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ABSTRACT

Learning the underlying dynamics from data with deep neural networks has shown
remarkable potential in modeling various complex physical dynamics. However,
current approaches are constrained in their ability to make reliable predictions in
a specific domain and struggle with generalizing to unseen systems that are gov-
erned by the same general dynamics but differ in environmental characteristics.
In this work, we formulate a parameter-efficient method, FNSDA, that can read-
ily generalize to new dynamics via adaptation in the Fourier space. Specifically,
FNSDA identifies the shareable dynamics based on the known environments us-
ing an automatic partition in Fourier modes and learns to adjust the modes specific
for each new environment by conditioning on low-dimensional latent systematic
parameters for efficient generalization. We experimentally evaluate FNSDA on
representative families of nonlinear dynamics. The results show that FNSDA can
achieve superior or competitive generalization performance compared to existing
methods with a significantly reduced parameter cost.

1 INTRODUCTION

Standing at the intersection of deep learning and physics, we have witnessed tremendous progress
being made in modeling complex natural phenomena from data directly (Ling et al., 2016; Brunton
et al., 2016; Raissi et al., 2020). Successful and potential applications cover a broad spectrum of
fields such as fluid dynamics (Kochkov et al., 2021; Ummenhofer et al., 2020), weather forecast-
ing (Weyn et al., 2019; Pathak et al., 2022), astrophysics (Villanueva-Domingo et al., 2022) and biol-
ogy (Aliee et al., 2022). Compared to traditional physical approaches endeavoring to build accurate
numerical simulations, learned physical simulators with neural networks exhibit several desirable
characteristics: less reliance on domain expertise in method designing, robustness to partially inter-
preted dynamics and incomplete physical models, and the capacity to offer solutions when dealing
with high-dimensional data, making it a promising direction for advancing simulation capabilities
and enabling more efficient and accurate modeling of complex systems (Wang & Yu, 2021).

Despite these compelling merits, deep learning approaches are notorious for their heavy dependency
on large datasets for parameter learning and poor generalization performance when deployed in un-
seen environments with distinct characteristics (Wang & Yu, 2021). In contrast, numerical simula-
tors can easily generalize to new dynamical systems providing specific environmental parameters
(e.g., external forces, initial values, boundary conditions). This disparity in generalization ability
greatly impedes the widespread application of neural learned simulators due to the constant flux of
real-world conditions. Consider, for one instance, in fluid flows simulation (Wang et al., 2022b),
even though fluid flows are governed by the same equations, variations in buoyant forces necessitate
separate deep learning models for accurate prediction. For another instance, in cardiac electrophys-
iology (Neic et al., 2017), inconsistencies in patients’ body conditions can significantly impact the
prediction of heart electrical behavior. Hence, there is a critical need for the development of deep
learning models that can not only learn effectively and predict the dynamics of complex systems
accurately, but also generalize well across heterogeneous domains.

This work embarks upon the generalization problem for neural learned simulators across different
dynamical systems. To be more precise, we consider a problem setup where trajectories collected
from several known environments are available for model training, and the model is expected to
generalize to new environments with distinct environmental parameters based on a few observa-
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Figure 1: Dynamic forecast on Navier-Stokes equations. The learned simulator needs to generalize
to new environments characterized by distinct viscosity.

tions. An example setup with the dynamics dictated by Navier-Stokes equations is shown in Fig. 1.
This actually fits the scope of out-of-distribution generalization research that settles down to learning
a model robust to distribution shift via meta-learning, disentanglement, or data manipulation (Wang
et al., 2022a), and existing a few works learn such a shareable model of dynamical systems follow-
ing the learning paradigms of meta-learning and feature disentanglement (Yin et al., 2021; Wang
et al., 2022b; Kirchmeyer et al., 2022; Park et al., 2023; Jiang et al., 2023). Although these methods
present some promising results on established benchmarks, they lack efficiency during adaptation as
they require updating a large amount of parameters in the neural network either through gradient-of-
gradient optimization caused by meta-learning, or conduct feature disentanglement based on mul-
tiple neural networks, which significantly prohibit their applications on resource-constrained edge
devices (Yang et al., 2022; Liu et al., 2023).

To alleviate this, we propose Fourier Neural Simulator for Dynamical Adaptation (FNSDA), a
parameter-efficient learning method that characterizes the behavior of complex dynamical systems
in the frequency domain for rapid generalization towards new environments. Our work is inspired
by the fact that changes in environmental parameters persistently affect both local and global dy-
namics, and such changes can be modeled by learning the Fourier representations in corresponding
high and low modes (Cooley & Tukey, 1965; Van Loan, 1992). In addition, the complex non-linear
relationship in the original temporal space can be converted into a linear relationship in the Fourier
space, the difficulty of modeling is thus reduced (Orfanidis, 1995). Therefore, FNSDA builds its
method in the Fourier domain. After performing Fourier transform on the input signals, FNSDA
identifies the dynamics via a learnable filter that separates the Fourier modes into accounting for
the commonalities and discrepancies among dynamic systems and learns their features through two
independent weight multiplication. Based on this, FNSDA solely modifies linear dimensions for
discrepancies in new systems, facilitating significantly reduced parameter cost and rapid speed of
adaptation. Furthermore, when coupled with Swish activation, and training techniques such as reg-
ularization and cosine annealing learning rate scheduler, FNSDA exhibits a strong fitting capability
for complex dynamics. We empirically evaluate FNSDA on two adaptation setups over four rep-
resentative nonlinear dynamics, including ODEs with the Lotka-Volterra predator-prey interactions
and the yeast glycolytic oscillation dynamics, PDEs derived from the Gray-Scott reaction-diffusion
model and the more challenging incompressible Navier-Stokes equations. Our approach consistently
achieves superior or competitive accuracy results compared to state-of-the-art approaches while re-
quiring significantly fewer parameters to be updated during adaptation. In summary, we make the
following three key contributions:

• We propose FNSDA, a novel method that embarks on the frequency domain for tackling
the generalization challenge in modeling physical systems using neural network surrogates.

• We introduce a Fourier representation learning technique to characterize the commonali-
ties and discrepancies among dynamical environments, yielding a largely reduced model
complexity for rapid generalization.

