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Abstract

Large Language Model (LLM) agents are increasingly studied in multi-turn, multi-
agent scenarios, yet most existing setups emphasize open-ended role-play rather
than controlled evaluation. We introduce AsymPuzl, a minimal but expressive
two-agent puzzle environment designed to isolate communication under informa-
tion asymmetry. Each agent observes complementary but incomplete views of a
symbolic puzzle and must exchange messages to solve it cooperatively. Using a
diverse set of current-generation and open-source LLMs, we show that (i) strong
models such as GPT-5 and Claude-4.0 reliably converge across puzzle sizes on the
solution by sharing complete information in two turns, (ii) weaker models often
ignore partner messages or over-correct their hypotheses, and (iii) feedback design
is non-trivial: simple self-feedback improves success rates, while detailed joint
feedback can hurt performance. These findings show that even in simple coopera-
tive tasks, LLM communication strategies diverge and depend on the granularity
of feedback signals. AsymPuzl thus provides a testbed for probing the limits of
multi-turn cooperation and opens avenues for studying coordination mechanisms.

1 Introduction

Autonomous agents using Language Models (LLMs) offer promising opportunities for problem-
solving [3, 2]. Nonetheless, real-world problems often require multi-turn and collaboration under
partial information. In many tasks, agents often have access to complementary yet potentially
incomplete information, as seen in distributed decision-making or human-ai cooperation. Information
asymmetry is a common phenomenon in practice and requires effective communication to address
the issue. Current Multi-Agent LLM studies emphasize role-play and open-ended dialogue but lack
controlled testbeds for evaluating communication strategies. Moreover, existing Large Language
Model Multi-Agent Systems (LLM-MAS) rarely allow systematic manipulation of task difficulty.
As such, we are left with the question: How do LLM agents adapt their communication under
asymmetric information. We introduce Asympuzl, a minimal yet expressive environment where
two agents see complementary partial views of a puzzle and must exchange messages to solve it.
We can adjust the difficulty of the task by varying the puzzle size and providing feedback on their
hypotheses. Our contributions are: i) the AsymPuzl environment, a testbed for two agent puzzle
solving under information asymmetry, and ii) an empirical analysis of feedback granularity and
communication strategies using this environment, showing that while feedback can be helpful, it
can be lead to reduced performance if not carefully designed, and that while complete information
sharing is possible in our experiments, most agents do not default to this strategy.
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Figure 1: Overview of the puzzle: the ground truth is first created, then each agents’ individual partial
views are generated and shared with them as clues. The working hypothesis starts as a copy of the
clues. Then, in a turn-based interaction, the agents, Alice and Bob , can send each other messages
and update their working hypothesis until their hypotheses match the ground truth.

2 Related Work

Puzzle-based reasoning: Puzzle solving is a popular method to evaluate the reasoning capacities
of LLMs [16, 4, 9, 15]. [1] compares LLMs over multi-turn puzzles with a single agent and shows
that errors often come from poor instruction following. ZebraLogic [11] isolates the reasoning limits
of single LLMs on logical puzzles, demonstrating that as puzzle complexity increases performance of
agents drop and increasing model size yields limited improvement. In comparison, this work isolates
the communication and coordination in a multi-agent scenario when no single agent holds complete
information (sufficient to solve the puzzle alone).

LLM-MAS: Interest in coordinating multiple LLM agents has been increasing [8, 5, 17, 10]
alongside concerns relating to emergent behavior during multi-agent interactions and model alignment.
iAgents [12] focused on large-scale role-play social networks with information asymmetry. In
comparison, our environment is deliberately minimal, designed to reduce the effect of confounding
factors and provide fine grained insights into how LLMs adapt communication protocols.

3 The AsymPuzl Environment

AsymPuzl is a two-agent asymmetric puzzle-solving environment (We provide an overview in
Figure 1) where each participant is given partial information and collaboration is required to reach
the solution.

Puzzle setup: Two agents, Alice and Bob , are given complementary views of a position-shape-
color matching puzzle. Alice is given a puzzle view with correct positions and shapes, but unknown
colors, while Bob is given a puzzle view with correct shapes and colors, but unknown positions. The
puzzle state is controlled externally; both agents can communicate with each other and provide a list
of actions to apply to their working hypothesis (i.e., their current view of the puzzle).

