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Abstract

Neural Combinatorial Optimisation (NCO) is a promising learning-based approach
for solving Vehicle Routing Problems (VRPs) without extensive manual design.
While existing constructive NCO methods typically follow an appending-based
paradigm that sequentially adds unvisited nodes to partial solutions, this rigid
approach often leads to suboptimal results. To overcome this limitation, we explore
the idea of the insertion-based paradigm and propose Learning to Construct with
Insertion-based Paradigm (L2C-Insert), a novel learning-based method for con-
structive NCO. Unlike traditional approaches, L2C-Insert builds solutions by strate-
gically inserting unvisited nodes at any valid position in the current partial solution,
which can significantly enhance the flexibility and solution quality. The proposed
framework introduces three key components: a novel model architecture for precise
insertion position prediction, an efficient training scheme for model optimization,
and an advanced inference technique that fully exploits the insertion paradigm’s
flexibility. Extensive experiments on both synthetic and real-world instances of
the Travelling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem
(CVRP) demonstrate that L2C-Insert consistently achieves superior performance
across various problem sizes. The code is available at https://github.com/CIAM-
Group/L2C_Insert.

1 Introduction

The vehicle routing problem (VRP) [1] is an important combinatorial optimization problem with
extensive real-world applications in domains such as transportation [2], logistics [3]], and circuit
design [4]. Due to its NP-hard nature [5], obtaining exact VRP solutions is computationally diffi-
cult [3)]. The existing approaches, therefore, focus on finding approximate solutions within a practical
runtime using problem-specific heuristics. However, designing these heuristics requires substantial
domain expertise. Recently, Neural Combinatorial Optimization (NCO) methods have emerged as a
promising alternative, as they can leverage neural networks to automatically learn effective heuristics
from data, thereby significantly reducing the need for extensive manual design [6H18]].

Among NCO methods, constructive approaches attract considerable research interest [6, [19-26]].
These methods typically employ an appending-based constructive paradigm that sequentially selects
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Figure 1: Appending-based construction vs. Insertion-based construction. Given the same
intermediate state in the construction process: (a) The appending-based paradigm restricts the addition
of a selected node exclusively to the end of the current partial solution. This inflexibility leads to
path intersections, a common cause of suboptimal solutions. (b) In contrast, the insertion-based
construction offers greater flexibility by allowing the selected node to be inserted into any feasible
position within the partial solution. Such flexibility is crucial for avoiding the intersections and
thereby enhancing the potential for generating high-quality solutions.

unvisited nodes and appends them to the end of the current partial solution. This paradigm is
inspired by the sequence-to-sequence framework in natural language processing (NLP), where
the model encodes an input sequence into an embedding and then autoregressively generates an
output sequence based on this representation. Vinyals et al. (6] pioneer this adaptation through their
Pointer Networks (Ptr-Nets), which establishes the first sequence-to-sequence framework specifically
for neural combinatorial optimization. Subsequent research has further advanced constructive NCO
methods within this appending-based paradigm, with improvements focusing on model training
techniques [[7] and architectural enhancements [[19]. However, appending-based methods suffer
from a fundamental limitation due to their strict operational constraint that only permits adding new
nodes to the end of the current partial solution. This constraint prevents potentially more effective
modifications and often leads to suboptimal partial solutions caused by early greedy decisions.

The insertion-based paradigm offers a more effective alternative for addressing VRPs [28] [29]]. This
approach constructs solutions by sequentially inserting an unvisited node into any valid position
within the current partial solution, which potentially offers greater flexibility and yields higher-quality
solutions than the appending-based paradigm. For example, as shown in Figure[I] given the same
intermediate state in the construction process, the rigid sequential nature of the appending paradigm
can only add the selected node to the end of the solution, leading to path intersections and a suboptimal
solution. In contrast, the insertion-based construction allows for the flexible placement of the selected
node into any feasible position within the partial solution path, thereby avoiding such intersections
and holding the potential to generate higher-quality solutions. Despite these clearly demonstrated
benefits, the insertion-based constructive approach has remained unexplored in NCO for VRPs in the
past decade. A comprehensive review of constructive NCO methods can be found in Appendix [A]

To bridge this research gap, this work proposes Learning to Construct with Insertion-based Paradigm
(L2C-Insert), a novel insertion-based learning framework for constructive NCO. To the best of our
knowledge, L2C-Insert represents the first learning-driven, insertion-based framework specifically
designed for solution construction in NCO. Our main contributions can be summarized as follows:

* We propose a novel model architecture, an effective training scheme, and a powerful
inference technique for the L2C-Insert framework. Together, these components are crucial
for enabling the L2C-Insert framework to achieve robust performance.

* We develop a supervised learning based training scheme tailored for the efficient learning
of the L2C-Insert model. Building on the inherent flexibility of the insertion paradigm,



we further propose an insertion-based local reconstruction mechanism to enhance model
performance during inference.

* We conduct comprehensive experiments to explore the advantages of the L2C-Insert frame-
work on both synthetic and real-world benchmarks. The results demonstrate that our
L2C-Insert method achieves outstanding performance on TSP and CVRP instances with
sizes ranging from 100 to 100K nodes.

2 Preliminaries

2.1 VRP Formulation

A VRP instance S can be represented as a graph containing n nodes, where each node i € {1,...,n}
is represented by a feature vector s; € R%. For example, in the TSP, s; typically corresponds to the
2D coordinates of node i. A solution to a VRP instance specifies the sequence, or set of sequences
(routes/tours), in which nodes are visited. For example, in the TSP case, a solution is a single tour that
can be represented as a permutation of all n nodes: © = (71,...,7t, ..., 7T, ), where each element
m € {1,...,n} is a distinct node. The objective in solving VRPs is generally to minimize the cost of
the solution, which often corresponds to the total Euclidean length of the tour(s). A VRP solution is
considered feasible if it satisfies all problem-specific constraints. For example, in the TSP, a feasible
solution must visit each node in the graph exactly once. Constraints in the CVRP additionally include
vehicle capacity limits, which are further detailed in Appendix B}

2.2 Appending-based Construction for Solving VRPs

The appending-based constructive heuristic is a prominent approach that NCO methods frequently
leverage for solving VRPs [6}[19 21123] [30-33]]. Initializing with an empty solution, this heuristic
constructs the solution to a given instance by sequentially appending unvisited nodes to the end of the
current partial solution until all nodes are visited. At each construction step, it selects a node from
the set of unvisited nodes to append, based on a specified strategy. A common selection strategy is
to choose the unvisited node that has the smallest Euclidean distance to the last node in the current
partial solution. However, this simple selection strategy typically leads to solutions with relatively
low quality. The existing learning-based constructive NCO methods focus on using neural networks
to learn more effective selection strategies capable of generating near-optimal solutions.

2.3 Insertion-based Construction for Solving VRPs

The insertion-based constructive heuristic, though well-established in Operations Research for solving
VRPs [34, [35] 29], has not been explored for constructive NCO. Similar to the appending-based
approach, this heuristic begins with an empty solution and iteratively incorporates unvisited nodes into
the partial route until all nodes are included. Unlike simple appending, this method permits insertion
of unvisited nodes at any valid position within the current partial solution. Each construction step
involves two critical decisions: first, selecting an unvisited node for insertion, and second, identifying
the proper position within the current partial solution for insertion. Typical node selection strategies
include random selection from the unvisited set or choosing the node closest to the previously inserted
node. Regarding position selection, a common heuristic is to choose the insertion node that minimizes
the increase in the total solution cost (e.g., tour length) upon inserting the selected node. Our work
mainly focuses on leveraging neural networks to learn more effective position selection strategies to
generate high-quality solutions.

