, though still in the wrong direction.163

We posit in Section 5.5 that this may be due to negatives having substantially higher token overlap164

with the original examples than positives because of the renaming augmentation. This suggests that165

name-preserving, semantics-changing transforms have significantly less effect on similarity than166

semantics-preserving, name-changing transforms.167

5.4 Ranking of positive vs. random pairs168

We also evaluate the models on a retrieval-style formulation of the task, with results given in Table 7.169

Top-1 accuracy is the fraction of queries for which the true clone ci is the top-ranked candidate, while170

Mean Reciprocal Rank (MRR) is the average over the reciprocal of the rank of the true clone:171

MRR (%) =
1

n

n∑
i=1

1

rank(ci)
× 100 (2)

Mean Average Precision (MAP), another common retrieval metric, is equivalent to MRR in our172

setting since there is only one clone for each query. Since MRR explicitly depends on the size of the173

non-clone pool, we set it to a fixed value of n = 100; for each positive pair, i.e. an original example174

and its clone, we take the 100 random examples with the greatest similarity to the original as the rest175

of our candidate pool. Since we already know from Section 5.3 that the models almost always rank176

negative pairs above positive pairs, we exclude them.177

Instead, we wish to probe how the models rank positive pairs relative individual random pairs. The178

recall statistic in Section 5.3 is related but subtly different, as it measures how well the models capture179

positive pairs relative to a threshold set by the average similarity of random pairs. Interestingly, we180

4Except StarEncoder and CodeT5+, notably the only two of our baselines not contrastively fine-tuned.

9

Table 7: Ranking of positive vs. 100 randoms

Model Top-1 Acc (%) MRR
CodeSage-large 10.3 17.2

Nomic Embed Code 19.9 28.0
SFR-Embedding-Code-2 78.3 84.1

Jina-Code-v2 3.75 7.32
CodeXEmbed-7B 32.0 42.8

StarEncoder 19.2 22.6
CodeT5+ (770M) 1.46 2.96

PP = Positive Pairs, RP = Random Pairs

find that these two metrics do not perfectly correlate. While SFR-Embedding-Code-v2 outperforms181

all other models on both, CodeXEmbed-7B achieves higher top-1 accuracy than Nomic Embed Code182

despite achieving lower recall, and the same is observed for StarEncoder vs. both Codesage-large and183

Jina-Code-v2. This highlights that overall performance is related not only on the relative averages of184

similarities across PP, NP, and RP, but also their relative spreads.185

5.5 Digging deeper into the impact of renaming186

For positive augmentations, we find that ChangeNames has by far the largest effect. With all187

transforms except ChangeNames applied, the similarity of positive pairs is significantly closer to188

1.0 across models. In Table 8, we examine this setting for the three models with the largest positive-189

negative gap from Figure 8 (Jina-Code-v2, Nomic Embed Code, and CodeSage-large), and show that190

the gap is mostly closed. We then examine two other settings in which only ChangeNames applied:191

the first uses our default strategy FunkyRenamer (which creates long Docker-style “adjective_noun”192

names), while the other uses a RandomRenamer strategy that replaces names with random strings193

of the same length as the original names. The latter strategy, which by definition keeps the code194

length fixed, scores higher similarity than the FunkyRenamer strategy, which introduces characters.195

Table 8: Cosine similarity between PP under three ablations of the settings

Model Only Only Exclude
FunkyRename RandomRename ChangeNames

Jina-Code-v2 0.71 0.81 0.98
Nomic Embed Code 0.65 0.73 0.96
CodeSage-large 0.49 0.55 0.94

6 Conclusions196

We presented our AST-based pipeline for generating controlled positive and negative code variants,197

and used it to build pydra, an open-source dataset of clones and bugs in Python. Our empirical198

evaluation of leading code embedding models suggest that they remain dominated by surface-level199

heuristics such as token overlap and relative length. We find that renaming-based augmentations have200

the strongest influence on similarity scores, especially when renamings increase code length, whereas201

models are insensitive to small but behavior-critical edits. Our negative pairs present a challenging202

and subtle type of “hard negative” and we hope that pydra will serve the research community.203

10

References204

[1] Neha Saini, Sukhdip Singh, and Suman. Code clones: Detection and management. Procedia205

Computer Science, 132:718–727, 01 2018.206

[2] Yutao Xie, Jiayi Lin, Hande Dong, Lei Zhang, and Zhonghai Wu. Survey of code search based207

on deep learning. ACM Transactions on Software Engineering and Methodology, 33(2):1–42,208

2023.209

[3] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,210

Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models:211

A survey. arXiv preprint arXiv:2312.10997, 2(1), 2023.212

[4] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. Pretrained transformers for text ranking:213

Bert and beyond. Springer Nature, 2022.214

[5] Xinyu Shi, Zhenhao Li, and An Ran Chen. Enhancing llm-based fault localization215

with a functionality-aware retrieval-augmented generation framework. arXiv preprint216

arXiv:2509.20552, 2025.217

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,218

Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul219

Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke220

Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad221

Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias222

Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex223

Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,224

William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,225

Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,226

Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech227

Zaremba. Evaluating large language models trained on code. 2021.228

[7] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David229

Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis230

with large language models, 2021.231

[8] Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,232

Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-233

marking code generation with diverse function calls and complex instructions. arXiv preprint234

arXiv:2406.15877, 2024.235

[9] Hao Yu, Xing Hu, Ge Li, Ying Li, Qianxiang Wang, and Tao Xie. Assessing and improving an236

evaluation dataset for detecting semantic code clones via deep learning. ACM Trans. Softw. Eng.237

Methodol., 31(4), July 2022.238

[10] Jeffrey Svajlenko and Chanchal K. Roy. Evaluating clone detection tools with bigclonebench.239