Game loop: A puzzle is generated and the clues (initial views) of Alice and Bob are separated.
Multiple turns take place, where a turn is: Alice is prompted with the puzzle instruction, cues,
working hypothesis, message history (both Alice’s and Bob’s messages), feedback from the previous
turn, and the structure of the format they must respond in. Alice generates its output, which contains a
message for Bob and the list of actions to take on its puzzle. Bob follows the same procedure with the
latest message from Alice . The actions are applied to the working hypotheses, which are compared
against the ground truth to provide feedback for the next turn. This process continues until the puzzle
is solved. The agents must provide a formatted JSON at the end of their answer, which contains a list
of formatted actions and a message that will be shared with the other agent.

Feedback modes: Feedback is provided to both Alice and Bob as part of their input prompts. The
feedback can be 1) No feedback: no feedback is provided to the agents 2) Own: each agent is told
whether its part of the puzzle is solved, 3) Own detailed: each agent is told whether its current puzzle
is solved and which positions are wrong 4) Joint: the agents are told whether the puzzle is solved
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(both of them need to have solved it) 4) Both: the agents are told whether their and the other agent’s
parts of the puzzle are solved 5) Both detailed: the agents get the equivalent of Own detailed but for
both agents.

Difficulty levels: The search space for puzzles with N positions and two attributes per position is
(N !)2 [12]. Without communication, Alice’s and Bob’s problems allow for N ! possible permutations;
nonetheless, given full information, the puzzle can be solved in linear time O(N), where Alice and
Bob only need to map the position-shape-color to their current working hypothesis.

4 Experimental Setup

4.1 Models

We evaluated the AsymPuzl environment on a number of LLMs from various vendors: OpenAI
(GPT-3.5-turbo, GPT-4o [14], GPT-5, OSS-120B [13]), Meta (Llama 3.2-11B [6]), and Anthropic
(Claude-3.5, Claude-4.0). This selection captures a range of reasoning abilities, response tendencies,
and cost profiles. Models differ in training scale, safety alignment, and conversational style, allowing
us to examine how choice of LLM affects multi-agent communication and problem-solving.

4.2 Evaluation Metrics

For each of our experiments, we set the maximum number of turns to be twice the number of elements
in the puzzle; thus, we cut off a 5-piece game after 10 turns. Note that with full information sharing,
a puzzle of any size can be solved in 2 turns. Assuming a single piece of information is exchanged
each turn, the maximum number of turns still provides margin for error and correction.

Success Percentage: Given a set of puzzles to solve -here simulated via seeds- we compute the
percentage of these puzzles that are solved within the maximum number of turns.

Average number of actions per position : For each position, we count the number of times the
position is modified. This allows estimation of how many times an agent overwrites its working
hypothesis, an indication of whether its decisions are error corrections or just random guesses.

5 Results

5.1 Can the agent communicate and solve the puzzle?

We observed that while the task could be successfully solved by a single agent when provided with
all of the information, the two agent problem is challenging for most models. (Table 1) We note
that GPT-5 and Claude-4.0 can consistently solve the task for size 5, achieving 100% completion
regardless of the type of feedback, whereas other models benefit from different feedback strategies.

5.2 What is the impact of feedback?

We evaluated different forms of feedback for puzzles with five elements and observed that providing
individual feedback on each agent’s own working hypothesis increased the completion rate. Detailed
feedback led to the most improvement, for instance, on GPT-4o: from 43.3% to 63.3% completion.
On the other hand, providing detailed information about the other agent’s working hypothesis on top
of their own hurt performance; this can be attributed to information overload with lack of context
(Alice does not see Bob’s working hypothesis, yet Alice is told which positions of Bob’s hypothesis
are incorrect).

5.3 Do agents over-correct their working hypothesis?

In the optimal solution, Alice should only modify each position once and Bob at most once (the
working hypothesis could already have correct entries). Both agents would nominally gather the
information they need about a position, update the position, and refrain from modifying it further.
We observe that GPT-5 and Claude-4.0 are nearly optimal as they usually need only two turns of
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Own Feedback Joint Feedback
Feedback Mode No feedback Own Own Detailed Joint Both Both detailed
Model

GPT-5 100.0 100.0 100.0 100.0 100.0 100.0
Claude-4.0 100.0 100.0 100.0 100.0 100.0 100.0
OSS-120B 53.3 93.3 100.0 90.0 90.0 96.7
GPT-4o 43.3 46.7 63.3 40.0 80.0 56.7
Claude-3.5 66.7 73.3 86.7 73.3 83.3 36.7
GPT-3.5-turbo 0.0 0.0 0.0 0.0 0.0 0.0
Llama 3.2-11B 0.0 0.0 0.0 0.0 0.0 0.0