3 L2C-Insert: Learning to Construct in Insertion Paradigm

This section proposes the L2C-Insert framework for learning the insertion-based construction heuristic,
which integrates three key components: (1) a novel model architecture, (2) an effective training
scheme, and (3) a powerful inference technique. We demonstrate this framework through solving
TSP, and the required adaptations for solving CVRP are provided in Appendix [B]
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Figure 2: Model Structure of L2C-Insert. (a) Encoding: At the beginning of solution construction,
the encoder transforms each node’s feature vector into a d-dimensional node embedding h; € R9,
(b) Decoding: At construction step ¢, the decoder maintains three embeddings for 1) the current node
(the node to be inserted), 2) unvisited nodes, and 3) the positions in the partial solution, where each
position embedding is created by horizontally concatenating the embeddings of adjacent visited nodes.
Each embedding type undergoes separate linear transformations before being collectively processed
through L stacked attention layers. The final insertion probabilities are obtained by applying a linear
projection followed by a masked softmax operation to the refined embeddings.

3.1 Model Structure

Similar to the appending-based constructive NCO models, our L2C-Insert model utilizes an encoder-
decoder framework, with the decoder features with multiple attention layers [36] for the promising
learning ability [22} [23] as shown in Figure 2]

Encoder The encoder contains a linear projection layer followed by an attention layer. For a
problem instance S with n nodes, each node’s feature vector s; € R% (where i = 1,...,n) is first
transformed into an initial node embedding hY € R?, where d denotes the embedding dimension.
These initial embeddings are subsequently updated through the attention layer [21} 22]] to produce
the refined embeddings h; € R?, which is the output of the encoder.

Decoder At construction step ¢, the decoder receives the embeddings of all nodes, denoted as
h; € RY i =1,...,n, the current partial solution (71, 7, ..., 7;_1), and the set of unvisited nodes
{u;,u; ¢ {m..—1}}. To compute the probability of insertion at the current step, embeddings for
three distinct inputs are required: 1) the current node (the node to be inserted), 2) unvisited nodes,
and 3) the positions in the partial solution.

First of all, the unvisited node with the minimum Euclidean distance to the previously inserted node is
selected as the current node to be inserted, of which the embedding is denoted as h,,_. Secondly, the
embeddings of the remaining unvisited nodes can be denoted as H.,, = {hy, },u; ¢ {m1.¢—1},u; #
ue. Two learnable linear projections Wy € R?*4 and W; € R?*4 are applied to the current node’s
embedding and each unvisited node’s embedding, respectively. Thirdly, to generate the embedding of
a potential insertion position within the partial solution, the embeddings of adjacent visited nodes are
horizontally concatenated. Given the set of visited node embeddings {h, }, the embedding for the
insertion position in the solution segment (7;, 7;4.1) is computed as:

[hy,hy, ] ie€e{l:t-2},
x = W- i i+l 1
er, 2{[}1,”_1,h,,1}7 i=t—1, )
where [-, -] represents the horizontal concatenation operator. This operator produces an initial 2d-

dimensional initial insertion position embedding, which is subsequently projected to a d-dimensional
vector via the trainable matrix W, € R24*? to maintain dimensional consistency with node embed-
dings. The set of position embeddings is denoted as H, = {e,},i € {1 : ¢t — 1}.
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Figure 3: Training Scheme for L2C-Insert Model. The model learns to sequentially insert the
current node into the target position in the partial solution. The target position for the current node is
determined by its adjacent visited nodes in the original labeled solution. The training objective is to
maximize the probability of the model predicting the correct target insertion position, as defined by
the provided loss function.

Then, these embeddings together are refined by L stacked attention layers. The first layer receives
input X(©) = {h., H,., H,}, with each subsequent j-th attention layer processing the output from the
(j — 1)-th layer, culminating in the final output X (%), Then, a linear projection and softmax function
are applied to X () to compute the insertion probabilities of the current node into all valid positions.
The masking operation assigns —oo to invalid positions (those corresponding to the current node and
non-visited nodes) to ensure proper probability normalization over valid insertion locations. The
inserting probability p; is calculated as:

z = XPW; + by,
a; = {xz Vi € {771:t—1}7 )

—oo otherwise,

p = Softmax(a),

where Wy € R%! and by € R! are learnable parameters. Each p; € p denotes the probability
of inserting the current node between consecutive nodes (7;,7;+1) in the partial solution. The
decoder executes this sampling-and-insertion procedure n times to construct the complete solu-
tion {my,- -, m,}.

3.2 Training Scheme

Constructive NCO models typically adopt either reinforcement learning (RL) or supervised learning
(SL) methods for training. The SL-based method can effectively train the model with a heavy
decoder, whereas the RL-based method is not capable, as indicated by Luo et al. [22]. Since our
model utilizes an insertion-based construction process, which differs significantly from the traditional
appending-based approaches, we redefine the SL-based training scheme as follows.

For a problem instance with n nodes and its labeled solution 7v* (e.g., an optimal tour), we first
randomly select a node as the initial partial solution while designating the remaining nodes as
unvisited. Guided by the original labeled solution, the model then learns to sequentially re-insert
these unvisited nodes into their target positions within the evolving partial solution. The target
position for an unvisited node is defined by the two visited nodes in the current partial solution that
are adjacent to this unvisited node in the complete labeled solution. For example, consider the partial
solution illustrated in Figure[3] where 75 represents the current node. After excluding the unvisited
nodes 74 and 75, the two visited nodes adjacent to 75 in the labeled solution are 7; and 73. Therefore,
the target position is €* = &, = (w1, m3). The loss function is then computed as:

‘C(G) = - lngg (é'* | gﬁl;l ’ 77*) ) (3)
where {€y,, } is the set of positions in the current incomplete solution, €* € {&y,,,} is the target
position, and pg (€* | €,,,S) is the probability of inserting the current node into target psition

predicted by the model parameterized by 6. Subsequently, the model parameters are optimized
using a gradient-based algorithm (e.g., Adam [37]) to minimize the loss function. Through this



training process, the model progressively learns to accurately position previously unvisited nodes into
their correct positions within the solution sequence, ultimately acquiring the capability to generate
high-quality solutions.

3.3 Insertion-based Local Reconstruction

For NCO, local reconstruction techniques are widely employed during the inference phase to improve
solution quality through iterative refinement of local solution segments [38| 39/ 22| [40]. While these
methods can effectively trade computational time for enhanced solution quality, they face inherent
limitations when applied to appending-based constructive models. Specifically, the constraint of using
sequence-based destruction strategies severely limits both the destruction space and the subsequent
reconstruction action space, often trapping solutions in local optima. For example, consider a
suboptimal solution wherein two nodes are neighbors in terms of the geometric distance but are
distant in their relative sequence positions. Under sequence-based deconstruction, such nodes have a
low probability of being in the same destruction space. Consequently, if an optimal solution requires
these two nodes to be adjacent, the subsequent reconstruction step is unlikely to reconnect them,
thereby causing the suboptimal solution to stall in a local optimum.

To overcome this limitation, we propose an insertion-based local reconstruction method that exploits
the inherent flexibility of the insertion paradigm through a distance-based deconstruction strategy,
which can enable more effective reconstruction and consequently enhance the model performance.
The iterative local reconstruction process alternates between destruction and reconstruction phases. (1)
Destruction Phase: The solution is destroyed based on the distance-based proximity of nodes. The
process begins by randomly selecting a node from the current solution, followed by the identification
and removal of its a-nearest neighbors, which transition to unvisited nodes. The remaining solution
segments automatically form a new reduced loop solution. Here, « represents the destruction size.
For example, given a TSP10 solution (71,7, ..., 7o) Where 75 is randomly selected with its
3-nearest neighbors {2, 77, s}, the removal of 75 and {79, 77,7} yields the looped solution
(71,73, T4, T6, M9, T10)- (2) Reconstruction Phase: The model sequentially inserts the unvisited
nodes into this partial solution. Once all nodes are re-inserted, the newly generated solution is
compared against its predecessor, and the superior solution is retained for subsequent iterations. This
iterative process continues until a predefined computational budget (e.g., a maximum number of
iterations) is exhausted.

