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ABSTRACT

Text-to-Image (T2I) models have advanced rapidly, yet they remain vulnerable to
semantic leakage, the unintended transfer of semantically related features between
distinct entities. Existing mitigation strategies are often optimization-based or
dependent on external inputs. We introduce DeLeaker, a lightweight, optimization-
free inference-time approach that mitigates leakage by directly intervening on the
model’s attention maps. Throughout the diffusion process, DeLeaker dynamically
reweights attention maps to suppress excessive cross-entity interactions while
strengthening the identity of each entity. To support systematic evaluation, we
introduce SLIM (Semantic Leakage in IMages), the first dataset dedicated to
semantic leakage, comprising 1,130 human-verified samples spanning diverse
scenarios, together with a novel automatic evaluation framework. Experiments
demonstrate that DeLeaker consistently outperforms all baselines, even when they
are provided with external information, achieving effective leakage mitigation
without compromising fidelity or quality. These results underscore the value of
attention control and pave the way for more semantically precise T2I models.1

1 INTRODUCTION

Text-to-Image (T2I) models have shown continuous improvements in image generation capabilities
(Ramesh et al., 2021; 2022; Saharia et al., 2022; Black-Forest-Labs, 2024). These advances are
largely driven by diffusion-based architectures, which produce high-quality images through iterative
denoising (Dhariwal & Nichol, 2021; Ho & Salimans). Recent state-of-the-art models, such as
Diffusion Transformers (DiTs) (Peebles & Xie, 2023), further this progress by adopting transformer-
based architectures with uniform global attention, resulting in stronger image–text alignment and
improved image quality. Nevertheless, these models remain vulnerable to errors in semantic fidelity,
with semantic leakage emerging as a particularly persistent challenge.

Semantic leakage refers to the unintended transfer of semantically related features between entities in
the generated outputs, observed in both image (Rassin et al., 2022; Dahary et al., 2025b) and text
generation models (Gonen et al., 2025). An example of this is seen in Fig. 1, where a cow’s traits
leak into the horse’s ears and mouth. Although this phenomenon is a form of a broader problem of
image-text misalignment in the context of image generation, it remains highly underexplored.

Prior work employed layout-based control to mitigate semantic leakage by assigning entities (e.g.,
cow and horse) to fixed regions (Dahary et al., 2025a;b). While effective in simple scenes, these
methods fail in settings that involve interactions between entities (Fig. 1, examples 2–3), where rigid
separation is often less natural. By relying on external inputs and bounding-boxes, these methods
disregard the model’s prior knowledge, overlooking the potential to leverage its internal semantic
representations. Moreover, they resort to costly inference-time optimization strategies, commonly
used in efforts to refine semantic alignment in T2I models (Chefer et al., 2023; Rassin et al., 2024).

In this paper, we introduce DeLeaker, a dynamic and lightweight inference-time method designed to
mitigate semantic leakage in T2I models. Unlike prior approaches that require costly optimization or
external guidance, DeLeaker operates by applying synergistic interventions directly to the model’s
attention mechanism during inference (§2). First, it automatically extracts entity-specific masks from

1Code and data will be made publicly available upon paper acceptance.
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Figure 1: DeLeaker Qualitative Examples. Top: DeLeaker ; Bottom: original outputs. Red arrows
mark features affected by semantic leakage. Examples cover five subsets of the SLIM dataset (§3).

early image-text attention to localize each entity. It then uses these masks to suppress cross-entity
leakage by dynamically reducing excessively high attention scores between the different entity regions
in both image-text and image-image interactions. Concurrently, it strengthens each entity’s self-
identity by increasing the attention between its corresponding text and image tokens. This targeted
reweighting of attention allows DeLeaker to mitigate leakage while preserving scene structure, and
the model’s priors. Furthermore, the method remains non-intrusive when no leakage is present.

While developing methods to mitigate semantic leakage is crucial, rigorously evaluating them
remains a major hurdle due to the absence of dedicated benchmarks and the limitations of VLM-
based automatic evaluation (Dahary et al., 2025a). To address this gap, we introduce a comprehensive
evaluation framework, centered around a new dedicated dataset (§3). Our dataset, the Semantic
Leakage in IMages (SLIM) dataset, comprises 1,130 (prompt, seed, image) samples capturing
diverse leakage scenarios, including prompts describing visually similar entities, spatial interactions,
and multi-entity compositions. SLIM is constructed from a large pool of images generated by the
FLUX.1-dev model (Black-Forest-Labs, 2024), using prompts automatically produced by GPT-4o.
The images are rigorously filtered through an extensive human filtering process.

Next, we develop an evaluation framework (§4) to assess semantic leakage mitigation. We adopt
a comparative evaluation setup in which images from before and after the mitigation process are
compared. Importantly, our framework breaks down the challenging comparative evaluation into a
series of discrete logical steps. The process begins with the identification of differences between
entities to detect semantic leakage, followed by the ranking of the mitigation’s success. Additionally,
we include evaluation of the image-text semantic alignment and the preservation of the original image
quality and perceptual similarity. Our automatic evaluation pipeline is validated by an extensive
human study (980 responses).

In experiments with FLUX (§6), DeLeaker significantly outperforms all evaluated baselines in both
automatic and human evaluations. This includes prompt-based baselines, and layout-based baselines
(§5) that require additional information, typically from external LLMs. To confirm its generalizability,
we applied DeLeaker to another model, SANA (Xie et al., 2024), and found it to be similarly effective
at mitigating semantic leakage. To understand the source of DeLeaker’s advantage, our ablation study
(§7) reveals that DeLeaker’s strength derives from its cross-modal attention interventions, particularly
the image-text strengthening that preserves self-identity.

To summarize, our contributions include: (1) DeLeaker, a dynamic, lightweight inference-time
method for mitigating semantic leakage in T2I models while preserving image quality and perceptual
similarity, (2) the first dedicated dataset explicitly designed to evaluate semantic leakage, and (3) an
automated evaluation pipeline for large-scale assessment supported by a human study. We hope this
work will inspire further research toward more controlled and reliable generative models.
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Figure 2: DeLeaker Scheme. Our method applies attention-based interventions during the diffusion
process: (A) automatically extracting entity-specific masks from early image-text attention maps;
(B) suppressing cross-entity leakage by suppressing attention across entities in both image-text and
image-image interactions; and (C) strengthening self-identity by increasing attention from each
entity’s text tokens to its own image tokens. The attention map legend (left) shows how entities
interact, where colors denote different interaction regions. The final output (right) presents the image
output with DeLeaker compared to the original image, when DeLeaker is not applied.

2 DeLeaker

Our method, DeLeaker, aims to mitigate semantic leakage in DiT T2I models. As illustrated in Fig. 2,
it relies solely on dynamic reweighting interventions at inference time in the self-attention mechanism
during the diffusion process, and consists of three key steps. First, it identifies the image tokens
(masks) corresponding to entities, i.e., the regions where they should appear in the generated image
(§2.1). Second, it suppresses the connections between entities in both the text-image and image-image
self-attention maps (§2.2). Finally, it enhances the self-identity of each entity by strengthening the
connection between its text token and the corresponding image tokens (§2.2). In §7, we present an
ablation study, which demonstrates the importance of each intervention.

2.1 ATTENTION-BASED ENTITY MASKING

To mitigate semantic leakage, we first localize for each textual entity ei in the prompt, the set of image
tokens it governs, and then manipulate the attention maps using these localizations. Specifically, we
use the pre-softmax attention scores, Attn, between all image tokens, I, (used as queries, q) and
the set of text tokens, E txt

i ,(used as keys, k). The corresponding image tokens E img
i are selected by

averaging attention scores across heads and applying a dynamic threshold based on the mean, µi

and standard deviation, σi of the attention distribution (Eq. 1). Following prior work on UNet-based
diffusion (Hertz et al., 2022; Binyamin et al., 2025), we observe that even the early of the diffusion
steps yield sufficiently accurate masks (§B.1, Fig. 5). Thus, we aggregate attention maps across early
steps in the diffusion process to create a mask for each entity. We apply smoothing techniques on
the masks: (1) temporal smoothing by averaging over the accumulated history maps, and (2) spatial
smoothing via filtering, resulting in more stable and coherent entity masks (see §B.1, Fig. 6).

E img
i = {q ∈ I | Attnqk > µi + β1 · σi, k ∈ (E txt

i ∩ I)} (1)

2.2 ATTENTION-BASED LEAKAGE MITIGATION

Leakage Suppression. Utilizing attention-based entity masks, we focus on cross-entity attention,
which measures how the image tokens of one entity, ei, attend to the text or image tokens of another
entity, ej . While cross-entity relations are a primary source of semantic leakage, they are also essential
for creating meaningful interactions, such as shared actions and poses. Therefore, our goal is not to
eliminate these connections entirely, but to selectively suppress only those causing leakage while
preserving beneficial ones. We hypothesize that high attention values in image-image relations (Eq.
2) represent unwanted semantic transfer (akin to high-frequency noise), while lower values reflect
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desirable, meaningful interactions (the core signal). Specifically, we apply a unified suppression
mechanism by zeroing out attention scores (Eq. 3, first two cases). This involves fully suppressing
all cross-entity image-text attention scores while also suppressing image-image attention scores that
exceed one standard deviation, multiplied by coefficient, β2, above their mean. This intervention is
applied only after the initial, attention-based entity masks have been formed.

Himg-img
ij = {(q, k) | Attnqk > µij + β2 · σij , q, k ∈ I} (2)

Strengthening Self-Identity Alignment. Finally, we introduce a third intervention to strengthen
the connection between each entity’s text tokens and its corresponding image tokens (Eq. 3, third
case). This enhancement improves the self-identity of each entity. We apply this by multiplying the
relevant attention scores by a coefficient α > 1 (α ablations in §B.1, Fig. 7). The coefficients are
empirically chosen based on a qualitative review of a few samples external to the SLIM dataset.

Attn′
qk =


−∞ if q ∈ E img

i , k ∈ E img
i , and (q, k) ∈ Himg-img

ij

−∞ if q ∈ E img
i , k ∈ E txt

i

α · Attnqk if q ∈ E img
i , k ∈ E txt

j

Attnqk else

(3)

Here Attnqk is the single pre-softmax attention score between the tokens q and k. The terms µi and σi

are respectively the mean and standard deviation (std) of attention scores for entity i’s image tokens.
Similarly, µij and σij are the mean and std for attention between the image tokens of entities i and j.

Having established the method, we next turn to the dataset design that enables a systematic evaluation
of its effectiveness. See §C for DeLeaker’s full equations and hyperparameter values.

