
CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Natasha Butt 1 2 Blazej Manczak 2 Auke Wiggers 2

Corrado Rainone 2 David W. Zhang 2 Michaël Defferrard 2 Taco Cohen 2 3

Abstract
Large language models are increasingly solv-
ing tasks that are commonly believed to require
human-level reasoning ability. However, these
models still perform very poorly on benchmarks
of general intelligence such as the Abstraction
and Reasoning Corpus (ARC). In this paper, we
approach ARC as a programming-by-examples
problem, and introduce a novel and scalable
method for language model self-improvement
called Code Iteration (CodeIt). Our method iter-
ates between 1) program sampling and hindsight
relabeling, and 2) learning from prioritized experi-
ence replay. By relabeling the goal of an episode
(i.e., the target program output given input) to
the realized output produced by the sampled pro-
gram, our method effectively deals with the ex-
treme sparsity of rewards in program synthesis.
Applying CodeIt to the ARC dataset, we demon-
strate that prioritized hindsight replay, along
with pre-training and data-augmentation, leads
to successful inter-task generalization. CodeIt
is the first neuro-symbolic approach that scales
to the full ARC evaluation dataset. Our method
solves 15% of ARC evaluation tasks, achiev-
ing state-of-the-art performance and outperform-
ing existing neural and symbolic baselines. Our
code is available at https://github.com/
Qualcomm-AI-research/codeit.

1. Introduction
The Abstraction and Reasoning Corpus (ARC) is a gen-
eral artificial intelligence benchmark targeted at both hu-
mans and AI systems (Chollet, 2019). ARC is a challeng-

1University of Amsterdam 2Qualcomm AI Research. Qual-
comm AI Research is an initiative of Qualcomm Technologies,
Inc. 3Work was completed while an employee at Qualcomm Tech-
nologies Netherlands B.V.. Correspondence to: Natasha Butt
<n.e.butt@uva.nl>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1. An overview of Code Iteration. In the sampling stage,
programs ρ are sampled from the policy Qθ conditioned on input-
output pairs. The program may not produce target output O∗ given
I , so we use hindsight relabeling: we execute the program, and add
the program ρ, inputs I , and realized outputs O to the buffer. In
the learning stage, we train the policy on samples from the buffer.

ing benchmark because it contains few-shot example tasks
that assume access to the four innate core knowledge sys-
tems: objects, actions, number, and space (Spelke & Kinzler,
2007). It was designed to require no knowledge outside of
these priors, and so the massive memorization capability of
pre-trained language models is of limited use for this prob-
lem. Humans are able to solve 80% of (a random subset of)
ARC tasks in user studies (Johnson et al., 2021), whereas
state-of-the-art neural approaches based on GPT-4 solve
only 12% of evaluation tasks (Gendron et al., 2023).

Each ARC task consists of a number of demonstration exam-
ples, each consisting of an input and output grid, and one or
more test inputs for which the corresponding output must be
predicted (see Figure 2). Effective agents use abstractions
related to the four core knowledge systems, generalize from
demonstration to test examples, and generalize between
tasks. For example, an agent may infer that adjacent cells
(space) of the same color value (number) form an object.
An agent may also infer that multiple objects sometimes
attract or repel (action). Using these abstractions to reason
about the value of the test output, an agent may generalize
from the demonstration examples to the test example.

Existing approaches to ARC can be classified as either neu-

1

https://github.com/Qualcomm-AI-research/codeit
https://github.com/Qualcomm-AI-research/codeit

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

ral (Gendron et al., 2023; Mirchandani et al., 2023), mean-
ing they directly predict output grids using a neural net-
work, or (neuro-) symbolic (Ainooson et al., 2023; Ferré,
2021; 2023), meaning they first predict a program or other
symbolic representation of the mapping between input and
output grids, before using it to generate the output grids.
Through the use of a well-designed domain-specific lan-
guage (DSL), the symbolic methods can be endowed with
prior knowledge analogous to the core knowledge systems
found in humans. By combining neural networks and sym-
bolic representations like programs, the system can leverage
both prior knowledge and data to solve the ARC tasks.

However, the most effective existing methods, whether neu-
ral or symbolic, fail to use experience to generalize between
tasks. We propose using Expert Iteration (ExIt) (Anthony
et al., 2017) to incorporate experience. ExIt methods do
this by alternating between two phases: gathering data with
an (often expensive) exploration policy, and improving the
policy by training on the newfound experiences. Instead of
performing ExIt in the grid space, we take a neuro-symbolic
approach and train our model to learn to write programs.
This brings us closer to the system that emulates general
fluid intelligence described by Chollet (2019): by incorpo-
rating new experiences in the form of abstractions.

Recent ExIt approaches employ self-improving language
models (Gulcehre et al., 2023; Aksitov et al., 2023; Wang
et al., 2023c) to replace the expensive expert by sampling
from a language model policy and reward-based filtering,
saving only trajectories that obtain high reward. This al-
lows them to scale well and benefit from knowledge already
captured in the policy. These methods prove effective on
program synthesis tasks with natural language specifica-
tions (Singh et al., 2023) and code specifications (Haluptzok
et al., 2022). However, when solving ARC, agents start
ExIt with poor prior knowledge about the search space, as
the task is out-of-distribution. Finding a correct program is
challenging: positive rewards are extremely sparse. As a
result, these methods are sample inefficient in the context of
ARC, and programming-by-examples more generally. To
enable learning in sparse-reward settings, hindsight rela-
beling (Andrychowicz et al., 2017) creates artificial expert
trajectories post-hoc, and methods that combine ExIt and
this technique have improved sample efficiency (Gauthier,
2022; Butt et al., 2022). However, since the relabelled data
distribution is constantly changing, there is risk of catas-
trophic forgetting (French, 1999).

In this work, we introduce a novel, scalable expert iteration
method for sparse reward settings that does not suffer from
catastrophic forgetting. Our method, which we call Code
Iteration or CodeIt for short, iterates between 1) a sampling
and hindsight relabeling stage and 2) a learning stage with
prioritized experience replay. We show a visualization in

Figure 2. A simplified ARC task. Given two demonstration input-
output pairs, the goal is to determine the output grid for the test
example, in three attempts or fewer. The size of the grids and the
number of demonstration and test examples differs across tasks.

Figure 1. This iterative procedure thus allows us to auto-
matically generate new data without human intervention.
Unlike current self-improvement approaches that perform
sampling and filtering (Singh et al., 2023), CodeIt learns
from all program samples, improving sample efficiency. By
prioritizing training on experiences that solve real tasks, we
ameliorate the risk of catastrophic forgetting.

CodeIt solves 59/400 ARC evaluation tasks, achieving state-
of-the-art performance by learning from experiences in the
form of abstractions and generalizing to new tasks. We
analyze the programs discovered by CodeIt and find that
these are on average shorter and use different primitives
compared to our custom symbolic baselines. Furthermore,
after finding an initial solution, CodeIt continues to improve
it over time; shorter solutions are found in 53% of solved
ARC tasks, highlighting the ability to perform program re-
finement. We perform careful ablations to better understand
the impact on task performance of key components: ExIt,
prioritized hindsight replay, and prior knowledge.

2. Method
We approach ARC as a programming-by-examples prob-
lem: for a given set of tasks that we call the search set,
we aim to find programs that correctly match inputs with
their respective outputs, and we do so by training a policy
to produce programs when shown demonstration examples.
This is achieved by iterating between two stages: 1) writing
programs using a policy and applying hindsight relabeling,
and 2) learning from the programs and their input-output
examples. We first describe key design choices below, and
then explain the iterative procedure.

2.1. Design choices

Programming language We restrict our programming
language to the open source domain specific language (DSL)
of Hodel (2023). Although various open source DSLs for
ARC exist, Hodel designed their DSL using only the ARC
training split, whereas some authors incorporate priors from
the ARC evaluation split into their DSLs (Icecuber, 2020).

Hodel’s DSL contains grid manipulation functions (e.g.,
vmirror or hmirror, which mirror the grid along the

2

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Figure 3. Sparse grid representation of a simplified ARC task.

vertical or horizontal axis), fill functions that replace all
pixels of a certain color, and functions that return locations
of specific pixel groups. See Appendix B.4 for details on the
DSL and more example primitives, and see Hodel (2023)
for discussion on the DSL’s primitives and capability.

Policy Our choice of policy is a pretrained encoder-
decoder Large Language Model (LLM). We use the 220
million parameter CodeT5+ (Wang et al., 2023b) model and
its default tokenizer, which are pretrained on a diverse set of
programming tasks. We input the demonstration examples
to the encoder, and let the decoder generate the correspond-
ing program. If necessary, demonstration examples are
truncated to fit in the encoder context window.

