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Abstract— Robots need robust and flexible vision systems to
perceive and reason about their environments beyond geometry.
Most of such systems build upon deep learning approaches. As
autonomous robots are commonly deployed in initially unknown
environments, pre-training on static datasets cannot always
capture the variety of domains and limits the robot’s vision
performance during missions. Recently, self-supervised as well
as fully supervised active learning methods emerged to improve
robotic vision. These approaches rely on large in-domain
pre-training datasets or require substantial human labelling
effort. To address these issues, we present a recent adaptive
planning framework for efficient training data collection to
substantially reduce human labelling requirements in semantic
terrain monitoring missions. To this end, we combine high-
quality human labels with automatically generated pseudo
labels. Experimental results show that the framework reaches
segmentation performance close to fully supervised approaches
with drastically reduced human labelling effort while out-
performing purely self-supervised approaches. We discuss the
advantages and limitations of current methods and outline
valuable future research avenues towards more robust and
flexible robotic vision systems in unknown environments.

I. INTRODUCTION

Perceiving and understanding complex environments is
a crucial prerequisite for autonomous systems [1, 2]. In
many applications, such as terrain monitoring [3, 4], search
and rescue [5, 6], and precision agriculture [7], autonomous
robots need to operate in unknown and unseen environments.
This poses a major challenge for classical deep learning-
based vision systems, which are trained on static datasets and
often do not generalise well to new conditions encountered
during real-world deployments.

This work examines the problem of semi-supervised ac-
tive learning to improve robotic vision within an initially
unknown environment while minimising human labelling re-
quirements. We tackle this problem by adaptively re-planning
the robot’s paths online to collect informative training data
to re-train its vision system after a mission. We incorporate
two sources of labels for network re-training based on the
collected data: (i) a human annotator and (ii) automatically
generated pseudo labels based on an environment map in-
crementally built online during a mission.

Active learning is a common approach for reducing hu-
man labelling data requirements in computer vision. In the
traditional setting, active learning methods select the most
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Fig. 1: Our semi-supervised active learning approach in an unknown
environment. During a mission, a semantic segmentation network
predicts pixel-wise semantics and model uncertainties from an
RGB-D image. Both are fused into an uncertainty-aware semantic
map, which is used by our adaptive planner to guide the robot
towards areas of informative training data where model uncertainty
is high. After a mission, the collected data is labelled using two
sources of labels: (i) human pixel labelling and (ii) self-supervised
pseudo label generation from the semantic map.

informative images from a large, unlabelled dataset [8–11].
The selection criterion is commonly derived based on uncer-
tainty, e.g. using Monte-Carlo dropout [9] or ensembles [12].
These approaches are typically not applicable for robot
deployments in unknown environments since the collected
data is not known in advance. Thus, recent works investigate
combining active learning with robotic planning to guide a
robot towards parts of the environment with more informative
training data for semantic segmentation [13–15]. A drawback
of such methods is that the collected images need to be
densely labelled, which is still time- and labour-intensive.

Conversely, self-supervised active learning methods auto-
matically generate pseudo labels from maps incrementally
built during a mission [16–18], without relying on human
labelling. However, their applicability to diverse sets of
unknown environments is limited since they require large
labelled in-domain pre-training datasets to produce high-
quality pseudo labels without systematic prediction errors.
These pre-training requirements are typically hard to realise
in real-world robotic deployment settings, e.g. outdoor and
aerial monitoring, where training data is scarce.



Our paper bridges the gap between these two streams of
research. We start with a semi-supervised adaptive path plan-
ning framework for robotic active learning, introduced in our
recent journal publications [15, 19]. As illustrated in Fig. 1,
the approach combines automatically generating uncertainty-
aware self-supervised pseudo labels from a semantic map
and selecting informative human-labelled training data. We
explore sparse human label selection techniques to further
reduce labelling requirements [20, 21]. For adaptive plan-
ning, our approach maintains an uncertainty-aware semantic
map, enabling us to guide the robot to collect images for
labelling from high-uncertainty areas. By combining human
and pseudo labels, our goal is to maximise semantic seg-
mentation performance while reducing human labelling effort
compared to previous fully supervised works in robotic active
learning. Based on our findings, our paper concludes with a
new and previously unpublished discussion of limitations and
open challenges to drive the research community supporting
label-efficient robotic learning paradigms.

II. OUR APPROACH

Considering a robot equipped with an RGB-D sensor, we
present an approach for collecting images in an unknown
environment to improve semantic segmentation with minimal
human labelling effort [15, 19] as depicted in Fig. 1.