• We provide empirical results to show that FNSDA outperforms or is competitive to other
baseline methods on two evaluation tasks across various dynamics.
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2 RELATED WORKS

Out-of-Distribution Generalization. The issue of out-of-distribution (OOD) generalization has
emerged as a significant concern in machine learning. The primary objective is to learn robust
models capable of generalizing effectively towards unseen environments, wherein the data may
differ significantly from the training data. Existing methods commonly rely on multiple visible en-
vironments to acquire generalization capability, and we can categorize them into three categories
according to their learning strategies. The first type is domain-invariant learning, which aims to
learn a shareable feature space via robust optimization (Sagawa et al., 2020; Duchi et al., 2021),
invariant risk minimization (Rosenfeld et al., 2021; Krueger et al., 2021) or disentanglement (Peng
et al., 2019; Ilse et al., 2020). The second type is meta-learning based approaches, which employ
the model-agnostic training procedure to mimic the train/test shift for better generalization (Li et al.,
2018; Balaji et al., 2018; Dou et al., 2019). The last type is data manipulation which perturbs the
original data and features to stimulate the unseen environments (Volpi et al., 2018; Yue et al., 2019;
Zhou et al., 2021). A comprehensive review can refer to Wang et al. (2022a).

While tremendous progress is being achieved in this field, the proposed approaches typically confine
themselves to a static configuration, thereby cannot adapt to our problem. Recently, some works
have been devoted to generalization in continuously evolving environments (Nasery et al., 2021;
Qin et al., 2022). Nonetheless, these methods require massive data to extract dynamic patterns and
fail to extrapolate to novel environments that have not been seen during the training phase.

Learning dynamical systems. Deep learning models have recently gained considerable attention for
simulating complex dynamics due to their ability to tackle complex, high-dimensional data (Chen
et al., 2018; Wang et al., 2020; Sanchez-Gonzalez et al., 2020; Ummenhofer et al., 2020; Pfaff
et al., 2021). While the predominant direction in contemporary research endeavors to incorporate
inductive biases from physical systems, we aim to investigate the generalization to novel dynamical
systems wherein changing is an intrinsic property and arise from various factors. Thus far, only a
few works have considered this problem in dynamical systems. LEADS (Yin et al., 2021) presents
a training strategy that learns to decouple commonalities and discrepancies between environments.
DyAd (Wang et al., 2022b) follows a meta-learning style and adapts the dynamics model to unseen
environments by decoding a time-invariant context. CoDA (Kirchmeyer et al., 2022) learns to con-
dition the dynamics model on environment-specific and low-dimensional contextual parameters thus
facilitating fast adaptation. FOCA (Park et al., 2023) also proceeds from a meta-learning manner
but utilizes an exponential moving average trick to avoid second-order derivatives. Differing from
these approaches to learning the environment-specific context on the temporal domain, we take a
nuanced characterization in the frequency domain, this facilitates the modeling of dynamics in a
linear manner and rapid adaptation.

Fourier Transform. Fourier transform is a mathematical tool that has significantly contributed to
the evolution of deep learning techniques due to the efficiency of performing convolution (Bengio
et al., 2007) and the capability of capturing long-range dependency (Zhang et al., 2018). It has the
property that convolution in the time domain is equivalent to multiplication in the frequency domain.
As a result, some works propose to incorporate Fourier transforms into neural network architectures
to accelerate convolution computation (Mathieu et al., 2014; Lee-Thorp et al., 2022) and calculate
the auto-correlation function efficiently (Sitzmann et al., 2020; Wen et al., 2021). In recent years,
Fourier transform has also been combined with deep neural networks for solving various differen-
tial equations since it can transform differentiation into linear multiplication within the frequency
domain (Li et al., 2021; 2022; Tran et al., 2023). More generally, it has been demonstrated the uni-
versal approximation property for learning the solution function (Kovachki et al., 2021). Building
upon these seminal works, we propose a generalizable neural simulator that explicitly captures dy-
namic patterns by different modes within the Fourier space such that it can efficiently adapt to new
physical environments by adjusting the coefficients of these modes.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

We consider the problem of predicting the dynamics of complex physical systems (e.g., fluid dynam-
ics) with data collected from a set of environments E . In particular, these systems are assumed to be
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Figure 2: The architecture of FNSDA.

governed by the same family of nonlinear, coupled, differential equations, but their solutions differ
due to invisible environment-specific parameterization. The general form of the system dynamics
can be expressed as follows

du

dt
(t) = Fe(u(t)), t ∈ [0, T ], (1)

where u(t) are the time-dependent state variables taking their values from a bounded domain U .
The function Fe usually is a non-linear operator lying in a functional vector field F and can vary
in different environments due to some specific but unknown attributes (e.g., physical parameters,
external forces that affect the trajectories). When the spatial dependence is explicit and given, U
becomes a d′-dimensional vector field over a bounded spatial domain D ⊂ Rd′

, and Eq. (1) corre-
sponds to PDEs. In a similar vein, it corresponds to ODEs when U ⊂ Rd. In our experimental part,
we consider both ODEs and PDEs.

In the generalization problem, we have access to several training environments Etr ⊂ E , where each
environment e ∈ Etr is equipped with Ntr trajectories generated by the dynamical system defined in
Eq. (1) with operator Fe. The goal is to learn a simulatorGθ parameterized by θ using the trajectories
collected from Etr, such that when provided with observations generated by an unknown Fe in test
environments Eev ⊂ E (where Eev∩Etr = ∅),Gθ can rapidly adapt and produce accurate predictions
for these new environments. To evaluate the generalization capability of the learned simulator, we
consider two adaptation tasks:

• Inter-trajectory adaptation. This task involves adapting the simulator Gθ to an unseen test en-
vironment e ∈ Eev using only one trajectory generated with Fe over the time period [0, T ] for
parameter updating. After that, Gθ needs to predict the dynamics for Nev additional trajectories
over [0, T ] by providing their initial states. This task emphasizes the rapid adaptation ability based
on one-shot observation.

• Extra-trajectory adaptation. In this task, the simulator needs to produce precise predictions for
Nev trajectories for each test environment e ∈ Eev. The front part of these trajectories can be used
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for parameter adaptation ([0, Tad], Tad < T ), and the model is required to predict the dynamics
at subsequent time stamps (t ∈ (Tad, T ]). This task emphasizes the extrapolation ability towards
the unseen future.