Grid representation In order to condition the language
model policy on input-output grids, we represent them as
text. Instead of encoding the grid as a 2-dimensional array,
we use an object-centric text representation. Each color is
encoded as an integer, and for each color in the grid we
list all the grid cells with that color as [x, y] coordinates.
Since the majority of cells belong to the background color,
this procedure significantly reduces the number of tokens
required to encode the grid (see Figure 16 in Appendix A.3).
An example of the sparse grid representation is shown in
Figure 3. This object-centric text representation, similar to
the one of Xu et al. (2023), works well for sparse grids and
is human-interpretable.

2.2. The Code Iteration Algorithm

We initialize the policy network by training on ground truth
data. We then start CodeIt, iterating between sampling and
hindsight relabeling and learning. We refer to one full pass
of sampling and learning as a meta-iteration. We show the
procedure in Fig. 1, and explain each stage in more detail
below. For pseudocode, see Appendix A.1.

Initialization We start from a dataset of ARC training
tasks and solution programs written in the domain-specific
language (DSL) of Hodel (2023), which we call the train-
ing set. This dataset is expanded by randomly mutating
programs (for details of this procedure, see Appendix A.2),
resulting in an augmented training set.

The initial dataset augmentation step serves multiple pur-
poses. Mixing in mutated programs acts as a form of data

augmentation, and is a common approach in policy improve-
ment for program synthesis (Ellis et al., 2020; Fawzi et al.,
2022). Before experiences are sampled from the policy, the
model can already learn the DSL syntax, which can be chal-
lenging if the training set is small. It also enables the model
to learn how to interpret the task demonstration examples
before we begin iterative learning, improving the quality of
our policy samples in early meta-iterations.

Sampling and hindsight relabeling In the sampling
stage, we obtain new programs using the policy Qθ. Let
the search set be the set of tasks for which we want to find
a corresponding program. For each task in the search set,
we convert the demonstration examples’ input I and target
output O∗ from grid to text representation, encode these us-
ing the policy, and then autoregressively decode a program:
ρ ∼ Qθ(ρ|I,O∗). We then run the obtained program on
the input grids. If the program is syntactically incorrect or
the runtime is too high, we discard it. Otherwise, we obtain
program outputs O = ρ(I), and can add a new triplet to a
replay buffer: the program ρ, the demonstration inputs I ,
and the realized outputs O (which may or may not match the
target outputs O∗). In each sampling stage we repeat this
procedure nρ times per task, where nρ is a hyperparameter.

Replacing the target output by the realized one is a form
of hindsight experience replay (Andrychowicz et al., 2017),
and ensures that we obtain an experience every time we
find a syntactically correct program, thereby preventing
stagnation of the buffer. Although these programs may
not solve the tasks we are interested in, they are always
valid in terms of syntax and semantics (correctly mapping
ρ(I)→ O). They can therefore be used to teach the policy
about program syntax and program behaviour, which may
lead to positive transfer to the search set. We emphasize
that we never add test examples nor performance on the test
examples to our buffer, as one should not have access to
their target output grid during sampling.

Learning During the learning stage, the policy Qθ is
trained on experiences sampled from the buffer, the training
set and the augmented training set. These experiences con-
sist of input grids I , output grids O and the corresponding
program ρ. The training objective is then a straightforward
negative log-likelihood objective:

L(ρ, I, O) = − logQθ(ρ|I,O). (1)

We keep only a single copy of the policy network, and
continue to update it during each learning stage. Since we
do not compare the policy with its past versions there is
no guarantee for improvement. Although continual updates
could lead to worse performance in the next iteration, we
find this is not a problem in practice.

By default, we perform prioritized sampling from the replay

3

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

buffer (Schaul et al., 2015). For each experience, the priority
is proportional to the percentage of demonstration outputs
equal to program outputs. This means that programs that
solve real ARC tasks’ demonstration examples are sampled
more often than programs for hindsight-relabeled tasks.

3. Experiments
In this section, we aim to demonstrate the efficacy of CodeIt,
and break down how much different components of the
method contribute to the performance. We first tuned hyper-
parameters on a custom training and validation split (for a
description of these parameters and details, see Appendix B).
Using these hyperparameters, we benchmark our method
on the ARC evaluation split and compare against previous
state-of-the-art methods. Finally, we ablate the importance
of individual components of CodeIt.

We define demonstration performance as the percentage of
solved demonstration examples on a given task. We first sort
solution programs by demonstration performance, and then
by program length, favoring shorter programs. We evaluate
the top three programs on the set of test examples. Following
ARC evaluation procedure, if at least one of these three
programs maps all test example inputs to outputs, the task
is solved and test performance is 1. We emphasize that the
ExIt procedure only makes use of demonstration examples,
and that we use test performance for final evaluation only.

Custom baselines We use a random baseline that samples
programs line-by-line. At the start of each line, we sample
a primitive function from the DSL, then sample arguments
given its expected input types. When a variable of type
“grid” is created, we end the program with probability 0.8,
otherwise we add another line to the program.

We also use a mutation-based baseline. This is a more
advanced procedure, designed with the DSL in mind. At
every meta-iteration, it mutates the set of training programs
provided by Hodel (2023). We use two variations: “d1”
mutates only the initial training set, and “d∞” can augment
newfound programs as well. We provide the exact algorithm
in Appendix A.2.

For all three baselines, we sample nm = nρ · ntasks pro-
grams per meta-iteration. Here, nρ is the desired number of
programs per meta-iteration per task, and ntasks the total
number of tasks in the population. To strengthen these base-
lines, we exhaustively evaluate each found program on all
inputs in the search set, and check the outputs against ARC
output grids.

Baselines from literature We include approaches from
literature as baselines as well. A direct comparison is some-
times difficult, as not all baselines apply their method to the

full ARC evaluation set: for example, Kolev et al. (2020)
and Alford et al. (2021) focus only on a subset of ARC.
Additionally, some symbolic methods design a DSL based
on both ARC training and evaluation sets and report results
on a hidden test set (Icecuber, 2020). We therefore only
compare to approaches that report scores on the full ARC
evaluation set.

Ainooson et al. (2023) and Ferré (2023) both run a search
procedure for a custom DSL on the full set. As Ainooson
et al. (2023) report the highest performance the full ARC
evaluation set, this is our main symbolic baseline. Although
Mirchandani et al. (2023) and Gendron et al. (2023) use a
different evaluation protocol, we include these as our main
neural baseline, as they are based on powerful LLMs (text-
davinci and GPT-4).

3.1. Setup

We initialize our training set with the 400 examples from the
ARC training split and the associated solution programs pro-
vided by Hodel (2023). We also sample 19,200 programs as
additional training data via the mutation procedure outlined
in Appendix A.2. We use the programs that are syntactically
correct to initialize the augmented training set. We use the
400 ARC evaluation examples as our search set.

In the sampling stage of each meta-iteration, we use temper-
ature sampling with temperature τ = 0.95, and sample up
to nρ = 24 programs per task. This encourages exploration
and, as a result, increases the diversity of data added to the
replay buffer. We reject policy-sampled programs if they
are syntactically incorrect, or if they run for more than 0.25
seconds per program line. All valid programs are added to
the replay buffer.

In each learning stage, we start by sampling a set of ex-
periences from the buffer under the distribution given by
the priorities. Each meta-iteration, we sample rt = 10, 000
experiences from the concatenation of the train set and the
augmented train set, and rp = 90, 000 experiences from the
buffer. The resulting set is used for 1 epoch of training. For
a full list of hyperparameters, see Table 3 in the Appendix.

3.2. Main results on ARC eval set

In Figure 4, we show performance as a function of the num-
ber of sampled programs, for CodeIt, our custom baselines,
Ainooson et al. (2023) and Ferré (2023). We show cumu-
lative performance here, which means that any program
in the buffer or augmented train set is considered a solu-
tion candidate. For the mutation baselines, we see a rapid
performance increase followed by stagnation. In compari-
son, CodeIt takes several meta-iterations to start generating
solutions outside of the augmented train set and then per-
formance rapidly increases. CodeIt quickly outperforms

4

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Method ARC Train Set ARC Eval Set ARC Eval 412

Ferré (2021) 29 / 400 6 / 400 -
Ainooson et al. (2023) MLE 70 / 400 17 / 400 -
Ainooson et al. (2023) brute force 104 / 400 26 / 400 -
Ferré (2023) 96 / 400 23 / 400 -
Mirchandani et al. (2023) text-davinci-003 56 / 400* 27 / 400* -
Gendron et al. (2023) GPT-4 - - 49 / 412*

Mutation d1 baseline - 42 / 400 39 / 412*

Mutation d∞ baseline - 38 / 400 36 / 412*

Random baseline - 6 / 400 7 / 412*

CodeIt - 59 / 400 59 / 412*

Table 1. Main results on ARC eval set. The evaluation metric is pass@3 by default, * indicates pass@1. To enable comparison to related
work of Gendron et al. (2023), we also include pass@1 performance on the ARC Eval set with 412 examples. Our method outperforms all
previous baselines. More details on the ARC splits and evaluation procedures can be found in Appendix A.4.