In 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME),240

pages 131–140, 2015.241

[11] Sabaat Haroon, Ahmad Faraz Khan, Ahmad Humayun, Waris Gill, Abdul Haddi Amjad,242

Ali Raza Butt, Mohammad Taha Khan, and Muhammad Ali Gulzar. How accurately do large243

language models understand code? ArXiv, abs/2504.04372, 2025.244

[12] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. Devign: Effective245

vulnerability identification by learning comprehensive program semantics via graph neural246

networks. CoRR, abs/1909.03496, 2019.247

[13] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B.248

Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,249

Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,250

Shengyu Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code251

understanding and generation. CoRR, abs/2102.04664, 2021.252

11

[14] Tarun Suresh, Revanth Gangi Reddy, Yifei Xu, Zach Nussbaum, Andriy Mulyar, Brandon253

Duderstadt, and Heng Ji. Cornstack: High-quality contrastive data for better code retrieval and254

reranking, 2025.255

[15] Ye Liu, Rui Meng, Shafiq Joty, Silvio Savarese, Caiming Xiong, Yingbo Zhou, and Semih256

Yavuz. Codexembed: A generalist embedding model family for multiligual and multi-task code257

retrieval, 2025.258

[16] Dejiao Zhang, Wasi Ahmad, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei259

Ma, and Bing Xiang. Code representation learning at scale, 2024.260

[17] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H.261

Hoi. Codet5+: Open code large language models for code understanding and generation, 2023.262

[18] Michael Günther, Jackmin Ong, Isabelle Mohr, Alaeddine Abdessalem, Tanguy Abel, Moham-263

mad Kalim Akram, Susana Guzman, Georgios Mastrapas, Saba Sturua, Bo Wang, Maximilian264

Werk, Nan Wang, and Han Xiao. Jina embeddings 2: 8192-token general-purpose text embed-265

dings for long documents, 2024.266

[19] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao267

Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,268

Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João269

Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,270

Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,271

Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan272

Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha273

Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav274

Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank275

Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-276

ish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz277

Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.278

Starcoder: may the source be with you!, 2023.279

[20] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summariza-280

tion Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational281

Linguistics.282

[21] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic283

evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin, editors,284

Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,285

pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational286

Linguistics.287

[22] Aryaz Eghbali and Michael Pradel. Crystalbleu: Precisely and efficiently measuring the simi-288

larity of code. In Proceedings of the 37th IEEE/ACM International Conference on Automated289

Software Engineering, ASE ’22, New York, NY, USA, 2023. Association for Computing290

Machinery.291

[23] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming292

Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code293

synthesis, 2020.294

[24] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:295

Evaluating text generation with bert, 2020.296

[25] Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. Codebertscore: Evaluating code297

generation with pretrained models of code. 2023.298

[26] Nickil Maveli, Antonio Vergari, and Shay B Cohen. What can large language models capture299

about code functional equivalence? arXiv preprint arXiv:2408.11081, 2024.300

[27] Atharva Naik. On the limitations of embedding based methods for measuring functional301

correctness for code generation, 2024.302

12

[28] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. What do they303

capture? a structural analysis of pre-trained language models for source code. In Proceedings304

of the 44th international conference on software engineering, pages 2377–2388, 2022.305

[29] Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun306

Kumar, Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna307

Ramanathan, Dan Roth, and Bing Xiang. ReCode: Robustness evaluation of code generation308

models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the309

61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),310

pages 13818–13843, Toronto, Canada, July 2023. Association for Computational Linguistics.311

[30] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-312

mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination313

free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.314

[31] Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. Reasoning runtime315

behavior of a program with llm: How far are we? arXiv preprint arXiv:2403.16437, 2024.316

[32] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large language317

models reason about program invariants? In Andreas Krause, Emma Brunskill, Kyunghyun318

Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the319

40th International Conference on Machine Learning, volume 202 of Proceedings of Machine320

Learning Research, pages 27496–27520. PMLR, 23–29 Jul 2023.321

[33] Thanh Le-Cong, Bach Le, and Toby Murray. Can llms reason about program semantics? a322

comprehensive evaluation of llms on formal specification inference, 2025.323

[34] Ziyu Li and Donghwan Shin. Mutation-based consistency testing for evaluating the code under-324

standing capability of llms. 2024 IEEE/ACM 3rd International Conference on AI Engineering –325

Software Engineering for AI (CAIN), pages 150–159, 2024.326

[35] Ashish Hooda, Mihai Christodorescu, Miltiadis Allamanis, Aaron Wilson, Kassem Fawaz, and327

Somesh Jha. Do large code models understand programming concepts? counterfactual analysis328

for code predicates. arXiv preprint arXiv:2402.05980, 2024.329

[36] Wei Ma, Shangqing Liu, Zhihao Lin, Wenhan Wang, Qiang Hu, Ye Liu, Cen Zhang, Liming330

Nie, Li Li, and Yang Liu. Lms: Understanding code syntax and semantics for code analysis,331

2024.332

[37] Thu-Trang Nguyen, Thanh Trong Vu, Hieu Dinh Vo, and Son Nguyen. An empirical study on333

capability of large language models in understanding code semantics, 2024.334

[38] Sergey Troshin and Nadezhda Chirkova. Probing pretrained models of source code. arXiv335

preprint arXiv:2202.08975, 2022.336

[39] Anjan Karmakar and Romain Robbes. Inspect: Intrinsic and systematic probing evaluation for337

code transformers. IEEE Transactions on Software Engineering, 50(2):220–238, 2023.338

[40] Saiteja Utpala, Alex Gu, and Pin-Yu Chen. Language agnostic code embeddings. In Kevin339