Table 1: (Higher is better) Percentage of 5-pieces puzzles solved over 30 seeds. Temperature
0.0. Providing feedback increases the completion percentage, while additionally providing detailed
information about the other agent’s working hypothesis can hurt performance. (Tables with Wilson
95% Confidence Intervals are provided in Appendix Table 5 and Table 6)

Both feedback
Puzzle size 3 5 10 20
Model

GPT-5 100.0 100.0 100.0 100.0
Claude-4.0 100.0 100.0 100.0 100.0
OSS-120B 83.3 90.0 90.0 93.3
GPT-4o 60.0 80.0 60.0 16.7
Claude-3.5 50.0 83.3 56.7 16.7
GPT-3.5-turbo 0.0 0.0 0.0 0.0
Llama 3.2-11B 0.0 0.0 0.0 0.0

Table 2: (Higher is better) Success rate for different size puzzles across 30 seeds, with temperature
0.0, and each agent receiving both agent’s solved status. As complexity increases, GPT-4o and
Claude-3.5 decrease in performance. The lower performance by some models on the 3-pieces puzzle
can be explained by miscommunication, leading to wasted turns under a tighter turn constraint.

communication and their agents share all the information they have with one another. The other
models tend to exchange one piece of information at a time, and models such as GPT-3.5-turbo and
Llama 3.2-11B tend to ignore each other’s messages. (See appendix Figure 2).

5.4 What is the impact of the puzzle size?

We further evaluate the performance of the different models on puzzles of size 3, 10, and 20, using
joint feedback. We adjust the maximum number of turns to 6, 20, and 40, respectively. We observe
that as the puzzle complexity increases, the performance decreases, similarly to [11].

6 Conclusion

We presented Asympuzl, an evaluation testbed for multi-turn cooperative play between LLM agents
under information asymmetry. We demonstrated that strong models (e.g., GPT-5 and Claude-4.0)
can reliably converge with each agent sharing all of its information as agents ideally would. In
contrast, other models struggle with miscommunication or repeated corrections. Our results show
that feedback matters: simple self-feedback improves performance, but detailed joint feedback can
confuse agents. These findings underscore the importance of carefully designing communication and
evaluation protocols in multi-agent LLM systems.

Looking ahead, AsymPuzl can serve as a foundation for more complex studies, such as introducing
noisy or ambiguous views, restricting communication bandwidth, or scaling to three or more agents.
We hope this testbed will help investigate coordination strategies and contribute to solving the broader
challenges of enabling LLMs to collaborate effectively in real-world, multi-turn settings.
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A Limitations

Instruction and puzzle injection: We adopt a design where the environment re-injects all relevant
state into each turn, namely, the agents are provided with the set of instructions, output format
requirements, initial cues, current working hypotheses, and feedback about the current working
hypotheses. This allows isolating the role of the communication strategy, and avoiding the agent
losing track of its original task. While this differs from fully autonomous agent memory, it still
constitutes a multi-turn interaction, as agents must iteratively exchange complementary information
and solve the task through sequential coordination. We leave extensions toward persistent agent state
as future work.

Original cue injection: At each turn, we provide the agents with their original cues. We chose this
design so that the agents always have a way to recover their original information. Furthermore, this
allows the agent to compare its working hypothesis to its original cues, keeping track of its progress.
To translate this to a real-world setting, it would be similar to having the agent query a database and
caching the information in a read-only entry so that the agent cannot overwrite the data it is accessing.

Puzzle complexity: We leave for future work the analysis of noisy and ambiguous interactions
where, for instance, Alice is given more shapes than required while Bob has the correct number
of colors to shape pairs, requiring them to determine the relevant information. This ambiguity can
be applied in the opposite direction as well, where Bob would see more color-shape associations
than there are valid shapes in the ground truth. Another extension is the evaluation of constraints
on communication, or the number of operations per turn, and the addition of an internal scratch pad
carried across turns by the agents.

B Evaluation Metrics

Success rate at Turn K: We gather across experimental seeds the number of turns taken to solve
each puzzle. This additionally allows us to derive the number of puzzles solved within each given
number of turns. We compared two feedback modes, No Feedback and the Joint feedback where both
agent see each other’s completion status (Figure 3). This experiment showed that the joint feedback
increased the success rate and that models such as GPT-5, Claude 4.0, and GPT-4o tend to solve the
puzzles in fewer turns.