Figure 4. Cumulative performance as function of number of sam-
pled programs for CodeIt and various baselines, showing mean and
standard deviation of three runs for CodeIt and custom baselines.

the mutation baseline, indicating that it indeed finds higher-
quality samples to train on.

We report final performance of CodeIt after 100 meta-
iterations, and the performance of various baselines, in Ta-
ble 1. To enable comparison to Gendron et al. (2023), we
include results on the “ARC Eval 412” set, which treats
each test example in the ARC evaluation set as a separate
task. Our approach outperforms symbolic approaches (Ain-
ooson et al., 2023; Ferré, 2021; 2023), but also neural ap-
proaches based on large language models (Gendron et al.,
2023; Mirchandani et al., 2023), achieving state-of-the-art
performance on the ARC evaluation set.

For context, we show a solution written by CodeIt for an
example task in Figure 5. To further illustrate the differences
between the programs found by CodeIt and the mutation
baselines, we analyze solutions found by each method in
Appendix E.3, including a qualitative comparison in Table 4.

One finding is that there are 29 tasks for which CodeIt and
the mutation baseline both find a solution, but that there are
23 tasks for which only CodeIt finds a solution, versus 13
for the mutation baseline. For the tasks that both methods
solve, CodeIt finds shorter programs on average and uses
different primitives.

In Appendix E.4, we observe CodeIt refines its initial solu-
tion for 53% of solved tasks, producing a shorter solution in
a later meta-iteration. Moreover, in Appendix E.1, we ana-
lyze failure cases on the customer validation set and observe
that CodeIt does not solve tasks with solution programs
longer than 11 lines but often learns to use their primitives.
Further, in Appendix E.2, we look at the DSL primitives
that CodeIt learns and find that some primitive types are
learned quicker than others. Finally, in Appendix C, we
find that CodeIt appears to perform best on tasks related to
object interactions and worst on numerical or logic based
tasks by analyzing performance on the ConceptARC dataset
(Moskvichev et al., 2023).

3.3. Ablations

In Figure 6 and 7, we report cumulative performance and
policy performance over time for CodeIt and all ablations.
In all cases, we initialize the method with the ARC train set,
and use the ARC evaluation set as search set. We show the
results of ablations at the end of training in Table 2. We also
perform a scaling study with different model sizes, results
are shown in Appendix D.

A1: No ExIt This ablation removes policy feedback, to
isolate the contribution of Expert Iteration. In every meta-
iteration, instead of populating the buffer with policy sam-
ples, we take the programs generated in that meta-iteration
of the mutation d1 baseline. For each program, we randomly
select a task from the search set and perform hindsight re-

5

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Figure 5. ARC evaluation task 48f8583b and the solution program found by CodeIt.

Figure 6. Cumulative performance as function of number of sam-
pled programs for CodeIt and ablations, for three random seeds.
For cumulative performance, all programs in the augmented train
set and buffer are candidate solutions.

Figure 7. Policy performance per meta iteration as function of
number of sampled programs for CodeIt and ablations, for three
random seeds. For policy performance, only programs output by
the policy in the current meta-iteration are candidate solutions.

labelling, adding the program, input, output triplet to the
buffer. We sample rp + rt = 100, 000 experiences from
the concatenation of the train set, the augmented train set
and the buffer at each meta-iteration for learning. We see
that A1 outperforms the mutation baseline, which means
supervised learning from mutation experiences alone does
lead to some inter-task generalization. However, cumula-
tive performance is substantially lower than CodeIt. This
highlights the importance of policy feedback.

A2: No relabeling We test the effect of hindsight relabel-
ing by only adding experiences to the buffer if the program
produces the correct output for all demonstration examples.
We train on all experiences in the buffer without prioritized
sampling. Although performance increases in early meta-
iterations, A2 stagnates after around 30 meta-iterations, in-
dicating that data generated by sampling and filtering alone
is not sufficient. Sampling and hindsight relabeling (CodeIt)
performs better than sampling and filtering (A2).

A3: No priority To test the hypothesis that prioritized
sampling ameliorates catastrophic forgetting, we draw ex-
periences uniformly from the buffer in the learning stage.
A3 leads to a small reduction in cumulative performance,
but a large reduction in policy performance, indicating that
the policy indeed forgets important experiences. Prioritized
sampling results in better retention of knowledge.

A4: No pretraining To identify whether our pre-trained
policy contains beneficial prior knowledge, we randomly
reinitialize the policy’s weights at the start of CodeIt. Policy
performance shows that performance improvement is much
slower. Moreover, inter-task generalization begins later, as
shown by the cumulative performance, which only starts
increasing after around 50 meta-iterations. Despite the ex-
pected slowdown, it is encouraging to see that CodeIt does
seem to be able to bootstrap from random weights.

6

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

A5: One demo We investigate use of the task representa-
tion by decreasing the number of demonstration examples
shown to the policy. This results in a strong decrease in both
cumulative and policy performance. This indicates CodeIt
forms abstractions over multiple demonstration examples.

A6: No mutation In this ablation, we omit the mutation-
based training data augmentation step. We observe that
taking out mutation-based bootstrapping results in slower
training, although performance does increase over time and
does not stagnate. We therefore conjecture that mutation-
based augmentation is not strictly required but still useful.

4. Related work
4.1. Abstraction and Reasoning Corpus (ARC)

Various works have applied program synthesis approaches
to subsets of the ARC dataset. Xu et al. (2022) proposes
to represent grids as graphs, and applies logical programs
to the graph nodes, solving 63 of 160 tasks. Kolev et al.
(2020) apply a Differentiable Neural Computer to ARC,
solving 78% of tasks with grids of size 10× 10 and smaller.
Alford et al. (2022) applies DreamCoder (Ellis et al., 2020)
and execution-guided program synthesis, solving 22 of 36
considered tasks. Park et al. (2023) first collects human
feedback, then performs behavioral cloning for a subset of
ARC tasks using a decision transformer (Chen et al., 2021).
However, none of these methods are applied on the full ARC
evaluation set, typically due to poor scaling behavior.

The few works that do scale to the full evaluation set tend to
solve each task in isolation. Ferré (2021) and followup work
Ferré (2023) design a custom DSL and perform a fast search
for each task. Ainooson et al. (2023) also designs a custom
DSL and obtains best performance with a brute-force search,
solving 36 of 400 evaluation tasks. Mirchandani et al. (2023)
and Gendron et al. (2023) demonstrate that a pretrained lan-
guage model with custom tokenizer will output the correct
grid after being shown multiple input-output pairs, solv-
ing 27 of 400 and 49 of 412 evaluation tasks respectively.
Wang et al. (2023a) augment this approach by generating
hypotheses in multiple rounds, although they only show
performance on a subset of the ARC training set due to the
high monetary cost of querying the language model. In this
work, we design a scalable ExIt approach that combines a
smaller language model with the higher-level abstraction
of a DSL. We also ensure that our approach incorporates
experience to benefit from generalization between tasks.

Various unpublished approaches exist too, including submis-
sions to ARC challenges as well as a Kaggle competition.
These competitions use a private leaderboard, not revealed
to participants. This means participants often use the public
ARC evaluation set for training or DSL design purposes.

For example, the winner of Kaggle 2020 comments that
searching in a DSL designed using the training set resulted
in low performance, and higher performance was reached
after conditioning the DSL on the evaluation tasks (Icecuber,
2020). This makes direct comparisons to methods evaluated
on the evaluation set difficult. For reference, we include
a summary of competition results in Appendix F Table 7,
however, note that this summary reports performance on
the hidden test set, and that competition results cannot be
directly compared to this work and the literature.

4.2. Expert Iteration

Expert iteration (ExIt) (Anthony et al., 2017) consists of
a policy-guided search stage that gathers new experiences,
and a learning stage that improves the policy by imitation
learning. Commonly used experts tend to be powerful and
computationally intensive tree search algorithms such as
Monte Carlo Tree Search (Kocsis & Szepesvári, 2006) and
greedy search (Daumé et al., 2009). ExIt has achieved super-
human performance include games (Silver et al., 2016; 2018;
Anthony et al., 2017) and combinatorial problems such as
bin-packing (Laterre et al., 2019). Related work that em-
ploy hindsight relabeling in expert iteration are Aygün et al.
(2021), Butt et al. (2022) and Gauthier & Urban (2022).