4 Experiments

In this section, we empirically evaluate the L2C-Insert framework on both synthetic and real-world
benchmark TSP and CVRP datasets of various scales. We then contact ablation studies to verify the
effect of the proposed framework’s critical components.

Datasets Following the standard data generation procedure from prior work [19], we generate
datasets for both TSP and CVRP problems. (1) Training Datasets: For each problem (TSP and
CVRP), we create training datasets consisting of one million 100-node instances. We obtain (near-
)optimal solutions for these instances using Concorde [41]] for TSP and HGS [42] for CVRP. (2)
Test Datasets: Consistent with established practices [43} 22, 144 |45]], we generate five synthetic test
datasets with instance sizes ranging from 100 to 100K nodes (100, 1K, 10K, 50K, and 100K). We
denote TSP and CVRP instances with N nodes as TSPN and CVRPN (e.g., TSP100, CVRP100).
The dataset composition is as follows: For TSP, the TSP100 and TSP1K datasets contain 10,000
and 128 instances, respectively, while larger-scale datasets (10K, 50K, 100K nodes) each have 16
instances. CVRP datasets follow a similar structure, with the exception that CVRP1K contains 100
instances, as specified in [44]. Following Hou et al. [44]], we set vehicle capacities to 50 for CVRP100,
200 for CVRPI1K, and 300 for larger-scale instances. To evaluate our method on real-world large-
scale instances, we also collect 49 symmetric TSP instances and 100 CVRP instances with EUC_2D
features and <1K nodes from TSPLIB [46] and CVRPLIB Set-X [47]], respectively.

Model Setting & Training The embedding dimension is set to d = 128, the hidden dimension
of the feed-forward layer is set to 512, the query dimension d, is set to 16, and the head number
in multi-head attention is set to 8. We set the number of attention layers in the decoder to L = 9
following [23]]. Both the TSP and CVRP models are trained on one million instances of size 100. For



Table 1: Results on synthetic TSP and CVRP instances. Results marked with an asterisk (*) are
from the original paper. The best results are bold. OOM: The method triggered an out-of-memory
condition. The reported inference time is the total time required to solve the entire test set.

TSP100 TSP1K TSP10K
Method Length Gap Time | Length Gap Time Length Gap Time
LKH3 7.76325  0.000% 56m 23.119  0.000% 8.2h 71.778  0.000% 8.8h
Concorde 7.76324  0.000% 34m | 23.118 -0.003% 7.8h 72 0.310% 22.4h
Att-GCN+MCTS* 7.764 0.037% I5m | 23.863  3.224% 13m 74.93 4.390% 1.8h
DIFUSCO* 7.78 0.240% - 23.56 1.900%  12.1m 73.62 2.580% 47m
T2T* 7.76 0.060% - 233 0.780%  54.7m - - -
NeurOpt 7.765 0.023% 1.8h | 307.578 > 100% 3h - - -
SO-mixed* - - - 237766  2.800%  55.5m | 74299  3.517%  2.034h
H-TSP - - - 24718  6.912% 34s 717.75 8.320% 25m
GLOP 7.767 0.048% 1.4h 23.84 3.119% 2.4m 75.04 4.545% 25m
UDC-x5¢ (v = 50) 7.788 0.319%  1.38h 23.53 1.782%  6.21m OOM OOM OOM
POMO augx 8 7.774 0.138%  0.7m 325 40.577%  6.1m OOM OOM OOM
INVIT-3V augx 16 7.92 2.019%  3.02h | 24.343  5299% 3043m | 76494  6.570% 1.1%h
ELG 7.781 0229%  22m | 25738 11.328%  1.3m OOM OOM OOM
BQ bsl6 7.764 0.010% 20m | 23432  1.354% 21m OOM OOM OOM
LEHD RRC1000 7.76337 0.0016%  2.3h | 23288  0.731% 5.2h 80.9 12.709% 3.6h
L2C-Insert Greedy 7.799 0.459%  0.86m | 24218 4.754%  0.35m 77.343 7.754%  1.06m
L2C-Insert (/=100) 77764  0.0038% 479m | 23.414 1.275% 4.79m | 75.603 5.329%  2.58m
L2C-Insert (I=200) | 7.76336 0.0014% 1.62h | 23.339  0.952%  9.52m | 74733  4.117% 4.14m
L2C-Insert (I=500) | 7.76328 0.0005%  4.0h | 23265 0.633% 2294m | 73.812  2.834%  8.73m
L2C-Insert (I=1000) | 7.76326 0.0002%  8.0h 23230 0481%  464m | 73270 2.079% 16.64m

CVRP100 CVRPIK CVRP10K
Method Length Gap Time

Length Gap Time Length Gap Time
HGS 15.56 0.000% 4.5h 41.161  0.000% 5h 226.177  0.000% 8h
LKH3 15.65 0.540% 12h 42.156  2.416% 6.1h 290.575 28.472%  10.3h
NeurOpt 15.66 0.627% 3h

GLOP-G (LKH3) - - - 45753  11.154% 1.93m | 276.252 22.140% 27.98m
UDC-x59 (a = 50) 16.291 4.699%  2.65h | 43.583 5.884% 11.96m OOM OOM OOM

POMO augx8 15.75 1.230%  0.86m | 100.990 >100%  5.83m OOM OOM OOM
INVIiT-3V augx 16 16.538  6.282%  3.93h | 46.607 13.230% 26.97m | 275.691 21.892%  1.28h
ELG 15.84 1.760%  3.4m | 46.847 13.812% 3.16m | 277.685 22.773% 11.92m
BQ bsl6 15.81 1.560% 18m 43.121  4.762% 15m 275.494  21.805%  1.36h
LEHD RRC1000 15.63 0.420% 2.0h 42.408  3.028% 4.15h | 248.604 9.916% 8.1h

L2C-Insert Greedy 16.169  3.892% 1.4m | 44458 8.009%  1.17m | 255356 12.901%  2.88m
L2C-Insert (I1=100) 15.700  0.877% 1.0h 43.868  6.574%  12.08m | 253.462 12.063% 5.75m
L2C-Insert (I=200) 15.667  0.664% 2.0h 43.677  6.113%  24.66m | 252.021 11.426%  9.02m
L2C-Insert (/=500) 15.640  0.493% 5.3h 43416  5.478% 1.05h | 248987 10.085% 19.03m
L2C-Insert (I=1000) | 15.627 0.413%  10.6h | 43.152  4.836% 2.05h | 245.732 8.646% 34.72m

TSP model training, we employ the Adam optimizer [37]]. For CVRP model training, we employ the
AdamW [48]] optimizer, as we find it to be more stable. The initial learning rate is 1x 107, decaying
by a factor of 0.97 after each epoch. The TSP and CVRP models undergo 50 and 15 training epochs,
respectively, with a batch size of 1024. All experiments, including training, testing, and evaluation,
are conducted on a single NVIDIA GeForce RTX 4090 GPU with 24 GB of memory to ensure
consistent computational conditions.