These two tasks encompass the typical usage scenarios of dynamical systems in the real world. In
contrast to existing approaches that primarily focus on modeling the non-linear dynamics of diverse
environments in the temporal domain, we turn to characterize the dynamics in the frequency domain,
thus enabling rapid adaptation and accurate prediction for new systems.

3.2 FNSDA: FOURIER NEURAL SIMULATOR FOR DYNAMICAL ADAPTATION

In this work, we propose to tackle the generalization problem in modeling physical systems using
neural network surrogates. Our designed method, FNSDA, learns a generalizable neural operator
Gθ : U → U with parameter θ as a surrogate model to approximate Fe based on the trajectories
collected from the environment e. This work is inspired by Fourier Neural Operator (FNO) (Li
et al., 2021; Tran et al., 2023), which has shown promising results in modeling PDEs for a given
dynamic. In the following sections, we will elaborate on how FNSDA acquires the fitting ability and
generalization capability for new dynamical systems.

Fourier Neural Operator. This is an iterative approach first presented by Li et al. (2021) that
learns the solution function for general PDEs represented by a kernel formulation. The overall
computational flow of FNO for approximating the convolution operator is given as

Gθ := Q ◦ L(L) ◦ · · · ◦ L(1) ◦ P, (2)

where ◦ represents function composition, P is the lifting operator that locally maps the input to a
higher dimensional representation z(0), L(l) is the l-th non-linear operator layer l ∈ {1, ..., L}, and
Q is the projection operator that locally maps the last latent representation z(L) to the output. This
iterative process is schematically depicted on the left part of Fig. 2.

A Fourier neural layer L(l) in Eq. (2) is defined as follows

L(l)
(
z(l)

)
= σ(l)

(
W (l)

res z
(l) +K(l)(z(l)) + b(l)

)
, (3)

where K(l) a kernel integral operator maps input to bounded linear output, W (l)
res a linear transfor-

mation, b(l) is a bias function and σ(l) : R → R is a point-wise non-linear activation function. In
particular, K(l) is implemented by fast Fourier transform (Nussbaumer & Nussbaumer, 1981) with
truncated modes as

K(l)(z(l)) = IFFT(R(l) · FFT(z(l))). (4)
The Fourier-domain weight matrix R(l) is directly learned, and it yields m2 parameters and com-
putational complexity O(m2k̂d) for m-dimensional representation z(l), k̂ truncated Fourier modes,
and d-dimensional problem. The overall computational complexity for a simulator with L FNO
layers is therefore O(Lm2k̂d). An essential characteristic making FNO outstand from conventional
convolutional networks is that P , Q and σ are all defined as Nemitskiy operators, thus it can keep
the functional attribute when input as a function (e.g., the initial condition for a dynamical system).

Improving generalization with FNSDA. The vanilla FNO exhibits limitations in its ability to gen-
eralize across various dynamical systems due to the integration of all Fourier modes for modeling
a specific domain. To acquire the generalization capability, FNSDA learns to partition the Fourier
modes into two groups during the training phase, one accounting for the commonalities shared by
different environments and the other for the discrepancies specific to each individual environment.
After that, FNSDA only needs to adjust the parameters associated with modeling the discrepancies
for the generalization to new environments while keeping other parameters fixed as already learned
values. To facilitate rapid adaptation, we further introduce an efficient adjustment strategy with the
usage of globally shared and low-dimensional systematical parameters.

In practice, FFT(z(l)) in Eq. (4) is implemented as a convolution on z(l) with a function consisting
of k̂ Fourier modes caused by truncation, that is FFT(z(l)) ∈ Ck̂×m. FNSDA separates these Fourier
modes as follows

FFTe(z
(l)) = K(l) · FFT(z(l))

FFTs(z
(l)) = (1−K(l)) · FFT(z(l)),

(5)
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Algorithm 1 Training for FNSDA

1: Input: Training environments Etr each en-
dowed with Ntr trajectories; a simulator
Gθ comprising of L Fourier neural layers;
environmental parameters ce; step size α.

2: Randomly initialize θ
3: Assign ce ← 0
4: while not converged do
5: for each e ∈ Etr do
6: Compute the empirical loss Ldata

on Ntr trajectories via Eq. (8);
7: end for
8: ce ← ce − α∇ceLdata

9: θ ← θ − η∇θLdata

10: end while

Algorithm 2 Adaptation for FNSDA

1: Input: One test environment e ∈ Eev with
N trajectories for adaptation; pretrained
Gθ; environmental parameters ce; activa-
tion parameters β(l)

e ; step size α and η.
2: Load pretrained θ
3: Assign ce ← c̄tr, β

(l)
e ← β̄

(l)
tr

4: while not converged do
5: Compute the empirical loss Ldata

on N trajectories via Eq. (8);
6: ce ← ce − α∇ce

Ldata

7: for l = 1, ..., L do
8: β

(l)
e ← β

(l)
e − η∇β

(l)
e
Ldata

9: end for
10: end while

where K(l) ∈ Ck̂ is a learnable filter. As such, our method can automatically select appropri-
ate modes to be kept or adjusted, which is an important property for its performance. Following
the partition, the weight matrix R(l) is factorized into a combination of two independent matrices
R

(l)
e ∈ Ck̂×m and R(l)

s ∈ Ck̂×m, each catering to the respective groups. Intuitively, R(l)
e ought to take

different values for different systems, while directly treating it as a learnable metric would incur
significant computational costs for adaptation as Lmk̂ parameters would require updating when
stacking L FNO layers. To this end, we further introduce a resource-efficient strategy that achieves
a similar adjustment effect by conditioning R(l)

e on low-dimensional and environment-specific sys-
tematic parameters ce ∈ Rdc , which can be given as

R(l)
e =W (l)

env ce, ∀ e ∈ E and l ∈ {1, ..., L}, (6)

where W (l)
env is a learnable linear matrix. From Eq. (6) we notice that ce is shared across all Fourier

layers, this formulation effectively amplifies the impact of ce on the behavior of Fe such that we
can only update the value of ce when adapting to a new environment. In practice, ce can be learned
from the provided trajectories, we further apply them as conditional input for all Fourier layers.