Applications of ExIt for programming-by-examples
(Mankowitz et al., 2023; Ellis et al., 2020) are most relevant
to CodeIt. Mankowitz et al. (2023) consider one task only:
writing a fast sorting algorithm. For this problem, inter-task
generalization is thus not as important. DreamCoder (Ellis
et al., 2020) is most related to our work, since this ExIt
method is applied to multiple programming-by-examples
tasks. DreamCoder uses a continually growing DSL to store
abstractions, and a computationally intensive search pro-
cedure. Instead, CodeIt uses the model to store distilled
knowledge, and generates experiences via sampling from
the model. Furthermore, DreamCoder filters solutions based
on correctness whereas CodeIt uses hindsight relabeling and
prioritized experience replay.

4.3. Self Improving Large Language Models

Previous work showed that learning from synthetic data is a
viable strategy for theorem proving (Wang & Deng, 2020)
and programming-by-examples (Balog et al., 2017; Devlin
et al., 2017; Bunel et al., 2018; Parisotto et al., 2017; Polo-
sukhin & Skidanov, 2018; Zohar & Wolf, 2018), often train-
ing a model from scratch. Instead, finetuning pre-trained
large language models (LLMs) on synthetic data enables
knowledge transfer due to the prior domain knowledge cap-
tured in their weights (Butt et al., 2022). Recently, meth-
ods that use LLMs to synthesize training data have shown
successes in general domains including theorem proving
(Polu et al., 2022), question answering (Zelikman et al.,

7

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

initial policy # demo # policy policy only cumulative
Method weights examples samples perf. perf.

CodeIt CodeT5 ≤ 10 24 49/400 59/400

A1: No ExIt CodeT5 ≤ 10 0 13/400 45/400
A2: No relabeling CodeT5 ≤ 10 24 24/400 42/400
A3: No priority CodeT5 ≤ 10 24 38/400 58/400
A4: No pretraining Random ≤ 10 24 9/400 35/400
A5: One demo CodeT5 ≤ 1 24 34/400 51/400
A6: No mutation CodeT5 ≤ 10 24 17/400 20/400

Table 2. ARC evaluation performance of CodeIt ablations.

2022; Aksitov et al., 2023), mathematical reasoning (Ni
et al., 2023), machine translation (Gulcehre et al., 2023),
language-to-code generation (Zhou et al., 2023; Singh et al.,
2023) and code-to-code generation (Haluptzok et al., 2022).
We demonstrate in this work that such an approach can be
applied to the challenging ARC domain as well.

5. Discussion
Various factors make ARC uniquely challenging for
learning-based approaches, for example the limited amount
of training data, and the complexity of individual tasks. An-
other issue is that programs may differ in number of demon-
stration examples and input dimensionality, which requires
agents to reason about concepts at different scales. In this
work, we show that an expert iteration based approach can
learn to solve 59/400 unseen ARC tasks. Here, we provide
intuition for why CodeIt works well on this benchmark.

Ablations showed that hindsight relabeling has a large ef-
fect on performance. Many expert iteration approaches rely
on the emergence of a curriculum of increasingly difficult
tasks, even creating a curriculum by comparing the current
agent to past versions of itself (Silver et al., 2016; Fawzi
et al., 2022) or reward shaping (Laterre et al., 2019; Gul-
cehre et al., 2023). Hindsight relabeling forms an implicit
curriculum (Andrychowicz et al., 2017): initially we collect
easy tasks that can be solved in few lines of code, while
later on, programs become more complex. This is useful for
ARC, where obtaining even one solved task is challenging.
As relabeling adds many programs to the buffer, including
some that are further away from the target tasks, we used
prioritized sampling to avoid catastrophic forgetting.

A potential limitation of CodeIt is that for ARC, it relies
on hand-designed components: a domain specific language
(DSL), access to an interpreter for automatic evaluation,
and an initial set of ground truth programs. While we do
benefit from Hodels expert-designed DSL, we also showed
that a neuro-symbolic approach (ablation A1) outperforms
a symbolic approach (the mutation baseline), indicating that

both DSL and learning contribute to performance. Further,
CodeIt outperforms both, indicating that ExIt compounds
this effect. We also use a pretrained LLM and mutation
procedure to speed up training, but ablations showed that
training is possible even without these, albeit at a slower
pace. Nevertheless, approaches that can start learning tabula
rasa, or form their own DSL (Ellis et al., 2020) remain an
important area of research.

For the ARC dataset, it is currently beneficial to incorporate
both prior knowledge (via a DSL or pre-trained LLM) and
experience (via expert iteration). Chollet (2019) defines the
intelligence of a system as “a measure of its skill-acquisition
efficiency over a scope of tasks, with respect to priors, ex-
perience, and generalization difficulty”. Chollet poses that,
if two systems are initialized with the same prior knowl-
edge and go through the same amount of experience with
respect to a set of unseen tasks, the more intelligent sys-
tem will combine prior knowledge and its experience more
efficiently, solving more tasks.

Although many existing approaches incorporate prior knowl-
edge through a programming language or DSL (Ainooson
et al., 2023; Ferré, 2023), a pre-trained large language model
(Gendron et al., 2023; Mirchandani et al., 2023), or both
(Wang et al., 2023a), they cannot incorporate new experi-
ence, and therefore do not benefit from inter-task general-
ization. Alford (2021) proposes an expert iteration method
that does learn from experience, but it does not scale well
nor benefit from prior knowledge in its policy. We pose
that CodeIt is the more effective expert iteration method
due to its use of scalable components: pre-trained language
models, likelihood-based training, and running programs in
interpreters. There is also an implicit relationship between
computational efficiency and experience: since CodeIt’s
policy learns on the ARC domain, it is possible to use a
much smaller language model than for example Gendron
et al. (2023), who use GPT-4 as a policy. This is consistent
with LLM literature showing that high quality training data
with a curriculum enables smaller LMs to compete with
much larger ones on coding tasks (Gunasekar et al., 2023).

8

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

6. Conclusion
We introduce a novel and scalable method for self-
improving language models, CodeIt, that uses prioritized
hindsight replay. CodeIt achieves state-of-the-art perfor-
mance on the Abstraction and Reasoning Corpus (ARC)
compared to symbolic and neural baselines, solving 59 of
400 evaluation tasks. Ablations show that hindsight relabel-
ing leads to improved sample efficiency resulting in a 40%
improvement in performance. We also find that prioritizing
important experiences during training ameliorates catas-
trophic forgetting. Additionally, we observe that CodeIt
is able to refine solutions over time, identifying a shorter
program for 53% of solved tasks in later iterations. The re-
sults demonstrate that our self-improving language model is
capable of reasoning in the program space and generalizing
between tasks. For the challenging ARC benchmark, both
scalability and learning from experience prove to be key
components for success.

Acknowledgements
We thank Michael Hodel for the creation of their DSL
for solving ARC tasks, available at https://github.
com/michaelhodel/arc-dsl.

Impact Statement
This work presents a method for training a language model
based policy on programming-by-example problems where
data is scarce. Our approach learns to write programs in
iterations, and receives feedback from an interpreter.

On one hand, large language models have potential negative
societal impacts, exacerbating biases present in training data.
This can be especially harmful if datasets are small, as is the
case in our work. Additionally, models that generate code
can be used to automate writing of malicious code.

On the other hand, enabling the use of large language mod-
els on problems where data is scarce opens up application
areas where it is currently challenging to deploy them. Mod-
els that generate code from input-output specifications are
broadly applicable and can be used in many programming
settings.

References
Ainooson, J., Sanyal, D., Michelson, J. P., Yang, Y., and

Kunda, M. An approach for solving tasks on the abstract
reasoning corpus, 2023.

Aksitov, R., Miryoosefi, S., Li, Z., Li, D., Babayan, S., Kop-
parapu, K., Fisher, Z., Guo, R., Prakash, S., Srinivasan,
P., Zaheer, M., Yu, F., and Kumar, S. Rest meets re-
act: Self-improvement for multi-step reasoning llm agent,

2023.

Alford, S. A Neurosymbolic Approach to Abstraction and
Reasoning. PhD thesis, Massachusetts Institute of Tech-
nology, 2021.

Alford, S., Gandhi, A., Rangamani, A., Banburski, A.,
Wang, T., Dandekar, S., Chin, J., Poggio, T. A., and
Chin, P. Neural-guided, bidirectional program search for
abstraction and reasoning. Complex Networks, 2021.