3 THE SLIM DATASET: SEMANTIC-LEAKAGE IN IMAGES

Prior efforts to mitigate semantic leakage (Dahary et al., 2025b) and improve semantic alignment
(Feng et al., 2022) have relied on general-purpose benchmarks such as DrawBench (Saharia et al.,
2022) and MS-COCO (Lin et al., 2014). These benchmarks, however, do not specifically target
semantic leakage. This is because the phenomenon is mainly associated with the visual similarity
of entities (Dahary et al., 2025b), a condition that rarely appears in their general-purpose prompts.
Consequently, prior work has often drawn conclusions from evaluating extremely small subsets of
these datasets, sometimes only a few dozen samples (Chefer et al., 2023; Dahary et al., 2025b).

To fill this gap, we introduce SLIM, which is, to the best of our knowledge, the first dataset explicitly
designed to study and evaluate visual semantic leakage at scale. It contains 1,130 samples, each with
a prompt, a generation seed, and a corresponding image exhibiting semantic leakage, all generated
using FLUX (Black-Forest-Labs, 2024). SLIM is organized into five subsets, as detailed below
(examples in Fig. 1), and was curated through a two-step process: large-scale generation followed by
human-guided filtering. To validate that DeLeaker’s performance is not limited to FLUX, we create
an additional test set using SANA (Xie et al., 2024). Due to the extensive data filtering required, this
supplementary set contains 370 samples.

Large-Scale Generation & Dataset Design. Building on the finding that semantic leakage is
associated with visual similarity (Dahary et al., 2025b), we find the effect is particularly acute within
fine-grained categories (e.g., dog breeds). Motivated by this, we focus on animals and fruits for
controlled evaluation. Starting from a curated list of 90 animals (Banerjee, 2023), we use GPT-4o
to expand it to 200 animals and generate 200 descriptive prompts, each pairing visually similar
animals. We then produce corresponding images using five seeds per prompt. We leverage the animal
pairs subset to create increasingly complex scene configurations, hypothesized to be associated
with stronger leakage (see Table 3), including interactions (e.g., hugging), shared visual styles (e.g.,
comics), and multiple entities (triplets). To probe semantic leakage in a different domain, we similarly
expand our dataset to include a fruits & vegetables subset based on an existing list of 36 fruits (Seth,
2019), where leakage is rare in pairs but emerges in triplets. Notably, subsets with multiple entities
tend to present challenges beyond semantic leakage, as they are also prone to entity count errors (i.e.,
missing or added entities).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Human-Guided Filtering of Semantic Leakage. We filter the large-scale set to include only
images that exhibit detectable semantic leakage. This is achieved through a two-stage process: an
initial large-scale filtering using a noisy automatic pipeline, followed by a second round of manual
verification through human annotation.2 We designed a rigorous structured human annotation protocol
for detecting semantic leakage, detailed in §F.1. See §G for subset sizes through the filtering and
prompt examples.

4 EVALUATION

visual  
Dif f er encs

Gener al  
knowl edge- based

r ef er ence image- based

Typical it y
assessment

Or iginal  image candidat e image 

compar at ive
r anking

toucan woodpecker

"What are the visual differences between a toucan and a woodpecker?"

1

2

3

"What are the visual differences between a toucan and a woodpecker?"
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rather in the first image? 

First explain.
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black beak. Head Feathers: 
....
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colored, hollow, and ... while 
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chisel-shaped, and strong 
beak.Wing Size: ...
....

?A toucan tilts its beak, while a woodpecker pecks furiously at the bark?Pr ompt :

VLM

VLM

VLM

VLM

Figure 3: Our Automatic Evaluation Framework for Assessing Semantic Leakage Mitigation.
The framework consists of three main steps: (1) visual difference extraction, (2) typicality assessment,
and (3) comparative ranking. Step 1 is divided into two parts: one based solely on the input prompt
(top) and the other employs reference images generated for each entity (bottom). The VLM generates
and then merges two independent descriptions into a unified description. Step 2 consists of four
typicality questions, one for each entity in each image, guided by the unified differences identified in
Step 1. Step 3 employs the outputs of Step 2 to compare both images. It produces a classification
indicating the preferred image (Image 1 or Image 2) and the magnitude of change (minor or major).

Evaluating semantic leakage mitigation in T2I models is a major challenge. Prior efforts have often
relied on general purpose metrics (e.g., CLIP score (Radford et al., 2021)) or qualitative judgments,
which lack the specificity required for systematic analysis and are often insensitive to subtle, fine-
grained errors that characterize semantic leakage (Dahary et al., 2025a). To address this, we introduce
a novel automatic evaluation framework centered on a comparative setup, which directly contrasts a
candidate (mitigated) image against the original. Automating comparative analysis, however, is non-
trivial due to limitations in the visual modality of state-of-the-art VLMs (see §B.2). To overcome this
challenge, our evaluation pipeline decomposes the complex visual comparison into discrete logical
steps, thereby leveraging the more robust reasoning capabilities of the text modality in VLMs (Ventura
et al., 2024a; Nikankin et al., 2025). To ensure its reliability, the framework is validated against
extensive human assessments. Our evaluation covers two critical dimensions: leakage mitigation,
which measures the reduction of cross-entity interference, and preservation, described next.

Automatic Evaluation for Leakage Mitigation. Our framework decomposes the evaluation into
three interpretable steps, performed by an external VLM (Gemini 1.5; Team et al. 2024a), as shown
in Fig. 3. The process requires four inputs: (1) a prompt, (2) an original image exhibiting semantic

2Specifically, two authors of this paper manually reviewed the images.
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Figure 4: Qualitative comparison across baselines (columns) and three examples (rows).

leakage, generated by the base model M , Iorig
M ; (3) a candidate image, Icand

M∗ , generated by a model
M∗ as a corrected version of the original image; and (4) reference images, generated independently
by M, REF ei

M . The reference images act as auxiliary cues, ensuring the evaluation isolates leakage
effects rather than the information encoded in the VLM about each of the entities.

The pipeline first identifies key visual differences between the entities by combining the VLM’s
general knowledge with the specific insights from the reference images. Second, it assesses the
typicality of each entity in both the original and candidate images, measuring how well each matches
its expected appearance, based on the key visual differences. Finally, it performs a comparative
judgment to determine which image better preserves the distinct identity of all entities. To mitigate
sensitivity to image order in VLMs (Ventura et al., 2024a), the images are presented in a random order.
The evaluation’s output is a single discrete label, c = ∆(Icand

M∗ , I
orig
M ), which represents the change

between the two images. This label combines the change’s direction (improvement/degradation) and
magnitude (major/minor), along with a ’no change’ option, resulting in five possible outcomes.

Preservation Metrics. In addition to leakage mitigation, we evaluate three preservation aspects:
alignment with the original prompt (VQAScore (Lin et al., 2024)), image quality (KID (Jayasumana
et al., 2024)), and perceptual similarity to the original image (LPIPS (Zhang et al., 2018)).

Human Assessment of Leakage Mitigation (User Study). To establish human baseline prefer-
ences and validate the reliability of our automatic evaluation, we conduct a user study on Amazon
Mechanical Turk (AMT) which results in a total of 980 individual responses (see AMT questionnaire
in §F.2). Since evaluating leakage with multiple entities is confounded by the difficulty of assessing
each entity pair separately, we focus our evaluation on the pair subsets of SLIM dataset. We randomly
sample 60 prompts from these subsets, ensuring equal distribution across the subsets. Each task
presents a candidate image generated by one of six baselines representing a range of methods, the
original image, and two reference images (one per entity), following the structure of the automatic
pipeline. The questionnaire includes two questions that assess the typicality of each entity using a
five-point scale aligned with the automatic evaluation. Each task is completed by three annotators,
and responses are combined via majority vote. The inter-annotator agreement is 0.52 (quadratic
weighted Fleiss’ κ), which validates the correlation between human judgments and our automatic
evaluation (Spearman’s ρ=0.432) as a meaningful proxy. We observe a difference in model-human
sensitivity: both typically agree on the change’s direction (mitigation vs. degradation) but differ on
its magnitude (minor vs. major).

5 EXPERIMENTAL SETUP

Base DiT T2I Models. We primarily experiment with the state-of-the-art open-source DiT T2I
model FLUX.1-DEV (Black-Forest-Labs, 2024), while also applying DeLeaker to SANA (Xie et al.,
2024) to validate our findings. Unlike earlier UNet-based (Ronneberger et al., 2015) models such
as Stable Diffusion (Rombach et al., 2022), where textual information is injected through spatial

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Automatic and Human Assessment Scores of Semantic Leakage Mitigation. We compare
our method, DeLeaker (bottom rows), against layout-based (top) and prompt-based (middle) baselines.
The main scores, summarized by a stacked bar visualization, represent the percentage of samples
labeled as Mitigation (Major/Minor), No Change, or Degradation (Major/Minor), where a larger
green portion indicates better performance. The automatic scores are calculated on the SLIM pair
subsets (840 samples), while the human scores are gathered from the user study of 60 random samples
from that same subset. These are presented alongside preservation metrics (VQAScore, LPIPS, and
KID (·10−2)). Arrows (↑/↓) indicate the desired direction for improvement.

Method
Semantic Leakage (Automatic) (Human) Preservation

Visualization Mitigation ↑ Degradation ↓ Visualization VQAScore LPIPS KID
Major Minor No Change Minor Major ↑ ↓ ↓

RAG-Diffusion 17.55% 4.17% 5.03% 8.34% 64.91% 0.42 0.72 0.09

RPF 20.74% 9.06% 16.57% 15.26% 38.38% 0.63 0.64 0.53

3DIS 29.08% 8.10% 7.63% 10.13% 45.05% 0.62 0.76 0.96

QwenFLUX 17.28% 7.51% 15.85% 12.75% 46.60% 0.49 0.61 0.46

Instruction Prompt 23.92% 11.54% 35.35% 9.28% 19.88% — 0.64 0.33 0.00

Entity Description Prompt 35.60% 11.07% 25.71% 9.17% 18.45% 0.62 0.41 0.00

DeLeaker 46.07% 9.76% 25.36% 5.83% 12.98% 0.68 0.22 0.00

DeLeaker + Description 53.57% 8.57% 15.95% 6.55% 15.36% — 0.65 0.43 0.01

cross-attention layers at multiple resolutions during denoising, DiTs employ a transformer-based
(Vaswani et al., 2017) backbone that processes image and text tokens jointly. This architectural
shift promotes capturing complex cross-modal dependencies and achieving more consistent global
semantics. The differing text encoders and attention mechanisms in FLUX and SANA are relevant
for studying semantic leakage, as these components control how unintended information propagates
between modalities. To the best of our knowledge, this setup represents the first exploration of
semantic leakage in DiT T2I models. For brevity, the following setup focuses on FLUX, while the
full experimental details for SANA are available in §E.1.

Baselines. We evaluate DeLeaker against layout-based and prompt-based baselines. Layout-based
methods provide explicit priors on image structure to improve compositional control (Chen et al.,
2024a;b), making them relevant for semantic leakage as their structure reduces content mixing.
Additionally, we include several zero-shot, prompt-based baselines, which are common for improving
image-text alignment (Yang et al., 2024). To maintain a fair comparison, all methods are built upon
the FLUX base model, as our SLIM is created using FLUX-generated images.

