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ABSTRACT

Contrastive learning is predominantly deterministic, limiting its effectiveness in
noisy and uncertain environments. We propose a probabilistic contrastive learn-
ing framework inspired by the von Mises-Fisher (vMF) distribution, embedding
representations on a hyperspherical space. To address numerical instability, we
introduce an unnormalized and regularized vMF distribution, preserving essential
properties with theoretical guarantees. The concentration parameter, κ, serves as
an interpretable measure of aleatoric uncertainty. Empirical evaluations show a
strong correlation between estimated κ and unseen data corruption severity, en-
abling effective failure analysis and enhancing out-of-distribution detection with-
out modeling epistemic uncertainty. From a fresh perspective, our approach in-
troduces a flexible alignment mechanism for improved uncertainty estimation in
high-dimensional spaces while remaining compatible with existing contrastive
learning frameworks.

1 INTRODUCTION

Self-supervised contrastive learning has significantly narrowed the gap between unsupervised and
supervised learning across various domains, including vision (Chen et al., 2020; Chen & He, 2021;
Caron et al., 2021; Zbontar et al., 2021) and multimodal learning (Hager et al., 2023). Despite
these notable achievements, current methods still fall short in critical aspects necessary for decision-
making in high-stakes applications. In domains such as medical diagnosis (Azizi et al., 2021) and
autonomous driving (Kaya et al., 2022), where decisions can have serious consequences, accurately
estimating uncertainty, either from data or models, is essential.

Traditional contrastive learning methods are predominantly deterministic and lack mechanisms to
gauge uncertainty, limiting their utility in scenarios where understanding the model’s confidence
is crucial. Previous attempts to incorporate uncertainty estimation have primarily utilized Gaussian
distributions (Kingma et al., 2015; Gal et al., 2016; Upadhyay et al., 2023), which may not align well
with hyperspherical contrastive representations (Bachman et al., 2019; Tian et al., 2020; He et al.,
2020; Chen & He, 2021). Recent research has begun exploring geometric properties of contrastive
representations (Wang & Isola, 2020; Wang & Liu, 2021; Ge et al., 2023), prompting a shift towards
probabilistic models better suited to these spaces.

Probabilistic embedding approaches involve encoders generating distributions within the latent
space, rather than deterministic point estimates. These approaches generally fall into two cate-
gories: (1) transforming traditional loss functions into probabilistic formats by aggregating the loss
across predicted probabilistic embeddings (Scott et al., 2021; Roads & Love, 2021; Kirchhof et al.,
2023), and (2) employing distribution-to-distribution metrics to replace point-to-point distances in
loss calculations, with the Expected Likelihood Kernel (ELK) (Shi & Jain, 2019) being particu-
larly effective. Recently, a Monte-Carlo sampling-based InfoNCE loss (Kirchhof et al., 2023) was
proposed to train encoders to predict probabilistic embeddings and learn correct posteriors. De-
spite these innovations, these approaches face limitations such as numerical instability and implicit
uncertainty modeling.

To address these limitations, we leverage the von Mises-Fisher (vMF) distribution (Fisher, 1953),
which is well-suited for data on the hypersphere and aligns closely with the intrinsic structure of
most contrastive learning representations. The vMF distribution is parameterized by a mean direc-
tion µ and a concentration parameter κ, where κ controls the spread of the distribution. As shown
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Figure 1: A. The vMF distribution with a fixed mean vector and varied concentration values κ on a
sphere. B. Aligning two vMF distributions, (µ1, κ1) and (µ2, κ2) from two different views, is a key
challenge in probabilistic contrastive learning, which our method effectively addresses.

in Figure 1(A), higher κ values indicate lower dispersion around the mean, serving as a direct mea-
sure of uncertainty. Explicitly learning κ at the sample level is critical for directly quantifying the
confidence of the learned representations. A key challenge in probabilistic contrastive learning is
the alignment of two vMF distributions, as shown in Figure 1(B).

In our work, we present a fresh perspective on modeling probabilistic embeddings by introducing an
unnormalized and regularized vMF distribution, enabling smoother and more stable training. This
approach replaces the complex normalization constant of vMF with an ℓ2 regularization, addressing
numerical instability issues in high-dimensional spaces and acting as an effective regularizer. More-
over, our method incorporates a probabilistic embedding alignment loss that flexibly adjusts the
alignment strength based on embedding dispersion, allowing for both weak and strong alignments
depending on uncertainty levels.

Our contributions are as follows: (1) We propose a vMF-based probabilistic contrastive learning
framework that effectively captures uncertainty in hyperspherical spaces, supported by theoretical
guarantees on similarity ranking preservation. (2) We develop a novel embedding alignment loss
that accounts for both direction and concentration, providing flexible alignment based on embed-
ding dispersion. This loss is compatible with existing contrastive learning methods. (3) By replac-
ing the normalization constant of the vMF distribution with an ℓ2 regularization term, our approach
mitigates numerical instability and acts as a natural regularizer, enhancing training stability and per-
formance. (4) We empirically demonstrate our framework’s effectiveness in quantifying degrees of
corruption and failure analysis during test time, as well as its potential in enhancing representations
for out-of-distribution (OOD) detection.

2 METHOD

2.1 PRELIMINARIES

Contrastive learning aims to encode semantically similar data points close together and dissimilar
points far apart in an embedding space in a deterministic manner. A common approach involves cre-
ating positive and negative pairs: for a data point x, two augmented views xi and xj are generated.
The objective is to maximize the similarity of these positive pairs while minimizing the similarity
with other data points (negative pairs). This is formalized using a loss function such as the SimCLR
framework (Chen et al., 2020), with the contrastive loss defined as:

Lcontrastive = − log
exp(sim(zi, zj)/τ)∑N
k=1 exp(sim(zi, zk)/τ)

, (1)

where zi and zj are the embeddings of xi and xj , sim(·) denotes cosine similarity, and τ is a
temperature parameter.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

von Mises-Fisher distribution (Fisher, 1953) is a probability distribution on the unit sphere in Rn,
suitable for modeling data on an n-dimensional hypersphere. Its probability density function is:

p(x;µ, κ) = C(κ) exp(κµ⊤x), (2)

where x lies on the unit sphere, µ is the mean direction, κ is the concentration parameter,
and C(κ) = κ

n
2

−1

(2π)
n
2 In

2
−1(κ)

is the normalization constant involving the modified Bessel function

Iν(κ) (Watson, 1922). The concentration parameter κ controls the dispersion around the mean di-
rection; higher κ implies less dispersion.

An overflow issue arises in the vMF distribution due to the rapid growth of Iν(κ) with increasing
κ, especially in high-dimensional spaces where ν = n

2 − 1. This can lead to numerical instability
during model training with gradient-based optimization methods (Banerjee et al., 2005).