Duh, Helena Gomez, and Steven Bethard, editors, Proceedings of the 2024 Conference of the340

North American Chapter of the Association for Computational Linguistics: Human Language341

Technologies (Volume 1: Long Papers), pages 678–691, Mexico City, Mexico, June 2024.342

Association for Computational Linguistics.343

[41] Shounak Naik, Rajaswa Patil, Swati Agarwal, and Veeky Baths. Probing semantic grounding in344

language models of code with representational similarity analysis. In International Conference345

on Advanced Data Mining and Applications, pages 395–406. Springer, 2022.346

[42] Zhuohao Li, Wenqing Chen, Jianxing Yu, and Zhichao Lu. Functional consistency of llm code347

embeddings: A self-evolving data synthesis framework for benchmarking. Expert Systems with348

Applications, page 129523, 2025.349

13

[43] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over350

tree structures for programming language processing. In Proceedings of the Thirtieth AAAI351

Conference on Artificial Intelligence, pages 1287–1293, 2016.352

[44] Jeffrey Svajlenko and Chanchal K. Roy. Bigclonebench: A retrospective and roadmap. In 2022353

IEEE 16th International Workshop on Software Clones (IWSC), pages 8–9, 2022.354

[45] Jens Krinke and Chaiyong Ragkhitwetsagul. Bigclonebench considered harmful for machine355

learning. In 2022 IEEE 16th International Workshop on Software Clones (IWSC), pages 1–7,356

2022.357

[46] Jens Krinke and Chaiyong Ragkhitwetsagul. How the misuse of a dataset harmed semantic358

clone detection. arXiv preprint arXiv:2505.04311, 2025.359

[47] Farouq Al-Omari, Chanchal K Roy, and Tonghao Chen. Semanticclonebench: A semantic code360

clone benchmark using crowd-source knowledge. In 2020 IEEE 14th International Workshop361

on Software Clones (IWSC), pages 57–63. IEEE, 2020.362

[48] Ajmain Inqiad Alam, Palash Ranjan Roy, Farouq Al-omari, Chanchal Kumar Roy, Banani Roy,363

and Kevin Schneider. Gptclonebench: A comprehensive benchmark of semantic clones and364

cross-language clones using gpt-3 model and semanticclonebench. In Proceedings of the 39th365

International Conference in Software Maintenance and Evolution (ICSME 2023). October 2023,366

Bogota, Colombia (to appear), 2023.367

[49] Chanchal K. Roy and James R. Cordy. Nicad: Accurate detection of near-miss intentional368

clones using flexible pretty-printing and code normalization. In 2008 16th IEEE International369

Conference on Program Comprehension, pages 172–181, 2008.370

[50] Md Nahidul Islam Opu, Shaowei Wang, and Shaiful Chowdhury. Llm-based detection of tangled371

code changes for higher-quality method-level bug datasets. arXiv preprint arXiv:2505.08263,372

2025.373

[51] Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack Phan, Qijin Tay, Constance374

Tan, Fiona Wee, Jodie Ethelda Tan, Yuheng Yieh, et al. Bugsinpy: a database of existing bugs375

in python programs to enable controlled testing and debugging studies. In Proceedings of the376

28th ACM joint meeting on european software engineering conference and symposium on the377

foundations of software engineering, pages 1556–1560, 2020.378

[52] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,379

Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,380

Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,381

Sven Gowal, Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson,382

Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level383

code generation with alphacode. arXiv preprint arXiv:2203.07814, 2022.384

[53] Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir385

Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost, Luca386

Buratti, Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss.387

Codenet: A large-scale ai for code dataset for learning a diversity of coding tasks, 2021.388

[54] AIZU Online Judge. Aizu online judge. https://judge.u-aizu.ac.jp/. Accessed:389

2025-10-28.390

[55] AtCoder Inc. Atcoder: Programming contest site. https://atcoder.jp/. Accessed:391

2025-10-28.392

[56] Ethan Caballero, OpenAI, and Ilya Sutskever. Description2code dataset. https://github.393

com/ethancaballero/description2code, 2016. Accessed: 2025-10-28.394

[57] CodeChef. Codechef: Learn and practice coding with problems. https://www.codechef.395

com/. Accessed: 2025-10-28.396

14

https://judge.u-aizu.ac.jp/
https://atcoder.jp/
https://github.com/ethancaballero/description2code
https://github.com/ethancaballero/description2code
https://github.com/ethancaballero/description2code
https://www.codechef.com/
https://www.codechef.com/
https://www.codechef.com/

[58] HackerEarth. Hackerearth: Validity and reliability of assessments.397

https://marketplace.jazzhr.com/wp-content/uploads/398

HackerEarth-Validity-and-reliability-of-assessments.pdf. Ac-399

cessed: 2025-10-28.400

[59] Codeforces. Codeforces: Programming contests and programming challenges. https://401

codeforces.com/. Accessed: 2025-10-28.402

[60] Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and403

Xiaolong Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient training404

of code llms, 2025.405

[61] GeeksforGeeks. Geeksforgeeks: “https://www.geeksforgeeks.org/”. https:406

//www.geeksforgeeks.org/. Accessed: 2025-10-28.407

[62] Google Inc. Google code jam: Programming contest site. https://408

codingcompetitions.withgoogle.com/codejam. Accessed: 2025-10-28.409

[63] zibada.guru. Google coding competitions archive. https://zibada.guru/gcj/, 2023.410

Unofficial archive of Google Code Jam, Kick Start, and Hash Code competitions (data up to411