For layout-based baselines, we utilized FLUX-based parallel implementations of an existing UNet
baseline (Dahary et al., 2025b), specifically RPF (Chen et al., 2024a), RAG-Diffusion (Chen et al.,
2024b), and 3DIS (Zhou et al., 2025). These baselines differ in their inputs and conditioning strategies.
The first, RPF, leverages regional prompts within bounding boxes while eliminating cross-bounding-
box attention. The second, RAG-Diffusion, constrains self-attention to local text descriptions within
each box, but only during the initial steps of the diffusion process. Finally, 3DIS (Zhou et al., 2025)
conditions on bounding boxes to generate a depth map as an additional input. It is important to note
that all three baselines rely on external LLMs or additional models as guidance (§H.1).

For prompt-based baselines, we employ three methods. The first is an implicit instruction to generate
an image without semantic leakage between entities, referred to as the Instruction Prompt. Since
T2I models are not trained for instruction-following, we also experiment with explicitly describing
each entity and its appearance, referred to as the Entity Description Prompt. To illustrate, the prompt

“A zebra and a horse are riding in the sand together. . . ” (Fig. 4) is enriched with LLM-generated
entity attributes, such as “the zebra has dense black-and-white stripes, while the horse has white fur
and a blond tail..”. The final method is the Image-Condition Instruction Prompt, where the model
(Qwen2VL-Flux; Lu 2024) is instructed to mitigate leakage based on the original image.

6 RESULTS

Table 1 presents the automatic and human evaluation of leakage mitigation across all baselines on
the SLIM pair subsets, and Fig. 4 presents qualitative examples (see additional examples in §D).
Complementary results are in §E, including SANA’s scores and results with multiple entities.
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Table 2: DeLeaker Ablation Study. Configurations are divided into two types: (1) W/O rows (top
four) represent the removal/addition of a specific component, while (2) Only rows (bottom three)
isolate each component independently. Ratios are reported relative to the full DeLeaker scores
baseline, with values closer to 1.0 indicating similarity. Darker hues indicate stronger contributions,
color-coded as positive and negative . Signs indicate attention suppression (-) or strengthening (+).

Configuration
Leakage Mitigation (Relative to DeLeaker)

Improvement ↑ No Change Degradation ↓
Major Minor Minor Major

DeLeaker 1.00 1.00 1.00 1.00 1.00

W/O Image-Image (-) 1.01 1.04 1.05 0.73 0.97
W/O Image-Text (-) 0.93 0.78 1.10 1.04 1.18
W/O Image-Text (+) 0.54 0.82 1.73 1.20 1.24
With Text-Text (-) 0.91 0.91 1.08 1.20 1.16

Only Image-Image (-) 0.26 0.61 2.44 1.35 0.96
Only Image-Text (-) 0.54 0.88 1.88 1.00 0.99
Only Image-Text (+) 0.90 0.99 1.23 0.88 0.96

DeLeaker outperforms baselines in mitigating semantic leakage. Our automatic evaluation shows
that DeLeaker achieves the highest rate of semantic leakage mitigation with minimal degradation.
Human evaluation, strongly confirms these findings, with annotators judging that DeLeaker improved
the image in a clear majority of cases (67.8% total improvement), outperforming all other methods.
Furthermore, adding entity descriptions to DeLeaker (similar to the ‘Entity Description Prompt’
baseline) offers only minor gains, indicating that DeLeaker is highly effective on its own. Among
the other baselines, the text prompt-based methods have a combined degradation rate of just 24.2%,
which is significantly lower than the rates for layout-based methods, all of which are over 50%.

DeLeaker preserves fidelity and quality. Beyond leakage mitigation, DeLeaker excels at preserv-
ing image fidelity and quality. It achieves the lowest LPIPS score (0.22), meaning it best preserves
the original image, which indicates that the method effectively leverages the model’s internal knowl-
edge and priors, applying only minimal, necessary interventions. DeLeaker also attains the highest
VQAScore (0.68), signifying strong image-text alignment. Moreover, it achieves the lowest KID
score (0.00) alongside the prompt-based baselines, demonstrating that strong leakage reduction is
achieved without sacrificing original image quality. Notably, when applied to images without leakage
(§D, Fig. 12), DeLeaker induces negligible changes, thereby remaining non-intrusive.

7 ABLATION STUDY & ANALYSIS

Table 2 presents an ablation study assessing the contribution of each DeLeaker component. It includes
two configurations: (1) W/O ablations, where components are removed from or added to the full
method while the other are applied, and (2) Only ablations, where components are tested in isolation.
Results are reported as ratios relative to the full automatic leakage mitigation scores of DeLeaker.

The most influential intervention is self-identity (image-text) strengthening. When applied alone,
it achieves a 0.90 ratio in the “major improvement” (leftmost column). Conversely, when removed the
original score drops by 46% (to 0.54), confirming its key role in leakage prevention. The second most
influential intervention is cross-entity image-text suppression. Omitting it causes a 29% reduction
in improvement (major and minor). Furthermore, when applied in isolation, it accounts for 0.54
(second-to-last row) of the total major improvement with almost no degradation, demonstrating
its significant contribution. While cross-modality interventions are found to be effective, self-
modality interventions have only a limited impact. Suppressing text-text interactions degrades
performance by 9% to 20%, suggesting that leakage in DiT T2I models is primarily due to cross-
modal misalignment. Similarly, weakening image-image interactions has a small and inconsistent
impact (see absolute values in §E.3). Taken together, our analysis pinpoints the root of semantic
leakage not to weaknesses within each modality, but to the faulty alignment between them, suggesting
a promising direction for future research.
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Table 3: SLIM Subset Analysis
with DeLeaker.

Subset Visualization

Animal Pairs
Animal Interactions
Animal Interactions + Style

Finally, we analyze mitigation performance across the SLIM
subsets. As shown in Table 3, the rate of successful mitigation
increases dramatically with subset complexity. The total im-
provement rate (major and minor) rises from 42.4% for simple
Animal Pairs to 62.6% for Animal Interactions, and further to
66.4% for the most complex Animal Interactions + Style subset.
This provides clear evidence for our hypothesis: more complex
prompts elicit stronger semantic leakage. This validates their
use in SLIM as stress tests for semantic leakage.

8 RELATED WORK

Alignment in T2I models. Ensuring alignment between the text prompt and the generated image is
a fundamental objective in T2I models, serving both as a generation condition and as an evaluation
goal (Xie et al., 2019; Hu et al., 2023; Yarom et al., 2024; Gordon et al., 2023). Many approaches rely
on encoding-based methods, such as joint image-text embeddings (e.g., CLIP), which were found
to be ineffective for fine-grained details between modalities (Liang et al., 2022; Yuksekgonul et al.,
2022; Koishigarina et al., 2025) (see §B.2). While recent work has employed VLMs as alignment
evaluators (Li et al., 2023), they are unsuitable for detecting semantic leakage. VLMs struggle with
the fine-grained details (Tong et al., 2024; Yu et al., 2025) and complex reasoning required for multi-
image comparisons (Ventura et al., 2024b). This means a direct approach is insufficient, highlighting
the need for a more guided, step-by-step evaluation process. To the best of our knowledge, no
evaluation method explicitly targets semantic leakage, despite its prevalence in T2I models (see §G.1,
Table 17). Addressing this gap is a central focus of our work, in which we introduce a dedicated
method to mitigate semantic leakage and a corresponding evaluation framework.

Semantic Leakage in T2I models. Leakage in T2I models was first identified by Rassin et al.
(2022) in UNet-based T2I models, though a direct mitigation was not proposed. While subsequent
research has addressed related visual artifacts such as attribute binding (see §A for a distinction
from semantic leakage; Feng et al., 2022; Rassin et al., 2024), composition errors, and missing
entities (Binyamin et al., 2025) by modifying the attention mechanism, these works do not directly
address semantic leakage. To the best of our knowledge Dahary et al. (2025a;b) were the only ones to
explicitly tackle this problem. However, their solutions rely on external layout guidance or costly
optimization. In contrast, we introduce DeLeaker, a lightweight training-free, guidance-free semantic
leakage mitigation method.

Semantic Leakage in Language Models. Semantic leakage has only recently been recognized as
an issue in state-of-the-art language models like GPT-4o, where prompt information unintentionally
biases the output (Gonen et al., 2025). While progress has been made in diagnosing semantic leakage,
with one cause identified as leakage between lexical items in the text encoder (Kaplan et al., 2025),
effective mitigation remains an open problem. Therefore, our work focuses on developing a novel
mitigation strategy while also investigating the origins of leakage through our method’s ablations.

9 CONCLUSIONS

This work introduces DeLeaker, a lightweight inference-time approach that effectively mitigates
semantic leakage in DiT-based T2I models without relying on external information such as bounding-
boxes. By directly modulating attention patterns during inference, DeLeaker mitigates leakage while
preserving image-text alignment and image quality. It outperforms existing baselines, across diverse
scenarios. Complemented by the first dedicated SLIM dataset and comparative evaluation framework,
this work provides both a practical solution and a comprehensive foundation for a systematic study of
semantic leakage in T2I models.

Future research could expand the SLIM dataset into new domains to explore cross-domain leakage
scenarios. Furthermore, SLIM could be used to train leakage classifiers or, when paired with
DeLeaker outputs, to fine-tune models to inherently avoid semantic leakage. While DeLeaker
specifically targets T2I models, extending our work to address semantic leakage in other modalities,
such as 3D or video, is a natural next step. We hope this work stimulates further progress on new
methods, systematic evaluations, and dedicated datasets to address key problems in T2I generation.

9
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, all code and the newly introduced SLIM dataset will be made publicly
available. Our experiments are based on open-source T2I models, FLUX.1-dev and SANA, with all
baselines and their configurations clearly documented in §H.1. Key hyperparameters for DeLeaker,
such as attention reweighting coefficients and the specific diffusion step ranges for interventions, are
detailed in §C, Table 6. Moreover, our automated evaluation framework is thoroughly described, with
the exact VLM prompts provided in §F to allow for complete replication of our evaluation process.

ETHICS STATEMENT

In this work, we utilized AI models for several tasks. For grammar improvement, we used Gemini
2.5 Pro. For code completion, we used Claude 4 Sonnet. In all instances, every suggestion or line
of code generated by a model was carefully reviewed by the authors to ensure it aligned with our
original intentions before being accepted. Finally, as detailed in §3 and §F, we also used LLMs and
VLMs for data creation and evaluation.
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A SEMANTIC LEAKAGE: CONCEPTUAL CLARIFICATION AND SCOPE

A.1 DISTINCTION FROM ATTRIBUTE BINDING

Semantic leakage and attribute binding (Rassin et al., 2024) represent two related but distinct
challenges in T2I generation (see Table 4). Attribute binding refers to the failure to correctly
associate explicitly mentioned attributes with their intended entities in the input prompt. For instance,
in prompts such as “a yellow flamingo and a pink sunflower” or “a red frog and a blue rabbit”, models
may misplace attributes (e.g., rendering the rabbit as red or the frog as blue), resulting in incorrect
color-to-entity assignments. The source of the error is thus a misalignment between the linguistic
specification of attributes and their grounding in the image.