2.2 UNNORMALIZED AND REGULARIZED vMF DISTRIBUTION

Unnormalized and simplified form. To mitigate overflow issues inherent in the traditional vMF
distribution, we adopt an unnormalized form that omits the normalization constant:

ψ(x;µ, κ) = exp(κµ⊤x). (3)

Despite being unnormalized, ψ(x;µ, κ) retains the essential directional and concentration proper-
ties, making it suitable for relative comparisons within the loss function used in contrastive learning.

Theoretical guarantee: preserving similarity ranking. To ensure that the unnormalized vMF
distribution maintains the relative ordering of similarities between embeddings, we present the fol-
lowing proposition:
Proposition 1. For any two embeddings x1 and x2, if p(x1;µ1, κ1) > p(x2;µ2, κ2), then:

exp(κ1µ
⊤
1 x1) > exp(κ2µ

⊤
2 x2),

thereby preserving the ranking of similarities between embeddings even in the unnormalized form.

Proof outline: Since C(κ) is a positive scaling factor dependent solely on κ and the dimensionality
d, the relative ordering of p(x1;µ1, κ1) and p(x2;µ2, κ2) is primarily governed by the exponential
terms exp(κ1µ⊤

1 x1) and exp(κ2µ
⊤
2 x2). By omitting C(κ), the unnormalized form ψ(x;µ, κ) re-

tains the relative ordering, ensuring that the ranking of similarities between embeddings is preserved.
The complete proof is provided in Appendix A.

Log-likelihood and regularization. Consider the log-likelihood of the unnormalized vMF distri-
bution for a data point x on the unit sphere with mean direction µ and concentration parameter
κ:

L(µ, κ) = logψ(x;µ, κ) = κµ⊤x. (4)

Since C(κ) is omitted, κ can become excessively large during optimization as the original C(κ)
acts as a natural regularizer. Hence, a new regularization approach is necessary. To address this, we
explore two regularization techniques:

(1) Approximation-based regularization: Using the large κ approximation of the modified Bessel
function Iν(κ) ≈ eκ√

2πκ
, we derive a regularizer from the original vMF distribution:

Lreg1 = κ− d− 1

2
log κ, (5)

where d is the dimension of the embedding space. This regularizer naturally emerges from the
log-likelihood of the vMF distribution under the approximation.

(2) ℓ2 regularization: Alternatively, we propose a standard ℓ2 regularizer:

Lreg2 = λκ2, (6)

where λ > 0 is a hyperparameter controlling the regularization strength. While this deviates further
from the original likelihood model, it offers smoother, convex gradients.

3
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Empirically, we find that the ℓ2 regularizer provides more stable training dynamics and superior
performance across various tasks. The gradient of this regularizer with respect to κ, given by
∂Lreg2
∂κ = 2λκ, introduces a linear restoring force that grows with κ, effectively preventing it from

becoming excessively large during training.

Probabilistic interpretation. From a Bayesian perspective, regularization can be interpreted as
placing a prior on the parameter. The ℓ2 regularization term corresponds to a Gaussian prior on κ:

P (κ) ∝ exp(−λκ2). (7)

This prior assumes that κ is more likely to take smaller values, aligning with the nature of the vMF
distribution to avoid extreme concentrations.

In summary, this unnormalized and regularized vMF distribution serves as the foundation for our
probabilistic contrastive learning framework, enabling the model to effectively capture uncertainty.

2.3 PROBABILISTIC CONTRASTIVE LEARNING ON THE HYPERSPHERE

Unit sphere normalization. To enhance sensitivity to angular differences, we project each data
point x onto the unit sphere:

z =
f(x)

∥f(x)∥
, (8)

where f(x) is the encoder network’s output. This normalization ensures that similarities are based
solely on directionality, aligning with the use of cosine similarity in contrastive learning (Chen et al.,
2020; Chen & He, 2021; Grill et al., 2020).

Probabilistic embedding alignment. We incorporate the vMF distribution into the contrastive
learning framework by modeling embeddings with mean directions µ and concentration parameters
κ. Given a batch of input images, two augmented views x1 and x2 are generated. The encoder f(·)
outputs (µ1, κ1) and (µ2, κ2), ensuring µ is normalized via: µ = µ′

∥µ′∥ .

In the contrastive learning context, we propose a probabilistic embedding alignment loss for the
distributions of two augmented views (positive pairs). The alignment of µ2 given (µ1, κ1) and µ1

given (µ2, κ2) can be formulated as:

La(µ1, κ1,µ2, κ2) = exp[(κ1 + κ2) · µT
1 µ2] ∝ exp(κ1 · cos(θ)) · exp(κ2 · cos(θ)), (9)

where θ is the angle between µ1 and µ2, and cos(θ) can be computed as the dot product between
µ1 and µ2 due to their normalization. The loss is then defined as the negative log-alignment:

Lalign(κ1, κ2,µ1,µ2) = −λalign · (κ1 + κ2)µ
T
1 µ2, (10)

where λalign controls the strength of the loss. This loss emphasizes the exponential alignment of
embeddings based on their dot product, scaled by the sum of their concentration parameters. Unlike
the MC-InfoNCE loss (Kirchhof et al., 2023), our loss directly links the strength of the alignment
to the uncertainty of the embeddings, as represented by κ. Intuitively, it encourages tight alignment
when uncertainty is low. The analysis of gradient behavior of Eq. 10 is provided in the Appendix.

Final loss. To maintain discriminative embeddings, we combine the probabilistic embedding align-
ment loss, the ℓ2 regularization, and the original contrastive loss:

Ltotal = Lalign(κ1, κ2) + Lreg(κ1, κ2) + Lcontrastive(µ1,µ2). (11)

This combined loss ensures that embeddings are both discriminative and uncertainty-aware, ensuring
that the model learns embeddings that are tightly aligned when confident and appropriately dispersed
when uncertain.

Connection between κ and uncertainty. κ serves as a key indicator of uncertainty in our frame-
work. High κ values signify tightly clustered embeddings, indicating low aleatoric uncertainty, while
low κ reflects dispersed embeddings, corresponding to higher aleatoric uncertainty arising from data
noise or corruption. Moreover, κ also captures epistemic uncertainty: in regions with limited data,
hard samples, or OOD inputs, lower κ values represent increased uncertainty, reflecting the model’s
lack of confidence in its learned representations.
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Algorithm 1 Probabilistic Contrastive Learning with Embedding Alignment
1: for each batch {xi}Ni=1 do
2: {(xi

1,x
i
2)}Ni=1 ← Augment({xi}Ni=1) % Generate positive pairs

3: for each positive pair (x1,x2) do
4: (µ1, κ1), (µ2, κ2)← f(x1), f(x2) % Obtain embeddings and concentrations
5: κ1, κ2 ← Softplus(κ1, κ2) % Ensure positive κ values
6: Lalign ← −λalign(κ1 + κ2)µ

⊤
1 µ2 % Compute alignment loss

7: Lcontrastive ← Lcontrastive(µ1,µ2) % Compute contrastive loss
8: Lreg ← λκ(κ

2
1 + κ22) % Compute regularization loss

9: Ltotal ← Lalign + Lcontrastive + Lreg % Combine losses
10: Backpropagate and update model parameters
11: end for
12: end for

This dual role of κ is intricately tied to data augmentation in contrastive learning, which introduces
variability and perturbations to the training data. As a result, the embedding dispersion varies: high-
quality, less perturbed data maintain high κ values, while heavily augmented or noisy data lead
to lower κ values. During training, the model adjusts κ based on the consistency and quality of
augmented data, enabling it to adapt to diverse and uncertain input regions.