A. Probabilistic Semantic Environment Mapping

A crucial requirement for pseudo label generation and
adaptive planning is a probabilistic map capturing infor-
mation about the environment. We use probabilistic multi-
layered semantic environment mapping to fuse semantic
model predictions. The environment is discretised into two
voxel maps MS : V → {0, 1}K×W×L×H and MU : V →
[0, 1]W×L×H defined over W ×L×H spatially independent
voxels V . The semantic map MS consists of K layers with
one layer per class and is recursively updated using occu-
pancy grid mapping [22]. The model uncertainty map MU is
updated using maximum likelihood estimation. Additionally,
we maintain a count map MT : V → NW×L×H to track the
occurrences in the human-labelled training data utilised in
our planning objective. The semantic predictions and model
uncertainties change as the semantic segmentation model is
re-trained after each robot mission. Thus, we re-compute
the semantic and model uncertainty maps after model re-
training using previously collected RGB-D images to obtain
maximally up-to-date map priors for adaptive planning.

B. Adaptive Informative Path Planning

We aim to maximise the performance of a semantic
segmentation model with minimal human labelling effort
after re-training it on the collected training data. Our map-
based global planning methods search for a path ψ∗ =
(p1, . . . ,pN ) ∈ Ψ with a variable number N ∈ N of robot
poses pi ∈ RD, i ∈ {1, . . . , N}, in the set of potential paths
Ψ, that maximises an information criterion I : Ψ → R≥0:

ψ∗ = argmax
ψ∈Ψ

I(ψ), s.t. C(ψ) ≤ B , (1)

where I assigns an information value to each possible path
ψ ∈ Ψ, B ≥ 0 is the mission budget, and C : Ψ → R≥0

defines the required budget to execute the path ψ.
At each time step t, we adaptively re-plan the path ψ∗

t

based on the current map states Mt
U and Mt

T , and exe-
cute the next-best pose pt+1 to collect informative training
data. The information criterion estimates the effect of a
candidate training image recorded at pose p on a semantic
segmentation model’s performance. To this end, our infor-
mation criterion I trades off between model uncertainty and
training data diversity. Based on the camera’s field of view,
we compute a set of voxels Vp visible from pose p and
extract currently mapped model uncertainties Mt

U (v) and
training data occurrences Mt

T (v) for all voxels v ∈ Vp.
Pose p contains high information value if model uncertainties
Mt

U (v) are high while training data occurrences Mt
T (v) are

low. To foster exploration, voxels v in unknown space receive
a constant exploration bonus Mt

U (v) = cu, where cu > 0.

C. Efficient Labelling

We propose a semi-supervised training strategy for im-
proving the robot’s semantic vision. We utilise a semantic
segmentation network to predict the pixel-wise probabilis-
tic semantic labels of images. To maximise model per-
formance, we combine human-labelled and automatically
pseudo-labelled images during network training.

Combining ideas from Shin et al. [20] and Xie et al. [21],
we propose a new model architecture-agnostic pixel selection
procedure for sparse human labels that trades off between
label informativeness and diversity. After each mission, we
predict each pixel’s maximum likelihood semantic label and
compute its region impurity score following Xie et al. [21]. A
pixel’s region impurity and, thus, its information value upon
re-training is high whenever the number of different classes
predicted within its neighbourhood is high, as semantics are
usually locally non-cluttered. We select the β% pixels with
the highest region impurity to ensure an information value
lower bound. Then, we sample α pixels uniformly at random
from these β% pixels to foster training data diversity.

Similarly to self-supervised robotic active learning ap-
proaches [16, 17], we use our incrementally online-built
semantic and model uncertainty maps (Sec. II-A) to generate
pseudo labels. Given a pose, we render pixel-wise maximum
likelihood semantic pseudo labels and model uncertainties
from these maps. After each mission, for all images collected
in any of the previous missions from respective robot poses,
we (re-)render pseudo labels and model uncertainties based
on the most recent map beliefs. In contrast to previous
works [16, 17], we only use a sparse set of α pseudo-labelled
pixels per image as we experimentally found that sparse
pseudo labels balance the human and self-supervision best.
Building upon Shin et al. [20], for each image, we select the
β% pixels with the lowest map-based model uncertainties to
ensure a lower bound on the pseudo label quality. Then, we
sample α pixels uniformly at random from these β% pixels
to foster diversity of the sparse pseudo labels.



Fig. 2: Our global map-based adaptive planners (blue, orange,
green) compared to state-of-the-art local planning (purple) and clas-
sical non-adaptive coverage paths (yellow). Our map-based planners
require substantially fewer pixel-wise human-labelled images to
reach the same performance as coverage and local planning.