In contrast, semantic leakage arises not from the wrong binding of attributes explicitly stated in text,
but from the unintended transfer of semantically related features between entities. This phenomenon
is primarily driven by the visual similarity of the entities, making it more likely to occur between a
horse and a donkey than between a cow and a parrot. On the other hand, attribute binding can also
occur between visually dissimilar entities (e.g., “a red cow and a white parrot”). Here, features attend
their semantically similar counterparts across entities, for example, the ears of one animal influencing
the ears of another, or the shape of a mouth blending between two species. This leads to cross-entity
entanglement of features that are not even explicitly mentioned in the textual prompt, but emerge due
to the semantic proximity of visual parts (e.g., cow ears leaking into a horse’s ears).

Table 4: Comparison between Attribute Binding and Semantic Leakage.

Aspect Attribute Binding Semantic Leakage

Definition Misalignment between textual attributes
and their intended entities.

Unintended transfer of semantically re-
lated features between entities.

Source Explicit attributes in the text prompt (e.g.,
colors, shapes).

Implicit similarity between visual features
(e.g., ears, eyes, mouths).

Primary Cause Confusion over explicit attributes, regard-
less of entity similarity (e.g., “a red cow
and a white parrot”).

Visual/semantic proximity of the entities
themselves (e.g., more likely between a
horse and a donkey).

Example Prompt “A yellow flamingo with a pink sun-
flower”; “A red frog and a blue rabbit.”

“A cow and a horse in a farm.”

Error Manifestation Attributes swapped or misplaced (e.g., a
blue frog instead of a red frog).

Feature entanglement across entities (e.g.,
cow traits appearing in the horse’s ears).

Commonality Both result in semantically inconsistent outputs that reduce fidelity to the intended
meaning.

A.2 DIFFERENTIATION FROM LEAKAGE IN IMAGE-TO-IMAGE GENERATION

More recently, leakage has also been discussed in the context of style-content entanglement in
image-to-image generation using reference images (Frenkel et al., 2024; Li et al., 2025). This line of
work, however, focuses on a different type of leakage that occurs between style and content, rather
than on the internal semantic leakage between entities within the same image, which is the focus
of our study. Image-to-image editing frameworks offer another possible direction for addressing
this challenge. However, they involve computationally expensive double inference and rely on
external inputs, prompt optimization (Yang et al., 2023) or adapters optimizations often resulting in
identity preservation issues (Slobodkin et al., 2025). In contrast, our method is both training-free and
guidance-free. It achieves high semantic consistency with the original image without requiring prior
generation or post hoc correction.
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B FURTHER ANALYSIS & ABLATIONS

B.1 DeLeaker COMPONENTS ABLATIONS

bat

st ep 1

eagle

Or iginal

eagle

A butterf ly and a 
moth flutter around 
a light source their 

wings casting 
intricate shadows

A cat and a 
cheetah are 

splashing each other 
with water in a 
shallow river

cat cheetah

A bat and a eagle 
are sitting with their 

tails wrapped 
around each other

butterf lymoth

cheetah

butterf ly

st ep 12

Ent it y masks dur ing dif f er ent  dif f usion Pr ocess

Figure 5: Entity masks are accurate even in the first diffusion step (50 blocks; green frame).
This is particularly evident in semantic leakage cases, where these initially clear masks begin to blend
by a middle step (660 blocks; red frame). The full process consists of 20 diffusion steps (1140 blocks
total).
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Original
DeLeaker with 

smoothing

DeLeaker without 
smoothing

cowcow horse

cow horse

"A cow and a horse 
graze peacefully in the 

same pasture"

cow 

150 250 350 450

DeLeaker with 
mask history

DeLeaker without  
mask history

Diffusion steps * blocks

(1)

(2) Smoothing

Mask History

Figure 6: Ablation study of DeLeaker’s smoothing techniques on entity masks. The figure
demonstrates the impact of two components: (Top) temporal smoothing and (Bottom) spatial
smoothing.

1.2 1.6 21

Different Self - Identity (a) Values
Original

"A koala and a sloth are 
entwined together while 
hanging from a branch"

"A cow and a horse 
graze peacefully in the 

same pasture"

"A dog and a fox play 
together in a field their 
playful antics a display"

Used in DeLeaker

Figure 7: Effect of varying the self-identity strengthening coefficient (α) in DeLeaker. Multiplying
the image-text representation by α helps mitigate semantic leakage. This coefficient was empirically
optimized on a small set of images, where we found α = 1.2 effectively mitigates semantic leakage.
Whereas, higher values, such as α = 2.0, introduces visual artifacts.
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Analysis: Attention Differences between DeLeaker and Original To further analyze the contribu-
tion of DeLeaker’s cross-entity components (image-image and image-text), we track the progression
of semantic leakage across model (FLUX-dev) blocks and diffusion steps. We compute the
average proportion of tokens attending to the other entity, exceeding the dynamic leakage threshold,
relative to the number of tokens in the entity mask. For each entity pair, we measure leakage in
both directions and take the maximum, as leakage typically occurs in only one direction (ei → ej).
The analysis is performed under two conditions: standard inference (original) and inference with
DeLeaker. Figure 8 shows the relative mean difference in leakage progression between the two
settings. While the image-image component’s effect is bounded at a high value, partially explaining
its smaller apparent change, the data still suggests this intervention has a lower impact on mitigating
semantic leakage.

Image- Image 

Image- Text

Del eaker  indir ect  ef f ect  -   At t ent ion scor es: 
(Del eaker - or iginal )/or iginal

%

Figure 8: Analysis of Leakage Mitigation Progression. The figure shows how DeLeaker’s cross-
entity components mitigate semantic leakage throughout the FLUX diffusion process (steps × blocks).
The y-axis represents the relative change in cross-entity attention between the DeLeaker run and
the original run. The top and bottom plots show the effects for the image-text and image-image
components, respectively.

B.2 AUTOMATIC EVALUATION BASED ON PREVIOUS EFFORTS

Evaluating the success of semantic leakage mitigation fundamentally requires a comparative analysis
between the original and the corrected image. Automating this comparison is non-trivial, however,
as state-of-the-art methods suffer from critical limitations. Vision-Language Models (VLMs), for
instance, exhibit order sensitivity where their judgment is biased by image presentation order,
and possess unreliable visual encodings that fail in zero-shot comparisons (Ventura et al., 2024a).
Similarly, joint-encoding models like CLIP are unreliable due to significant cross-modal alignment
gaps, often failing to correctly match text with visual information (Liang et al., 2022). These
limitations highlight the need for a more robust, step-by-step evaluation pipeline, as simple proxies
are insufficient for this nuanced task.

We investigated whether standard metrics from joint-encoding models like CLIP and BLIP could
serve as a proxy for our evaluation pipeline. To test this, we examined two conditions for both
models: a self-identity check, which compares an entity’s image crop with its own name (e.g., a
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horse image vs. the text “horse”, and a cross-entity check, which compares the image crop with
the other entity’s name (e.g., a horse image vs. the text “cow”). With CLIP, we measured the direct
image-text similarity score. With BLIP, we queried the model with a question (e.g., “Is this a horse
in the image?”) and used the predicted probability of the answer being “Yes”.

We then performed a Spearman’s rank correlation analysis between these CLIP and BLIP-based
scores and our automatic evaluation labels (major improvement, minor improvement, no change,
minor degredation, major degredation). The analysis was conducted on our 821-sample pair subset,
using our automatic labels as the ground truth, which themselves correlate moderately with human
judgments.

The results, as presented in Table 5, show no statistically significant correlation across all tested
metrics. The correlation coefficients were found to be negligible, ranging from approximately −0.04
to 0.03, with all corresponding p-values being high (p ≫ 0.05). This demonstrates that simple,
off-the-shelf CLIP and BLIP-based measurements fail to capture the nuances of semantic leakage,
reinforcing the need for our structured, multi-step evaluation pipeline.

Table 5: Spearman’s rank correlation (ρ) between our automatic evaluation labels and various metrics
derived from CLIP and BLIP (N = 821). In all cases, the correlation is statistically insignificant
(p ≫ 0.05).

Model Metric Type Spearman’s ρ p-value

CLIP Self-Identity 0.010 0.773
Cross-Entity −0.010 0.773

BLIP Self-Identity 0.027 0.440
Cross-Entity −0.027 0.440
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C DeLeaker METHOD: COMPLEMENTARY DETAILS

Table 6: Technical details of DeLeaker.

Parameter Parameter Group Value Goal
Number of inference
steps

20

Guidance scale 3.5

α 1.2 self-identity
strengthening

β1: Std. coefficient
(text-image)

0.9 entity mask

β2: Std. coefficient
(image-image)

2 image-image sup-
pression

tstart-aggregation 12 diffusion step of
start aggregating en-
tity masks

tend-aggregation 456 diffusion step of
stop aggregating en-
tity masks

tstart-intervention 57 diffusion step of
start interventions
(suppression and
strengthening)

tend-intervention 741 diffusion step of
stop interventions
(suppression and
strengthening)

General T2I Parameters

DeLeaker-Specific
Parameters

C.1 DeLeaker IMPLEMENTATION: TECHNICAL DETAILS

Entity Mask The first step of DeLeaker is to find and extract the relevant image tokens of each
entity in the prompt. We find, similarly to previous work in UNet-based diffusion models (Binyamin
et al., 2025), that early diffusion steps yield more accurate entity segmentation masks compared to
later ones. Surprisingly, even within a single partial diffusion step, this method produces reliable
results. Based on this observation, we aggregate attention maps for each entity across selected
diffusion blocks and timesteps. Specifically, from t12 to t171, where one diffusion step is consists of
57 blocks, while we run on 20 diffusion steps (results in total 1140 blocks in the diffusion process).

Due to significant variation across blocks and timesteps, we apply two smoothing techniques to
improve mask quality: (1) Spatial smoothing: applying a smoothing filter to fill small holes and
remove isolated artifacts. In this refinement, we apply several filters. The first is a morphological
closing operation which fills small holes within the predicted masks. Then, we apply a morphological
opening to eliminate spurious noise pixels, both using a 3 × 3 elliptical structuring element. (2)
Temporal smoothing (History): we enforce temporal coherence by averaging the attention-based
masks across a constrained window of subsequent transformer blocks and time steps. This window
deliberately excludes the initial block of the first time-step. These that are very noisy and limited
in duration to prevent the erroneous merging of distinct object masks over time. The combined
methodology yields masks that are both spatially clean and temporally stable. Together, these steps
produce cleaner and more consistent segmentation masks (see Figures in §B.1).