2022; updated May 2023).412

15

https://marketplace.jazzhr.com/wp-content/uploads/HackerEarth-Validity-and-reliability-of-assessments.pdf
https://marketplace.jazzhr.com/wp-content/uploads/HackerEarth-Validity-and-reliability-of-assessments.pdf
https://marketplace.jazzhr.com/wp-content/uploads/HackerEarth-Validity-and-reliability-of-assessments.pdf
https://codeforces.com/
https://codeforces.com/
https://codeforces.com/
https://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/codejam
https://zibada.guru/gcj/

A Related work413

Measuring code similarity. Traditional similarity metrics such as ROUGE [20], BLEU [21], and414

CrystalBLEU [22] primarily rely on n-gram overlap, rewarding lexical closeness rather than semantic415

agreement. CodeBLEU [23] incorporates data-flow graph (DFG) and abstract syntax tree (AST)416

matching, but code clones usually have different AST and often different DFG as well (due to code417

refactoring, intermediate variables, order of independent computations, etc), even when considering418

clones in the same programming language. More recent methods such as BERTScore [24] and419

CodeBERTScore [25] compare contextual embeddings at the token level. These metrics relax the420

exact token match requirement but still hinge on semantic similarity between individual identifiers421

and keywords, and have been shown to be poor predictors of functional equivalence or correctness422

[26, 27]. Another approach is to use pooled embeddings of entire code fragments or units. Ideally,423

these representations encode high-level abstractions and are invariant under semantics-preserving424

perturbations. In practice, however, they may be dominated by surface-level features. Pooling also425

introduces the potential risk of information loss on longer structured programs. Evaluating the quality426

of pooled code embeddings is an open research challenge and the focus of our empirical study.427

Probing semantic code understanding. A growing body of work investigates the ability of LLMs428

to reason abstractly about code. Most of this analysis is focused on the generative setting [11, 26,429

28, 29, 30, 31, 32, 33, 34, 35, 36, 37], though a handful of works investigate how well embedding430

models capture code semantics, either by training linear, task-specific classifiers to probe the frozen431

embeddings [38, 39, 40] or by inspecting the embeddings directly [41, 42].432

Generative models. Multiple complementary approaches to evaluating LLMs for code understanding433

have been proposed, including novel generative tasks based on predicting runtime behavior [30, 31,434

36] or inferring semantic [32, 33] or structural [28, 36] artifacts from input code. Several recent435

works probe code understanding via controlled code perturbations that may be either semantics-436

preserving [33], semantics-altering [11], or both [11, 26, 34, 35, 36, 37]. Tasks include predicting the437

equivalence of a pair of codes [26] or a code and its description [34], or localizing faulty lines [11].438

Others evaluate the LLM’s ability to correctly complete code after perturbing the docstrings [29] or439

partial code prefixes [29, 35] in the prompt. In [37], the authors include a code summarization task440

that uses the cosine similarity (under a text embedding model) of LLM-generated code summaries of441

a code pair as a proxy for the semantic similarity of the code pair itself under the LLM. Across a442

swathe of tasks and models, these works generally support the finding that LLMs are oversensitive to443

semantics-preserving augmentations and under-sensitive to subtle semantics-altering augmentations.444

Embedding models. Both [38] and [39] include downstream tasks classifying correct vs. incorrect445

code wherein the incorrect code was produced by injecting various types of errors into the correct446

code, and both report poor performance across models for those tasks. [40] focuses on cross-lingual447

embeddings, suggesting that language-specific syntactic features and language-agnostic semantic448

features can be decoupled, and that eliminating the former improves performance on code retrieval.449

In [41], the authors measure “semantic grounding” by comparing two dissimilarity matrices, the first450

across a set of source codes from CodeNet, the second across the corresponding set of their natural451

language descriptions. In [42], embedding models are evaluated on an evolved version of POJ-104452

[43] constructed by using ChatGPT to generate multiple augmented versions of each example.453

Clone datasets. BigCloneBench [?] has long served as the canonical code clone dataset in the454

clone detection literature. However, BigCloneBench is Java only, and significant concerns about its455

use in AI research have been raised [44, 45, 46], citing issues of noise and ambiguity, high rates of456

false positives, and pervasive data leakage. Additionally, [9] showed that many Type III/IV clones in457

the dataset share identifier names, leading to inflated performance numbers. More recently, Seman-458

ticCloneBench [47] provides 1000 function-level pairs each for Java, C, C#, and Python, collected459

from StackOverflow. Hoping to scale this to a size more suitable for deep learning applications,460

GPTCloneBench [48] prompts GPT-3 to generate additional semantic clones, including cross-lingual461

clones, for the examples in SemanticCloneBench. Since the goal of SemanticCloneBench/GPT-462

CloneBench is to focus on semantic (Type IV) clones, both attempt to filter out syntactic clones using463

a combination of tools such as NiCAD [49] and manual review by human judges. Nevertheless, there464

are no guarantees that all clones are true semantic clones or even clones at all. Aside from potentially465

introducing noise and false positives, the data collection process inherently restricts the controllability466

and diversity of the resulting clones, and the focus on semantic clones, while useful in many respects,467

inhibits analyses aiming to disentangle semantic and syntactic factors in model performance.468

16

Bug/defect/fault datasets. Most datasets and benchmarks related to debugging and code repair are469

execution-based and rely on in-the-wild code, revision histories, and patches, often with “tangled470

changes” (see e.g.[50] and references therein). Classic examples include Defects4J [?], which471

aggregates real-world Java bugs and developer fixes, and its newer Python equivalent, BugsInPy472

[51] and PyTraceBugs. While these datasets benefit from capturing realistic bug scenarios from473

real libraries, they miss the advantage of paired “ground-truth” variants that differ by controlled,474

fine-grained, and self-contained transforms.475

B Dataset details476

B.1 Base dataset by data source477

The largest subset is sourced from DeepMind Code Contests [52], which is itself composed of prob-478

lems from Project CodeNet [53] (scraped from AIZU [54] and AtCoder [55]) and Description2Code479