Overall, Eq. (4) for FNSDA can be reformulated as

K(l)(z(l)) = IFFT
(
R(l)

e · FFTe(z
(l)) +R(l)

s · FFTs(z
(l))

)
. (7)

Compared to the vanilla FNO, FNSDA reorganizes the Fourier modes and conditions some of them
on newly introduced systematical parameters ce. These seemingly minor modifications endow FNO
a strong generalization ability due to (1) the preservation of its representation capability across all
modes, without any degradation, and (2) the magnified impact of the vector ce through the utilization
of a hierarchical structure. Moreover, different from conventional approaches that employ complex
training pipelines and additional networks to tackle the generalization issue directly in the temporal
domain (Yin et al., 2021; Kirchmeyer et al., 2022; Park et al., 2023), our frequency domain-based
method benefits from the reduced difficulty in approximating the non-linear dynamics and inferring
the value of ce from trajectories. We further show that when incorporated with Swish activation
function and training techniques like regularization and the cosine annealing learning rate scheduler,
our FNSDA exhibits a powerful generalization capability across various dynamical systems and
fitting ability for seen dynamics no matter for PDEs or ODEs.

3.3 IMPLEMENTATION

Swish activation. We choose Swish activation (Ramachandran et al., 2018) as the activation function
in Eq. (3) due to its superior ability in a variety of tasks. It is a smooth non-monotonic function
with a learnable parameter that takes the form σ(l)(x) = x · sigmoid(β

(l)
e x), where x represents the

provided intermediate representations and β
(l)
e is a learnable parameter for the l-th layer. Swish

activation brings non-linearity into the network such that our neural network surrogate can capture
the complex interactions between the input features. To tailor it to the multi-environment dynamics
forecasting scenario, we maintain a distinct β(l)

e for each individual environment.
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Model training and adaptation. In real-world applications, systematical parameters tend to take
similar values across different systems, while small changes in their values can have a substantial
impact on the dynamics, especially for long-range prediction (Sanchez-Gonzalez et al., 2020; Han
et al., 2022). Therefore, we introduce regularization to impose constraints on the behavior of these
systematical parameters. Specifically, providing N trajectories collected from a single environment
e ∈ E , we optimize our model to minimize a unified empirical data loss as

Ldata(Gθ, Fe) =
1

N

N∑
j=1

∫ T

0

||Fe(uj(t))−Gθ(uj(t); ce)||22 dt+ λ||ce||22. (8)

At the training stage, when optimizing our model to minimize the loss Eq. (8) for all dynamics fore-
casting tasks in training environments Etr, the general dynamic is effectively learned and inherent in
its parameters θ. As a result, when adapting to a previously unseen environment e ∈ Eev, we only
need to update ce and β(l)

e to minimize Eq. (8) based on newly collected trajectories, this makes our
method quite efficient for practical applications. Furthermore, we initialize ce and β(l)

e as the aver-
age of their learned values in the training environments to further speed up the adaptation process.
The training and adaptation procedures are outlined in Algorithm 1 and 2, respectively.

4 EXPERIMENTS

In this section, we evaluate FNSDA on four representative dynamical systems that have been widely
employed by various fields e.g., chemistry, biology and fluid dynamics. These systems all exhibit
complex non-linearity in either temporal or spatiotemporal domains. We compare our method with
other baselines on both inter-trajectory and extra-trajectory adaptation tasks.

4.1 EXPERIMENTAL SETUP

Datasets. We experiment on two ODEs and two PDEs: (1) Lotka-Volterra (LV) (Lotka, 1925). This
is an ODE dataset describing the dynamics of a prey-predator pair and their interaction within an
ecosystem. The environmental parameters are the quantities of the prey and the predator, and we
vary their values to imitate different dynamical systems. (2) Glycolitic-Oscillator (GO) (Daniels &
Nemenman, 2015). An ODE dataset depicts yeast glycolysis oscillations for biochemical dynamics
inference. We adjust the parameters of the glycolytic oscillators to generate different systems. (3)
Gray-Scott (GS) Pearson (1993). A PDE dataset describes the spatiotemporal patterns of reaction-
diffusion system. We vary the values of reaction parameters for each environment. (4) Navier-Stokes
system (NS) (Stokes, 1851), a two-dimensional PDE dataset exhibiting complex spatiotemporal
dynamics of incompressible flows. The environmental parameter is viscosity, we take different
viscosity to mimic environmental change. For the LV and GO datasets, each training system is
equipped with Ntr = 100 trajectories for parameter learning. The model is evaluated on Nev = 50
trajectories from new systems. For the GS and NS datasets, we letNtr=50 andNev=50 for training
and evaluation, respectively. More details for dataset generation can be found in Appendix B.

Baselines. The methods for comparison include: (1) ERM (Vapnik, 1998); (2) ERM-adp, fine-
tuning ERM learned parameters to adapt to new environments; (3) LEADS (Yin et al., 2021);
(4) CoDA (Kirchmeyer et al., 2022), we use ℓ1 (CoDA-ℓ1) and ℓ2 norm (CoDA-ℓ2) for the regular-
ization on the context and hypernetwork as suggested by Kirchmeyer et al. (2022); (5) FoCA (Park
et al., 2023). We implement these methods following the neural network architecture presented in
Kirchmeyer et al. (2022).

FNSDA is implemented in the PyTorch (Paszke et al., 2017) platform. For the experiments on LV
and GO datasets, we use two Fourier layers with k̂=10 frequency modes. For the GS and NS
datasets, we employ four Fourier layers with k̂=12 truncated modes. Across these datasets, the
dimension of environmental parameter ce is set as dc = 20 and the coefficient for regularization
as λ= 1e-4. To calculate the trajectory loss presented in Eq. (8), we employ numerical solvers to
approximate the integral. Specifically, we utilize RK4 solver for the LV, GO and GS datasets, and
Euler solver for the NS dataset. We optimize the model using Adam (Kingma & Ba, 2015) with an
initial learning rate of 1e-3, and the learning rate is updated with a cosine annealing schedule. For
simplicity, we set α equal to η. We find that cosine annealing schedule with warmup is effective
for model training but failed for adaptation, so we only use warmup over the first 500 epochs when
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Table 1: Inter-trajectory adaptation results. We measure the RMSE (×10−2) and MAPE values per
trajectory. Smaller is better (↓). # Params indicate the number of updated parameters for adapting
to new environments. Detailed results with standard deviations are available in Appendix C.