Baselines We compare L2C-Insert with a comprehensive set of baseline methods including (1)
Classical Solvers: Concorde [41], LKH3 [49], and HGS [42]; (2) Constructive NCO Methods:
POMO [21]]; BQ [23]], LEHD [22]], INVIiT [50]], and ELG [30]. (3) Heatmap-based NCO Methods:
Att-GCN+MCTS [43]], DIFUSCO [51]], and T2T [52]; (4) Two-stage NCO Methods: H-TSP [53]],
SO-mixed [54]], GLOP [40], and UDC [40]; (5) Improvement-based NCO Methods: NeurOpt [55]].
In line with the established practice in the NCO literature [[19}[21], the classical solvers are primarily
included to provide a strong, near-optimal baseline for solution quality, rather than to serve as
direct competitors in terms of runtime. We refer to Appendix [C|for implementation details of these
baselines.



Table 2: Results on synthetic TSP and CVRP instances with SOK/100K nodes. The best results are
bold.

Method ‘ Length Gap Time Length Gap Time
LKH3 | 159.93 0.000% 160h 225.99 0.000% 400h
\

GLOP 168.09 5.102% 24m 237.61 5.142% 1.04h
INVIT greedy 171.42 7.184% 20.8h
LEHD RRC1000 OOM OOM OOM

L2C-Insert Greedy 171.778  7.408%  5.28m
L2C-Insert (/=200) 169.802  6.173%  8.35m
L2C-Insert (I=1000) | 166.063 3.835% 20.83m

242.26 7.199% 80h
OOM OOM OOM

242757  1.419%  10.53m
241.194  6.728%  13.60m
237.109  4.920% 26.07m

TSP50K ‘ TSP100K
\

CVRP50K CVRP100K
Method Length Gap Time Length Gap Time
HGS 1081.0 0.000% 64h | 20875 0.000%  100.8h
INVIiT-3V greedy 1331.1  23.136%  46.4h 2683.4  28.546% 93h
BQ bs16 OOM OOM OOM OOM OOM OOM
LEHD RRC1000 OOM OOM OOM OOM OOM OOM

2271.292  8.804%  29.95m
2268.146  8.654%  37.67Tm
2258.005 8.168% 1.16h

1188.084  9.906%  14.49m
1184.744  9.597%  20.90m
1174.208 8.622%  47.63m

L2C-Insert Greedy
L2C-Insert (/=200)
L2C-Insert (I=1000)

Table 3: Comparison result for appending- and insertion-based constructive heuristics on TSPLIB
and CVRPLIB instances.

TSPLIB CVRPLIB

Method N<=200 200<N<=1K All N<=200 200<N<=1K All

NeurOpt 9.456% 26.345% 16.350% | 24.878% 25.301% 25.190%
UDC-x250 (v = 50) | 0.533% 6.578% 3.072% | 9.635% 8.864% 9.033%
GLOP 0.561% 2.012% 1.153% - - -

INVIiT-3V augx 16 2.238% 5.654% 3.673% | 8.231% 11.504% 10.784%
ELG 1.180% 5.910% 3.111% | 4.510% 7.752% 7.039%
POMO augx8 2.022% 21.447% 9.951% | 6.869% 46.984% 38.159%
BQ bs16 1.289% 1.946% 1.557% | 7.661% 8.195% 8.078%
LEHD RRC1000 0.215% 0.620% 0.380% | 2.022% 3.932% 3.512%

L2C-Insert (I=1000) | 0.197% 0.468 % 0.308% | 1.604% 3.651% 3.201%

Inference & Metrics For inference, the L2C-Insert model first generates an initial solution through
greedy rollout, then progressively refines solution quality via insertion-based local reconstruction.
The number of iterations is denoted as “I/=". Following [23]], we accelerate inference by processing
only the k-nearest unvisited nodes and positions of the current node, with k set to 100 for TSP and
200 for CVRP. To further accelerate this process, we limit the local reconstruction destruction size «
to 300 across all instances. Following [40]], to enhance the consistency of inputs for our model on
large-scale instances with more than 1K nodes, we employ min-max feature scaling, which adjusts
the x-axis and y-axis coordinate values to the interval [0, 1]. A hyperparameter study and discussion
on these settings are provided in Appendix [D] For performance evaluation, we measure: 1) average
tour length (Length), 2) performance gap relative to baseline solvers (Gap), and 3) total inference
time (Time). Note that reported inference times for classical CPU-based solvers are not directly
comparable to GPU-executed learning-based methods.

4.1 Comparative Results

Tables [T] and 2] present the comparative results on uniformly distributed TSP and CVRP instances
scaling from 100 to 100K nodes. These results show that L2C-Insert consistently achieves outstanding
performance across these scales with a reasonable runtime. On TSP100, L2C-Insert (/=200) reduces
the gap of the advanced NCO baseline LEHD+RRC1000 by 12.5% with a speedup of 1.4x. On
TSPIK, L2C-Insert (I=1000) achieves a significant reduction of 34.2% while with a speedup of
6.7x compared to LEHD+RRC1000. On TSP10K, L2C-Insert (/=1000) outperforms the strong
heatmap-based solver DIFUSCO and two-stage solver GLOP with 19.4% and 54.3% gap reduction,
while with 2.8 and 1.5 speedup, respectively. On TSP50K and TSP100K, L2C-Insert (/=200)
outperforms the two-stage NCO method GLOP with a gap reduction of 24.8% and 4.3%, respectively.



On CVRP100, L2C-Insert (I=1000) outperforms LEHD RRC1000 by 1.7%, and on CVRP1K it
achieves a competitive gap while with a speedup of 2x. On CVRP10K, L2C-Insert (/=1000)
outperforms LEHD RRC1000 with a speed-up of 14x. On CVRP50K and CVRP100K, L2C-Insert
using greedy rollout achieves significant gap reductions of 62.7% and 71.4%, respectively, compared
to INVIT. Overall, our method shows good scalability and can achieve outstanding performance across
small-scale to very large-scale problem instances with up to 100K nodes. The experimental results on
real-world TSPLIB and CVRPLIB instances are provided in Table[3] These results show that L2C-
Insert consistently outperforms representative neural solvers on all instance groups, demonstrating
robust generalization ability.

4.2 Ablation Study

Learning to Append vs. Learning to Insert We conduct a comparative evaluation between two
constructive NCO approaches: learning to append (L2C-Append) and learning to insert (L2C-Insert).
While L2C-Append shares a similar model architecture with L2C-Insert, it utilizes an appending
construction framework akin to LEHD [22]]. Both models are trained on TSP100 under identical
budgets and subsequently evaluated on TSP100, TSP1K, and TSP10K datasets. For inference, we
apply local reconstruction with 200 and 1000 iterations using the aforementioned settings. As detailed
in Table 4 L2C-Insert, with only 200 reconstruction iterations, outperforms L2C-Append even when
the latter uses 1000 iterations of local reconstruction while also consuming less runtime. Remarkably,
L2C-Insert (/=1000) outperforms L2C-Append (I=1000) by achieving substantial gap reductions of
at least 50.6% on these datasets. These findings highlight that the L2C-Insert framework’s greater
flexibility in solution construction directly contributes to its superior performance.

Table 4: Appending-based Construction vs. Insertion-based Construction. The best gap is indicated
in bold, and the second-best is underlined.