Alford, S., Gandhi, A., Rangamani, A., Banburski, A.,
Wang, T., Dandekar, S., Chin, J., Poggio, T., and Chin,
P. Neural-guided, bidirectional program search for ab-
straction and reasoning. In Complex Networks & Their
Applications X: Volume 1, Proceedings of the Tenth In-
ternational Conference on Complex Networks and Their
Applications COMPLEX NETWORKS 2021 10, pp. 657–
668. Springer, 2022.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel, O.,
and Zaremba, W. Hindsight experience replay. Advances
in neural information processing systems, 30, 2017.

Anthony, T., Tian, Z., and Barber, D. Thinking fast and slow
with deep learning and tree search. May 2017.

ARCathon Leaderboard. https://lab42.global/
arcathon/leaderboard/, 2023. Accessed: 2024-
30-01.

Aygün, E., Orseau, L., Anand, A., Glorot, X., Firoiu, V.,
Zhang, L. M., Precup, D., and Mourad, S. Proving theo-
rems using incremental learning and hindsight experience
replay, 2021.

Balog, M., Gaunt, A., Brockschmidt, M., Nowozin, S., and
Tarlow, D. Deepcoder: Learning to write programs. In
International Conference on Learning Representations.
OpenReview. net, 2017.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and Kohli,
P. Leveraging grammar and reinforcement learning for
neural program synthesis. In International Conference
on Learning Representations, 2018.

Butt, N., Wiggers, A., Cohen, T., and Welling, M.
Program synthesis for integer sequence generation.
2022. URL https://mathai2022.github.io/
papers/24.pdf.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling, 2021. URL https://arxiv.org/abs/
2106.01345.

9

https://github.com/michaelhodel/arc-dsl
https://github.com/michaelhodel/arc-dsl
https://lab42.global/arcathon/leaderboard/
https://lab42.global/arcathon/leaderboard/
https://mathai2022.github.io/papers/24.pdf
https://mathai2022.github.io/papers/24.pdf
https://arxiv.org/abs/2106.01345
https://arxiv.org/abs/2106.01345

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Chollet, F. On the measure of intelligence. arXiv preprint
arXiv:1911.01547, 2019.

Daumé, H., Langford, J., and Marcu, D. Search-based
structured prediction. Machine learning, 75:297–325,
2009.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A.-r., and Kohli, P. Robustfill: Neural program learning
under noisy i/o. In International conference on machine
learning, pp. 990–998. PMLR, 2017.

Ellis, K., Wong, C., Nye, M. I., Sablé-Meyer, M., Cary,
L., Morales, L., Hewitt, L. B., Solar-Lezama, A., and
Tenenbaum, J. B. DreamCoder: Growing generaliz-
able, interpretable knowledge with wake-sleep Bayesian
program learning. CoRR, abs/2006.08381, 2020. URL
https://arxiv.org/abs/2006.08381.

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-
Paredes, B., Mohammadamin, B., Novikov, A., Ruiz, F.
J. R., Schrittwieser, J., Swirszcz, G., Silver, D., Hassabis,
D., and Kohli, P. Discovering faster matrix multiplica-
tion algorithms with reinforcement learning. Nature, 610,
2022. doi: https://doi.org/10.1038/s41586-022-05172-4.

Ferré, S. First steps of an approach to the arc challenge based
on descriptive grid models and the minimum description
length principle. arXiv preprint arXiv:2112.00848, 2021.

Ferré, S. Tackling the abstraction and reasoning corpus (arc)
with object-centric models and the mdl principle. arXiv
preprint arXiv:2311.00545, 2023.

French, R. Catastrophic forgetting in connectionist net-
works. Trends in cognitive sciences, 3:128–135, 05 1999.
doi: 10.1016/S1364-6613(99)01294-2.

Gauthier, T. Program synthesis for the oeis, 2022. URL
https://arxiv.org/abs/2202.11908.

Gauthier, T. and Urban, J. Learning program synthesis
for integer sequences from scratch, 2022. URL https:
//arxiv.org/abs/2202.11908.

Gendron, G., Bao, Q., Witbrock, M., and Dobbie, G. Large
language models are not strong abstract reasoners, 2023.

Gulcehre, C., Paine, T. L., Srinivasan, S., Konyushkova,
K., Weerts, L., Sharma, A., Siddhant, A., Ahern, A.,
Wang, M., Gu, C., et al. Reinforced self-training (rest)
for language modeling. arXiv preprint arXiv:2308.08998,
2023.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,
Giorno, A. D., Gopi, S., Javaheripi, M., Kauffmann, P.,
de Rosa, G., Saarikivi, O., Salim, A., Shah, S., Behl,
H. S., Wang, X., Bubeck, S., Eldan, R., Kalai, A. T., Lee,
Y. T., and Li, Y. Textbooks are all you need, 2023.

Haluptzok, P., Bowers, M., and Kalai, A. T. Language
models can teach themselves to program better. arXiv
preprint arXiv:2207.14502, 2022.

Hodel, M. Domain-specific language for the abstraction and
reasoning corpus, 2023.

Icecuber. https://www.
kaggle.com/competitions/
abstraction-and-reasoning-challenge/
discussion/154597, 2020. Accessed: 2024-30-01.

Johnson, A., Vong, W. K., Lake, B. M., and Gureckis, T. M.
Fast and flexible: Human program induction in abstract
reasoning tasks. CoRR, abs/2103.05823, 2021. URL
https://arxiv.org/abs/2103.05823.

Kaggle Leaderboard. https://
www.kaggle.com/competitions/
abstraction-and-reasoning-challenge/
code, 2020. Accessed: 2024-30-01.

Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In European conference on machine learning,
pp. 282–293. Springer, 2006.

Kolev, V., Georgiev, B., and Penkov, S. Neural abstract
reasoner. arXiv preprint arXiv:2011.09860, 2020.

Laterre, A., Fu, Y., Jabri, M. K., Cohen, A.-S., Kas, D.,
Hajjar, K., Chen, H., Dahl, T. S., Kerkeni, A., and Beguir,
K. Ranked reward: enabling self-play reinforcement
learning for bin packing. 2019.

Mankowitz, D. J., Michi, A., Zhernov, A., Gelmi, M., Selvi,
M., Paduraru, C., Leurent, E., Iqbal, S., Lespiau, J.-B.,
Ahern, A., et al. Faster sorting algorithms discovered
using deep reinforcement learning. Nature, 618(7964):
257–263, 2023.

Mirchandani, S., Xia, F., Florence, P., Ichter, B., Driess, D.,
Arenas, M. G., Rao, K., Sadigh, D., and Zeng, A. Large
language models as general pattern machines. arXiv
preprint arXiv:2307.04721, 2023.

Mitchell, M., Palmarini, A. B., and Moskvichev, A. Com-
paring humans, gpt-4, and gpt-4v on abstraction and rea-
soning tasks, 2023.

Moskvichev, A., Odouard, V. V., and Mitchell, M. The
conceptarc benchmark: Evaluating understanding and
generalization in the arc domain, 2023.

Ni, A., Inala, J. P., Wang, C., Polozov, O., Meek, C., Radev,
D., and Gao, J. Learning math reasoning from self-
sampled correct and partially-correct solutions, 2023.

10

https://arxiv.org/abs/2006.08381
https://arxiv.org/abs/2202.11908
https://arxiv.org/abs/2202.11908
https://arxiv.org/abs/2202.11908
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://arxiv.org/abs/2103.05823
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/code
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/code
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/code
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/code

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Parisotto, E., Mohamed, A.-r., Singh, R., Li, L., Zhou, D.,
and Kohli, P. Neuro-symbolic program synthesis. In
International Conference on Learning Representations,
2017.

Park, J., Im, J., Hwang, S., Lim, M., Ualibekova, S., Kim,
S., and Kim, S. Unraveling the arc puzzle: Mimicking
human solutions with object-centric decision transformer.
arXiv preprint arXiv:2306.08204, 2023.

Polosukhin, I. and Skidanov, A. Neural program search:
Solving programming tasks from description and ex-
amples. CoRR, abs/1802.04335, 2018. URL http:
//arxiv.org/abs/1802.04335.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin,
I., and Sutskever, I. Formal mathematics statement cur-
riculum learning. CoRR, abs/2202.01344, 2022. URL
https://arxiv.org/abs/2202.01344.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952,
2015.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil,
P., Garcia, X., Liu, P. J., Harrison, J., Lee, J., Xu, K.,
Parisi, A., Kumar, A., Alemi, A., Rizkowsky, A., Nova,
A., Adlam, B., Bohnet, B., Elsayed, G., Sedghi, H., Mor-
datch, I., Simpson, I., Gur, I., Snoek, J., Pennington, J.,
Hron, J., Kenealy, K., Swersky, K., Mahajan, K., Culp,
L., Xiao, L., Bileschi, M. L., Constant, N., Novak, R.,
Liu, R., Warkentin, T., Qian, Y., Bansal, Y., Dyer, E.,
Neyshabur, B., Sohl-Dickstein, J., and Fiedel, N. Beyond
human data: Scaling self-training for problem-solving
with language models, 2023.