3 RELATED WORK

Representation learning on the unit hypersphere has its advantages in representation quality and
interpretability (Nickel & Kiela, 2017; Davidson et al., 2018; Govindarajan et al., 2023). Theoretical
analysis has shown that such methods learn alignment and uniformity properties asymptotically
on the hypersphere (Wang & Isola, 2020). It has been therefore widely adopted by the popular
contrastive learning approaches (Bachman et al., 2019; Tian et al., 2020; He et al., 2020; Chen &
He, 2021). Hyperspherical latent spaces in variational autoencoders have demonstrated superior
performance over Euclidean counterparts (Davidson et al., 2018; Xu & Durrett, 2018).

Hyperspherical face embeddings have outperformed their unnormalized counterparts (Liu et al.,
2017; Wang et al., 2017). Recently, contrastive learning on the hypersphere has been shown effective
in out-of-distribution detection (Ming et al., 2022). The consistent empirical success across diverse
applications and nice geometric properties underscores the hypersphere’s uniqueness as a feature
space. In the context of our work, we extend this exploration to the realm of uncertainty estimation
within these hyperspherical spaces.

Aleatoric uncertainty is inherent in many vision problems, such as object recognition (Kendall &
Gal, 2017; Shi & Jain, 2019) and semantic segmentation (Monteiro et al., 2020; Kahl et al., 2024),
where stochasticity in image acquisition (e.g., noise and imaging artifacts) incurs uncertainties in
prediction. Other tasks with ambiguous input data include 3D reconstruction from 2D input (Chen
et al., 2021) or from noisy sensor (Meech & Stanley-Marbell, 2021).

To facilitate the systematic study of aleatoric uncertainty, the widely-applied benchmark proposed
by Hendrycks & Dietterich (2019) quantifies the severity of data corruptions (e.g., imaging noise,
distortions caused by compression, etc.) into different corruption levels (Hendrycks & Dietterich,
2019). In this work, we demonstrate that the estimated concentration parameters κ’s closely corre-
late with the corruption levels.

Probabilistic embedding are emerging approaches that involve encoders generating distributions
within the latent space, rather than deterministic point estimates. Such approaches to probabilis-
tic embeddings diverge into two primary categories: The first method transforms traditional loss
functions into probabilistic formats by aggregating the entire loss across the spectrum of predicted
probabilistic embeddings (Scott et al., 2021; Roads & Love, 2021; Kirchhof et al., 2023). Another
strategy employs distribution-to-distribution metrics to substitute the conventional point-to-point
distances in loss calculations, with the Expected Likelihood Kernel (Shi & Jain, 2019) standing out
as a particularly effective technique. Notably, it has recently shown its efficacy even in contexts
involving high-dimensional embedding spaces (Kirchhof et al., 2022). Recently, a Monte-Carlo
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sampling-based InfoNCE loss (Kirchhof et al., 2023) was proposed to train the encoder to predict
probabilistic embeddings and to learn the correct posteriors. In our work, we present a fresh per-
spective on modeling such a probabilistic embedding by introducing the unnormalized vMF and a
regularization term, enabling a smoother training.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Quantifying the level of data corruption. CIFAR-10-C (Hendrycks & Dietterich, 2018) is a well-
established benchmark dataset for evaluating model robustness in a controlled environment. It con-
tains 18 image corruption types based on the original CIFAR-10 (Krizhevsky et al., 2009). Our
key assumption is that the corrupted data have higher inherent aleatoric uncertainty compared to
the uncorrupted one. We therefore assume that higher degrees of corruption would result in higher
uncertainties (lower concentration κ). We use Spearman Correlation as an evaluation metric to
quantify if a model could capture this connection. We use the non-parametric, ranking-based Spear-
man correlation (rather than Pearson) as the relationship between the variables is highly nonlinear
(i.e., we test for their monotonicity). Some corruptions are shown in Figure 2. The details of the
corruption are in Appendix B

OOD detection. From CIFAR-10, CIFAR-100, and MNIST (LeCun, 1998), we generate six in-
domain and out-of-domain pairs for the OOD detection tasks, as shown in Table 2. Area Under the
Receiver Operating Characteristic curve (AUROC) is used for the detection accuracy following the
practice from (Kuan & Mueller, 2022). For this task, we train three different models on the three
domains from scratch. The learned κ is treated as a one-dimensional feature (or anomaly score) to
enhance the features for OOD detection.

Failure analysis. To evaluate the effectiveness of our uncertainty estimates, we perform a three-step
failure analysis. First, we pre-train the probabilistic encoder using a contrastive learning approach.
Second, we train a linear classifier on the learned embeddings (mean directions) with labels from
the training set and assess its accuracy on the test set. Third, we categorize the test samples into
two groups: (1) correctly classified and (2) misclassified. By comparing the κ values between
these groups, we investigate whether lower κ values are associated with misclassifications, thereby
demonstrating the utility of our uncertainty measures in identifying uncertain predictions.

4.2 BASELINES

To quantify the uncertainty in representations, we compare our method with the following baselines
which are briefly described.

Model ensembles (Huang et al., 2016). We train multiple deterministic models with different ini-
tializations and evaluate the empirical variance in their representations. The variance across the
ensemble serves as a measure of uncertainty, where high variance indicates lower confidence in
embeddings.

MC dropout (Gal & Ghahramani, 2016). This approach quantifies uncertainty by enabling dropout
during inference and performing multiple forward passes through the network. The variance of
the predictions from these passes estimates the uncertainty, with higher variance reflecting greater
uncertainty.

Differential Entropy (Malinin & Gales, 2018) (DE). This baseline measures the entropy of the
continuous probability distributions of the embeddings. Higher entropy values indicate greater un-
certainty in the model’s representations.

Expected likelihood kernel (Shi & Jain, 2019) (ELK). ELK replaces traditional point-to-point dis-
tances with distribution-to-distribution metrics. This probabilistic approach measures similarity
between embeddings based on their underlying distributions, enhancing uncertainty estimation in
contrastive learning frameworks.