TSP100 TSP1000 TSP10000
Method Gap Time Gap Time Gap Time
L2C-Append  (I=200) | 0.00489% 28.03m | 1.159%  3.49m | 22.986% 4.11m
(I=1000) | 0.00144% 2.28h | 0974% 16.88m | 12.881% 16.30m
‘ 4.117% 4.14m

L2C-Insert (/=200) | 0.00142%  1.62h ‘0.952% 9.52m

(I=1000) | 0.00017 % 8h 0.481% 46.4m | 2.079%  16.64m

Effect of Destruction Strategy We ablate the effect of
distance-based strategies on local reconstruction. Specif- )
ically, on TSP1K and TSP10K, we test the L2C-Insert Table 5: Effect of deconstruction strat-
model using local reconstruction (/=1000) with the €8Y-

distance-based and sequence-based destruction separately.
As demonstrated in Table[5} the distance-based destruction
strategy achieves substantially better performance, indicat-
ing its greater effectiveness in helping local reconstruction ~ Sequence-based
escape local optima. Distance-based

‘ TSP1000  TSP10000

Method Gap Gap

1.182% 6.980%
0.481% 2.079 %

Additional Analysis & Discussion We further investi-

gate the impact of: 1) different distinct distance metrics (Euclidean vs. Polar Angle); 2) the use of
different node selection strategies (Random vs. Nearest); 3) the incorporation of Positional Encod-
ings [36] into embeddings of positions within the partial solution; 4) the exclusion of unvisited nodes
as decoder input; and 5) the use of different backbone models for L2C-Insert framework. Detailed
results and the corresponding discussion are provided in Appendix

5 Conclusion, Limitation, and Future Work

Conclusion In this work, we have proposed L2C-Insert, a novel learning to insert framework to
explore the potential of the insertion paradigm for constructive NCO. By strategically inserting
unvisited nodes at any valid position within the partial solution, L2C-Insert can flexibly construct
high-quality solutions for routing problems. Extensive comparisons with advanced neural solvers
demonstrate L2C-Insert’s outstanding performance on TSP and CVRP.



Limitation and Future Work First, although L2C-Insert has demonstrated outstanding perfor-
mance, its performance could be further boosted through the development of more effective model
architectures. These improved architectures would better capture the intricate relationships between
current nodes, unvisited nodes, and positions within partial solutions. Second, designing a hybrid
NCO solver that combines both appending and inserting moves is a highly promising research
direction. Such a model has the potential to be more flexible and powerful than a model restricted
to a single type of move. In addition, a limitation may be the greedy, non-learned nearest-neighbor
heuristic used for node selection. A promising research direction is to develop a learned policy
that works synergistically with the insertion model, potentially through joint or two-stage training.
Finally, extending the L2C-Insert framework to address a broader range of combinatorial optimization
problems is another promising research direction for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract clearly reflects the scope (Constructive Neural Combinatorial
Optimization), and our introduction clearly summarizes our contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in Section 3}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The claim of this paper is supported by experimental results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the detailed experiment setting in Section |4, hyperparameter
settings in Appendix [D} and implementation in Appendix [B] which is fully sufficient for
reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: See the abstract for the link to the code and trained models.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed experiment setting in Section [} hyperparameter
settings in Appendix [D] and implementation in Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: In the field of NCO, the performance of methods is typically not evaluated by
error bars or statistical significance. Instead, NCO methods conventionally keep the same
seed (seed=123 in our work) during training/inference, and use the objective value (Obj.),
optimality gap (Gap), and inference time (Time) as metrics to evaluate method performance.
A detailed description of these metrics is provided in Section 4]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: Yes
Justification: We describe the compute resources in Section ]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As a learning-based method for solving VRPs, the proposed method does not
have any specific potential negative societal impact. Detailed discussion can be found in
Appendix[O] discussion.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have properly cited the assets (e.g., code, data, models) in section[P|
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The datasets utilized in this paper are either sourced from prior research or
generated using methodologies established in earlier studies. We have appropriately cited
them.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper studies the neural method for solving TSP and CVRP.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper studies the neural method for solving TSP and CVRP, which does
not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

A.1 Constructive NCO Methods

Constructive NCO methods typically arrange the input nodes into high-quality solutions autoregres-
sively. This paradigm is inspired by the sequence-to-sequence framework [27] in natural language
processing (NLP), where a model encodes an input sequence into an embedding and then autore-
gressively generates an output sequence based on this representation. Vinyals et al. [6] pioneer
this adaptation through their Pointer Networks (Ptr-Nets), which establishes the first sequence-to-
sequence framework specifically for neural combinatorial optimization. In this paradigm, the neural
model learns to predict the probability of appending the unvisited nodes to the partial solution
until all nodes are visited. We call this paradigm Learning to Append (L2C-Append). Subse-
quent research has further advanced L2C-Append NCO methods, with improvements focusing on
model training techniques [[7]], extension to solve other COPs Nazari et al. [56], and architectural
enhancements [19]. Among them, the Attention Model [19] introduces the Transformer-based model
structure [36], which achieves outstanding performances over various VRPs with up to 100 nodes.
Various AM-based improved variants are proposed to narrow the performance gap to classical heuris-
tic solvers [S7, 21} [58H64, 22| 23] 165, 139, 166, 40, 167169, 126, [70, [71]]. For example, PolyNet [33]]
enhances exploration by learning a diverse set of complementary solution strategies in a single model.
By conditioning the solution generation process on a simple bit vector, PolyNet can generate diverse
solutions without relying on handcrafted rules or forced initial moves. Nonetheless, L2C-Append
NCO methods are fundamentally limited by their restriction to appending new nodes, which can lead
to suboptimal solutions due to early greedy choices. In contrast, the insertion-based paradigm offers
greater flexibility for VRPs by sequentially inserting unvisited nodes into any valid position [28} 29]],
potentially yielding higher-quality solutions. Despite these benefits, the insertion-based constructive
approach has remained unexplored in NCO for VRPs in the last decade. In this work, we introduce
L2C-Insert, a novel learning to insert framework, to investigate the potential of this paradigm for
constructive NCO.

A.2 Non-constructive NCO Methods

This series of methods can be broadly categorized into three main groups: (1) Heatmap-based
methods: These methods learn graph neural networks to predict a probability distribution, or
heatmap, indicating the likelihood of each edge being part of the optimal solution for a given problem
instance. Once the heatmap is obtained, it is used to guide subsequent decoding techniques such
as greedy search, beam search [72], Monte Carlo Tree Search (MCTS) [43} [73 [74]], 2-opt [51} 52]],
or gradient search [75] to generate the solution. While this approach can successfully solve TSP
instances of various sizes, its application to other routing problems like CVRP is generally more
challenging. (2) Improvement-based methods: These approaches iteratively refine solution quality.
They employ neural models to predict regions within current solutions where heuristic operators, such
as k-opt [55] and swap [[76], can be applied to improve the solution quality [77H81,138]. (3) Two-stage
Method: Two-stage methods: These methods address the problem through an iterative divide-and-
conquer process. In each iteration, the problem is first decomposed into multiple subproblems using
rule-based techniques or neural models. Subsequently, neural solvers (e.g., AM [[19]]) or classical
solvers (e.g., LKH3 [49] or HGS [42]) are used to solve these subproblems. The resulting partial
solutions are then merged to form a complete solution [82, 80} 44, |32! 40]. Beyond these primary
categories, other non-constructive NCO approaches include learning to augment classical solvers
with neural components [83]] or solving VRPs at a route level [|84]]. A different approach is Neural
Deconstruction Search (NDS) [85]. NDS uses a learned neural policy to iteratively deconstruct a
solution by selecting customers to remove. These customers are then reinserted one by one using
arule-based greedy heuristic algorithm. In this paper, we develop a constructive neural model that
learns the insertion-based heuristic, building solutions autoregressively.
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B Implementation Details of L2C-Insert on CVRP

Problem Formulation A CVRP instance S can be represented as a graph with one depot node and
n customer nodes, and a vehicle with a fixed capacity C. Each node i € {0, 1,...,n} is associated
with a feature vector s; € R?, representing its two-dimensional coordinates and demand. Node 0 is
the depot, and its demand is zero.

For any given CVRP instance, the solution is a set of routes for the vehicle to serve all customers,
such that: (1) Each customer is visited exactly once. (2) Each route must start from and end with the
depot. (3) The total demand on each route does not exceed the vehicle’s capacity. The objective of
solving CVRP is to determine the optimal solution such that the total cost of the routes, typically the
total distance traveled, is minimized.