Spelke, E. S. and Kinzler, K. D. Core knowledge.
Developmental Science, 10(1):89–96, 2007. doi:
https://doi.org/10.1111/j.1467-7687.2007.00569.x. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1111/j.1467-7687.2007.00569.x.

Wang, M. and Deng, J. Learning to prove theorems
by learning to generate theorems. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),

Advances in Neural Information Processing Systems,
volume 33, pp. 18146–18157. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
d2a27e83d429f0dcae6b937cf440aeb1-Paper.
pdf.

Wang, R., Zelikman, E., Poesia, G., Pu, Y., Haber, N., and
Goodman, N. D. Hypothesis search: Inductive reasoning
with language models. arXiv preprint arXiv:2309.05660,
2023a.

Wang, Y., Le, H., Gotmare, A. D., Bui, N. D., Li, J., and
Hoi, S. C. H. Codet5+: Open code large language models
for code understanding and generation. arXiv preprint,
2023b.

Wang, Z., Hou, L., Lu, T., Wu, Y., Li, Y., Yu, H., and
Ji, H. Enable language models to implicitly learn self-
improvement from data, 2023c.

Xu, Y., Khalil, E. B., and Sanner, S. Graphs, constraints, and
search for the abstraction and reasoning corpus, 2022.

Xu, Y., Li, W., Vaezipoor, P., Sanner, S., and Khalil, E. B.
Llms and the abstraction and reasoning corpus: Suc-
cesses, failures, and the importance of object-based rep-
resentations. arXiv preprint arXiv:2305.18354, 2023.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zhou, A., Yan, K., Shlapentokh-Rothman, M., Wang, H.,
and Wang, Y.-X. Language agent tree search unifies
reasoning acting and planning in language models, 2023.

Zohar, A. and Wolf, L. Automatic program synthesis of long
programs with a learned garbage collector. Advances in
neural information processing systems, 31, 2018.

11

http://arxiv.org/abs/1802.04335
http://arxiv.org/abs/1802.04335
https://arxiv.org/abs/2202.01344
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7687.2007.00569.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7687.2007.00569.x
https://proceedings.neurips.cc/paper_files/paper/2020/file/d2a27e83d429f0dcae6b937cf440aeb1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d2a27e83d429f0dcae6b937cf440aeb1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d2a27e83d429f0dcae6b937cf440aeb1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d2a27e83d429f0dcae6b937cf440aeb1-Paper.pdf

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

A. Method and evaluation details
A.1. CodeIt Algorithm

The pseudo code for the CodeIt procedure is portrayed in Algorithm 1.

Algorithm 1 CodeIt Algorithm

Require: Training set Dtrain, search set Dtest, policy Q
Ensure: Finetuned policy Q, updated replay buffer R, optimal programs set ρ∗

Daugmented train ← EvolveTrainingTasks(Dtrain) {Evolve training tasks}
Initialize ρ∗ as an empty set {Init set of programs that solve tasks in Dtest}
for meta iter = 1→ 100 do

Sampling and hindsight relabeling stage
for task in Dtest do
{ρ} ← Q(ρ|{I,O}) {Sample programs for test tasks}
for each ρ in {ρ} do

if SyntacticallyValid(ρ) then
Add {ρ, {(I(i), ρ(I(i))), . . . }} to R {Update the replay buffer with hindsight relabeled tasks}

end if
for (I(i), O(i)) in task do

if ρ(I(i)) = O(i) then
Add {(ρ, task)} to ρ∗ {Update set of programs that solve tasks in Dtest}

end if
end for

end for
end for
Learning stage
Dsample ← SampleFrom(R+Daugmented train +Dtrain) {Sample tasks from the replay buffer}
Train Q on Dsample for 1 epoch {Continual training of the policy}

end for

Initializing CodeIt Before we start the CodeIt procedure, we expand the training dataset using the first 19,200 mutated
tasks from the mutation procedure (see Appendix A.2) used for the mutation d1 baseline.

A.2. Program and Task Mutation

Mutation procedure To grow a population of mutated programs with task demonstration inputs corresponding to the
original training dataset, we follow the procedure outlined in Algorithm 3. This involves mutating a single task, which is
described in Algorithm 2. The mutation is carried out with the hyperparameters ϕvar = 0.25, ϕarg = 0.5, ϕfunc = 0.25. With
respect to naming notation, d1 reflects a depth of 1, meaning we only mutate programs from the original training set, and
d∞ reflects a depth of infinity, meaning we can mutate previously mutated programs.

The intuitive explanation of the mutation procedure for a single program is as follows. We pick a random line from a
program (L2-3). We then replace either a function call with a function with similar output type (L4-7), or we replace an
input argument in the function call (L8-11), or we replace the function call but leave its input variables the same (L12-14).

Mutation baseline For our mutation baseline, we sample mutated programs using the mutation procedure outlined above.
For all the mutated programs in the evolved task population, we evaluate each program on the tasks in our search set.

A.3. Task Representation

Grid representation We use a compressed grid representation, mainly to reduce the number of tokens needed to represent
each grid. We do not use a custom tokenizer. A visualization of the number of tokens is shown in Fig. 16, showing that in
almost all cases, the sparse grid representation we use leads to a reduction in the number of needed tokens, especially for
larger grid sizes.

12

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Algorithm 2 MutateProgram

Require: Replacement probabilities ϕvar, ϕarg, ϕfunc, program ρ
Ensure: ρ′

Initialize ρ′ ← ρ {Copy original program}
l← RandomLineFrom(ρ′) {Randomly select a line}
p ∼ U(0, 1)
if p < ϕvar then

f ′ ← SampleFunctionWithOutputType(GetTypeOfVariable(l))
args′ ← SampleArgumentsForFunction(f ′)
Replace variable definition f(args) in l with f ′(args′)

else if p < (ϕvar + ϕarg) then
a← RandomArgumentFrom(l)
a′ ← SampleTermOfType(GetTypeOfArgument(a))
Replace argument a with a′

else
f ′ ← SampleFunctionOfType(GetTypeOfFunction(f))
Replace function f in l with f ′

end if

Algorithm 3 EvolveTrainingTasks

Require: Initial population of training tasks Tinit (each task is a tuple (ρ, E) where E = {(I(i), O(i)), . . . }), depth
Ensure: Updated task population T ′ (initialized with Tinit)
T ← Tinit
i← 0
while i < num samples do

if depth = 1 then
(ρ, E)← RandomSelectTask(Tinit) {Select from initial tasks}

else
(ρ, E)← RandomSelectTask(T) {Select from current tasks}

end if
ρ′ ← MutateProgram(ρ)
E ′ ← ∅ {Initialize mutated task demonstration examples}
for each (I(k),) ∈ E do
O′(k) ← Execute(ρ′, I(k))
E ′ ← E ′ ∪ {(I(k), O′(k))}

end for
if AreValidGrids(GetAllOutputs(E ′)) then
T ′ ← T ′ ∪ {(ρ′, E ′)} {Add new task to the population}

end if
i← i+ 1

end while

13

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Truncation We truncate our task demonstration tokens and program tokens such that these sequences fit in our predefined
encoder and decoder context windows. For the task demonstration examples, we first order by grid size and divide the
encoder context window into two equally sized sections. For task demonstration inputs, we first encode input grids to text as
above and then we tokenize using the standard text tokenizer. We truncate these tokens at half the size of the encoder context
window. We do the same for the task demonstration outputs and with the exception of also adding an end of sequence token.
As a result, even though we aim to show the policy up to ten task demonstration examples, large grids will be cut-off. For
programs, we tokenize directly using the standard text tokenizer and truncate at the decoder context window size.

A.4. ARC evaluation

Different works use different evaluation procedures to report performance on the ARC evaluation set. We describe two
common evaluation settings in more detail below. Unless mentioned otherwise, we always use the first procedure, “ARC
Eval Set”.

ARC Eval Set This setup is intended as close as possible to the evaluation procedure described by Chollet (2019).
Baselines Ferré (2021), Ainooson et al. (2023) follow this procedure, and it is our default setting as well.

The ARC eval set consists of 400 tasks, some of which contain multiple test examples. Common procedure is to report
pass@3 performance, meaning the top 3 solutions are selected according to demonstration task performance. If there are
ties, we favor the shorter program, under the assumption that shorter programs are more likely to generalize. We then run
these programs on all test examples for the task. In some cases, there are multiple test examples per task. We call the task
“solved” if all output grids are correct.