Hedged instance embeddings (Oh et al., 2018) (HIB). HIB models embeddings as random variables
trained under the variational information bottleneck principle. By hedging the location of each

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Spearman correlation between kappa values and the levels of corruption. As the
severity of corruption increases, κ decreases, implying higher uncertainty in the representations. +
and− indicate that the correlations are expected to be positive and negative, respectively. We use the
ranking-based Spearman correlation rather than Pearson as the relationship between the variables is
highly nonlinear (monotonic).

Methods Brightness Contrast Defocus
Blur

Elastic
Transform Fog Frost Gaussian

Blur
Gaussian

Noise
Glass
Blur

Model ensembles (+) −0.829 −0.943 −0.486 −0.829 −0.943 −1.000 −0.657 −1.000 −0.714
MC dropout (+) −1.000 −1.000 −0.600 −0.943 −1.000 −1.000 −0.829 −1.000 −0.486
DE (Malinin & Gales, 2018) (+) −0.829 −0.943 −0.486 −0.829 −0.943 −0.943 −0.657 −0.943 −0.714
ELK (Shi & Jain, 2019) (−) −0.714 −0.829 −0.371 −0.657 −0.943 −0.714 −0.657 −0.714 −0.714
HIB (Oh et al., 2018) (−) −0.829 −0.943 −0.371 −0.829 −0.943 −0.714 −0.657 −0.714 −0.714
MCInfoNCE (−) −1.000 −1.000 −0.429 −0.943 −1.000 −1.000 −0.486 −1.000 −0.714
Ours (−) −1.000 −1.000 −0.429 −0.943 −1.000 −1.000 −0.771 −0.600 −0.771

Impulse
Noise

JPEG
Comp.

Motion
Blur Pixelate Saturate Snow Spatter Speckle

Noise
Zoom
Blur

Model ensembles (+) −1.000 −1.000 −0.943 −1.000 −0.371 −0.829 −0.829 −1.000 −0.522
MC dropout (+) −1.000 −1.000 −1.000 −1.000 −0.543 −0.829 −0.829 −1.000 −0.714
DE (Malinin & Gales, 2018) (+) −0.829 −0.943 −0.943 −0.943 −0.522 −0.829 −0.657 −0.910 −0.657
ELK (Shi & Jain, 2019) (−) −0.486 −0.943 −0.943 −0.829 −0.486 −0.829 −0.829 −0.829 −0.543
HIB (Oh et al., 2018) (−) −0.829 −0.829 −0.829 −0.943 −0.371 −0.657 −0.714 −0.829 −0.486
MCInfoNCE (−) −0.943 −1.000 −0.943 −0.829 −0.371 −0.483 −0.829 −1.000 0.600
Ours (−) −0.943 −1.000 −0.943 −0.943 −0.714 −0.943 −0.829 −1.000 −0.943

input in the embedding space, HIB explicitly captures uncertainty arising from ambiguous inputs,
enhancing performance in image matching and classification tasks.

MCInfoNCE (Kirchhof et al., 2023). We adapt the Monte Carlo sampling-based InfoNCE loss to
the SimCLR framework for a fair comparison. This method leverages sampling to approximate ex-
pectations over the latent space, facilitating uncertainty estimation while maintaining compatibility
with contrastive learning objectives.

4.3 TRAINING

Architecture. The encoder network contains two projection heads for the mean direction µ and κ
based on ResNet50 (He et al., 2016). The projection head for the µ is realized through a sequential
arrangement of layers, starting with a linear transformation from the 2048-dimensional ResNet50
feature space to an intermediate 512-dimensional space, followed by batch normalization and ReLU
activation, and finally projecting down to a d-dimensional representation. d is set to 128 for all
experiments except the study on dimension in Table 4.4. In parallel, the κ parameter is estimated
through a separate head, mirroring the structure but diverging in its final output to produce a single
scalar value per input. κ is then passed through a softplus function (Nair & Hinton, 2010), ensuring
its non-negativity and adherence to the constraints of a concentration parameter in a probabilistic
setting. The codes of the neural architecture are in the Appendix.

Optimization. Following the SimCLR configuration, our data augmentation includes random crop-
ping, resizing, color jittering, and horizontal flipping. We train all models on CIFAR-10’s training
set for 1000 epochs to quantify corruption levels. Hyper-parameters λalign and λreg are adjusted for
optimal training loss and stability, with λreg fixed at 0.005 across experiments due to observed train-
ing stability. The λalign parameter, dictating alignment loss strength, inversely affects representation
discriminativeness and, if increased, may cause training instability. A practical approach involves
starting with a low value, like 0.01, and incrementally adjusting up to a saturation point where the
total training loss stabilizes; here, λalign is set to 0.05 for SimCLR. We provide an ablation study of
λreg and λalign in Appendix E. Training codes are in the Appendix.

4.4 RESULTS

κ captures fine-grained aleatoric uncertainty. We validate our framework on CIFAR-10-C
(Hendrycks & Dietterich, 2019), focusing on κ correlates with varying levels of data corruption,
providing a probabilistic interpretation of uncertainty in contrastive learning. Table 1 shows Spear-
man correlation coefficients between κ and different corruption types. Our method shows strong
correlations, especially for brightness, contrast, and defocus blur, surpassing model ensembles and
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Figure 2: A. Decreasing κ implies less concentration and therefore more uncertainty in the represen-
tation (left). The associated image corruption is from mild to severe (right). B. The two groups of
kappa values (i.e., correctly classified and misclassified) from the test set are significantly different.

Table 2: AUROC scores for OOD detection. Fres
refers to using a k-NN classifier (k=5) based on
ResNet-18 features. Fres+κ denotes the enhance-
ment through the concatenation of κwith the orig-
inal features.

In-domain OOD Fres κ Fres + κ

CIFAR-10 CIFAR-100 0.9658 0.8162 0.9677
CIFAR-10 MNIST 0.9929 0.6783 0.9937
CIFAR-100 CIFAR-10 0.8653 0.6312 0.8794
CIFAR-100 MNIST 0.9769 0.9390 0.9774
MNIST CIFAR-10 0.9993 0.9979 0.9999
MNIST CIFAR-100 0.9998 0.9951 1.0000

Table 3: Extension to other contrastive learn-
ing methods. ‘Correlation’ refers to the average
of Spearman correlations in Tab. 1.

Methods SimCLR SimSiam BYOL SwaV

Correlation -0.883 -0.846 -0.835 -0.865

Table 4: The effect of embedding dimensions
with fixed λalign and λκ. ‘Correlation’ refers to
the average of Spearman correlations in Tab. 1.

Dimension 64 128 256 384

Correlation -0.768 -0.883 -0.844 -0.901

MC dropout, which fail to capture fine-grained uncertainty for most corruptions. In contrast, model
ensembles, MC dropout, and DE exhibit unexpected negative correlations, failing to capture increas-
ing uncertainty under corruption.