Solution Construction Process Initially, all customer nodes are unvisited. In the first step, the
depot node and its nearest unvisited node initialize the incomplete solution. We call the node selected
in the last step as last node and the node selected in the current step as current node. In each
step except the first step, only the unvisited customer nodes can be selected as the current node. In
each following step, the model predicts both the probability of 1) inserting the current node for each
available position in the incomplete solution and 2) inserting it into the middle of the two copies of
the depot nodes to initiate a new route.

Remaining Capacity During solution construction, the remaining capacity associated with each
route is calculated by using the vehicle’s capacity minus the total demand of this route so far.

B.1 Encoder

The encoder transforms each node feature s; € R? to node embeddings h; € R? by a linear
projection:
hY =s,W® +b©® vi=0,1,...,n, 4)

where W(©) ¢ R3%? b(0) ¢ R are learnable parameters. These initial embeddings are subsequently
updated through the attention layer [21},[22]] to produce the refined embeddings h; € R?, which is the
output of the encoder.

B.2 Decoder

At construction step ¢, the decoder receives the embeddings of all nodes, denoted as h; € R?,i =
1,...,n, the current partial solution (0, 7, m2,...,0,--- ,m_1,0) (Node O denotes the depot), and
the set of unvisited nodes {u;, u; ¢ {m1.+—1}}. To compute the probability of insertion at the current
step, embeddings for three distinct inputs are required: 1) the current node (the node to be inserted),
2) unvisited nodes, and 3) the positions in the partial solution.

Embeddings of Positions in the Current Partial Solution The unvisited node with the minimum
Euclidean distance to the last node is selected as the current node to be inserted, of which the
embedding is denoted as h,,_. Secondly, the embeddings of the remaining unvisited nodes can be
denoted as H, = {hy,},u; ¢ {m14—1},u; # tc. Two learnable linear projections W, € R4*4
and W, € R%*? are applied to the current node’s embedding and each unvisited node’s embedding,
respectively

Embeddings of the Current Node and Unvisited Nodes To generate the embedding of a potential
insertion position within the partial solution, the embeddings of adjacent visited nodes are horizontally
concatenated. For example, for a partial solution:

0-1—-42—-0—-4—-5—->6—-0—>7—8—=0
T |

where the positions are indicated by these arrows. The arrow from the tail to the head (0 < 0)
indicates the position that allows the current node to be inserted to start a new route. To simplify the
notation, we assume the current incomplete solution is of length [/, and the embeddings of the nodes
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initare {h;},7 € {1 : {}. Then the set of embeddings of the positions in the partial solution can be
denoted as {e;},i € {1 : I}, where

h;. h; e{l:1-1
e, = [ 1 7,-',-1] Z € { l }7 (5)
[hlv hl]a i=1,
where [-, -] is the horizontal concatenation operator. We note that both h; and h; are the depot

embeddings. To incorporate the remaining capacity information, the decoder updates each
position embedding by horizontally concatenating it with the remaining capacity of the route where
the position is located, increasing the embedding dimension by 1. Subsequently, a linear projection
Wy € R(d+1)x4d j5 applied to the updated position embedding to project it to the embedding with
the same dimension as the node embedding. The set of output position embeddings is denoted as
H.={es},ie{l:t—1}

Then, these embeddings together are refined by L stacked attention layers. The first layer receives
input X° = {h,, H,., H,}, with each subsequent j-th attention layer processing the output from the
(j — 1)-th layer, culminating in the final output X (/). This process can be denoted as:

H®Y = AttnLayer(H©),

H® = AttnLayer(H™W), (6)

HW = AttnLayer(H—Y),

Where the formulation of “AttnLayer” is detailed in Appendix [N] Then, a linear projection and
softmax function are applied to X (%) to compute the insertion probabilities of the current node into
all valid positions. The masking operation assigns —oo to invalid positions (those corresponding
to the current node and non-visited nodes) to ensure proper probability normalization over valid
insertion locations. The inserting probability p; is calculated as:

L
z = XPW; + by,
ZT; Vi € {1 : I} and the remaining capacity of the route where the position is located
a; = is not less than the current node’s demand,
—o0 otherwise,

p = Softmax(a),

@)
where W; € R?™*! and by € R! are learnable parameters. where W; € R%*! and by € R! are
learnable parameters. Each p; € p denotes the probability of inserting the current node between
consecutive nodes (7;, ;1) in the partial solution. The decoder executes this sampling-and-insertion
procedure n times to construct the complete solution {0, 71, -+, 0, -+ , 7, }.

B.3 Implementation of Insertion-based Local Reconstruction on CVRP

In the main paper, we introduce the process of insertion-based local reconstruction on TSP. This
process remains nearly the same as in CVRP, which is described as follows:

* Solution Initialization The initial solution is also generated by the model through a simple
greedy rollout.

* Distance-based Destruction In the CVRP case, we also destroy the solution by the node’s
neighbor relationship in terms of distances. Specifically, we first randomly sample a customer
node. Then, we select its a-nearest neighbor customer nodes and remove them as unvisited
nodes, the left solution automatically creates an incomplete solution with multiple looped
routes. Here, we refer to « as the destruction size. For example, if a CVRP10 solution is
(0,71, 79,0, 73, 74, 75, 0, 76, 77, 0, 78, 79, T10, 0), the node 75 is randomly sampled, and
its 3-nearest neighbors are {71, 73, 76 }, then they are removed from the solution to serve as
unvisited nodes. The left incomplete solution is (0, 72, 0, 774, 0, 77, 0, g, 79, 710, 0).

* Insertion-based Reconstruction The model inserts the unvisited nodes to the incomplete
solution node by node. Initially, the last node is randomly selected from the incomplete
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solution. The subsequent procedures are the same as those for a greedy rollout. When
all nodes are visited, a new complete solution is generated. We compare the previous
solution with the new one, accepting the higher-quality solution for the next destruction-
reconstruction cycle. This iterative process continues until the computational budget (e.g.,
maximum iterations or time) is reached.

Padding for Solution Misalignment Since the solution to each CVRP instance may involve a
different number of depot visits, the resulting solution lengths can vary when solving multiple CVRP
instances in batches. To address this issue, we apply a simple padding technique by adding extra
zeros at the end of solutions with fewer depot visits. These extra zero pairs are then masked in the
model.

C Implementation Details of Baselines

We compare L2C-Insert with a comprehensive set of baseline methods including (1) Classical
Solvers: Concorde [41], LKH3 [49], and HGS [42]]; (2) Constructive NCO Methods: POMO [21];
BQ [23]], LEHD [22], INVIiT [50], and ELG [30]. (3) Heatmap-based NCO Methods: Att-
GCN+MCTS [43], DIFUSCO [51], and T2T [52]]; (4) Two-stage NCO Methods: H-TSP [53],
SO-mixed [54], GLOP [40], and UDC [40]; (5) Improvement-based NCO Methods: NeurOpt [55].

For the heatmap-based methods, we directly use their reported results. For SO-mixed, as their source
codes are not released available, we choose to directly report their original results. However, we use
the same test datasets for fair comparison (all these methods used the same TSP1K and TSP10K test
datasets from Fu et al. [43]]). For other methods, if not otherwise stated, we directly run their source
codes with the default settings.

* Conconde [41] We run the Python wrapper for the concoder, namely PyConcorde. We use
the default settings across TSP instances of various sizes.

* LKH3 [49] We run the code provided by AM [19]. For TSP100K, we use POPMUSIC [86]
to reduce the complexity for pre-processing (by setting CANDIDATE SET TYPE = POP-
MUSIC and INITIAL PERIOD=1000), following the suggestion from Fu et al. [87]. Other
settings are default.