[56] (scraped from CodeChef [57], HackerEarth [58], and Codeforces [59]), along with additional480

problems scraped from Codeforces. The second largest part of our dataset is the LeetCode Dataset481

[60]. Finally, we add extra problems from Project CodeNet and from scraping the GeeksForGeeks482

[61], Google Code Jam [62], and Project Euler [63] websites.483

Table 9: Detailed composition of unified_code_contests_python by source

Source # Examples
Tests / Example # Solutions* / Example

Min Mean Min Max

DeepMind Code Contests 5,459 1 2.2 1 6
– AIZU 1215 1 1.4 1 3
– AtCoder 1114 1 2.9 1 3
– Codeforces 3130 1 2.2 1 6

Project CodeNet 1,536 1 2.5 1 6
– AIZU 676 1 1.7 1 3
– AtCoder 860 1 3.0 1 6

LeetCode Dataset 1,379 3 100 1 1
GeeksForGeeks 293 3 10 1 1
Google Code Jam 82 1 1 1 4
Project Euler 19 1 1 1 1

Total 8,768

* after filtering for solution quality (Appendix B.2) and diversity (Appendix B.3)

B.2 Normalization, de-duplication, and filtering484

Normalization. Submissions are first normalized by applying NFC (Normalization Form C) Unicode485

normalization to ensure consistent character representation. Line endings are standardized by486

converting carriage return (CR, \r) and carriage return + line feed (CRLF, \r\n) sequences to a487

single line feed (LF, \n). Byte Order Marks (BOMs) and other non-standard whitespace characters488

are removed. Shebang lines (e.g., #!/usr/bin/env python) and encoding cookies (e.g., #489

-*- coding: utf-8 -*-) are stripped. Tabs are converted to four spaces. All comments490

are removed, and module/class/function docstrings are pruned. Trailing whitespace is trimmed,491

consecutive blank lines are collapsed into one, and a single trailing newline is enforced. This492

standardized form is then used for de-duplication.493

De-duplication. An AST-level SHA-256 hash is first computed over a version of the code stripped of494

docstrings and attribute names. This captures semantically identical submissions that differ only in495

formatting or comments. A second SHA-256 hash is computed over the problem statement text to496

eliminate any residual textual duplicates.497

17

Validation and basic filtering. Safety and testability gates are then applied. Only code that parses498

successfully is retained. Submissions that import or call sensitive APIs—such as os, subprocess,499

socket, requests, or direct calls to open, eval, exec, os.system, subprocess.*,500

Path.open, and sys.exit—are excluded. Finally, only solutions with paired, non-empty501

input/output examples are kept to ensure they can be validated.502

Validation is execution-based and occurs in an isolated Python environment with memory and time503

limits. The program’s output is compared against the expected output, and only submissions that pass504

all provided tests are retained.505

Additional quality filtering. Additional filters are applied to weed out solutions that are trivially506

constructed to “hack“ the competition environment; along with programs that simply print the507

expected test outputs (i.e. print("a\nb\nc\nd")), the cleaning process filters out “lookup-508

table” solutions that bypass computation by relying on precomputed answers. We also remove sources509

dominated by oversized literals, and highly repetitive code containing few unique lines.510

B.3 Choosing dissimilar natural solutions511

For problems with multiple solutions, the solutions are aggressively de-duplicated in two stages.512

First, one solution is randomly selected as the “gold” reference. The other solutions are embedded513

with all available models (as long as the given solution does not exceed that model’s maximum514

sequence length) and their cosine similarity with the gold solution is calculated. Solutions whose515

similarity exceeds the model-specific threshold for any model are removed as duplicates.516

Then, the surviving alternate solutions (those judged dissimilar from the gold) then undergo pairwise517

de-duplication to detect near-duplicates amongst themselves:518

• Similarity graph construction: Within each problem, we build an undirected graph where519

nodes represent surviving submissions. Two submissions are connected by an edge if their520

cosine similarity exceeds the model-specific threshold for any model. The union of edges521

from all models forms a single combined similarity graph per problem. Edge creation is522

transitive: if Model 1 links A↔B and Model 2 links B↔C, all three solutions belong to523

the same component.524

• Single-linkage clustering: Depth-first search identifies connected components in the com-525

bined graph. Each component represents a cluster of near-duplicate solutions. Within each526

cluster, we retain a single solution as the canonical representative and prune all others.527

Model-specific thresholds are calibrated by starting with each model’s baseline similarity ⟨RP ⟩ (see528

Table 5) and then systematically relaxing each threshold until the pipeline admitted at most one or two529

alternate solutions per problem. The calibrates thresholds are 0.8, 0.6, 0.5, 0.9, 0.9, 0.9, and 0.9 for530

Salesforce/SFR-Embedding-Code-2B_R, nomic-ai/nomic-embed-code, codesage/codesage-large-v2,531

Salesforce/SFR-Embedding-Mistral, bigcode/starencoder, jinaai/jina-embeddings-v2-base-code, and532

Salesforce/codet5p-220m, respectively.533

B.4 Different strategies for ChangeNames augmentation534

Three main renaming strategies are implemented:535

• random_chars: Generates new names using random letters. Name length can either be536

fixed to a user-specified positive integer value, sampled uniformly between 1 and 10, forced537

to be equal to the original name length, or restricted to the shortest possible unique name.538

• shuffle_original: Shuffles the characters of the original name (single-character539

names remain unchanged).540

• funky: Generates “Docker-style” adjective-noun names using the funkybob5 package.541