ARC Eval 412 This setup is designed to match Gendron et al. (2023). Instead of calling a task with multiple test examples
solved if all test outputs are correct, distinct tasks are created - one per test example. This results in a set of 412 evaluation
tasks with one test example each. Furthermore, Gendron et al. (2023) uses pass@1, rather than pass@3: only one solution
per task is evaluated, and the task is considered solved if the output is correct.

B. Experiment details
B.1. Resources

Experiments were run for a maximum of 120 hours on a NVIDIA A100 80GB.

B.2. Hyperparameter tuning

Dataset The ARC benchmark does not contain a validation split. Hence, we use part of the ARC train split for validation
during the hyperparameter tuning. In particular, this validation set is the search set that the sampling stage uses as described
in 2.2. With this setup we avoid overfitting the hyperparameters to the ARC evaluation split.

We choose the split such that Dtrain and Dvalid contain roughly equally difficult programs by sampling based on program
length: Dtrain contains 80% of 2-line programs, 80% of 3-line programs, and so on. This results in 311 examples in Dtrain

and 89 examples in Dvalid.

Experiments on validation set In these experiments, we initialise our replay buffer with the 311 Dtrain examples, and
our search set consists of the 89 Dvalid examples. The aim of these experiments is to find optimal hyper-parameters for
search and training. A list of our tuned hyperparameter values and their description is shown in Tab. 3

B.3. Hyperparamaters chosen on internal validation set

We optimized these parameters on our custom validation set before applying CodeIt to ARC eval.

14

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

CodeIt stage Param Value Description

Sampling and Hindsight Relabeling nρ 24 no. policy samples ρ per task per meta-iteration1

nm 19, 200 no. mutated samples for augmented train set1

τ 0.95 sampling temperature
rt 10, 000 number of experiences sampled from augmented train set
rp 90, 000 number of experiences sampled from buffer

Learning
nϵ 1 no. train epochs per meta-iteration
lr 5e− 5 learning rate

Table 3. Table of hyperparameters.

B.4. Domain Specific Language

We adopt the domain specific language (DSL) of Michael Hodel, made available on GitHub:
https://github.com/michaelhodel/arc-dsl. This DSL was designed based on the training set: the (human) designer
did not peek at the evaluation set. This is what allows us to run search on ARC eval here. Using a DSL designed for the eval
tasks would be cheating, as we would benefit immensely from human insights captured in the primitives. On the other hand,
it may mean that some ARC eval programs are not solvable with the current DSL.

The DSL is implemented in https://github.com/michaelhodel/arc-dsl/blob/main/dsl.py. It contains many basic grid manipula-
tion operations, such as rotations (rot90, rot180, rot270), mirroring (dmirror, hmirror, vmirror), resizing
(downscale, upscale), or concatenation (hconcat, vconcat). It also contains functions that perform counting, for
example numcolors counts the number of colors occurring in an object or grid. For some ARC tasks, identifying the
foreground objects and determining how these objects interact is an effective strategy for human test-takers. Therefore, some
functions also apply to “objects”, which are patches of the same color that stand out from the background. To extract these,
the function objects returns the set of foreground objects, i.e. those that have a different color than the most common
color, assumed to be the background. For a complete list of primitives and their description, we refer the reader to the
aforementioned Github page.

Michael Hodel provides hand-designed solution programs for all training tasks in https://github.com/michaelhodel/arc-
dsl/blob/main/solvers.py. Some programs are highly complex: for some of the more challenging ARC tasks, we see solutions
consisting of up to 58 lines of code (solve b775ac94). We use these 400 solution programs to kickstart CodeIt training.

C. ConceptARC
The ConceptARC dataset (Moskvichev et al., 2023) is similar to ARC with respect to the underlying task being a grid
transformation problem, and the need to few-shot generalize from demonstration to test examples. However, tasks are
divided into 16 concept groups; ConceptARC is moreover designed to be easier than ARC. We perform analysis on this
additional benchmark, to highlight the type of tasks that CodeIt works well on.

We apply the same hyper-parameters as reported in Section B.3, with the exception of np = 60 which we rescale in
proportion to the number of evaluation tasks in the ConceptARC dataset. The evaluation metric is also different: for
ConceptARC, performance is evaluated separately on each test case per task. To ensure our results are comparable with
existing work, we evaluate CodeIt by taking the model checkpoint at 100 meta-iterations, and perform pass@3 inference for
temperature=0 (greedy decoding) and temperature=1 (simple sampling).

In Figure 8, we report CodeIt performance on ConceptARC with two evaluation temperatures against GPT-4 baselines from
the literature, GPT-4 zero shot (Moskvichev et al., 2023) and GPT few shot refine (Mitchell et al., 2023). We observe that
CodeIt outperforms GPT-4 with respect to the following concepts: extend to boundary, extract objects, filled not filled and
same different. However, CodeIt substantially under-performs GPT-4 with respect to order, clean up and count. We note that
while the DSL includes primitives for ordering and counting, it appears that CodeIt performs best on tasks related to object
interactions, however, CodeIt performs worst on numerical or logic based tasks.

1Note that no. samples here refers to policy and mutation samples before filtering for syntactic correctness.

15

https://github.com/michaelhodel/arc-dsl
https://github.com/michaelhodel/arc-dsl/blob/main/dsl.py
https://github.com/michaelhodel/arc-dsl/blob/main/solvers.py
https://github.com/michaelhodel/arc-dsl/blob/main/solvers.py

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Figure 8. ConceptARC test accuracy CodeIt (three seeds) and GPT-4

D. Scaling Study
We perform a scaling study comparing CodeT5 model sizes and their effect on performance. Figure 9 shows a significant
increase in performance increasing the model size from 60m to 220m and a smaller increase in performance from 220m to
770m. Note that for the 770m model, CodeIt was only run for 85 meta-iterations due to computation constraints.

It was our intention to add an even larger model to the scaling study (we opted for Mistral-7B). However, running CodeIt with
this model took a lot longer (reaching 25 meta-iterations after 14 days) due to a the increased time needed for the sampling
stage. We also found that replacing CodeIt’s learning stage with LoRA-based finetuning (we carry out full-parameter
finetuning with CodeT5) with a model of this size ultimately resulted in less than 9% solved tasks after 200k sampled
programs. For comparison, the CodeT5 220M model solves close to 11%, and CodeT5 770M around 12% at that same
point. A possible reason is that such large models are more prone to overfitting given the small size of the dataset. We do
believe LoRA-based finetuning of a larger model can be made to work, but that it would require a proper search of LoRA
hyperparameters, as well as benchmarking different LMs in order to find the best backbone model for this task; we deem
this to be beyond the scope of the present work.

E. Program analysis
E.1. Failure Cases on Custom Validation Set

We analyze the properties of solved tasks on the custom validation set that we used for hyperparameter tuning. For this set,
groundtruth programs are available, which allows us to analyze CodeIt’s use of function primitives (the DSL operators). We
ran CodeIt for 50 meta-iterations, and examined the program length and primitives of solved and unsolved tasks. Figure
11 visualises the results. We observe that CodeIt almost always solves the task if the solution program is short (10 lines
or fewer). Further, CodeIt does not solve tasks of medium length (11 to 15 lines), but often learns to use their function
primitives Finally, CodeIt never learns some primitives, especially those occurring in longer programs (16 lines or more).
Perhaps unsurprisingly, CodeIt does not find a solution for tasks with a longer groundtruth program, as we can assume the
tasks are more complex. Future work could address this by including information on the execution state during program
generation, effectively breaking complex problems up into subproblems.

16

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Figure 9. Cumulative performance as function of number of sampled programs for CodeIt with different model sizes

Figure 10. Pass@k curve for CodeIt over three seeds Figure 11. Failure cases on ARC custom validation set

17

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Figure 12. Primitives used in solutions for ARC evaluation set by output type. Left: proportion of primitives learnt over time. Right:
scatter plot of counts vs mean program length.

Method Number of tasks solved
CodeIt policy only 23
Mutation d1 only 13
CodeIt policy ∩Mutation d1 29

Table 4. ARC evaluation tasks solved per method. The top group of two rows show how many tasks were solved by a method, but not by
the other. The final row shows tasks solved by both methods.

E.2. DSL Learning

We investigate how CodeIt learns to use DSL primitives on the ARC evaluation set. We plot the use of primitives over
training time, and a scatter plot indicating for each primitive whether it is used, in Figure 12. We find that some primitive
types are learned quicker than others: for example, ones that return object representations are learned much quicker than
ones that return numeric values. Moreover, primitives that are not learned typically occur in few training programs, or
programs that are long, likely indicating it is more complex to learn to use these primitives.