* HGS [42] We run the Python wrapper for the HGS-CVRP solver, namely PyHygese.

* LEHD [22] We limited the maximum destruction size of RRC to 1000 after observing that
performance remained nearly unchanged when compared to cases without this restriction,
while inference time increased significantly.
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D Hyperparameter Studies

We conduct hyperparameter studies for the values of neighborhood size k and destruction size « by
running L2C-Insert using local reconstruction with I=50 iterations.

D.1 Defining the Neighbor Unvisited Nodes and Positions

Neighbor Unvisited Node Given a current node and a unvisited node-set B, we categorize the
unvisited nodes in B that are closer to the current node as neighbor nodes based on the distance.

Neighbor Position The position-node distance between the position and current node is measured
by the smallest distance between the current node and the adjacent visited nodes of this position.
Given a current node and a position set F, we categorize the positions in £ that are closer to the
current node as neighbor positions based on the position-node distance.

D.2 OnTSP

As detailed in Table[6] model performance initially improves with an increase in destruction size from
100 to 300, beyond which it declines as the destruction size extends to 500. Consequently, we select
an intermediate destruction size of 300 to achieve optimal performance. Furthermore, our analysis
reveals that increasing the neighborhood size from 100 to 500 leads to progressively longer solution
lengths. We hypothesize that the intricate interplay of numerous positions and nodes complicates the
processing, thereby diminishing the model’s effectiveness. Therefore, we set the neighborhood size
to 100 to enable robust problem-solving while maintaining a low runtime.

Table 6: Effect of the setting of neighborhood % and destruction size « in inference stage on TSP10K.

Destruction Size «

100 300 500
‘ Length (Time)  Length (Time) Length (Time)
100 | 76.669 (1.32m) 76.573 (2.04m) 77.078 (3.94m)
Neighborhood Size & 200 | 78.407 (1.68m) 76.610 (3.11m)  78.320 (5.77m)
300 | 80.349 (2.26m) 78.983 (4.17m)  79.042 (7.29m)
500 | 81.448 (4.36m) 80.451 (7.48m) 79.150 (12.18m)

D.3 On CVRP

As indicated in Table [/} model performance generally improves with increasing destruction size from
100 to 300, but declines when the destruction size further extends from 300 to 500. Consequently,
we select an intermediate destruction size of 300 to achieve favorable results. Furthermore, with the
destruction size set at 300, the model exhibits significantly better performance when the neighborhood
size is 200, leading us to choose this value for our experiments.

Table 7: Effect of the setting of neighborhood k and destruction size « in inference stage on CVRP1K.

Destruction Size «
300

Length (Time)

500
Length (Time)

100
| Length (Time)

100
200
300
500

Neighborhood Size k&

43.011 (0.51m)
43.127 (0.95m)
43.030 (1.29m)
43.178 (2.53m)

43.196 (0.71m)
42.783 (1.53m)
42.989 (2.15m)
42.887 (4.37m)

43.530 (1.31m)
43.069 (2.78m)
43.166 (3.81m)
43.204 (7.47m)
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E Additional Ablation Studies and Analysis

Each step in the insertion-based construction process is divided into two substeps: (1) selecting a
node from the unvisited nodes and (2) selecting an edge in the incomplete solution for insertion. In
this paper, the second substep is conducted by the model, and the first substep is operated through
predetermined rules. Specifically, for the first substep, we define the insertion node selected in the
previous step as the last node, and the insertion node selected in the current step as the current node.
The current node is the unvisited node closest to the last node. In this section, we study the impact of
the distance criterion and the current node selection strategy on model performance. Beyond those,
we also study the impact of adding the Positional Encoding [36] to the embeddings of the positions in
the partial solution, the effect of unvisited nodes as decoder input, and the performance of L2C-Insert
using different backbone models.

E.1 Effect of Distance Criterion for CYRP

We test two classic distance criteria, Euclidean Distance and Polar Angle. For two customer nodes p =

(p1,p2) and q = (g1, ¢2), Euclidean Distance is defined as:dg(p, q) = \/(pl —q1)2+ (p2 — 2)%.
For Polar Angle, we must introduce the depot node d. = (d1, d2) to serve as the Polar center. Then
it is defined as: p(p, q) = |fp — 4, where 6, = arctan (g’;’%ﬁj) and 64 = arctan (%) are
the angles formed by the lines connecting the depot d.. to the customer nodes p and q with respect to
the horizontal axis.

We train and test the same model with these two distance criteria, maintaining the node selection
strategy that the current node is the closest unvisited node to the last one. Both models are trained
with the same budget mentioned in the main paper. We then test these models on CVRP100 and
CVRP1000 using a greedy rollout. The results, as shown in Table[§] indicate that the model trained
and tested with Polar Angle performs much better. This improvement can be attributed to the nature
of CVRP, where multiple routes are usually ordered around a central depot. Using polar angles
is tightly coupled to the solution structure of CVRP. As a result, the model is easier to learn and
ultimately achieves better performance. Therefore, we use the Polar Angle to measure the neighbor
relationship on CVRP.

Table 8: Effect of distance criterion for CVRP.

CVRP100 CVRP1000
Gap Gap

5.151% 10.155%
3.892% 8.009%

Euclidean Distance
Polar Angle

E.2 Effect of Node Select Strategy
We use two different current node selection strategies described in Nilsson [88]] for comparison:

* Random: select an unvisited node randomly.
* Nearest Neighbor: select the unvisited node that is nearest to the last node.

Specifically, we train the same models with two different current node selection strategies. The CVRP
models use the same training budget mentioned in the main paper, while TSP models are trained with
a budget of 10 epochs due to the runtime. We test these models on TSP100 and CVRP100 using
greedy rollout. The results in Table [9]show that the nearest neighbor node selection strategy has the
best overall result. Therefore, in this paper, we choose to use it for the selection of the current node.

Table 9: Effect of selection strategy.

‘ TSP100 ‘CVRPIOO

Gap Gap
Random 1.1557% 11.370%
Nearest Neighbor | 0.9535% 3.892%
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E.3 Effect of Positional Encoding

We compare the performance of models with and without incorporating the Positional Encoding (PE)
from [36] to the embeddings of positions in the partial solution. The models are trained on TSP100
with a budget of 10 epochs, and tested on TSP100 using greedy rollout. The results in Table [10{ show
that incorporating PE will damage both in-domain and out-of-domain performance. Therefore, this
paper does not include the positional encoding in our model.

Table 10: Effect of selection strategy.

‘ TSP100 ‘CVRPIOO

Gap Gap
W/PE | 1.0475% 5.802%
W/oPE | 0.9535% | 3.892%

E.4 Effect of Decoder Input of Unvisited Nodes

We compare the performance of models trained on TSP100 with and without inputting unvisited
nodes to the decoder. The results in table [IT]show that while inputting unvisited nodes to the model
results in additional computational cost, the performance improvement is significant, proving its
indispensability.

Table 11: Training with unvisited node vs. without.

TSP100
Method Gap Time

W/o 5.161% 0.44m | 23.979% 0.15m
Wi/ 0.460% 0.86m | 4.757%  0.36m

TSP1K
Gap Time

Why the L2C-Insert Model Necessitates the Unvisited Nodes as the Decoder Input To illustrate
why this input is crucial, consider the example depicted in Figure[d] Figure[](a) displays the optimal
solution for a TSP instance, while Figure E] (b) shows an intermediate state during the solution
construction process. Without considering unvisited nodes, the insertion action shown in Figure ff] (c),
despite yielding a better partial solution, constitutes a suboptimal choice when evaluated against the
global optimum considering all nodes. In contrast, when unvisited nodes are factored in, the insertion
action in Figure ] (d), even though it results in a partial solution with path intersections, is identifiable
as a more globally optimal insertion by referencing the overall optimal solution. Therefore, insertions
made without information about unvisited nodes tend to be shortsighted. Incorporating unvisited
nodes, however, provides the model with a broader context, enabling more informed decisions for
selecting insertion positions. Consequently, the L2C-Insert model needs to leverage information from
unvisited nodes to mitigate such shortsightedness, thereby guiding the construction process towards
higher-quality solutions.