SANA-based DeLeaker We found that the image-image component yielded inconsistent results;
while it sometimes improved leakage mitigation, it also occasionally introduced visual artifacts. Due
to this unpredictable behavior, we excluded it from the final SANA configuration.
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C.2 FULL MATHEMATICAL FORMULATION

The standard scaled dot-product attention mechanism is calculated as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (4)

where Q,K, V are the Query, Key, and Value matrices, and dk is the dimension of the keys. The
term Att = QKT represents the raw, unnormalized similarity scores before scaling and the softmax
operation. The following sections detail a process for modifying these raw scores.

Find Entity Masks

µi =
1

|I||E txt
i |

∑
q∈I

∑
k∈E txt

i

Attqk (5)

σi =

√√√√ 1

|I||E txt
i |

∑
q∈I

∑
k∈E txt

i

(Attqk − µi)2 (6)

E img
i = {q | Attqk > µi + β1 · σi, k ∈ E txt

i , k ∈ I, q ∈ I} (7)

Modify Attention Scores

µij =
1

|E img
i ||E img

j |

∑
q∈E img

i

∑
k∈E img

j

Attqk (8)

σij =

√√√√ 1

|E img
i ||E img

j |

∑
q∈E img

i

∑
k∈E img

j

(Attqk − µij)2 (9)

Himg-img
ij = {(q, k) | Attqk > µij + β2 · σij , q, k ∈ I} (10)

Att′qk =


−∞ if q ∈ E img

i , k ∈ E img
i , and (q, k) ∈ Himg-img

ij

−∞ if q ∈ E img
i , k ∈ E txt

i

α · Attqk if q ∈ E img
i , k ∈ E txt

j

Attqk else

(11)

Notation: I: set of all image tokens indices, E txt
i : text tokens of entity i, α: score scaling factor.

β1, β2: constant std multipliers.

The cases in 11 correspond to:

• First case: Image-to-Image Leakage Suppression
• Second case: Image-to-Text Leakage Suppression
• Third case: Self-Identity Strengthening
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D QUALITATIVE COMPLEMENTARY RESULTS

A cat and a cheetah are 
splashing each other with 
water in a shallow river

A cockatoo and a macaw 
preen each other's colorful 
feathers their beaks gently 

smoothing 

 A koala and a sloth are 
entwined together while 
hanging from a branch

 A nightingale and a robin 
are sharing a pile of leaves for 

bedding

A parrot and a toucan are 
one playfully tugging on the 

other's tail

 An elephant and a 
rhinoceros stand close 

together at a watering hole 
their massive forms

In a 3D render a bee and a 
butterf ly are holding onto 

each other tightly

Original (Flux) DeLeaker

Figure 9: Qualitative Examples - FLUX-based DeLeaker.
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A bat and a eagle 
are sitting with 

their tails wrapped 
around each other.

A koala and a 
sloth are 

entwined together 
while hanging from 

a branch.

A beetle crawls 
across a log, while 

a cockroach 
scurries beneath 

the leaves.

In a Manga style, 
a seahorse and a 

goldf ish are 
wrestling playfully 

in the grass.

A sheep bleats 
softly, while a 
goat playfully 

nudges its 
companion.

DeLeaker
(Our s)

RAG- Dif f usion 3DI S
Ent it y Desc. 

Pr ompt
RPF

DeLeaker  + 
Ent it y  Desc. 

Pr ompt
(Our s)

Or iginal
(FLUX)

I mage- Condit ion
Pr ompt

Figure 10: Qualitative comparison across baselines. FLUX-based DeLeaker.

DeLeaker

Original (SANA)

Figure 11: Qualitative Examples - SANA-based DeLeaker.
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A dolphin leaps out of the 
water while a butterf ly 
flutters near the shore

Or iginal  
(Wit hout  Semant ic Leakage)

Del eaker

A zebra is grazing in the 
grass while an owl is flying 

above

A lion roars from a rocky 
outcrop while a penguin 
waddles across the ice

 An elephant trumpets loudly 
while a spider weaves its web 

in a nearby tree

A bear catches f ish in a 
rushing river while a parrot 

perches on a tropical

Figure 12: Qualitative Examples of cases when original images do not present semantic leakage.
Original images are on left and DeLeaker images are on right. DeLeaker preserve the image content
and quality.
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Or iginal Del eaker Ent it y Desc. 
Pr ompt

I nst r uct ion 
Pr ompt

A cat stretches lazily in the 
sun, while a cheetah scans 
the savanna and a leopard 
lounges on a tree branch.

A crow tilts its head 
curiously, while a magpie 
pecks at the ground and a 
blue jay sings from a tree

A strawberry, a radish, 
and a cherry sit together.

A tomato, a bell pepper, 
and paprika are arranged 

side-by-side

An eggplant, a plum, and a 
f ig are laid out on a napkin

Figure 13: Qualitative Examples of Triplets subset (with original image without entity counting
issues). Examples across best performing prompt-based baselines.

A cow grazes in the field, while a 
horse trots along the fence and 
a donkey brays in the distance

A bat flaps through the twilight, 
while an owl perches on a tree 
and an eagle soars high above.

A macaw tilts its head while a 
parrot and a cockatoo perch 

side by side

A zucchini, a cucumber, and a 
honeydew are arranged 

side-by-side.

Or iginal Del eaker
Ent it y Desc. 

Pr ompt
I nst r uct ion 

Pr ompt

A coyote moves carefully along 
the edge of a clearing, while a 

fox flicks its tail and a dog wags 
excitedly."

Figure 14: Qualitative Examples of Triplets subset (with original image witho entity counting issue:
Missing Entity). DeLeaker mitigates the leakage in some cases while challenged in others creating
the missing third entity. Examples across best performing prompt-based baselines.
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E QUANTITATIVE COMPLEMENTARY RESULTS

Table 7: Human Evaluation Results. Conducted on MTurk over 60 randomly selected samples
across six baselines, with three annotators per task. Aggregation was performed using majority vote,
with the median used in case of ties. The table reports the distribution of semantic leakage mitigation,
categorized by direction and magnitude of change. Spearman correlation of 0.432 with p-value
<0.001 with the corresponding automatic evaluation (see Appendix Table 8).

Model
Human Evaluation: Leakage Mitigation (Distribution)

Visualization Improvement Degradation
Major ↑ Minor ↑ No Change Minor ↓ Major ↓

RAG-Diffusion 3.57% 17.86% 21.43% 21.43% 35.71%

RPF 5.26% 22.81% 26.32% 21.05% 24.56%

3DIS 5.00% 16.67% 16.67% 21.67% 40.00%

QwenFLUX 0.00% 11.67% 20.00% 36.67% 31.67%

Ent. Desc Prompt 16.13% 45.16% 14.52% 17.74% 6.45%

DeLeaker 13.56% 54.24% 25.42% 6.78% 0.00%

Table 8: Automatic Evaluation Results. Proportions computed over all user study samples (60)

Model
Automatic Evaluation: Leakage Mitigation (Distribution)

Visualization Improvement Degradation
Major ↑ Minor ↑ No Change Minor ↓ Major ↓

RAG-Diffusion 16.07% 3.57% 10.71% 3.57% 66.07%

RPF 17.54% 5.26% 17.54% 28.07% 31.58%

3DIS 34.48% 6.90% 8.62% 12.07% 37.93%

QwenFLUX 16.95% 6.78% 11.86% 20.34% 44.07%

Ent. Desc Prompt 36.21% 8.62% 29.31% 10.34% 15.52%

DeLeaker 53.57% 7.14% 16.07% 12.50% 10.71%

Table 9: Results on Animal and Fruits & Veg Triplet Subsets (FLUX): We evaluate leakage
mitigation on the triplets subsets across the best performing prompt-based baselines (based on
the results on the pair subsets). The main scores represent the percentage of samples labeled as
Mitigation (Major/Minor), No Change, or Degradation (Major/Minor), summarized by a stacked bar
visualization. These are presented alongside Preservation metrics (VQAScore and LPIPS). Arrows
(↑/↓) indicate the desired direction for improvement for each metric.

Subset Model
Semantic Leakage Preservation

Visualization Mitigation ↑ Degradation ↓ VQAScore ↑ LPIPS ↓
Major Minor No Change Minor Major

Animal Triplets
Instruction Prompt 39.66% 3.45% 19.83% 0.86% 36.21% 0.67 0.45

Ent. Desc Prompt 38.79% 2.59% 13.79% 6.90% 37.93% 0.67 0.49

DeLeaker 43.97% 7.76% 19.83% 8.62% 19.83% 0.70 0.25

Fruits & Veg Triplets
Instruction Prompt 35.06% 10.34% 15.52% 3.45% 35.63% 0.67 0.41

Ent. Desc Prompt 51.72% 8.05% 8.05% 7.47% 24.71% 0.67 0.46

DeLeaker 59.20% 6.90% 9.77% 4.02% 20.11% 0.70 0.34

E.1 SANA

The different designs of FLUX and SANA are highly relevant to studying semantic leakage. FLUX
combines T5-XXL (Raffel et al., 2020) and CLIP (Radford et al., 2021) encoders, whereas SANA
replaces them with Gemma-2 (Team et al., 2024b) and incorporates linear attention in its DiT
backbone. These components are crucial, as both the text encoder and attention mechanism dictate
how unintended semantic content propagates across modalities.
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We evaluate DeLeaker effectiveness at mitigating semantic leakage using our human-verified Sana
dataset. Since prompt-based baselines have been shown to be more effective for reducing semantic
leakage than layout-based methods, and as no implemented layout-based methods are available
for Sana, we compare DeLeaker against two prompt-based baselines: the instruction prompt and
the entity description prompt. The results, presented in Table 10, show that DeLeaker is highly
effective on the Sana model. It achieves a 64% improvement in leakage mitigation with only a
15% performance degradation, yielding a 49% net improvement. This performance significantly
outperforms the instruction baseline. The entity description prompt, however, achieves much better
results due to the additional description of the entities in the prompt, resulting in a score that is
only slightly behind DeLeaker. We attribute these results to SANA’s use of the Gemma model
as its text encoder, leading to superior performance on the prompt description baseline. To see
whether DeLeaker can achieve even better results using this information, we test DeLeaker with the
entity descriptions. The results are even stronger: DeLeaker gains an additional 14% improvement,
resulting in a 78% improvement in leakage mitigation and only a 15% degradation, beating the entity
description baseline significantly.

Table 10: SANA Main Results. Distribution of semantic leakage mitigation across models, cate-
gorized by direction and magnitude of change. Arrows (↑ or ↓) indicate the improvement direction.
Evaluated on 368 samples, filtered from SLIM large scale with SANA model images.