By comparing MC-InfoNCE and our method, we observe that MC-InfoNCE achieves general good-
quality estimation but fails to quantify semantics-related corruptions (such as Gaussian blur and
Zoom blur). The formulation of MC-InfoNCE enforces the κ for the positive pair to be identical.
HIB (Oh et al., 2018), although effective in managing ambiguous inputs, is less responsive to severe
noise-based distortions. In contrast, our method learns a data-dependent κ that adapts dynamically
to new corruptions, providing more reliable uncertainty estimates across diverse scenarios. This
highlights the robustness of our approach in quantifying aleatoric uncertainty compared to traditional
ensemble-based methods. Figure 2(A) visually demonstrates this adaptability, highlighting how our
framework enhances uncertainty estimation as corruption intensifies.

κ enables failure analysis. To empirically validate the model’s potential in failure analysis, we
analyzed the outcome of the CIFAR-10 test set, which includes 10,000 samples. We divided the
predictions into two groups: correctly classified (8,554 κ values) and misclassified (1,446 κ values).
The distribution of the two groups is shown in Figure 2(B). Through bootstrapping (50 iterations,
each with 100 randomly sampled observations) and applying the Mann-Whitney U test, we sought
to robustly compare κ values between the two groups. Our analysis yielded p-values ranging from
6.42 × 10−20 to 1.15 × 10−6, which strongly suggests a meaningful difference in κ values between
correctly and incorrectly classified samples, indicating the model’s potential in failure detection
within practical settings.

κ enhances OOD detection. Since κ captures inherent characteristics of the data, it may manifest
as epistemic uncertainty. The efficacy of κ as a self-supervised image feature to enhance OOD
detection methods is evident from the results presented in Table 2, showcasing consistently superior
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Figure 3: Additional augmentation degrades the quality of uncertainty estimation for specific
types of corruptions. For instance, introducing Gaussian noise during training causes the correla-
tion with both Gaussian and Speckle noise to shift from negative to positive.

AUROC values by a simple concatenation with existing features. When compared against ResNet
feature-based baselines derived from supervised learning approaches as discussed in (Ming et al.,
2022) – the addition of κ consistently enhances performance. This improvement highlights κ’s
capacity to capture aleatoric uncertainty that varied between dataset distributions, thereby validating
its utility in strengthening OOD detection methods.

κ partially reflects internal augmentations. It is known that internal data augmentation during
training enables models to learn invariance to those augmentations. Yet, how the concentration
parameter κ reacts to such augmentations, remains unexplored. We add two types of data augmen-
tations one at a time to test the response of κ. Initially, as evidenced by the bars in Figure 3, the
default data augmentations do not weaken the sensitivity of κ. Further introducing Gaussian noise
(σ<0.25) into the data augmentation pipeline allows the model to adjust effectively, making κ less
sensitive to both Gaussian and speckle noise, as indicated by the bars. Furthermore, despite the
default augmentation regime, enhancing the image color jittering including brightness (0.3→0.4),
contrast (0.3→0.4), saturation (0.3→0.4), and hue (p = 0.2→ p = 0.3), κ continues to be reactive
to these changes. However, intensifying these augmentations leads to significant shifts in the corre-
lations associated with brightness and similar aspects, highlighted by the bars. This suggests the
existence of a ‘saturation point,’ beyond which further augmentation fails to meaningfully influence
κ’s assessment of uncertainty. Consequently, to preserve κ’s efficacy in uncertainty quantification,
our framework advises against the use of overly strong augmentations.

Integrating uncertainty without losing much discriminativeness. Our framework not only mod-
els aleatoric uncertainty but also maintains the discriminativeness inherent in contrastive learning
models. An analysis depicted on the left panel of Figure 4 compares the top-1 classification accu-
racy on the CIFAR-10 test set and the quality of uncertainty estimation across 1000 training epochs.
Despite a modest performance decrease (2%) compared to the deterministic approach, our method
exhibits training stability and surpasses the accuracy of the MC sampling-based method (Kirchhof
et al., 2023), demonstrating our model’s effectiveness. Furthermore, the right panel of Figure 4
showcases the consistent performance of our framework in uncertainty estimation. Notably, even
in the early stage of training (at the epoch of 200), our model provides high-quality uncertainty
estimations.

Adaptability to different methods and dimensions. We adapt our framework to other established
contrastive learning methods such as SimSiam (Chen et al., 2020), BYOL (Grill et al., 2020), and
SwaV (Caron et al., 2020)), in a manner of adapting to SimCLR. Table 3 demonstrates our frame-
work’s versatility, particularly with SimSiam and BYOL, which train using only positive pairs. As
shown in Table 4, the compatibility of our framework different dimensions of the embedding space
further attests to its adaptability. More discussions on the results in Appendix D.
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Figure 4: A. Comparison of top-1 classification accuracy on the downstream task over the 1000
training epochs. The deterministic approach represents the original SimCLR approach that learns a
one-to-one mapping from an image to a representation. B. Comparison of correlation between κ and
levels of data corruption (i.e., uncertainty estimation quality) over the 1000 training epochs.

5 DISCUSSION

Our study demonstrates the efficacy of the concentration parameter κ in uncertainty estimation, fail-
ure analysis, and OOD detection within contrastive learning frameworks. Empirical results show
that κ effectively captures aleatoric uncertainty by quantifying the dispersion of embeddings in the
vMF distribution. Additionally, κ indirectly captures epistemic uncertainty by exhibiting greater
variability for OOD samples and failure cases. Theoretically, we show that the unnormalized vMF
distribution preserves the ranking of similarities between embeddings, which is critical for con-
trastive learning. By introducing an alignment loss that leverages the concentration parameter κ, we
offer a flexible mechanism that adapts alignment strength based on uncertainty.

However, our study is limited to small-scale datasets such as CIFAR-10-C, and has not yet been
evaluated on larger, more complex datasets like ImageNet. Scaling κ and the alignment mechanism
to handle these environments remains a challenge (Zhang et al., 2023; Lu et al., 2024), which we
aim to address in future work.

Future research will explore integrating κ with other OOD detection methods and extending its
application to domains such as healthcare. Additionally, investigating alternative approaches to
managing the normalization constant Cn(κ), and extending our framework to non-contrastive meth-
ods like MAE (He et al., 2022), multi-modal settings, and higher-dimensional data types, represent
promising avenues for further development.

Potential broader impact. Integrating uncertainty estimation into contrastive learning has sig-
nificant implications for critical applications such as autonomous driving and medical diagno-
sis. Our framework supports the development of transparent and accountable AI systems (Kim
& Doshi-Velez, 2021), enhancing decision-making by providing interpretable confidence levels.
Improved uncertainty estimation mitigates risks in high-stakes environments by alerting users to
low-confidence predictions, thereby fostering trust and reliability. Future work will focus on apply-
ing this method to other tasks, including classification and segmentation across various domains,
further promoting robustness and reliability in AI systems.
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APPENDIX

A PROOF OF PRESERVING SIMILARITY RANKING WITH UNNORMALIZED
vMF DISTRIBUTION

Proposition 1. For any two embeddings x1 and x2, if p(x1;µ1, κ1) > p(x2;µ2, κ2), then:

exp(κ1µ
⊤
1 x1) > exp(κ2µ

⊤
2 x2),

thus preserving the ranking of similarities between embeddings, even in the unnormalized form of
the von Mises-Fisher (vMF) distribution.