All generated names are by default lower-case. For strategies that preserve name length (i.e.542

shuffle_original or random_charswith the original length setting), additional user options543

include matching the casing pattern and/or underscore index locations of the original name.544

5https://github.com/andreacorbellini/funkybob

18

https://github.com/andreacorbellini/funkybob

All strategies ensure generated names are unique within the relevant scope. If a valid new name545

cannot be generated, the original name is retained.546

B.5 Other dataset statistics547

0
51

2
10

24
20

48
40

96

Token Length

0.00

0.01

0.02

0.03

0.04

0.05

N
or

m
al

iz
ed

 D
is

tr
ib

ut
io

n

Original
Positively Augmented
Negatively Augmented

Max Seq Len: CodeBERT
Max Seq Len: StarEncoder
Max Seq Len: CodeSage-large

Figure 9: Distribution of token lengths of original, positively augmented, and negatively augmented
code, under experimental settings described in Section 4.2 and using Jina-Code-v2 tokenizer.

0 1000 2000 3000 4000
Tokens

0

100

200

300

400

500

600

LO
C

Binned LOC vs. Binned Token Length

Visual aid: 8 tok/LOC
100

101

102

N
um

 E
xa

m
pl

es
 (L

og
 S

ca
le

)

Figure 10: Scaling of tokens with LOC from original examples using Jina-Code-v2 tokenizer.

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00

Binned Length (LOC)

0

1

2

3

4

5

6

7

Av
g

N
um

 T
ra

ns
fo

rm
 T

yp
es

Avg Num Transform Types Applicable

(a) Positive transforms.

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00

Binned Length (LOC)

0

2

4

6

8

Av
g

N
um

 T
ra

ns
fo

rm
 T

yp
es

Avg Num Transform Types Applicable

(b) Negative transforms.

Figure 11: Lines of code statistics for positive and negative transforms.

19

NeurIPS Paper Checklist548

1. Claims549

Question: Do the main claims made in the abstract and introduction accurately reflect the550

paper’s contributions and scope?551

Answer: [Yes]552

Justification: [TODO]553

Guidelines:554

• The answer NA means that the abstract and introduction do not include the claims555

made in the paper.556

• The abstract and/or introduction should clearly state the claims made, including the557

contributions made in the paper and important assumptions and limitations. A No or558

NA answer to this question will not be perceived well by the reviewers.559

• The claims made should match theoretical and experimental results, and reflect how560

much the results can be expected to generalize to other settings.561

• It is fine to include aspirational goals as motivation as long as it is clear that these goals562

are not attained by the paper.563

2. Limitations564

Question: Does the paper discuss the limitations of the work performed by the authors?565

Answer: [Yes]566

Justification: [TODO]567

Guidelines:568

• The answer NA means that the paper has no limitation while the answer No means that569

the paper has limitations, but those are not discussed in the paper.570

• The authors are encouraged to create a separate "Limitations" section in their paper.571

• The paper should point out any strong assumptions and how robust the results are to572

violations of these assumptions (e.g., independence assumptions, noiseless settings,573

model well-specification, asymptotic approximations only holding locally). The authors574

should reflect on how these assumptions might be violated in practice and what the575

implications would be.576

• The authors should reflect on the scope of the claims made, e.g., if the approach was577

only tested on a few datasets or with a few runs. In general, empirical results often578

depend on implicit assumptions, which should be articulated.579

• The authors should reflect on the factors that influence the performance of the approach.580

For example, a facial recognition algorithm may perform poorly when image resolution581

is low or images are taken in low lighting. Or a speech-to-text system might not be582

used reliably to provide closed captions for online lectures because it fails to handle583

technical jargon.584

• The authors should discuss the computational efficiency of the proposed algorithms585

and how they scale with dataset size.586

• If applicable, the authors should discuss possible limitations of their approach to587

address problems of privacy and fairness.588

• While the authors might fear that complete honesty about limitations might be used by589

reviewers as grounds for rejection, a worse outcome might be that reviewers discover590

limitations that aren’t acknowledged in the paper. The authors should use their best591

judgment and recognize that individual actions in favor of transparency play an impor-592

tant role in developing norms that preserve the integrity of the community. Reviewers593

will be specifically instructed to not penalize honesty concerning limitations.594

3. Theory assumptions and proofs595

Question: For each theoretical result, does the paper provide the full set of assumptions and596

a complete (and correct) proof?597

Answer: [NA]598

20

Justification: [TODO]599

Guidelines:600

• The answer NA means that the paper does not include theoretical results.601

• All the theorems, formulas, and proofs in the paper should be numbered and cross-602

referenced.603

• All assumptions should be clearly stated or referenced in the statement of any theorems.604

• The proofs can either appear in the main paper or the supplemental material, but if605

they appear in the supplemental material, the authors are encouraged to provide a short606

proof sketch to provide intuition.607

• Inversely, any informal proof provided in the core of the paper should be complemented608

by formal proofs provided in appendix or supplemental material.609

• Theorems and Lemmas that the proof relies upon should be properly referenced.610

4. Experimental result reproducibility611

Question: Does the paper fully disclose all the information needed to reproduce the main ex-612

perimental results of the paper to the extent that it affects the main claims and/or conclusions613

of the paper (regardless of whether the code and data are provided or not)?614

Answer: [Yes]615

Justification: [TODO]616

Guidelines:617

• The answer NA means that the paper does not include experiments.618

• If the paper includes experiments, a No answer to this question will not be perceived619

well by the reviewers: Making the paper reproducible is important, regardless of620

whether the code and data are provided or not.621

• If the contribution is a dataset and/or model, the authors should describe the steps taken622

to make their results reproducible or verifiable.623

• Depending on the contribution, reproducibility can be accomplished in various ways.624