Model
Leakage Mitigation (Distribution) Preservation

Visualization Improvement Degradation VQAScore ↑ LPIPS ↓
Major ↑ Minor ↑ No Change Minor ↓ Major ↓

Instruction Prompt (SANA) 21.45% 11.07% 40.14% 11.76% 15.57% 0.75 0.33
Ent. Desc. Prompt (SANA) 56.55% 7.59% 20.00% 5.86% 10.00% 0.72 0.70

DeLeaker (SANA) 55.36% 8.65% 17.30% 5.54% 13.15% 0.79 0.35
DeLeaker With Ent. Desc. (SANA) 66.55% 12.07% 5.52% 4.83% 11.03% 0.73 0.69

E.2 MULTIPLE ENTITIES

To evaluate DeLeaker effectiveness with more than two entities, we tested it on two distinct subsets:
one featuring prompts including three distinct animals and another containing prompts of three
vegetables or fruits. We compared DeLeaker performance against two prompt-based baselines: the
Instruction Prompt and the Entity Description Prompt. The results, summarized in Table 11, clearly
show that DeLeaker outperforms both baselines in both the animal and the fruit & vegetable sets.

We observed that DeLeaker performance was notably higher on the fruits & vegetables dataset. This
is likely because DeLeaker is better equipped to handle the generation of duplicate entities, an issue
prominent in that particular subset. Its strength lies in a smoothing mechanism across steps and across
image tokens, which effectively resolves extra objects that arise from mask duplication. Conversely,
the model struggled more with the animal dataset, where the primary challenge was missing entities.
DeLeaker is less adept at handling this issue because of its design; it cannot create a new mask for an
entity if one was not formed in the early stages from the attention maps. Overall, DeLeaker is an
effective for scenarios with multiple entities, particularly when correcting for duplicates, but future
work could focus on improving its performance in cases where entities are missing.

E.2.1 MULTIPLE ENTITIES: ENTITY COUNTS ANALYSIS

An entity counts error in image generation happens when the T2I model fails to create the correct
number of entities or items specified in the text prompt. For instance, a prompt asking for “a photo
of a dog and a cat” might incorrectly generate an image showing for example only one dog or two
dogs and a cat (Binyamin et al., 2025). This phenomenon signals a failure to maintain alignment
between text and image. In many cases, we observe that missing or additional entities are related to
severe semantic leakage. This can happen when an entity “disappears” due to leakage, or when two
entities fuse into one, creating a blended entity with features from both. Alternatively, a T2I model
can generate an additional entity, which complicates the attention relationships among all entities and
increases the chance of semantic leakage.

To enrich our analysis, we supplement the main SLIM dataset with an additional set of 222 samples
(Table 12). This new subset was specifically filtered to include images with entity count errors, that is,
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Table 11: Results on Animal and Fruits & Veg Triplet Subsets (FLUX): We evaluate leakage
mitigation on the triplets subsets across the best performing prompt-based baselines (based on
the results on the pair subsets). The main scores represent the percentage of samples labeled as
Mitigation (Major/Minor), No Change, or Degradation (Major/Minor), summarized by a stacked bar
visualization. These are presented alongside Preservation metrics (VQAScore and LPIPS). Arrows
(↑/↓) indicate the desired direction for improvement for each metric.

Subset Model
Semantic Leakage Preservation

Visualization Mitigation ↑ Degradation ↓ VQAScore ↑ LPIPS ↓
Major Minor No Change Minor Major

Animal Triplets
Instruction Prompt 39.66% 3.45% 19.83% 0.86% 36.21% 0.67 0.45

Ent. Desc Prompt 38.79% 2.59% 13.79% 6.90% 37.93% 0.67 0.49

DeLeaker 43.97% 7.76% 19.83% 8.62% 19.83% 0.70 0.25

Fruits & Veg Triplets
Instruction Prompt 35.06% 10.34% 15.52% 3.45% 35.63% 0.67 0.41

Ent. Desc Prompt 51.72% 8.05% 8.05% 7.47% 24.71% 0.67 0.46

DeLeaker 59.20% 6.90% 9.77% 4.02% 20.11% 0.70 0.34

where entities are either missing or added relative to the prompt. The counting is done by prompting
Gemini 1.5 pro. Our goal is to use this subset to investigate the link between semantic leakage
and these counting errors. We achieve this by assessing whether leakage mitigation techniques also
correct the number of entities in these images.

Table 12: Entity Counts Subset. This table shows the number of images with missing or extra
entities. This additional subset contains 222 samples.

Group Subset Name Additional Entities (Extra) Missing

Animal Pairs 5 9
Animal Pairs (Interaction) 3 9
Animal Pairs (Interaction + Style) 5 11

Total Pairs = 42 13 29

Animal Triplets 12 116
Fruit & Vegetable Triplets 25 27

Total Triplets = 180 37 143

Pairs

Triplets

Based on Table 12, we first observe that entity count errors become more frequent as the number of
entities in a prompt increases. The FLUX base model exhibits a notable bias: it tends to generate
fewer animals than requested but adds extra items in the fruit and vegetable subset. We hypothesize
this bias originates from the training data, where fruits and vegetables are often depicted in groups,
while animals are more commonly shown individually.

Figure 15 and Tables 12 and 13 present the results for the entity counts subset, focusing on the pairs
subsets and triplets in SLIM, respectively. The results are shown in the form of transitions, tracking
the entity count state (missing, same, or extra) from the original image to the candidate image. Figure
15a isolates only the successful transitions (highlighted in green columns of Table 15b, where the
model correctly adjusted the number of entities).

When analyzing the baselines on images with the successful entity count, layout-based methods
show divergent behaviors: RAG-Diffusion tends to omit entities (56% of cases), whereas 3DIS and
RPF tend to add extra ones (21% and 14%, respectively). In contrast, DeLeaker is the most stable,
preserving the correct number of entities 97% of the time. For cases with missing entities, 3DIS
and DeLeaker+Desc are most effective at correcting the error. Conversely, when presented with
extra entities, most baselines perform well, successfully omitting the surplus items with success rates
ranging from 61% to 100%.

Table 13 focuses on the entity count transitions in the Triplet subsets. DeLeaker demonstrates better
performance in fixing “Missing” entity cases than “Extra” entity cases. We hypothesize that the
reason for this is the method’s reliance on the generated entity masks; if an entity mask is mistakenly
generated, DeLeaker continues to intervene based on this incorrect mask rather than omitting it. This
presents an interesting direction for future work.
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Focusing on the “Missing” and “Extra” columns in both Table 12 and Table 13, we observe that
transitions toward the correct entity count are more frequent than transitions that worsen the error.
This suggests that semantic leakage mitigation methods generally have a positive effect on entity
count errors. This finding indicates that semantic leakage is a direct cause of entity count issues.

(a) Counts Analysis. Entity quantity transitions between original image → candidate image. The bar graph
presents only the successful transitions (green column of the table below).

Baseline Original: Missing Original: Same Original: Extra
→ Missing ✗ → Same ✗ → Extra ✓ → Missing ✗ → Same ✓ → Extra ✗ → Missing ✓ → Same ✗ → Extra ✗

RAG 0.00% 65.52% 34.48% 56.69% 37.55% 5.77% 100.00% 0.00% 0.00%
RPF 0.00% 34.48% 65.52% 3.81% 82.48% 13.71% 69.23% 30.77% 0.00%
3DIS 0.00% 24.14% 75.86% 4.77% 74.37% 20.86% 61.54% 30.77% 7.69%
QwenFLUX 0.00% 86.21% 13.79% 11.56% 84.62% 3.81% 84.62% 7.69% 7.69%
Instruction Prompt 0.00% 51.72% 48.28% 1.79% 97.26% 0.95% 69.23% 30.77% 0.00%
Ent. Desc Prompt 0.00% 48.28% 51.72% 2.26% 96.79% 0.95% 100.00% 0.00% 0.00%
DeLeaker 0.00% 41.38% 58.62% 0.48% 98.81% 0.71% 84.62% 15.38% 0.00%
DeLeaker+Desc 0.00% 27.59% 72.41% 1.90% 97.14% 0.95% 100.00% 0.00% 0.00%

✓ Correct model behavior per ground-truth; ✗ Incorrect.

(b) Entity Quantity Transitions: Percentage of Examples per Baseline.

Figure 15: Visual and tabular analysis of entity count transitions in pairs subsets. The SLIM
distribution is: Same: 839, Missing: 29, Extra: 13. (a) Bar graph summarizing the desired transitions
across baselines: Same → Same, Missing → Extra and Extra → Missing. (b) Detailed transition
matrix showing the percentage of outcomes (Missing, Same, Extra) for each original state.

Table 13: Entity Quantity Transitions for Animal and Fruit & Veg Triplets Subsets: Percentage of
Examples per Baseline. Animal Triplets (244 samples: 116 Same, 116 Missing, 12 Extra). Fruits &
Veg Triplets: 175 samples: 123 Same, 27 Missing, 25 Extra

Subset Baseline Original: Missing Original: Same Original: Extra
→ Missing ✗ → Same ✗ → Extra ✓ → Missing ✗ → Same ✓ → Extra ✗ → Missing ✓ → Same ✗ → Extra ✗

Animal Triplets
Instruction Prompt 0.00% 37.61% 62.39% 15.18% 76.79% 8.04% 73.33% 20.00% 6.67%
Ent. Desc Prompt 0.85% 47.01% 52.14% 16.96% 75.89% 7.14% 66.67% 33.33% 0.00%
DeLeaker 0.00% 63.25% 36.75% 5.36% 83.93% 10.71% 26.67% 66.67% 6.67%

Fruit & Veg Triplets
Instruction Prompt 0.00% 87.84% 12.16% 6.25% 87.50% 6.25% 58.33% 18.33% 23.33%
Ent. Desc Prompt 0.00% 82.43% 17.57% 7.29% 79.17% 13.54% 55.00% 21.67% 23.33%
DeLeaker 0.00% 79.73% 20.27% 1.04% 64.58% 34.38% 28.33% 36.67% 35.00%

✓ Correct model behavior per ground-truth; ✗ Incorrect.
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E.3 ABLATION STUDY: COMPLEMENTARY RESULTS

Table 14: Automatic Evaluation Scores of Semantic Leakage Mitigation: Subset Analysis (De-
Leaker). The main scores represent the percentage of samples labeled as Mitigation (Major/Minor),
No Change, or Degradation (Major/Minor), summarized by a stacked bar visualization.

Subset
Leakage Mitigation (Distribution)

Visualization Improvement Degradation
Major ↑ Minor ↑ No Change Minor ↓ Major ↓

Animal Pairs 31.71% 10.67% 40.24% 6.10% 11.28%
Animal Interactions 54.72% 7.92% 17.36% 6.04% 13.96%
Animal Interactions + Style 55.87% 10.53% 14.17% 5.26% 14.17%

Table 15: DeLeaker Ablation Study. Configurations are divided into two types: (1) W/O rows (top
four) represent the removal/addition of a specific component, while (2) Only rows (bottom three)
isolate each component independently. Absolute scores of are DeLeaker are reported, with values
closer to the regular configuration of DeLeaker (first row) indicating similarity.