Proof. 1. Recall that the probability density function of the normalized vMF distribution is
given by:

p(x;µ, κ) = C(κ) exp(κµ⊤x),

where C(κ) is the normalization constant, defined as:

C(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
,

and Iν(κ) is the modified Bessel function of the first kind of order ν.

2. Given the assumption p(x1;µ1, κ1) > p(x2;µ2, κ2), we express this inequality as:

C(κ1) exp(κ1µ
⊤
1 x1) > C(κ2) exp(κ2µ

⊤
2 x2).

3. Taking the natural logarithm of both sides (which preserves the inequality) gives:

ln(C(κ1)) + κ1µ
⊤
1 x1 > ln(C(κ2)) + κ2µ

⊤
2 x2.

4. Rearranging this inequality, we obtain:

κ1µ
⊤
1 x1 > κ2µ

⊤
2 x2 + ln(C(κ2))− ln(C(κ1)).

5. Exponentiating both sides (which again preserves the inequality) yields:

exp(κ1µ
⊤
1 x1) > exp(κ2µ

⊤
2 x2) · exp(ln(C(κ2))− ln(C(κ1))).

6. Simplifying the right-hand side, we get:

exp(κ1µ
⊤
1 x1) > exp(κ2µ

⊤
2 x2) ·

C(κ2)

C(κ1)
.

7. Note that C(κ) > 0 for κ > 0. Define α = C(κ2)
C(κ1)

, where α > 0. Therefore, we can rewrite
the inequality as:

exp(κ1µ
⊤
1 x1) > α · exp(κ2µ⊤

2 x2).

8. Since α > 0, we conclude:

exp(κ1µ
⊤
1 x1) > exp(κ2µ

⊤
2 x2),

thereby proving that the unnormalized vMF distribution preserves the ranking of similari-
ties between embeddings.

Corollary 1. The unnormalized form of the vMF distribution retains the relative ordering of em-
bedding similarities.

Remark. This theoretical result provides a strong justification for employing the unnormalized
vMF distribution in contrastive learning. In high-dimensional settings, computing the normalization
constant C(κ) becomes computationally expensive and prone to overflow due to the exponential
growth of the Bessel function. By utilizing the unnormalized form, we avoid these computational
burdens while preserving the essential ranking properties of embeddings, leading to more efficient
and numerically stable optimization.
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B DESCRIPTION OF CORRUPTION TYPES FROM CIFAR-10-C

Table 5: Types of image corruption and their descriptions from CIFAR-10-C (Hendrycks & Diet-
terich, 2019).

Type Description
Gaussian Noise Often occurs in conditions of poor lighting and adds random fluctuations to

pixel values.
Shot Noise Represents electronic noise emerging due to the inherent discreteness of

light, leading to pixel-level variability.
Impulse Noise Similar to the color version of salt-and-pepper noise, arises from bit errors

and manifests as isolated pixel outliers.
Defocus Blur Occurs when images are not in sharp focus, resulting in a slight blurriness.
Frosted Glass Blur Resembles the effect seen through frosted glass surfaces, introducing a dif-

fuse and obscured appearance.
Motion Blur Created by rapid camera movements, causing objects to appear streaked or

elongated.
Zoom Blur Results from quickly moving the camera towards an object, causing a radial

blurring effect.
Snow An obstruction in visual perception, characterized by the presence of white

or colored specks in the image.
Frost Ice crystals on lenses or windows disrupt image clarity, leading to a frosted

appearance.
Fog Cloaks objects in images, simulated using the diamond-square algorithm,

resulting in a hazy and obscured view.
Brightness Affected by variations in daylight intensity, causing overall illumination

changes.
Contrast Depends on lighting conditions and the object’s inherent color, leading to

alterations in image contrast.
Elastic Transformations Lead to stretching or contracting of small regions in an image, distorting

local features.
Pixelation A consequence of enlarging a low-resolution image, causing blocky arti-

facts due to limited pixel information.
JPEG Compression A lossy method that reduces image size and can introduce artifacts such as

blockiness and blurring.

C ANALYSIS OF THE GRADIENTS FROM LALIGN

The gradient of Lalign w.r.t. µ1.

Given La in Eq. 9, the gradient of its log w.r.t. µ1 can be obtained by differentiating the loss function
w.r.t. µ1. Its gradient can be expanded as follows:

∇µ1
logLa = ∇µ1

[κ1 · cos(θ) + κ2 · cos(θ)] (12)

Now, cos(θ) = µT
1 µ2, and its gradient w.r.t. µ1 is µ2. Plug this into the gradient of Lalign, we get:

∇µ1
Lalign = −λalign · (κ1µ2 + κ2µ2) (13)

This gradient aligns µ1 towards µ2, similar to those with existing contrastive losses. More impor-
tantly, however, the strength of this alignment effect is controlled by the estimated concentration
parameters κ1 and κ2 (i.e., the estimated uncertainties) of both µ1 and µ2. Smaller κ’s indicate
more uncertainties and lead to looser alignment. Compared with conventional contrastive losses
which naively align positive pairs regardless of the severity of corruptions in the input, our Lalign
yields a more flexible latent space that is aware of the severity of corruptions in the input.

The gradient of Lalign w.r.t. κ1. Similarly, we can compute the gradient of Lalign w.r.t. κ1 as
follows:

∇κ1
Lalign = −λalign · µT

1 µ2 (14)
Eq. 14 implies that a closer cosine distance between µ1 and µ2 encourages a stronger increase in
κ1, indicating reduced uncertainty. The increasing effect on κ1 weakens as the distance between µ1
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and µ2 grows. Meanwhile, when the angle between µ1 and µ2 surpasses π
2 , the gradient encourages

a reduction in κ1 instead, hence an increase in predicted uncertainty. Of note, κ’s would not grow
uninformatively large as they are bounded by the ℓ2 regularization (Eq. ??) at the same time.

D DISCUSSION ON NETWORK COMPLEXITY, EMBEDDING DIMENSIONS,
AND LEARNING FRAMEWORKS

Table 6 further demonstrates the versatility of our approach across different network architectures,
including ResNet18, ResNet34, and ResNet50. Our method consistently achieves strong correlation
coefficients, illustrating that the introduction of κ does not compromise the discriminative nature of
the embeddings. Instead, it enriches the model’s representation by providing a probabilistic dimen-
sion that captures uncertainty directly related to the data’s intrinsic characteristics.