III. EXPERIMENTAL RESULTS

We evaluate our framework on the real-world ISPRS
Potsdam orthomosaic dataset [23] and simulate 10 UAV
missions from 30m altitude with a mission budget of 1800 s.
The UAV uses a downwards-facing RGB-D camera with a
footprint of 400 px×400 px. In this work, we consider four
adaptive planners [15] to optimise our planning objective
proposed in Sec. II-B and a standard coverage pattern:

Local is an image-based planner locally following the
direction of the highest training data information in the image
recorded at the current UAV position. This planner resembles
the state-of-the-art method by Blum et al. [13];

Frontier is a global map-based geometric planner guiding
the UAV towards frontiers of explored and unexplored terrain
with the highest training data information;

Optimisation selects a path over a fixed horizon of
multiple time steps to optimise the path’s overall training
data information following the work by Popović et al. [7];

Sampling utilises Monte-Carlo tree search (MCTS) [24]
to find the next position that maximises the future training
data information in a sampling-based fashion.

We use Bayesian ERFNet [14] pre-trained on the
Cityscapes dataset [25]. Re-training after each mission starts
from this checkpoint and stops after convergence on the
validation set. We use a one-cycle learning rate, a batch size
of 8, and weight decay λ = (1 − p)/2N , where p = 0.5 is
the dropout probability and N is the number of images [9].

In Fig. 2, we evaluate the performance of the adaptive
planners against a traditional pre-planned coverage-based
training data collection. We report the mean Intersection-
over-Union (mIoU) and accuracy over the number of pixel-
wise human-labelled training images averaged over three
different UAV starting locations. Higher semantic segmen-
tation performance, thanks to newly added images, indicates
better active learning and, thus, planning performance. The
local planner, on average, does not perform better than the
coverage baseline. All our adaptive map-based planners,
on average, reach higher active learning performance than

Fig. 3: Our semi-supervised adaptive frontier planning compared
to fully and self-supervised adaptive frontier planning. Our semi-
supervised approach almost reaches the fully supervised perfor-
mance while clearly outperforming the self-supervised approach.

the coverage baseline (yellow) and local planner (purple)
with substantially fewer human-labelled images. Specifically,
the frontier planner (blue) requires approx. 200 images to
reach the performances of the coverage planner on approx.
600 images. These results verify that our global map-based
adaptive planners outperform classical pre-planned data col-
lection campaigns for active learning in semantic terrain
mapping missions. Further, they show that our map-based
adaptive planners reach higher active learning performance
than previous state-of-the-art local planning [13].

In Fig. 3, we select the map-based adaptive frontier plan-
ner to evaluate the effect of our proposed semi-supervised
training data labelling strategy. We report the mIoU and
accuracy after each mission’s network re-training averaged
over three different runs to account for the inherent random-
ness in the sparse pixel selection procedure. We compare
our semi-supervised labelling strategy (blue) to (i) fully
supervised pixel-wise human labels (orange), and (ii) to a
purely self-supervised labelling strategy (yellow) pre-trained
on a small set of human-labelled Potsdam ISPRS images
and rendering pixel-wise pseudo labels based on the current
semantic map belief. Our semi-supervised strategy performs
almost on par with the fully supervised human labelling
while requiring approx. only 0.5% of the human-labelled
pixels. Interestingly, the self-supervised approach fails to
improve model performance after four re-deployments. This
indicates that efficiently selecting human-labelled pixels is
a key ingredient of our framework to circumvent reinforced
self-supervision errors in semantic terrain mapping missions.

IV. DISCUSSION & FUTURE DIRECTIONS

Next, we discuss the open challenges in adaptive robotic
planning for active learning of robust vision and suggest
future research directions to address them.

A. Faster to Answer Human Labelling Queries

Although self-supervised methods do not require human
annotations to improve vision performance, these approaches
rely on large human-labelled pre-training datasets containing



data similar to deployment. Thus, self-supervised meth-
ods are often upper-bounded in performance by the pre-
training and domain shift during deployment. In contrast,
fully supervised methods induce substantial human labelling
costs requiring pixel-wise annotations [13–15]. Our results
show that, for active learning in semantic terrain mapping,
combining sparse human labels and self-supervision enables
reducing the number of human-labelled pixels to approx.
0.5% of fully supervised methods while maintaining per-
formance [19]. Although recent studies suggest that sparse
pixel selection reduces annotation time [20, 26], human
labelling query costs are, from our perspective, still too
high to be easily and repeatedly answered by an operator.
One idea could be to explore uncertainty-guided one-click
annotations [27, 28]. Another promising path could be to
leverage foundation models, such as SAM [29], and prompt
them in a targeted, potentially uncertainty-aware fashion.