Configuration
Visualization Improvement No Change Degradation

Major ↑ Minor ↑ Minor ↓ Major ↓

DeLeaker 46.07% 9.76% 25.36% 5.83% 12.98%

W/O Image-Image(-) 46.31% 10.12% 26.67% 4.29% 12.62%

W/O Image-Text(-) 42.98% 7.62% 27.98% 6.07% 15.36%

W/O Image-Text(+) 25.00% 7.98% 43.93% 7.02% 16.07%

With Text-Text(-) 41.79% 8.93% 27.26% 7.02% 15.00%

Only Image-Image(-) 11.90% 5.95% 61.90% 7.86% 12.38%

Only Image-Text(-) 25.12% 8.57% 47.62% 5.83% 12.86%

Only Image-Text(+) 41.55% 9.64% 31.19% 5.12% 12.50%

Table 16: DeLeaker Ablation Study (Relative Change). Configurations are divided into two types:
(1) W/O rows (top four) represent the removal/addition of a specific component, while (2) Only
rows (bottom three) isolate each component independently. Percentage change in semantic leakage
mitigation distribution relative to DeLeaker. Positive values indicate improvement over DeLeaker, and
negative values indicate degradation. Darker hues indicate stronger effect, color-coded as positive

and negative .

Configuration
Relative Change in Leakage Mitigation (% vs. DeLeaker)

Improvement No Change Degradation
Major ↑ Minor ↑ Minor ↓ Major ↓

DeLeaker — — — — —

W/O Image-Image(-) +0.52% +3.66% +5.16% -26.53% -2.75%
W/O Image-Text(-) -6.72% -21.95% +10.33% +4.08% +18.35%
W/O Image-Text(+) -45.74% -18.29% +73.24% +20.41% +23.85%
With Text-Text(-) -9.30% -8.54% +7.51% +20.41% +15.60%

Only Image-Image(-) -74.16% -39.02% +144.13% +34.69% -4.59%
Only Image-Text(-) -45.48% -12.20% +87.79% 0.00% -0.92%
Only Image-Text(+) -9.82% -1.22% +23.00% -12.24% -3.67%
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F EVALUATION AND ANNOTATION PROTOCOLS

F.1 SLIM HUMAN-GUIDED FILTERING: HUMAN ANNOTATION PROTOCOL FOR DETECTING
SEMANTIC LEAKAGE

Human Annotation Protocol

Annotation Setup. Each image in our dataset was evaluated independently by the annotators
following a multi-step process. For each original generated image, the annotators followed
these steps:

1. Prompt Review: Read and understand the textual prompt used to generate the
image, with special attention to the entities and their intended differences (e.g., “a
horse and a zebra”).

2. Entity Identification: Identify all relevant entities mentioned in the prompt (e.g.,
animals, objects, or attributes such as “striped” or “spotted”).

3. Reference Collection: Use web-based image search engines (e.g., Google Images,
Bing) to collect exemplar images for each entity separately. These serve as ground-
ing references for typical visual features of each entity class.

4. Feature Comparison: Compare the reference exemplars to identify key distin-
guishing features between the entities (e.g., color, texture, morphology).

5. Image Inspection: Carefully examine the generated image and evaluate the appear-
ance and distinctiveness of each entity.

The full process is illustrated below in Figure 17.

Labeling Criteria. Each image was assigned a binary label indicating the presence (positive)
or absence (negative) of semantic leakage, based on the following criteria:

Positive Label (Semantic Leakage Present):

• Entity Indistinguishability: If the entities appear visually indistinct or interchange-
able (i.e., they resemble two instances of the same entity class), the image is labeled
as containing semantic leakage.

• Cross-Entity Feature Leakage: If at least one entity visibly incorporates a feature
that is uniquely associated with the other entity (e.g., the spotted pattern of a
dalmatian appearing on a golden retriever), the image is labeled positive.

• Hybridization Effects: If the image contains a hybrid or fused representation that
cannot be clearly attributed to either entity independently, this also qualifies as
leakage.

Negative Label (No Semantic Leakage):

• Independent Feature Attribution: Entities are clearly distinguishable and all
major features can be unambiguously attributed to the correct referents.

• Non-Semantic Artifacts: Any visual inconsistency that does not reflect semantic
leakage, such as color blending with the background, pixelation, blur, rendering ar-
tifacts, or lighting inconsistencies, is not considered leakage and is labeled negative.

• Partial Occlusion or Simplification: Cases where entities are simplified or partially
occluded, but still distinguishable based on remaining cues, are not counted as
leakage.

Figure 16: Protocol followed by human annotators for assessing semantic leakage in generated
images.
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?A toucan tilts its beak, while a woodpecker pecks furiously at the bark?

Semant ic l eakage 
is absent

image sear ch

Pr ompt

Compar ison & 
Label ing

(A) (B) (C)Exampl e

Semant ic l eakage 
is pr esent ed

Semant ic l eakage 
is pr esent ed

Figure 17: Human Annotation Protocol for Detecting Semantic Leakage. The protocol begins with
reading the prompt and identifying the entities involved. Annotators then search for reference images
of each entity online and visually compare them to identify features uniquely associated with one
entity that appear in 1the other. Examples show (A) significant leakage, (B) localized leakage, and
(C) a clean case (without semantic leakage).
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F.2 HUMAN ASSESSMENT OF MITIGATED SEMANTIC LEAKAGE (AMT)

To complement the automatic evaluation and validate its outcomes, we conducted a structured human
evaluation using the Amazon Mechanical Turk (AMT) platform. The purpose of this evaluation was
twofold: to assess model performance based on human judgment, and to verify the accuracy and
robustness of the automatic leakage detection.

Each questionnaire item included a visual figure composed of five elements: two generated images for
comparison (the original image suspected of semantic leakage and a baseline image), two reference
images (one for each entity, generated by the base (uniintervened) model), and the prompt used to
generate the images. The reference images and prompt were provided to help annotators accurately
identify the entities and distinguish between them, especially in cases where prior familiarity with
the entities could not be assumed. This structure also aligns with the inputs used in the automatic
evaluation, allowing for consistent comparison between the two protocols.

Annotators were presented with two questions per item, one for each entity (see Figure 19). For each
question, they were asked: “In which image does the [entity] look more typical?” The response was
given on a five-point scale, indicating both the chosen image and the strength of preference, such
as “Image 1 – strongly” or “Image 2 – slightly.” The order of the images was randomized in each
instance to mitigate positional bias. Figures 18a and 18b show examples of the visual figure used in
the task.

To ensure annotation quality and consistency, annotators were provided with prerequisite guidelines
(Figure 20), examples, and a clear definition of typicality. The evaluation covered 60 randomly
sampled prompts across six baselines, including DeLeaker. Each item was annotated by three
independent raters. This resulted in a total of 980 responses. Inter-Annotator-Agreement is moderate,
computed for each question (each entity) with an averaged quadratic weighted Fleiss κ of 0.52 (0.497
and 0.541 for the two questions).
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(a) User Study Image Screen: Example 1

(b) User Study Image Screen: Example 2

Figure 18: Two examples of the image screens presented in our AMT user study.
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Image Comparison Evaluation Task

Definition — Typicality: How usual or expected an entity looks in the image.
Example: A tall giraffe is more typical than a short one.

Question 1: Entity1 is more typical in:
◦ Image 1 (strong preference)
◦ Image 1 (slight preference)
◦ Equally typical in both images
◦ Image 2 (slight preference)
◦ Image 2 (strong preference)

*Use the reference image, your general knowledge, or an online search.

Question 2: Entity2 is more typical in:
◦ Image 1 (strong preference)
◦ Image 1 (slight preference)
◦ Equally typical in both images
◦ Image 2 (slight preference)
◦ Image 2 (strong preference)

*Use the reference image, your general knowledge, or an online search.

Note: See the guide for clarifications, examples, and important notes.

Figure 19: The questions in the user study annotation task as appear in the AMT interface for human
evaluation.
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(a) Example guidance for annotators. The guideline here focuses on typical vs.
atypical traits.

(b) Example guidance for annotators. The guideline here focuses on entity
distinction.

Figure 20: Guidance materials shown to annotators before the task, including examples of visual
differences relevant for typicality and entity differentiation.
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G SLIM DATASET CURATION

G.1 SLIM COMPLEMENTARY DETAILS

Table 17: SLIM Subsets. This table details the curation process and the percentage of images
exhibiting semantic leakage for each subset. After human-verified filtering, a weighted average of
23% of the initially tested images were found to contain semantic leakage. The SLIM dataset
includes 1,130 samples. Please see Table 12 for the entity count additional set.

Group Subset Name Initial # Images # Large-Scale Filtering (% of Initial) Final # After Human Filtering (% of LS / % of Initial)

Animal Pairs 1000 790 (79%) 328 (42% / 33%)
Animal Pairs (Interaction) 1000 888 (89%) 265 (30% / 27%)
Animal Pairs (Interaction + Style) 1000 828 (83%) 247 (30% / 25%)

Animal Triplets [FLUX] 500 361 (72%) 116 (32% / 23%)
Fruit & Vegetable Triplets 500 414 (83%) 175 (42% / 35%)

Pairs

Triplets

Table 18: Subsets onSANA. Human-verified semantic leakage generated with SANA model. This
table quantifies the number of images in each subset.

Group Subset Name Final # Images after Human Filtering

Animal Pairs (Classic) 91
Animal Pairs (Interaction) 213
Animal Pairs (Interaction + Style) 64

Total 368

Pairs

Table 19: Subsets Prompt Templates and Examples: Each template defines the structure used to
generate prompts in a subset of SLIM.

Subset Name Description Example Prompt
Animal Pairs Visually similar pairs (from the same breed / family

/ share similar traits)
“A cow and a horse in a farm”

Animal Pairs (Interaction) Entities perform actions together, share interaction
or proximity

"A raccoon is hugging an opossum”

Animal Pairs (Interaction + Style) Entities perform actions together, share interaction
or proximity and the same image style

“A watercolor painting of a raccoon
dancing with an opossum”

Animal Triplets Visually similar triplets “A raccoon, an opossum, and a panda
playing together”

Fruit-Vegetable Triplets Visually similar triplets “A bowl containing a strawberry, a
tomato, and a cherry”

Table 20: Prompts for generating the prompts in SLIM (with GPT-4o).

Prompt for Generation Goal / Subset
“From the provided list of animals, please create
a list of tuples. Each tuple should contain a pair
of animals that have similar visual features. For
example: (Cow, Horse), (Goat, Sheep)”

pairs of similar animals

“A {animal1} and a {animal2}” Animal pairs prompt

“For each pair you create, write a unique,
descriptive sentence. The sentence must include
both animals from the pair, placing them together in
a plausible scene.”