The compatibility of our framework with established contrastive learning methods, such as Sim-
Siam (Chen et al., 2020), BYOL (Grill et al., 2020), and SwaV (Caron et al., 2020), further attests
to its adaptability. Table 3 demonstrates our framework’s versatility, particularly with SimSiam
and BYOL, which train using only positive pairs. Across these methods, our approach consistently
achieves strong correlation coefficients, underscoring the substantial promise of our design. This
extension is not merely a testament to the flexibility of our approach but also promises to broaden
the applicability of contrastive learning models in handling diverse applications.

In Table 4, we investigate the effect of embedding dimensions on κ’s capability to quantify uncer-
tainty. With embedding dimensions set at 64, 128, 256, and 384, our framework demonstrates a
nuanced performance variation, indicated by the correlation coefficients -0.768, -0.883, -0.844, and
-0.901, respectively. The optimal performance at 128 and 384 dimensions suggests a critical balance
between dimensionality and the model’s ability to effectively capture uncertainty.

Table 6: The effect of network complexity with fixed λalign, λκ, and number of embedding dimen-
sion (dim. = 128). ‘Correction’ refers to the average of 18 Spearman correlations from the types of
corruption listed in Table 1.

Architecture ResNet18 ResNet34 ResNet50

Correlation -0.908 -0.876 -0.883
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Table 7: Ablation study on the effect of varying λalign on Spearman correlation and top-1 accuracy.

λalign Spearman Correlation Top-1 Accuracy
0.001 -0.844 0.860
0.005 -0.857 0.862
0.01 -0.884 0.854
0.02 -0.869 0.849
0.04 -0.884 0.845
0.1 -0.870 0.831

Table 8: Ablation study on the effect of varying λreg while fixing λalign = 0.05. ’NaN’ indicates that
the κ is constant for all samples when κ is not well regularized (i.e., small λreg).

λreg Spearman Correlation Top-1 Accuracy
0.0005 NaN 0.10
0.001 NaN 0.10
0.002 -0.831 0.868
0.004 -0.884 0.865
0.01 -0.862 0.854
0.02 -0.862 0.858
0.04 -0.853 0.864

E ABLATION STUDY ON HYPER-PARAMETERS

We conducted ablation experiments to investigate the impact of the regularization parameters λalign
and λreg on training stability and performance. The Spearman correlation and top-1 accuracy on the
test set of CIFAR-10 are reported in Tables 7 and 8, which demonstrate the effect of varying λalign
and λreg, respectively.

Effect of λalign. In Table 7, we observe that increasing λalign leads to a slight deterioration in embed-
ding quality, as indicated by the drop in top-1 accuracy. However, the Spearman correlation remains
relatively stable across different values of λalign, suggesting that this regularization term stabilizes
training without significantly affecting the relative ranking of embeddings in terms of similarity.

Effect of λreg. Table 8 illustrates the impact of varying λreg while keeping λalign fixed at 0.05. Weak
regularization (e.g., λreg < 0.001) leads to instability during training, reflected in the significantly
lower top-1 accuracy. On the other hand, stronger regularization results in only a slight decrease in
the correlation coefficient, while still maintaining competitive performance.
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F MC-INFONCE WITH THE SimCLR CONTRASTIVE LOSS

1 from t o r c h i m p o r t nn
2 i m p o r t t o r c h
3 from vmf_sampler i m p o r t VonMisesF i she r
4 from u t i l s _ m c i m p o r t p a i r w i s e _ c o s _ s i m s , p a i r w i s e _ l 2 _ d i s t s ,

log_vmf_norm_cons t
5 i m p o r t t o r c h
6 i m p o r t t o r c h . nn as nn
7

8 c l a s s MCSimCLR( nn . Module ) :
9 d e f _ _ i n i t _ _ ( s e l f , k a p p a _ i n i t =16 , n_samples =64 , t e m p e r a t u r e = 0 . 5 ,

d e v i c e = t o r c h . d e v i c e ( ’ cuda : 0 ’ ) ) :
10 s u p e r ( ) . _ _ i n i t _ _ ( )
11 s e l f . n_samples = n_samples
12 s e l f . kappa = t o r c h . nn . P a r a m e t e r ( t o r c h . ones ( 1 , d e v i c e = d e v i c e ) *

k a p p a _ i n i t , r e q u i r e s _ g r a d =True )
13 s e l f . t e m p e r a t u r e = t e m p e r a t u r e
14

15 d e f f o r w a r d ( s e l f , mu1 , kappa1 , mu2 , kappa2 ) :
16 # Draw samples from t h e von Mises − F i s h e r d i s t r i b u t i o n
17 samples1 = VonMisesF i she r ( mu1 , kappa1 ) . r s a m p l e ( t o r c h . S i z e ( [ s e l f .

n_samples ] ) )
18 samples2 = VonMisesF i she r ( mu2 , kappa2 ) . r s a m p l e ( t o r c h . S i z e ( [ s e l f .

n_samples ] ) )
19 # C o n c a t e n a t e p o s i t i v e samples f o r c o n t r a s t i v e l o s s c a l c u l a t i o n
20 sample s = t o r c h . c a t ( [ samples1 , samples2 ] , dim =1) # [n_MC, 2 *

ba tch , dim ]
21 # Compute s i m i l a r i t y m a t r i x
22 s i m _ m a t r i x = t o r c h . exp ( t o r c h . matmul ( samples , s amples . t r a n s p o s e ( 2 ,

1 ) ) / s e l f . t e m p e r a t u r e )
23 # C r e a t e mask t o zero − o u t s e l f − s i m i l a r i t i e s ( d i a g o n a l e l e m e n t s )
24 b a t c h _ s i z e = mu1 . s i z e ( 0 )
25 mask = ~ t o r c h . eye (2 * b a t c h _ s i z e , d e v i c e = s i m _ m a t r i x . dev i ce , d t y p e

= boo l ) . r e p e a t ( s e l f . n_samples , 1 , 1 )
26 s i m _ m a t r i x = s i m _ m a t r i x . m a s k e d _ s e l e c t ( mask ) . view ( s e l f . n_samples ,

2 * b a t c h _ s i z e , −1)
27 # S i m i l a r i t i e s f o r t h e p o s i t i v e p a i r s )
28 pos_s im = t o r c h . exp ( t o r c h . sum ( samples1 * samples2 , dim =2) / s e l f .

t e m p e r a t u r e )
29 pos_s im = t o r c h . c a t ( [ pos_sim , pos_s im ] , dim =1) # D u p l i c a t e pos_s im
30 l o s s = − t o r c h . l o g ( pos_s im / s i m _ m a t r i x . sum ( dim =2) )
31 l o s s = l o s s . mean ( )
32 r e t u r n l o s s
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G ARCHITECTURE