For example, if the contribution is a novel architecture, describing the architecture fully625

might suffice, or if the contribution is a specific model and empirical evaluation, it may626

be necessary to either make it possible for others to replicate the model with the same627

dataset, or provide access to the model. In general. releasing code and data is often628

one good way to accomplish this, but reproducibility can also be provided via detailed629

instructions for how to replicate the results, access to a hosted model (e.g., in the case630

of a large language model), releasing of a model checkpoint, or other means that are631

appropriate to the research performed.632

• While NeurIPS does not require releasing code, the conference does require all submis-633

sions to provide some reasonable avenue for reproducibility, which may depend on the634

nature of the contribution. For example635

(a) If the contribution is primarily a new algorithm, the paper should make it clear how636

to reproduce that algorithm.637

(b) If the contribution is primarily a new model architecture, the paper should describe638

the architecture clearly and fully.639

(c) If the contribution is a new model (e.g., a large language model), then there should640

either be a way to access this model for reproducing the results or a way to reproduce641

the model (e.g., with an open-source dataset or instructions for how to construct642

the dataset).643

(d) We recognize that reproducibility may be tricky in some cases, in which case644

authors are welcome to describe the particular way they provide for reproducibility.645

In the case of closed-source models, it may be that access to the model is limited in646

some way (e.g., to registered users), but it should be possible for other researchers647

to have some path to reproducing or verifying the results.648

5. Open access to data and code649

Question: Does the paper provide open access to the data and code, with sufficient instruc-650

tions to faithfully reproduce the main experimental results, as described in supplemental651

material?652

21

Answer: [Yes]653

Justification: [TODO]654

Guidelines:655

• The answer NA means that paper does not include experiments requiring code.656

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/657

public/guides/CodeSubmissionPolicy) for more details.658

• While we encourage the release of code and data, we understand that this might not be659

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not660

including code, unless this is central to the contribution (e.g., for a new open-source661

benchmark).662

• The instructions should contain the exact command and environment needed to run to663

reproduce the results. See the NeurIPS code and data submission guidelines (https:664

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.665

• The authors should provide instructions on data access and preparation, including how666

to access the raw data, preprocessed data, intermediate data, and generated data, etc.667

• The authors should provide scripts to reproduce all experimental results for the new668

proposed method and baselines. If only a subset of experiments are reproducible, they669

should state which ones are omitted from the script and why.670

• At submission time, to preserve anonymity, the authors should release anonymized671

versions (if applicable).672

• Providing as much information as possible in supplemental material (appended to the673

paper) is recommended, but including URLs to data and code is permitted.674

6. Experimental setting/details675

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-676

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the677

results?678

Answer: [Yes]679

Justification: [TODO]680

Guidelines:681

• The answer NA means that the paper does not include experiments.682

• The experimental setting should be presented in the core of the paper to a level of detail683

that is necessary to appreciate the results and make sense of them.684

• The full details can be provided either with the code, in appendix, or as supplemental685

material.686

7. Experiment statistical significance687

Question: Does the paper report error bars suitably and correctly defined or other appropriate688

information about the statistical significance of the experiments?689

Answer: [Yes]690

Justification: [TODO]691

Guidelines:692

• The answer NA means that the paper does not include experiments.693

• The authors should answer "Yes" if the results are accompanied by error bars, confi-694

dence intervals, or statistical significance tests, at least for the experiments that support695

the main claims of the paper.696

• The factors of variability that the error bars are capturing should be clearly stated (for697

example, train/test split, initialization, random drawing of some parameter, or overall698

run with given experimental conditions).699

• The method for calculating the error bars should be explained (closed form formula,700

call to a library function, bootstrap, etc.)701

• The assumptions made should be given (e.g., Normally distributed errors).702

• It should be clear whether the error bar is the standard deviation or the standard error703

of the mean.704

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should705

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis706

of Normality of errors is not verified.707

• For asymmetric distributions, the authors should be careful not to show in tables or708

figures symmetric error bars that would yield results that are out of range (e.g. negative709

error rates).710

• If error bars are reported in tables or plots, The authors should explain in the text how711

they were calculated and reference the corresponding figures or tables in the text.712

8. Experiments compute resources713

Question: For each experiment, does the paper provide sufficient information on the com-714

puter resources (type of compute workers, memory, time of execution) needed to reproduce715

the experiments?716

Answer: [Yes]717

Justification: [TODO]718

Guidelines:719

• The answer NA means that the paper does not include experiments.720

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,721

or cloud provider, including relevant memory and storage.722

• The paper should provide the amount of compute required for each of the individual723

experimental runs as well as estimate the total compute.724

• The paper should disclose whether the full research project required more compute725

than the experiments reported in the paper (e.g., preliminary or failed experiments that726

didn’t make it into the paper).727

9. Code of ethics728

Question: Does the research conducted in the paper conform, in every respect, with the729

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?730

Answer: [Yes]731

Justification: [TODO]732

Guidelines:733

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.734

• If the authors answer No, they should explain the special circumstances that require a735

deviation from the Code of Ethics.736

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-737

eration due to laws or regulations in their jurisdiction).738

10. Broader impacts739

Question: Does the paper discuss both potential positive societal impacts and negative740

societal impacts of the work performed?741

Answer: [NA]742

Justification: [TODO]743

Guidelines:744

• The answer NA means that there is no societal impact of the work performed.745

• If the authors answer NA or No, they should explain why their work has no societal746

impact or why the paper does not address societal impact.747

• Examples of negative societal impacts include potential malicious or unintended uses748