Number of tokens: We collected the average number of tokens that each agent output per turn and
the number of these tokens dedicated to the message sent to the other agent (Table 3). We observed
that for most models Bob uses more token, this could be explained by the need to associate both
shape and colors in its message while Alice can enumerate the shapes. To compare the different
model we use the same tokenizer from tiktoken across models’ outputs.

C Solving as a Single Agent with Full Information

To verify that the LLMs could solve the problem with complete information, we conducted multiple
experiments of a single agent solving the puzzle across 10 seeds. (Table 4).
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Figure 2: (Lower is better) Average number of actions per position. GPT-5 and Claude-4.0 are close
to optimal on average with few positional modifications. Meanwhile, GPT-3.5-turbo tends not to
modify positions despite the puzzle being unsolved, and Llama 3.2-11B tends to modify positions
more than 4 times on average.

(a) Success rate at different turns when the agents
are not given any feedback.

(b) Success rate at different turns when both agents
get joint feedback.

Figure 3: Comparison of the success rate of each LLM model over time (turns) for 5-piece puzzles
with No feedback or Both feedback. Providing feedback about both sides of the puzzle increases
success rate.

We used this to evaluate the problem presentation and ensure that potential difficulties arising from
the two-agent setup would stem from multi-agent interactions rather than single-agent issues. Most
LLM agents achieved a completion rate of 100% across different puzzle sizes. The agents are only
given a single attempt without feedback.

D Tables with 95% Confidence Intervals

We provide the 95% confidence intervals for the values in Table 1

E Implementation Details and Hyper-parameters

E.1 Implementation

We first build the puzzle, determine the original clues for both agent, and use an environment to
monitor and provide the current working hypothesis of both agents. This allows the agent to focus
on solving the tasking and on communicating information rather than trying to represent the puzzle.
We use LangChain to query the different agents, and for the open-source models we host them using
vLLM [7].
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Agent A Agent B
#Tokens Output Message Message

Output × 100 Output Message Message
Output × 100

Model

GPT-5 155.3 59.4 38.2 185.8 69.5 37.4
Claude-4.0 225.6 68.7 30.5 311.9 70.2 22.5
OSS-120B 94.3 26.4 28.0 77.8 23.8 30.7
GPT-4o 114.3 27.3 23.9 137.8 33.2 24.1
Claude-3.5 188.6 32.2 17.1 223.7 39.1 17.5
GPT-3.5-turbo 40.6 8.4 20.8 41.4 8.2 19.8
Llama 3.2-11B 94.5 8.6 9.1 62.9 8.4 13.4

Table 3: Comparison of the average number of tokens across agents when both agents are provided
with feedback about each other’s completion status. Claude models tend to be more verbose, and for
the GPT-5 model, close to 40% of the generated output is dedicated to the message sent to the other
agent.

Success % (↑)
Puzzle Size 5 10 20
Model

GPT-5 100.0 100.0 100.0
Claude-4.0 100.0 100.0 100.0
OSS-120B 100.0 100.0 100.0
GPT-4o 100.0 100.0 100.0
Claude-3.5 100.0 86.7 93.3
GPT-3.5-turbo 100.0 100.0 96.7
Llama 3.2-11B 80.0 96.7 96.7

Table 4: Evaluation of a single agent with full information solving puzzles of different sizes.

E.2 Hyper-parameters

For all models, we use a maximum of 4, 096 output tokens, set temperature to 0.0, and repeat
experiments across 30 seeds, where the seed controls the puzzle generation and initial clues. We
further provide a history length of 1 to the agents, namely they see their previous message and the
latest message from the other agent.

F Communication Issues

We provide examples of communication between Alice and Bob . In our initial prompt design, we
noticed that some agents were not sharing information.

We hypothesized that they were assuming the other agent would see both their message and their
actions. We detailed the prompt further, indicating that the other agent would only see the "message"
they sent, and the action would not be shared.

We provide excerpts of the conversations for 3 cases Successful collaboration, No cooperation and
Miscommunication

F.1 Successful collaboration

We provide an example of successful communication where the two agents manage to share the most
information and solve the puzzle in two turns. (Figure 4)

F.2 No cooperation

We provide an example where both agents ignore one another’s messages and keep repeating their
previous message instead. (Figure 5)
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Feedback Mode No feedback (CI) Own (CI) Own Detailed (CI)
Model

GPT-5 100.0(88.6−100.0) 100.0(88.6−100.0) 100.0(88.6−100.0)

Claude-4.0 100.0(88.65,100.00) 100.0(88.65,100.00) 100.0(88.6−100.0)

OSS-120B 53.3(36.1−69.8) 93.3(78.7−98.2) 100.0(88.6−100.0)