Algorithm LV GO GS NS
RMSE MAPE #Params RMSE MAPE #Params RMSE MAPE #Params RMSE MAPE #Params

ERM 48.310 3.081 - 18.688 0.355 - 8.120 3.370 - 5.906 0.416 -
ERM-adp 47.284 2.170 0.008M 33.161 0.516 0.008M 9.924 4.665 0.076M 17.516 1.491 0.232M
LEADS 69.604 2.440 0.043M 33.782 0.688 0.043M 23.017 2.185 0.020M 36.855 0.974 1.162M
CoDA-ℓ2 4.674 0.554 0.035M 46.461 0.688 0.035M 20.017 12.007 0.381M 2.784 0.299 0.465M
CoDA-ℓ1 5.044 0.636 0.035M 46.051 0.729 0.035M 28.465 6.001 0.381M 2.773 0.297 0.465M
FOCA 21.321 0.601 0.013M 44.020 0.618 0.013M 14.678 4.565 0.028M 17.115 1.854 0.237M
FNSDA 3.736 0.216 0.088K 8.541 0.229 0.088K 2.700 0.826 0.096K 3.625 0.355 0.096K

Table 2: Extra-trajectory adaptation results. We measure the RMSE (×10−2) and MAPE per trajec-
tory. Smaller is better (↓). Detailed results with standard deviations are available in Appendix C.

Algorithm LV GO GS NS
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

ERM 43.969 2.347 18.233 0.306 7.059 3.027 4.969 0.383
ERM-adp 95.193 3.465 23.522 0.566 163.670 83.508 31.521 5.746
LEADS 88.214 3.390 34.617 0.729 28.115 18.222 39.398 1.265
CoDA-ℓ2 29.660 1.117 39.589 0.402 11.452 2.769 2.797 0.280
CoDA-ℓ1 31.088 1.179 53.702 0.467 6.943 0.921 2.844 0.285
FOCA 77.046 6.725 76.194 1.484 49.476 35.736 11.238 1.131
FNSDA 33.774 0.420 14.918 0.236 5.011 2.695 3.823 0.370

training our model. We report the results in both the Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE) for evaluation.

4.2 RESULTS

Results of inter-trajectory adaptation. The results in terms of inter-trajectory adaptation tasks are
presented in Table 1. We also report the number of updated parameters during the adaptation proce-
dure for each approach. As seen, FNSDA achieves the smallest forecast error on the LV, GO and GS
datasets, exhibiting a noticeable improvement over other baselines. On the NS dataset, it performs
also competitively, with results second only to CoDA. These results confirm the good generalization
capability of our method. Furthermore, different from other methods requiring large amounts of pa-
rameters to be updated when adapting to a new environment, our FNSDA alleviates this dependence
by requiring only a few updated parameters for adaptation. Such appealing property is actually
attributed to the magnified impact of ce stemming from the employed automatic partition strategy
and hierarchical structure, prompting the practical usage of our method in resource-constrained and
partial reconfigurable devices where updating all parameters is impractical (Vipin & Fahmy, 2018).

Results of extra-trajectory adaptation. The results for extra-trajectory adaptation tasks are shown
in Table 2. FNSDA consistently obtains the best or at least competitive results across these ex-
perimental setups, demonstrating strong flexibility for various application scenarios. CoDA also
exhibits promising performance, particularly on the NS dataset when utilizing ℓ2 norm. However,
due to the existence of accumulation error (Sanchez-Gonzalez et al., 2020), most approaches exhibit
higher forecast errors compared to the results obtained in the inter-trajectory adaptation task. This
necessitates the development of specific methods or regularization techniques to mitigate this issue.

4.3 ABLATION STUDIES

Effect of automatic partition strategy. Fig. 3 displays the comparison results of FNSDA utilizing
different Fourier modes splitting strategies for the inter-trajectory adaptation task on the LV dataset.
Notably, FNSDA employing an automatic partition strategy demonstrates superior performance.
A noticeable performance degradation can be observed when only updating low Fourier modes.
This may be attributed to that environmental parameters own a preference for adjusting the high-
frequency information of dynamics via small value changes, while modifying high modes only fails
to yield optimal results. We further conducted a comparison by employing alternative splitting with
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Table 3: Comparisons of cross partition with different ratios.
We report the RMSE (×10−2) results.

Split ratio 4:1 3:2 1:1 2:3 1:4
Inter-trajectory 18.055 5.716 5.277 9.074 5.619
Extra-trajectory 50.304 60.574 65.126 41.219 67.216
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Figure 4: (a) training techniques, (b) different distribution discrepancy, (c) the convergence curves
for inter-trajectory adaptation, (d) the convergence curves for extra-trajectory adaptation.

various ratios that can keep both the high and low modes within each group. The results, as presented
in Table 3, indicate that these manual partition strategies can not lead to desired performance.

Ablation on training techniques. We performed an ablation study of employed training techniques
to show the necessity of each of them, and the results on the LV dataset can be found in Fig. 4 (a).
We start with a plain model using ReLU activation, which yielded an error of 12.2. After replacing
it with Swish, the error decreases by 3.2. Moreover, incorporating cosine annealing scheduler and
warmup further decreased the error by 5.0. The addition of regularization on ce resulted in an
additional error reduction of 0.3. However, making W (l)

env tunable did not improve the performance
due to the existence of overfitting in one trajectory adaptation.

Analysis on distribution discrepancy. To assess the performance of our method in handling various
distribution shifts, we created two test environments on the LV dataset that exhibit different levels
of distribution discrepancy from the training environments: one with environmental parameters can
be interpolated from training environments and the other not. The experiment results are illustrated
in Fig. 4 (b). Most methods present a degradation in performance when adapting to the test en-
vironment with environmental parameters that are not interpolatable. Conversely, our method still
achieves a low forecast error in this challenging scenario, indicating its robustness and effectiveness
in handling such distribution shifts.

Analysis on Adaptation efficiency. We further investigate the convergence speed of FNSDA for
adapting to new environments. Specifically, we visualize the forecast error with respect to iteration
steps during inter-trajectory and extra-trajectory adaptation processes on the LV dataset in Fig. 4 (c)
and (d), respectively. FNSDA exhibits an appealing rapid adaptation capability to new environments.
In the inter-trajectory adaptation task, it is able to converge to a stable value within 1,200 iterations.
For the extra-trajectory adaptation task, FNSDA achieves convergence in a mere 100 iterations. Fur-
thermore, unlike CoDA requires maintaining a duplicate model for updating all parameters, FNSDA
eliminates this dependency, making it applicable in some resource-constrained edge devices.