E.3. CodeIt compared with mutation baselines

We compare the programs found using our mutation d1 baseline and the best performing of the three CodeIt runs. Table 4
displays the number of ARC evaluation tasks uniquely solved by each method and the tasks which are solved by multiple
methods. CodeIt’s policy solves 52/400 tasks, 23 of which were not solved by the mutation baseline. In Figures 13 and
14, we select the shortest program that solves an evaluation task for CodeIt and our mutation d1 baseline, computing the
program length and task representation size. Note that CodeIt has an encoder context window size of 1024 and so any
tasks which having representations of more than 1024 tokens have been truncated. Overall, CodeIt finds shorter programs
as shown in 13. Further, for the same task, CodeIt more often finds shorter programs than our mutation d1 baseline, as
shown in 14 where each color represents a different task. Interestingly, CodeIt does solve some tasks with very large task
representations, suggesting in some cases a truncated task representation provides sufficient information to solve the task.

In Table 5, we show a subset of solution programs for ARC eval tasks solved by both CodeIt and our mutation d1 baseline.
We select tasks where the shortest programs differ between the two methods. CodeIt programs appear more concise and use
different primitives. Out of the 29 tasks that are solved by both methods, there are 24 shortest programs where the programs

18

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Figure 13. Histogram of number of lines for tasks where both
CodeIt and Mutation produced solutions. CodeIt (in blue) pro-
duces shorter programs than the Mutation baseline (in orange).

Figure 14. Number of task representation tokens vs number of pro-
gram tokens. Colors represents the different tasks. We see no obvi-
ous correlation between task representation and program length.

Figure 15. Difference in number of tokens between the shortest
solution found per meta-iteration and shortest solution found by the
final meta-iteration for best performing CodeIt run.

Figure 16. Grid size versus token count for the ARC training data.
The sparse grid representation is typically shorter than the raw grid
representation.

differ by method. CodeIt only produces a longer program in 1 out of these 24 cases. The Mutation baseline often includes
redundant lines. In addition, for many programs, CodeIt produces a program that is qualitatively better: the solution is less
complex, and contains fewer lines overall.

E.4. CodeIt over time

Since we do not have ground truth programs for the ARC evaluation set, we treat the shortest program found with
demonstration performance and test performance equal to 1 for each task over all the meta-iterations as a proxy for the
ground truth program. To examine how CodeIt solutions change over time, we take the subset of ARC evaluation tasks
where the best performing CodeIt run finds such programs; this leaves us 45 tasks. We observe that once CodeIt finds a
solution, CodeIt often continues to find both longer and shorter solutions in later meta-iterations. We pose that this gives the
potential for program refinement, however, since the priority does not incorporate length, there is not explicit bias towards
shorter solutions and so both longer and shorter solutions will be learned from. We observe that out of the 45 tasks, the best
performing CodeIt run finds shorter solutions over time in 24 tasks as shown in Figure 15.

In Tables 6, we show a selection of examples where the best performing CodeIt run finds a longer solution in an earlier
meta-iteration and shorter solution in a later meta-iteration.

19

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

CodeIt Policy Mutation d1 Test Example

x1 = vmirror(I) x1 = vmirror(I)
x2 = hconcat(x1, I) x2 = hconcat(x1, I)
O = hconcat(x2, x2) x3 = hmirror(x2)

x4 = vconcat(x2, x3)
x5 = hconcat(x3, x3)
O = hmirror(x5)

x1 = compress(I) x1 = hmirror(I)
x2 = ofcolor(I, THREE) x2 = vmirror(I)
x3 = rot90(x1) x3 = ofcolor(I, THREE)
O = subgrid(x2, x3) x4 = subgrid(x3, x1)

x5 = subgrid(x3, x2)
x6 = palette(x4)
x7 = contained(ONE, x6)
O = branch(x7, x5, x4)

x1 = ofcolor(I, ONE) x1 = mostcolor(I)
x2 = subgrid(x1, I) x2 = objects(I, T, F, T)
O = cmirror(x2) x3 = replace(I, x1, THREE)

x4 = argmax(x2, size)
x5 = argmin(x2, size)
x6 = position(x4, x5)
x7 = first(x6)
x8 = last(x6)
x9 = subgrid(x4, x3)
x10 = hline(x5)
x11 = hmirror(x9)
x12 = vmirror(x9)
x13 = branch(x10, x11, x12)
x14 = branch(x10, x7, ZERO)
x15 = branch(x10, ZERO, x8)
x16 = asobject(x13)
x17 = matcher(first, THREE)
x18 = compose(flip, x17)
x19 = sfilter(x16, x18)
x20 = ulcorner(x4)
x21 = shape(x4)
x22 = astuple(x14, x15)
x23 = multiply(x21, x22)
x24 = add(x20, x23)
x25 = shift(x19, x24)
x26 = rot270(x11)
O = paint(x26, x25)

x1 = objects(I, F, F, T) x1 = objects(I, F, F, T)
x2 = argmax(x1, numcolors) x2 = leastcolor(I)
O = subgrid(x2, I) x3 = rbind(colorcount, x2)

x4 = argmax(x1, x3)
O = subgrid(x4, I)

Table 5. Selection of shortest programs for ARC evaluation tasks solved by CodeIt policy (left) and the Mutation d1 baseline (right) for
which CodeIt program is shorter.

20

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Early Shortest Solution Later Shortest Solution Test Example

x1 = ofcolor(I, EIGHT) x1 = replace(I, EIGHT, ZERO)
x2 = replace(I, EIGHT, ZERO) x2 = compress(x1)
x3 = compress(x2) O = downscale(x2, TWO)
O = downscale(x3, TWO)

x1 = objects(I, T, F, T) x1 = objects(I, T, F, T)
x2 = apply(delta, x1) x2 = apply(delta, x1)
x3 = mfilter(x2, square) x3 = mfilter(x2, square)
x4 = fill(I, FIVE, x3) x4 = fill(I, FIVE, x3)
x5 = objects(x4, F, F, T) x5 = objects(x4, F, F, T)
x6 = mapply(delta, x5) x6 = mapply(delta, x5)
x7 = fill(x4, SEVEN, x6) O = fill(x4, SEVEN, x6)
O = fill(x7, FIVE, x3)
x1 = objects(I, T, F, F) x1 = objects(I, T, F, T)
x2 = colorfilter(x1, ZERO) x2 = sizefilter(x1, ONE)
x3 = sizefilter(x2, ONE) x3 = difference(x1, x2)
x4 = difference(x2, x3) x4 = merge(x3)
x5 = merge(x4) O = fill(I, EIGHT, x4)
O = fill(I, EIGHT, x5)
x1 = vmirror(I) x1 = ofcolor(I, EIGHT)
x2 = fgpartition(I) x2 = box(x1)
x3 = compose(outbox, inbox) O = underfill(I, ONE, x2)
x4 = mapply(x3, x2)
O = underfill(I, ONE, x4)
x1 = lefthalf(I) x1 = lefthalf(I)
x2 = righthalf(I) x2 = righthalf(I)
x3 = ofcolor(x1, ZERO) x3 = cellwise(x1, x2, ONE)
x4 = ofcolor(x2, ZERO) O = replace(x3, SEVEN, ONE)
x5 = intersection(x3, x4)
x6 = shape(x1)
x7 = canvas(ONE, x6)
O = fill(x7, ZERO, x5)
x1 = lefthalf(I) x1 = lefthalf(I)
x2 = righthalf(I) x2 = righthalf(I)
x3 = ofcolor(x1, FOUR) x3 = cellwise(x1, x2, FOUR)
x4 = ofcolor(x2, FOUR) O = replace(x3, FOUR, EIGHT)
x5 = combine(x3, x4)
O = fill(x1, EIGHT, x5)
x1 = lefthalf(I) x1 = vmirror(I)
x2 = righthalf(I) x2 = lefthalf(I)
x3 = ofcolor(x1, ZERO) x3 = righthalf(I)
x4 = ofcolor(x2, ZERO) x4 = cellwise(x2, x3, TWO)
x5 = intersection(x3, x4) O = replace(x4, EIGHT, TWO)
x6 = shape(x1)
x7 = canvas(TWO, x6)
O = fill(x7, ZERO, x5)

Table 6. Selection of shortest solutions for ARC evaluation tasks solved by CodeIt policy where shorter solutions are found over time.

21

CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

F. ARC competitions

Competition Winner Method Hidden Test Perf.

Kaggle 2020 Icecuber (2020) Search in eval set DSL* 21%
Kaggle 2020 late Multiple (Kaggle Leaderboard, 2020) Ensemble previous entries* 30%
ARCathon 2022 Hodel (2023) Search in CodeIt DSL 6%
ARCathon 2023 Multiple (ARCathon Leaderboard, 2023) Unknown 30%

Table 7. Performance on Hidden Test Set for Various ARC Competition Winners. *Method conditions on ARC evaluation set.

22