B. Novel Embodied Self-supervised Learning Methods

Human-guided methods still suffer from costly human
annotations [13, 15, 19]. High-quality self-supervised labels
are required to keep the human labelling effort low and
reach maximal prediction performance. To this end, self-
supervised methods create pseudo labels from an online-built
semantic map [16–19]. These methods render pseudo labels
from voxel-based maps at viewpoints encountered during de-
ployment. However, voxel-based maps cannot render image-
label pairs from novel viewpoints. Semantic neural render-
ing approaches recently enhanced self-supervised pseudo
labels, rendering high-quality image-label pairs from novel
viewpoints, outperforming voxel map-based pseudo label
generation [30]. Combining neural rending methods with
adaptive planning could improve current systems without
additional human labels. Further, robotic active learning
methods leverage the robot’s embodiment in the environment
using adaptive planning to enhance spatial consistency of
pseudo labels [17, 18]. Most methods use generated map-
based pseudo labels directly with standard loss functions
during network training [16, 17], but they do not leverage ad-
vanced self-supervised methods, such as contrastive learning.
Chen et al. [31] show that additionally enforcing spatial con-
sistency during network training using contrastive learning
techniques improves object-goal navigation. These advanced
self-supervised techniques could also improve active learning
for robotic vision systems.

C. Improved Uncertainty Quantification

As discussed by Chaplot et al. [18], overconfidently wrong
predictions reinforce prediction errors after re-training on
these predictions in a self-supervised fashion. Even human-
guided methods require well-calibrated uncertainty estima-
tion to create informative human labelling queries that max-
imise performance while minimising labelling effort [15].
Thus, better-calibrated model uncertainty estimation tech-
niques are required as current techniques tend to produce
overconfident predictions [12, 32, 33]. Further, current meth-
ods ignore various sources of uncertainty. All methods use

some measure of model uncertainty or confidence [15, 17–
19] to collect potentially informative new training data.
Future research could integrate and disentangle other sources
of uncertainty, such as data uncertainty [34] induced by
environmental factors or noisy sensors. This information
could be used to avoid requesting human labels for inputs
with high data uncertainty that contribute little to the model
improvements [34] or to adaptively plan novel viewpoints
that might reduce these uncertainties [35].

D. Towards Continual Active Learning
Another key challenge for efficient learning of robotic

vision systems is the robot’s ability to continually learn about
new unseen environments while transferring the knowledge
gained during previous deployments [36] without suffering
from catastrophic forgetting [37]. This problem of continual
learning is largely ignored in robotic active learning methods.
To the best of our knowledge, Frey et al. [16] proposed the
only method for continual active learning using experience
replay [38]. However, they do not leverage adaptive plan-
ning for training data collection. Further, although concep-
tually simple and effective against catastrophic forgetting,
experience replay is storage- and compute-inefficient as its
complexity scales linearly with the number of deployments.
Combining adaptive replanning with continual learning over
sequential deployments in various environments could lead
to more robust vision systems and a more targeted continu-
ous collection of informative training data while leveraging
already gained previous knowledge.

E. Improved Model Re-training Efficiency
Similarly to continual active learning, current methods for

active learning within a single environment require iterative
network re-training to adapt training data collection based
on previously collected data. Although most methods use
lightweight networks for improved training and inference
speed [15, 17, 19], iterative re-training is prohibitively expen-
sive in applications that require fast online adaption of vision
or re-deployment cycles. One way to improve the network
re-training efficiency could be to leverage vision foundation
models [29] as pre-trained feature extractors combined with
small, trainable adapter networks. This could mitigate the
costly re-training of larger networks while allowing the robot
vision to profit from few-shot generalisation.

V. CONCLUSION

We presented our adaptive planning approach for semi-
supervised active learning of robotic vision in unknown envi-
ronments [19]. Our experimental results show that our semi-
supervised approach outperforms traditional pre-planned data
collection campaigns and purely self-supervised robotic ac-
tive learning approaches in semantic terrain monitoring mis-
sions. Further, our approach requires only approx. 0.5%
of the human-labelled pixels of fully supervised robotic
active learning methods [15] while maintaining semantic
segmentation performance. We conclude with a discussion
of open challenges and identify future directions to advance
state-of-the-art robotic active learning methods.
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Path Planning Framework for Active Learning in UAV-Based Semantic
Mapping,” IEEE Trans. on Robotics (TRO), vol. 39, no. 6, pp. 4279–
4296, 2023.

[16] J. Frey, H. Blum, F. Milano, R. Siegwart, and C. Cadena, “Continual
Adaptation of Semantic Segmentation using Complementary 2D-3D
Data Representations,” IEEE Robotics and Automation Letters (RA-
L), vol. 7, no. 4, pp. 11 665–11 672, 2022.
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