Animal Pair (Interaction)

“Write a unique, descriptive sentence for each pair
of animals you create. The sentence must depict the
two animals interacting closely within a plausible
scene.“

Animal Pair (Interaction)

GPT-4o Animals List List of additional animals: “Aardvark, Armadillo, Baboon, Beaver, Bongo,
Caracal, Cheetah, Chipmunk, Dugong, Elk, Ferret, Gazelle, Giraffe, Guinea pig, Jackal, Llama, Lynx,
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Meerkat, Mink, Mole, Moose, Platypus, Pronghorn, Quokka, Rabbit, Skunk, Sloth, Tapir, Tasmanian
devil, Walrus, Weasel, Yak, Albatross, Blue jay, Cassowary, Chickadee, Cockatoo, Cormorant, Crane,
Cuckoo, Dove, Egret, Falcon, Finch, Hawk, Heron, Ibis, Kingfisher, Kiwi, Kookaburra, Lark, Macaw,
Magpie, Mallard, Nightingale, Osprey, Peacock, Pelican, Pheasant, Quail, Raven, Robin, Roadrunner,
Stork, Toucan, Vulture, Warbler, Alligator, Anole, Basilisk, Boa, Bullfrog, Chameleon, Cobra,
Crocodile, Frilled lizard, Gecko, Gila monster, Iguana, Komodo dragon, Monitor lizard, Newt, Pit
viper, Python, Salamander, Skink, Snapping turtle, Terrapin, Toad, Angelfish, Archerfish, Barracuda,
Bass, Blowfish, Carp, Catfish, Clownfish, Coelacanth, Cod, Cuttlefish, Eel, Flounder, Guppy, Halibut,
Herring, Lionfish, Manta ray, Marlin, Monkfish, Moray eel, Nautilus, Piranha, Pufferfish, Salmon,
Sawfish, Scorpionfish, Sturgeon, Swordfish, Tilapia, Trout, Tuna, Wrasse”.

Fruits & Vegtabales List Fruits: Banana, Apple, Pear, Grapes, Orange, Kiwi, Watermelon,
Pomegranate, Pineapple, Mango. Vegetables: Cucumber, Carrot, Capsicum, Onion, Potato, Lemon,
Tomato, Radish, Beetroot, Cabbage, Lettuce, Spinach, Soybean, Cauliflower, Bell Pepper, Chilli
Pepper, Turnip, Corn, Sweetcorn, Sweet Potato, Paprika, Jalapeño, Ginger, Garlic, Peas, Eggplant.

Style List In a 3D render, In a Futurism, In a Manga style, In a Pixar style, In a Van Gogh style, In
a concept art, In a cyberpunk aesthetic, In a digital painting, In a fantasy style, In a graffiti style, In a
minimalist line art, In a neon glow effect, In a pixel art, In a pop art style, In a retro poster design, In
a steampunk illustration, In a surrealist painting, In a watercolor painting, In an Art Deco style, In an
ink sketch, In an oil painting.

G.2 AUTOMATIC (NOISY) FILTERING
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Figure 21: Noisy Automatic Filtering Pipeline Scheme

As illustrated in Figure 21, the automatic noisy filtering pipeline is composed of two main stages.
First, we generate segmentation masks for each entity and assign them accordingly. Then, we use a
VLM (Gemini) to detect leakage between entity pairs by prompting it with questions such as: “This
is an image of a cat. Does it contain features of a dog? Answer yes/no.” In evaluating this pipeline,
we observed a non-negligible false-positive rate, which motivated the need for a second-stage
filtering process using human-guided filtering.

Pipeline Stages. The first stage involves generating a specific mask for each entity in an image.
The process begins with Grounding DINO (Ren et al., 2024) to detect entity bounding boxes, which
are then refined into segmentation masks using the Segment Anything Model (SAM) (Kirillov et al.,
2023). This procedure often produces multiple candidate masks for each entity. Trying to increase the
chance of an accurate match, we employ the Hungarian Algorithm. This method optimally assigns
masks based on a cost matrix derived from CLIP similarity scores (Ramesh et al., 2022), which
measure the similarity between each entity’s textual token and its candidate masks. This matching
step is necessary due to the presence of leakage; when entities share similar features, they may be
erroneously classified as the same object during segmentation. After generating the entity masks, the
next step is to assess whether a leakage has occurred. This is achieved using Gemini, which evaluates
each masked entity to determine if its visual features contain distinctive traits of another entity in the
image. The model is prompted with a query of the form: “This is an image of an <opossum>. Does
the image contain features unique to a <raccoon>? Answer with yes/no only.”
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H REPRODUCIBILITY AND RESOURCES

H.1 BASELINES

Table 21: Model Overview: Details of the baselines used in our experiments, including their language
models, image generation type, and model size. DiT notes Diffusion Transformer.

Model Language Model(s) Image Generator Type Size
DeLeaker FLUX-dev T5-XXL, CLIP DiT 11b
SANA Gemma DiT 1.6b
RAG-Diffusion, RPF T5-XXL DiT 11b
Qwen2vl-FLUX Qwen2 DiT 7b
3DIS-FLUX T5, CLIP DiT

Table 22: Prompts of the prompt-based baselines.

Baseline Prompt Comments
instruction {prompt}. Each entity main-

tains its distinct characteris-
tics: entity 1 and entity 2.

Entity descrip-
tion

{prompt}. {Entity descrip-
tions}.

where descriptions are generated by
Gemini 1.5 pro: Describe the vi-
sual appearance of a/an entity in
one sentence, focusing only on its
unique physical features such as face
shape, colors, patterns, and body
parts. Keep it short and descriptive.

Image-
condition
instruction

The image should depict:
{prompt}. Make sure there
is no visual leakage between
the animals, keep the rest of
the image as is. {Image}.

{Image} is the the original image by
FLUX-dev.

Table 23: Technical details for the layout-based baselines.

Baseline Layout Prior Strategy Layout Source Image Gen-
erator

RPF (Chen
et al., 2024a)

Bounding boxes local prompts: the entity
in the bounding-box

LLM (Gemini 1.5
Flash)

FLUX-dev

RAG-Diffusion
(Chen et al.,
2024b)

Bounding boxes
and descriptions

In-bbox attention (re-
ferred in the paper as
hard binding) + inter-
bbox attention (referred
as soft refinement)

GPT-4o (originally) FLUX-dev

3DIS-FLUX
(Zhou et al.,
2024)

Bounding boxes &
depth maps

Depth-map conditioned
generation

Stable Diffusion 2.0
(depth map from
bbox) (Stan et al.,
2023)

FLUX1-
depth-dev
(Labs,
2024)
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Table 24: Hyperparameters for the layout-based baselines used in our experiments.

Baseline Parameter Value

RPF
FLUX-dev # steps 20
mask inject steps 10
base ratio 0.4

RAG-Diffusion

FLUX-dev # steps 20
SR sw split ratio 0.5;0.5
HB replace 2.0
SR delta 1.0

3DIS
Hard control steps 20
FLUX-Deph-dev # steps 20
SD # steps 30

H.2 AUTOMATIC EVALUATION PROMPTS

System Prompt

Prompt(s) Comments

“As an experienced visual
inspector, you will analyze
images of entities and
provide detailed insights on
their visual differences and
typicality. You are sensitive
to fine small details and
differences.”

Defines the overall role of the model as
a sensitive visual inspector.

Step 1.1: Knowledge-Based Extraction

Prompt Comments

prompt1 = [“What are the visual
appearance differences between {entity1}
and {entity2}? answer in a concise
comma-separated list. For example neck
length, head color, eyes shape, etc.”]

Extracts visual differ-
ences from the model’s
general knowledge,
formatted as a simple
comma-separated list.
This serves as the first
source of information.

Step 1.2: Image-Based Extraction

Prompt Comments

prompt2 = “Based on these images, what
are the visual appearance differences
between {entity1} and {entity2}?” +
independent entities images

Identifies visual dif-
ferences by directly
analyzing provided im-
ages of the two entities.
This provides a second,
evidence-based source
of information.
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Step 1.3: Integration

Prompt Comments

prompt3 = ( “List the key visual
differences between {entity1} and
{entity2} in a bulleted list. Base
your answer on a synthesis of the
’Source 1’ and ’Source 2’ descriptions
provided below. Each bullet point
should concisely compare a single visual
feature. INSTRUCTIONS: 1. Synthesize
Sources:Integrate the key points from
BOTH the ’Source 1’ and ’Source 2’
descriptions. Do not list the same
feature twice or create redundant points.
2. Highlight Obvious Differences:
If either the ’Source 1’ or ’Source
2’ descriptions explicitly highlight
certain features as particularly
noticeable or obvious, ensure these
differences are prominently featured
in your list. 3. Format: Start each
bullet point with a bolded feature name
followed by a colon (e.g., Coat:). 4.
Content Structure:After the feature
name, first write {entity1}:followed
by its description. Then, on the same
line, write {entity2}:followed by its
description. Keep descriptions brief.
5. Focus: The list must only contain
observable, visual differences.EXAMPLES:
Tail Feathers: Peacock: Long and
iridescent. Peahen: Short and brown.
Coat: Zebra: Black and white stripes.
Horse: Solid or patched color. Facial
Markings: Red Panda: White patches
on muzzle and eyes. Raccoon: Black
mask across eyes. Leg Color: Flamingo:
Pink. American Coot: Grey or black.
Covering: Chicken: Feathers. Cat:
Fur. Tail: Red Squirrel: Long and
bushy. Pig: Short and hairless.
DESCRIPTIONS FOR {entity1} AND
{entity2}: Source 1: {step1 prompt1
output}. Source 2: {step1 prompt2
output}” )

Merges the text-based
differences (from Step
1.1) and image-based ev-
idence (from Step 1.2)
into a single, structured,
and non-redundant bul-
leted list.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Step 2: Typicality (for entity in entities)

Prompt(s) Comments

prompt4 = (“Given the differences
between {text_entities}, How visually
typical {entity} in this image? (Ignore
out-of-frame features.)”) + clean image

prompt5 = (“Given the differences
between {text_entities}, How visually
typical {entity} in this image? Ignore
out-of-frame features.)”) + baseline
image

Evaluates how typical
each entity appears in
the clean vs. baseline
image, ignoring out-of-
frame features. Used per
entity.

Step 3: Ranking (images random order)

Prompt(s) Comments

prompt6 = (“Given the independent
textual typicality inspection of each
animal in each image and the images,
overall, how visually typical the
{text_entities} in the second image
rather in the first image? (Ignore
out-of-frame features.) Notice that
both of the animals should appear in
each image. If one image shows both
animals, even if one looks unusual, it
will be preferred over an image where
one of the animals is missing. First
explain, think step by step. Finally,
rank the overall relative typicality:
Rank: 1min (first image with minor
prefrence), 1maj (first image with
major prefrence), 2min (second image
with minor prefrence), 2maj (second
image with major prefrence), or 3
(equally typical in both). First Image
Inspection: {prompt 4 answer for entity
1 and entity 2} Second Image Inspection:
{prompt 5 answer for entity 1 and entity
2} First Image: {clean image}, Second
Image: {baseline image} ”)
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