GPT-4o 43.3(27.4−60.8) 46.7(30.2−63.9) 63.3(45.5−78.1)

Claude-3.5 66.7(48.8−80.8) 73.3(55.6−85.8) 86.7(70.3−94.7)

GPT-3.5-turbo 0.0(0.0−11.4) 0.0(0.0−11.4) 0.0(0.0−11.4)

Llama 3.2-11B 0.0(0.0−11.4) 0.0(0.0−11.4) 0.0(0.0−11.4)

Table 5: (Higher is better) Percentage of 5-element puzzles solved over 30 seeds, temperature 0.0,
with Wilson 95% Confidence Intervals, for the own feedback.

Feedback Mode Joint (CI) Both (CI) Both detailed (CI)
Model

GPT-5 100.0(88.6−100.0) 100.0(88.6−100.0) 100.0(88.6−100.0)

Claude-4.0 100.0(88.6−100.0) 100.0(88.6−100.0) 100.0(88.6−100.0)

OSS-120B 90.0(74.4−96.5) 90.0(74.4−96.5) 96.7(83.3−99.4)

GPT-4o 40.0(24.6−57.7) 80.0(62.7−90.5) 56.7(39.2−72.6)

Claude-3.5 73.3(55.6−85.8) 83.3(66.4−92.7) 36.7(21.9−54.5)

GPT-3.5-turbo 0.0(0.0−11.4) 0.0(0.0−11.4) 0.0(0.0−11.4)

Llama 3.2-11B 0.0(0.0−11.4) 0.0(0.0−11.4) 0.0(0.0−11.4)

Table 6: (Higher is better) Percentage of 5-element puzzles solved over 30 seeds, temperature 0.0,
with Wilson 95% Confidence Intervals, for the joint feedback.

F.3 Miscommunication

We provide an example where one agent makes assumptions on what the other agent can see, and the
other agent provides information that it has no guarantee about (Figure 6). This leads to the agents
getting sidetracked and losing multiple turns before potentially recovering or running out of turns.
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Figure 4: Example of successful completion using Claude 4.0. By the end of the second turn, the
puzzle is solved, as both agents shared all of their information and cooperated.

Figure 5: Example of lack of cooperation using Llama 3.2-11B. Both agents ignore one another’s
messages.
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Figure 6: An example of cooperation with miscommunication using GPT-4o. Alice provides the
correct order and Bob provides the color information but dismisses the position. Alice adapts the
colors but assumes that Bob can see its view and asks it to confirm that the mapping matches.
Bob provides a new order that does not match the original order provided by Alice .
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G Example of prompt

We provide an example of the prompt given to Bob . The part before the #Puzzle State is given as a
system prompt.

Example of prompt for Bob

You are Agent B.
Your goal is to solve a symbolic puzzle with 5 positions.
Each position must have the correct (shape, color) pair.
- You see the correct shape–color mappings, but in random order.
- Agent A knows the correct order of shapes but not the colors.
Communicate with Agent A and update your hypothesis until the puzzle is solved.

# Puzzle State
Initial clues:
Position 1: the square is blue. Position 2: the triangle is red. Position 3: the rectangle is cyan.
Position 4: the circle is green. Position 5: the pentagon is yellow.

Your current working hypothesis:
Position 1: the square is blue. Position 2: the triangle is red. Position 3: the rectangle is cyan.
Position 4: the circle is green. Position 5: the pentagon is yellow.

Feedback:
Agent A’s part of the puzzle is solved and Agent B’s part of the puzzle is unsolved.

Recent conversation:
B: I have the correct shape–color pairs but in random order. Please confirm the order of
shapes again: square, triangle, rectangle, circle, pentagon.
A: Thank you for confirming the order of shapes. Based on your shape–color mappings,
please provide the correct color for each shape: square, triangle, rectangle, circle, and
pentagon.

Output format:
Each action must follow this format:
{"replace": <position>, "by": {"shape": <shape>, "color": <color>}}
Note: <position> uses 1-based indexing (position 1 is the first item, position 2 is the second
item, etc.)
Your answer MUST END WITH a **valid JSON object** and include the following fields:
- "message": What you want to tell and ask to the other agent (the only thing the other agent
will receive).
- "actions": A list of actions to take (the other agent will not see your actions).

Example:
‘‘‘json
{

"message": "Please confirm the color of the circle.",
"actions": [

{
"replace": 1,
"by": {

"shape": "circle",
"color": "red"

}
}

]
}
‘‘‘
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