5 CONCLUSION

In this paper, we propose a novel approach, FNSDA, to deal with the generalization problem in
neural learned simulators for complex dynamical systems. By capitalizing on the frequency do-
main, FNSDA effectively captures the commonalities and discrepancies among various dynamical
environments, which leads to a simplified model structure and expedited adaptation process. Com-
prehensive evaluations on two adaptation tasks across a diverse set of datasets demonstrate the supe-
riority or competitiveness of FNSDA in comparison to existing methods, along with its remarkable
speed in adapting to new environments.
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A LIMITATIONS AND FUTURE WORKS

A.1 LIMITATIONS

Requirements on high-quality data. As a data-driven method, FNSDA relies on the quality and
quantity of data. In current benchmark datasets, the training data for FNSDA are generated using
well-designed numerical simulators. However, in practical applications, we may not have access
to such accurate simulators and may need to learn a simulator from noisy or corrupted observa-
tions directly. Such limitations have the potential to impact the method’s generalization capability
negatively.

Application to larger systems. We primarily focus on relatively small dynamical systems governed
by differential equations in this study. The scalability of FNSDA to much larger and more complex
systems, such as those encountered in climate modeling or large-scale biological networks, remains
an open question. The efficiency and generalization capabilities of FNSDA may be affected when
dealing with such large-scale problems.

A.2 FUTURE WORKS

Accelerating Fourier transform. Each Fourier layer in Gθ includes one Fourier transform and
inverse Fourier transform, these two time-consuming operations actually hinder the training of
FNSDA. To alleviate this, one may consider some truncation techniques for spectrum Poli et al.
(2022); Tran et al. (2023), and reducing the number of performing transforms in architecture de-
sign Poli et al. (2022).

Incorporating physical constraints and prior knowledge. Incorporating physical constraints or
prior knowledge into the FNSDA framework could lead to more robust and accurate predictions
across a wider range of dynamical systems Wang & Yu (2021); Hansen et al. (2023). This could
involve developing methods to fuse the learned representations with existing physical models, or
designing novel architectures that explicitly enforce the satisfaction of physical constraints during
the learning process.

Extending to other types of dynamical systems. Although FNSDA leverages the Fourier transform
to linearize the relationships within the input signals, it is uncertain how well the method would
perform on highly nonlinear or chaotic systems Sanchez-Gonzalez et al. (2020); Li et al. (2022).
These systems may present additional challenges in modeling, generalization, and adaptation that
have not been fully addressed in the current work. Exploring the performance of FNSDA on such
systems would be a valuable direction for future research.

B EXPERIMENTAL SETTINGS

In this section, we present a comprehensive overview of the equations governing all the dynami-
cal systems considered in the work. In addition, we will also delve into the specificities of data
generation that are unique to each of these systems.

Lotka-Volterra (LV). This classical model is utilized to elucidate the dynamics underlying the
interaction between a predator and its prey. Specifically, the governing equations are described by a
system of ODE:

dx

dt
= αx− βxy

dy

dt
= δx− γxy
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where x, y are variables respectively indicate the quantity of the prey and the predator and α, β, γ, δ
are parameters defining the interaction process between the two species.

For model training, we consider 9 systems Etr with parameters β, δ ∈ {0.5, 0.75, 1.0}2. And for
evaluation, we consider 4 systems Eev with parameters β, δ ∈ {0.625, 1.125}2. We maintain a con-
stant value of α = 0.5 and γ = 0.5 across all environments. Each of the training environments is
equipped with Ntr = 100 trajectories, while each test environment is equipped with Nev = 50 tra-
jectories. Besides, all these trajectories use initial conditions randomly sampled from a uniform dis-
tribution Unif([1, 3]2) and evolve on a temporal grid with ∆t = 0.5 and temporal horizon T = 20.
Furthermore, for extra-trajectory prediction tasks on the LV dataset, we let Tad = 5 for adaptation
purposes, and models are expected to predict 15 seconds of future states.

Glycolitic-Oscillator (GO). The glycolytic oscillators refer to a mathematical model that character-
izes the dynamics of yeast glycolysis following the ODE:

dS1

dt
= J0 −

k1S1S6

1 + (1/Kq
1)S

q
6

dS2

dt
= 2

k1S1S6

1 + (1/Kq
1)S

q
6

− k2S2(N − S5)− k6S2S5

dS3

dt
= k2S2(N − S5)− k3S3(A− S6)

dS4

dt
= k3S3(A− S6)− k4S4S5 − κ(S4 − S7)

dS5

dt
= k2S2(N − S5)− k4S4S5 − k6S2S5

dS6

dt
= −2 k1S1S6

1 + (1/Kq
1)S

q
6

+ 2k3S3(A− S6)−K5S6

dS7

dt
= ψκ(S4 − S7)− kS7

where S1, S2, S3, S4, S5, S6, S7 (states) denote the concentrations of 7 biochemical species and
J0, k1, k2, k3, k4, k5, k6,K1, q,N,A, κ, ψ and k are the parameters determining the behavior of the
glycolytic oscillators.

For training data generation, we consider 9 systems Etr with parameters k1 ∈ {100, 90, 80}, K1 ∈
{1, 0.75, 0.5}. And for evaluation, we consider 4 systems Eev with parameters k1 ∈ {85, 95},
K1 ∈ {0.625, 0.875}. We fix the parameters J0 = 2.5, k2 = 6, k3 = 16, k4 = 100, k5 =
1.28, q = 4, N = 1, A = 4, κ = 13, ψ = 0.1 and k = 1.8 across all environments. For
the GO dataset, each training environment is equipped with Ntr = 100 trajectories, and each test
environment is equipped with Nev = 50 trajectories. The trajectories are generated using initial
conditions drawn from a uniform distribution as outlined in Kirchmeyer et al. (2022) and evolving
on a temporal grid with ∆t = 0.05 second and temporal horizon T = 2 seconds. Notably, for
the extra-trajectory prediction tasks, all models are provided with the first Tad = 0.5 seconds of
observations for adaptation purposes, after which they are expected to predict the subsequent 1.5
seconds of future states.