1 i m p o r t t o r c h
2 i m p o r t t o r c h . nn as nn
3 i m p o r t t o r c h . nn . f u n c t i o n a l a s F
4 from t o r c h v i s i o n . models i m p o r t r e s n e t 5 0 , r e s n e t 1 8 , r e s n e t 3 4
5 c l a s s P r o b a b i l i s t i c M o d e l ( nn . Module ) :
6 d e f _ _ i n i t _ _ ( s e l f , f e a t u r e _ d i m =128) :
7 s u p e r ( P r o b a b i l i s t i c M o d e l , s e l f ) . _ _ i n i t _ _ ( )
8

9 # De f i n e t h e l a y e r s o f t h e ResNet model
10 s e l f . f = [ ]
11 f o r name , module i n r e s n e t 5 0 ( ) . n a m e d _ c h i l d r e n ( ) :
12 i f name == ’ conv1 ’ :
13 module = nn . Conv2d ( 3 , 64 , k e r n e l _ s i z e =3 , s t r i d e =1 ,

padd ing =1 , b i a s = F a l s e )
14 i f n o t i s i n s t a n c e ( module , nn . L i n e a r ) and n o t i s i n s t a n c e (

module , nn . MaxPool2d ) :
15 s e l f . f . append ( module )
16 s e l f . f = nn . S e q u e n t i a l (* s e l f . f )
17

18 # P r o j e c t i o n head f o r f e a t u r e
19 s e l f . g = nn . S e q u e n t i a l (
20 nn . L i n e a r ( 2 0 4 8 , 512 , b i a s = F a l s e ) ,
21 nn . BatchNorm1d ( 5 1 2 ) ,
22 nn . ReLU( i n p l a c e =True ) ,
23 nn . L i n e a r ( 5 1 2 , f e a t u r e _ d i m , b i a s =True )
24 )
25 # A d d i t i o n a l l a y e r f o r kappa ( c o n c e n t r a t i o n p a r a m e t e r )
26 s e l f . kappa_head = nn . S e q u e n t i a l (
27 nn . L i n e a r ( 2 0 4 8 , 512 , b i a s = F a l s e ) ,
28 nn . BatchNorm1d ( 5 1 2 ) ,
29 nn . ReLU( i n p l a c e =True ) ,
30 nn . L i n e a r ( 5 1 2 , 1 , b i a s =True ) # O u t p u t s kappa f o r each sample
31 )
32

33 d e f f o r w a r d ( s e l f , x ) :
34 x = s e l f . f ( x )
35 f e a t u r e = t o r c h . f l a t t e n ( x , s t a r t _ d i m =1)
36 o u t = s e l f . g ( f e a t u r e )
37 kappa = s e l f . kappa_head ( f e a t u r e ) # Compute kappa f o r each sample
38 # Normal i ze t h e f e a t u r e v e c t o r and r e t u r n i t w i th v a r i a n c e and

kappa
39 r e t u r n F . n o r m a l i z e ( out , dim = −1) , F . s o f t p l u s ( kappa . s q u e e z e ( −1) )
40
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H TRAINING

1

2 # t r a i n f o r one epoch t o l e a r n t h e mean v e c t o r mu and kappa
3 d e f t r a i n ( ne t , d a t a _ l o a d e r , t r a i n _ o p t i m i z e r ) :
4 n e t . t r a i n ( )
5 t o t a l _ l o s s , t o t a l_num , t r a i n _ b a r = 0 . 0 , 0 , tqdm ( d a t a _ l o a d e r )
6 e p s i l o n = 1e −6 # Smal l c o n s t a n t f o r n u m e r i c a l s t a b i l i t y
7 a l i g n _ s t r e n g t h = 0 . 0 5 # H y p e r p a r a m e t e r t o r e g u l a r i z e t h e embedding

a l i g n m e n t l o s s
8 k a p p a _ r e g _ s t r e n g t h = 0 .005 # H y p e r p a r a m e t e r f o r t h e r e g u l a r i z a t i o n

s t r e n g t h
9 s i m c l r _ s t r e n g t h = 1 # H y p e r p a r a m e t e r f o r t h e s t r e n g t h o f SimCLR l o s s

10

11 f o r pos_1 , pos_2 , t a r g e t i n t r a i n _ b a r :
12 pos_1 , pos_2 = pos_1 . t o ( d e v i c e ) , pos_2 . t o ( d e v i c e )
13

14 mean_1 , kappa_1 = n e t ( pos_1 )
15 mean_2 , kappa_2 = n e t ( pos_2 )
16

17 # Compute t h e embedding a l i g n m e n t l o s s component
18 a l i g n m e n t = t o r c h . exp ( kappa_1 * F . c o s i n e _ s i m i l a r i t y ( mean_1 ,

mean_2 , dim =1)+ \
19 kappa_2 * F . c o s i n e _ s i m i l a r i t y ( mean_1 , mean_2 , dim =1) )
20 a l i g n _ l o s s = a l i g n _ s t r e n g t h * ( − t o r c h . l o g ( a l i g n m e n t + e p s i l o n ) .

mean ( ) )
21

22 # Compute t h e r e g u l a r i z a t i o n l o s s f o r kappa ( L2 norm )
23 k a p p a _ r e g _ l o s s = k a p p a _ r e g _ s t r e n g t h * ( t o r c h . mean ( kappa_1 ** 2) +

\
24 t o r c h . mean ( kappa_2 ** 2) )
25

26

27 # Compute SimCLR c o n t r a s t i v e l o s s
28 o u t = t o r c h . c a t ( [ mean_1 , mean_2 ] , dim =0)
29 s i m _ m a t r i x = t o r c h . exp ( t o r c h .mm( out , o u t . t ( ) . c o n t i g u o u s ( ) ) /

t e m p e r a t u r e )
30 mask = ( t o r c h . o n e s _ l i k e ( s i m _ m a t r i x ) − t o r c h . eye (2 * b a t c h _ s i z e , \
31 d e v i c e = s i m _ m a t r i x . d e v i c e ) ) . boo l ( )
32 s i m _ m a t r i x = s i m _ m a t r i x . m a s k e d _ s e l e c t ( mask ) . view (2 * b a t c h _ s i z e ,

−1)
33 pos_s im = t o r c h . exp ( t o r c h . sum ( mean_1 * mean_2 , dim = −1) /

t e m p e r a t u r e )
34 pos_s im = t o r c h . c a t ( [ pos_sim , pos_s im ] , dim =0)
35 c o n t r a s t i v e _ l o s s = s i m c l r _ s t r e n g t h * \
36 ( − t o r c h . l o g ( pos_s im / s i m _ m a t r i x . sum ( dim = −1) ) ) . mean ( )
37

38 # Compute t h e f i n a l l o s s
39 l o s s = a l i g n _ l o s s + c o n t r a s t i v e _ l o s s + k a p p a _ r e g _ l o s s
40

41 # Backward and o p t i m i z e
42 t r a i n _ o p t i m i z e r . z e r o _ g r a d ( )
43 l o s s . backward ( )
44 t r a i n _ o p t i m i z e r . s t e p ( )
45
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