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations749

(e.g., deployment of technologies that could make decisions that unfairly impact specific750

groups), privacy considerations, and security considerations.751

• The conference expects that many papers will be foundational research and not tied752

to particular applications, let alone deployments. However, if there is a direct path to753

any negative applications, the authors should point it out. For example, it is legitimate754

to point out that an improvement in the quality of generative models could be used to755

23

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out756

that a generic algorithm for optimizing neural networks could enable people to train757

models that generate Deepfakes faster.758

• The authors should consider possible harms that could arise when the technology is759

being used as intended and functioning correctly, harms that could arise when the760

technology is being used as intended but gives incorrect results, and harms following761

from (intentional or unintentional) misuse of the technology.762

• If there are negative societal impacts, the authors could also discuss possible mitigation763

strategies (e.g., gated release of models, providing defenses in addition to attacks,764

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from765

feedback over time, improving the efficiency and accessibility of ML).766

11. Safeguards767

Question: Does the paper describe safeguards that have been put in place for responsible768

release of data or models that have a high risk for misuse (e.g., pretrained language models,769

image generators, or scraped datasets)?770

Answer: [NA]771

Justification: [TODO]772

Guidelines:773

• The answer NA means that the paper poses no such risks.774

• Released models that have a high risk for misuse or dual-use should be released with775

necessary safeguards to allow for controlled use of the model, for example by requiring776

that users adhere to usage guidelines or restrictions to access the model or implementing777

safety filters.778

• Datasets that have been scraped from the Internet could pose safety risks. The authors779

should describe how they avoided releasing unsafe images.780

• We recognize that providing effective safeguards is challenging, and many papers do781

not require this, but we encourage authors to take this into account and make a best782

faith effort.783

12. Licenses for existing assets784

Question: Are the creators or original owners of assets (e.g., code, data, models), used in785

the paper, properly credited and are the license and terms of use explicitly mentioned and786

properly respected?787

Answer: [Yes]788

Justification: [TODO]789

Guidelines:790

• The answer NA means that the paper does not use existing assets.791

• The authors should cite the original paper that produced the code package or dataset.792

• The authors should state which version of the asset is used and, if possible, include a793

URL.794

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.795

• For scraped data from a particular source (e.g., website), the copyright and terms of796

service of that source should be provided.797

• If assets are released, the license, copyright information, and terms of use in the package798

should be provided. For popular datasets, paperswithcode.com/datasets has799

curated licenses for some datasets. Their licensing guide can help determine the license800

of a dataset.801

• For existing datasets that are re-packaged, both the original license and the license of802

the derived asset (if it has changed) should be provided.803

• If this information is not available online, the authors are encouraged to reach out to804

the asset’s creators.805

13. New assets806

Question: Are new assets introduced in the paper well documented and is the documentation807

provided alongside the assets?808

24

paperswithcode.com/datasets

Answer: [Yes]809

Justification: [TODO]810

Guidelines:811

• The answer NA means that the paper does not release new assets.812

• Researchers should communicate the details of the dataset/code/model as part of their813

submissions via structured templates. This includes details about training, license,814

limitations, etc.815

• The paper should discuss whether and how consent was obtained from people whose816

asset is used.817

• At submission time, remember to anonymize your assets (if applicable). You can either818

create an anonymized URL or include an anonymized zip file.819

14. Crowdsourcing and research with human subjects820

Question: For crowdsourcing experiments and research with human subjects, does the paper821

include the full text of instructions given to participants and screenshots, if applicable, as822

well as details about compensation (if any)?823

Answer: [NA]824

Justification: [TODO]825

Guidelines:826

• The answer NA means that the paper does not involve crowdsourcing nor research with827

human subjects.828

• Including this information in the supplemental material is fine, but if the main contribu-829

tion of the paper involves human subjects, then as much detail as possible should be830

included in the main paper.831

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,832

or other labor should be paid at least the minimum wage in the country of the data833

collector.834

15. Institutional review board (IRB) approvals or equivalent for research with human835

subjects836

Question: Does the paper describe potential risks incurred by study participants, whether837

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)838

approvals (or an equivalent approval/review based on the requirements of your country or839

institution) were obtained?840

Answer: [NA]841

Justification: [TODO]842

Guidelines:843

• The answer NA means that the paper does not involve crowdsourcing nor research with844

human subjects.845

• Depending on the country in which research is conducted, IRB approval (or equivalent)846

may be required for any human subjects research. If you obtained IRB approval, you847

should clearly state this in the paper.848

• We recognize that the procedures for this may vary significantly between institutions849

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the850

guidelines for their institution.851

• For initial submissions, do not include any information that would break anonymity (if852

applicable), such as the institution conducting the review.853

16. Declaration of LLM usage854

Question: Does the paper describe the usage of LLMs if it is an important, original, or855

non-standard component of the core methods in this research? Note that if the LLM is used856

only for writing, editing, or formatting purposes and does not impact the core methodology,857

scientific rigorousness, or originality of the research, declaration is not required.858

Answer: [NA]859

25

Justification: [TODO]860

Guidelines:861

• The answer NA means that the core method development in this research does not862

involve LLMs as any important, original, or non-standard components.863

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/864

LLM) for what should or should not be described.865

26

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Base dataset construction
	Augmentation pipeline
	Positive transforms
	Negative transforms

	Experimental setup
	Models
	Augmentation settings

	Experimental results
	Similarity of random pairs
	Similarity of positive and negative pairs
	Classification of positive vs. negative pairs
	Ranking of positive vs. random pairs
	Digging deeper into the impact of renaming

	Conclusions
	Related work
	Dataset details
	Base dataset by data source
	Normalization, de-duplication, and filtering
	Choosing dissimilar natural solutions
	Different strategies for ChangeNames augmentation
	Other dataset statistics