Gray-Scott (GS). This is a 2d PDE dataset comprising the data for a reaction-diffusion system with
complex spatiotemporal patterns derived from the following PDE equation:

∂u

∂t
= Du∆u− uv2 + F (1− u)

∂v

∂t
= Dv∆v − uv2 + (F + k)v

where u and v are the concentrations of two chemical components taking value in the spatial domain
S with periodic boundary conditions. Du is the diffusion coefficient for u, and Dv is the diffusion
coefficient for v. F and k denote the reaction parameters for this system.

For training data generation, we create 4 training environments Etr via varying the reaction param-
eters F ∈ {0.30, 0.39}, k ∈ {0.058, 0.062}. While for evaluation, we generate 4 test environments
Eev with parameters F ∈ {0.33, 0.36}, k ∈ {0.59, 0.61}. Across these environments, we keep
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Table 4: Inter-trajectory adaptation results. We measure the RMSE (×10−2) and MAPE values per
trajectory. Smaller is better (↓). # Params indicate the number of updated parameters for adapting
to new environments.

Algorithm LV GO GS NS
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

ERM 48.310±18.243 3.081±5.015 18.688±0.378 0.355±0.072 8.120±0.815 3.370±2.882 5.906±1.833 0.416±0.389

ERM-adp 47.284±9.373 2.170±2.227 33.161±1.115 0.516±0.214 9.924±1.617 4.665±3.327 17.516±4.866 1.491±9.865

LEADS 69.604±22.670 2.440±4.278 33.782±1.197 0.688±0.148 23.017±0.052 2.185±2.941 36.855±1.748 0.974±2.055

CoDA-ℓ2 4.674±2.563 0.554±0.631 46.461±1.964 0.688±0.186 20.017±1.117 12.007±9.687 2.784±0.862 0.299±0.581

CoDA-ℓ1 5.044±2.817 0.636±0.737 46.051±1.661 0.729±0.204 28.465±2.484 6.001±4.366 2.773±0.845 0.297±0.565

FOCA 21.321±18.243 0.601±0.590 44.020±1.133 0.618±0.309 14.678±1.175 4.565±3.534 17.115±5.780 1.854±6.513

FNSDA 3.736±2.348 0.216±0.221 8.541±0.172 0.229±0.076 2.700±0.394 0.826±0.500 3.625±0.882 0.355±0.579

Table 5: Extra-trajectory adaptation results. We measure the RMSE (×10−2) and MAPE values per
trajectory. Smaller is better (↓).

Algorithm LV GO GS NS
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

ERM 43.969±22.576 2.347±5.121 18.233±0.685 0.306±0.096 7.059±1.198 3.027±3.712 4.969±1.333 0.383±0.428

ERM-adp 95.193±15.477 3.465±2.805 23.522±1.599 0.566±0.162 163.670±39.819 83.508±118.951 31.521±2.070 5.746±6.742

LEADS 88.214±28.864 3.390±3.602 34.617±1.650 0.729±0.210 28.115±1.528 18.222±21.688 39.398±2.038 1.265±1.676

CoDA-ℓ2 29.660±27.787 1.117±2.609 39.589±1.646 0.402±0.370 11.452±2.496 2.769±3.397 2.797±0.769 0.280±0.669

CoDA-ℓ1 31.088±28.311 1.179±2.677 53.702±5.216 0.467±0.349 6.943±2.161 0.921±1.398 2.844±0.746 0.285±0.683

FOCA 77.046±13.368 6.725±0.853 76.194±2.778 1.484±0.401 49.476±6.062 35.736±47.329 11.238±2.058 1.131±3.302

FNSDA 33.774±28.122 0.420±0.467 14.918±0.861 0.236±0.079 5.011±1.967 2.695±3.288 3.823±0.997 0.370±0.614

the diffusion coefficients fixed as Du = 0.2097 and Dv = 0.105. The space is discretized on a
2D grid with dimension 32 × 32 and spatial resolution ∆s = 2 following the setup in Kirchmeyer
et al. (2022). For each training and test environment, we sample Ntr = Nev = 50 initial conditions
uniformly from three two-by-two squares in S to generate the trajectories on a temporal grid with
∆t = 40 second and temporal horizon T = 400 seconds. For the extra-trajectory prediction tasks,
we set the visible time span as Tad = 80 seconds for adaptation and the model needs to produce the
prediction for the states in the following 320 seconds.

Navier-Stokes (NS). The Navier-Stokes equations are a set of PDEs that describe the dynamics of
incompressible flows in a 2D space. These equations can be expressed in the form of a vorticity
equation as follows:

∂w

∂t
= −v∇w + ν∆w + f

∇v = 0

w = ∇× v

where v denotes the velocity field and w represents the vorticity, ν denotes the viscosity, and f is a
constant forcing term. The domain is subject to periodic boundary conditions.

For training data generation, we consider 5 systems Etr with parameters ν ∈ {8 ·10−4, 9 ·10−4, 1.0 ·
10−3, 1.1 · 10−3, 1.2 · 10−3}. While for evaluation, we generate 4 systems Eev with parameters
ν ∈ {8.5 · 10−4, 9.5 · 10−4, 1.05 · 10−3, 1.15 · 10−3}. The space is discretized on a 2D grid with
dimension 32 × 32 and we set f(x, y) = 0.1(sin(2π(x + y)) + cos(2π(x + y))), where x, y are
coordinates on the discretized domain following Kirchmeyer et al. (2022). For each training and
test environment, we sample Ntr = Nev = 50 initial conditions from the distribution described in
Li et al. (2021) to generate the trajectories on a temporal grid with ∆t = 1 second and temporal
horizon T = 10 seconds. For the extra-trajectory prediction tasks on the NS dataset, all models
are provided with the first Tad = 2 seconds of observations for adaptation. Subsequently, they are
expected to predict the states in the following 8 seconds.
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Table 6: In-domain test results. We measure the RMSE (×10−2) and MAPE values per trajectory.
Smaller is better (↓).

Algorithm LV GO GS NS
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

ERM 39.753±14.014 0.901±1.052 23.946±1.187 0.462±0.170 18.491±0.009 37.596±2.882 6.793±2.636 1.435±11.744

LEADS 47.266±12.590 0.940±2.669 29.381±0.975 0.698±0.373 29.381±0.975 0.698±2.941 36.551±2.050 1.532±9.687

CoDA-ℓ2 4.591±2.766 0.196±0.590 5.567±0.105 0.095±0.061 5.254±1.062 6.228±9.687 2.813±0.932 0.660±5.333

CoDA-ℓ1 3.947±1.942 0.201±0.634 5.400±0.094 0.091±0.057 6.260±1.358 7.275±4.366 3.521±0.782 0.748±5.235

FOCA 39.753±14.014 0.901±0.326 46.530±1.938 2.522±3.591 46.530±1.938 0.737±3.534 5.510±1.420 1.467±12.346

FNSDA 2.555±1.330 0.109±0.168 7.533±0.128 0.239±0.079 2.746±0.995 2.252±7.950 3.835±1.167 0.741±6.120

C FURTHER RESULTS AND ANALYSIS

C.1 DETAILED RESULTS

In this section, we provide more detailed experimental results for our generalization tasks. The
results on the inter-trajectory prediction task are presented in Table 4, and on the extra-trajectory
prediction task are shown in Table 5. We further report in-domain test results in Table 6 to show the
impact for the seen environments.

C.2 INITIAL VALUE AND ENVIRONMENTAL PARAMETERS

To compare the discrepancies in terms of Fourier frequencies in a dynamical when initial condi-
tions or PDE coefficient vary, we visualize their influence on generated trajectories by making a
comparison to a fixed trajectory with ν = 8 · 10−4 on the NS dataset. The results are depicted in
Fig. 5. As seen, varying initial values can change the flow dynamic immensely, along with signif-
icant changes in low and high Fourier spectrums. While varying victory tends to shift the flow in
nearby regions, and it can also change the low and high Fourier spectrum due to error accumulation.
We, in our experiments, report the generalization results on different initial values and PDE coef-
ficient simultaneously existing, which is a more challenging but realistic setup. To investigate the

(a) (b)

t=0 t=5 t=10 t=15 t=20 t=0 t=5 t=10 t=15 t=20

Figure 5: (a) Generated under different initialization; (b) Generated with ν = 1.1 · 10−3.

effect of changing environmental parameters on the generated dynamics, we vary the parameter ν
from 8 · 10−4 to {9 · 10−4, 1.0 · 10−3, 1.1 · 10−3, 1.2 · 10−3} and compare the resulting trajectories
with the one obtained with ν = 8 · 10−4 under the same initial value. The MSE and the Fourier
representations of the differences are shown in Fig. 6. We can observe that the discrepancy be-
tween the trajectories increases as ν deviates from 8 · 10−4, and this is reflected in both the low and
high-frequency components of the Fourier domain. In addition, the discrepancy grows over time,
indicating that the environmental parameter has a significant impact on the long-term dynamics.

C.3 PARAMETER SENSITIVITY ANALYSIS

The value of λ. We constrain ce to be close to zero to facilitate fast adaptation to new environments.
We then perform a parameter sensitivity analysis w.r.t. λ on the LV dataset to assess its influence.
The results are shown in Table 7. As seen, FNSDA exhibits stable performance under different
strengths on the penalty of ce.
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Figure 6: Comparison of different distribution discrepancies for the shift of dynamics. We visualize
the differences between generated trajectories with ν ∈ {9 · 10−4, 1.0 · 10−3, 1.1 · 10−3, 1.2 · 10−3}
and a trajectory that is obtained from the same initial value but a different value of ν = 8 · 10−4.

Table 7: Parameter sensitivity analysis w.r.t λ on LV dataset. We report the RMSE (×10−2) results.

λ 1e-3 1e-4 1e-5 1e-6
Inter-trajectory 4.631 3.736 3.783 4.705
Extra-trajectory 38.503 33.774 33.896 34.588

The dimension of ce. We then analyze the parameter sensitivity with regard to the dimension of ce
for our FNSDA by varying the dimension ranging from {2, 5, 10, 15, 20}. The results are listed in
Table 8. FNSDA achieves the best performance when the dimension of ce is set to 10. It also shows
consistent results for dim 2, 15, and 20, and slightly deteriorates for dim 5. We speculate that ce, as
a key component of FNSDA, learns to infer the latent code of the actual environmental parameters
when generalizing to a new environment, thus its dimension is closely related to its learning ability.

Table 8: The effect of environmental parameter dimension on the LV dataset. We report the RMSE
(×10−2) results.

dc 2 5 10 15 20
Inter-trajectory 5.991 12.966 3.736 5.659 5.090
Extra-trajectory 34.751 42.632 33.774 50.981 48.927

The impact of βe. We experimentally evaluate its impact with the results in RMSE presented in Ta-
ble 9. We can observe that, fixing βe slightly worsens the performance, while fixing ce significantly
degrades the performance. This demonstrates the critical role of ce for FNSDA’s generalization
capability.
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Table 9: The effect of βe on the LV dataset. We report the RMSE (×10−2) results.

dc 2 5 10 15 20
Inter-trajectory 5.991 12.966 3.736 5.659 5.090
Extra-trajectory 34.751 42.632 33.774 50.981 48.927

Ground
 Truth

ERM

LEADS

CoDA-2

FOCA

FNSDA

Inter-trajectory adaptation task Extra-trajectory adaptation task
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Figure 7: Adaptation results to new GS system with (F, k,Du, Dv) = (0.33, 0.61, 0.2097, 0.105).
We present the ground-truth trajectory and prediction MSE per frame generated by different neural
network simulators.
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Figure 8: Visualization of predicted dynamics for a new GS system with (F, k,Du, Dv) =
(0.33, 0.61, 0.2097, 0.105). We show the ground-truth trajectory and predictions from different neu-
ral network simulators.

C.4 QUALITATIVE ANALYSIS

Results on the GS dynamics. We visualize in Fig. 7 prediction MSE by comparison method and
our FNSDA for the inter-trajectory and extra-trajectory adaptation tasks on the GS dataset. The
predicted dynamics are illustrated in Fig. 8.
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Figure 9: Adaptation results to new GS system with ν = 1.15 · 10−3. We present the ground-truth
trajectory and prediction MSE per frame generated by different neural network simulators.
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Figure 10: Visualization of predicted dynamics for a new NS system with ν = 1.15 ·10−3. We show
the ground-truth trajectory and predictions from different neural network simulators.

Results on the NS dynamics. We also visualize in Fig. 9 prediction MSE by comparison method
and our FNSDA for the inter-trajectory and extra-trajectory adaptation tasks on the NS dataset. The
predicted dynamics are illustrated in Fig. 10.
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