E.5 Performance of L2C-Insert using Different Backbone Models

We conduct experiments to investigate the performance of the proposed L2C-Insert framework
under different backbone NCO models. Specifically, three recently proposed models are employed:
POMO [21]], LEHD [22]], and INVIT [50], which feature 1, 3, and 6 decoder layers, respectively,
each within a 7-layer overall model architecture. These models represent light, balanced, and heavy
decoder architectures, respectively. Building upon these models, L2C-Insert variants are developed
using the proposed L2C-Insert framework. These models are evaluated using the TSPLIB and
CVRPLIB instances detailed in Section[d] Both the L2C-Append and L2C-Insert methods utilize a
one-shot greedy search for inference.

The experimental results are presented in Table These results indicate that for the LEHD
model, the L2C-Insert method outperforms the L2C-Append method on 4 out of 6 instance groups.
Conversely, the L2C-Insert method, when based on the POMO model, generally underperforms
the L2C-Append method, proving inferior in 3 out of 6 instance groups, respectively. Similarly,
the L2C-Insert method, built upon the INViT model, also generally underperforms L2C-Append,
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Figure 4: figure
Example of a suboptimal insertion (not considering unvisited nodes) versus an optimal insertion
(considering unvisited nodes). The red node is the current node to insert.

showing inferiority in 6 out of 6 instance groups. These findings suggest that the L2C-Insert method
may be more effective when utilized with a heavy decoder model. This advantage could stem from
the complex position relationships within an incomplete solution and the current node being inserted
during solution construction. Capturing these intricate relationships effectively necessitates a heavy
decoder with sufficient model capacity to inform appropriate decisions regarding the correct insertion
position.

Table 12: Performance of L2C-Insert and L2C-Append using different backbone models. These
methods use the greedy rollout (Greedy) for inference.

Method \ TSPLIB \ CVRPLIB \

(Using Greedy) | N<=200 200<N<=IK Al | N<=200 200<N<=lK  An | Perform Better

POMO Append | 5.325%  35337%  17.575% | 15596%  41.759%  36.003% 3/6
Insert | 19.111%  38344%  26961% | 14.650%  19305%  18.281% 3/6

INViT  Append | 2.788%  6315%  4.228% | 8.046%  11.313%  10.594% 6/6
Insert | 3.961%  8.107%  5.653% | 14927%  22551%  20.874% 0/6

LEHD Append | 1922%  3.646%  2.626% | 11346%  12851%  12.520% 1/6
Insert | 1526%  4.382%  2.691% | 10.903%  9.548%  9.846% 46

F Discussion on the Advantage of the Insertion-based Construction Paradigm
in Search

The iterative local reconstruction is a significant factor in achieving the final reported performance.
We believe the key innovation of our work, the insertion-based policy, is what unlocks the true
potential of this search procedure. The policy’s inherent flexibility is a key enabler for the search’s
effectiveness.

1. The advantage of insertion-based search

As we discuss in Section[3.3] conventional appending-based models face a fundamental limitation
when used with local search. When nodes are removed during the destruction phase, they can only be
re-appended to the end of the sequence during reconstruction. This rigidity makes it difficult for the
model to escape local optima. For instance, reconnecting two nodes that are geometrically close but
far apart in the sequence—a common requirement for improving a tour—is highly improbable.

Our L2C-Insert framework directly overcomes this bottleneck. By allowing a node to be re-inserted
at any valid position, our model facilitates a much more powerful and effective exploration of
the solution space during the reconstruction phase. This flexibility is the core reason why the
destroy-and-reconstruct loop is effective in our framework.
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2. Direct Ablation Study: Isolating the Policy’s Contribution

To provide a direct and fair comparison that disentangles the policy’s contribution, we conduct the
ablation study presented in Table[d]in the main paper. In this experiment, we compared our L2C-Insert
model against an L2C-Append model (which uses a similar architecture but an appending policy)
within the exact same local reconstruction framework.

The results show that our L2C-Insert with only 200 iterations significantly outperforms the L2C-
Append model that uses 1000 iterations. This finding directly demonstrates that the superior perfor-
mance stems from the intrinsic quality and flexibility of the insertion policy itself, and not just from
the application of a search method.

G Clarification on Fair Comparison and Calculating Costs

1. Clarifying Iteration Settings of Baselines

To clarify, we summarize the iteration settings of iterative methods in the table below. From this table,
we can observe that he number of iterations varies significantly. For instance, NeurOpt utilizes 10,000
lightweight k-opt iterations, while two-stage methods like UDC and SO-mixed perform 50-100
divide-and-conquer iterations.

Table 13: Iteration settings for baselilne methods. "Reviser-n" refers to a solver designed to repair a
local solution of length n.

Method |  Problem | Number of iteration
NeurOpt | TSP & CVRP | 10000 (k-opt)
SO-mixed TSP1K 50 (Reviser-100/50)
TSP10K 100 (Reviser-100/50)
UDC \ TSP & CVRP \ 50 for Reviser-100 (with 50 initial solutions)
GLOP TSP 100/50/10 for Reviser-100/50/20
CVRP 5 for LKH3 as Reviser-20

2. A Note on Comparing Computational Budgets

We would like to respectfully clarify that directly comparing ’iteration counts’ may be challenging,
as the definition and computational cost of an "iteration" differ substantially across methods:

* Improvement-based methods like NeurOpt perform very fast, local search operations (e.g.,
k-opt) in each iteration.

» Two-stage methods like GLOP and UDC involve multiple sub-problem solvers per iteration
or perform the destroy-and-repair on multiple initial solutions, and also may call a powerful
heuristic solver like LKH3 internally.

* Our L2C-Insert performs local reconstruction only on a single solution using one neural
model.

For this reason, the total inference time may offer a more holistic and equitable basis for comparing
the computational budget. Our analysis is therefore centered on the solution quality (optimality gap)
achieved within a given runtime. Our experimental results, when viewed in terms of total runtime,
seem to support this perspective. For example, in Table 1 (TSP1K), our L2C-Insert (I=1000) achieves
2 0.481% gap in 46.4 minutes. In contrast, a strong baseline like LEHD+RRC1000 requires 5.2 hours
to achieve a 0.731% gap. This suggests that our method appears to offer a favorable trade-off between
time and solution quality.

H Total Inference Time and Average Inference Time Per Instance

The apparent decrease in total inference time for larger instances is due to the different number of
instances in the test datasets for each problem size.

Following the standard evaluation protocols established in prior NCO research [22} 43]], the test sets
for larger problems contain significantly fewer instances. For example, our TSP100 test set contains
10,000 instances, while the TSP10K and TSP100K sets contain only 16 instances each. The total
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inference times reported in Tables 1 and 2 of our main paper reflect the time required to solve the
entire dataset.

To provide a clearer picture, the table below breaks down the total inference time into the average
time per instance.

Table 14: Add caption

TSP100 TSP1K TSP10K TSP100K
Dataset Size 10000 instances | 128 instances | 16 instances | 16 instances
L2C-Insert Total Inference Time 8.0h 46.4m 16.64m 26.07m
L2C-Insert Inference Time / instance | 2.9s 21.8s 62.4s 97.8s

As the table clearly shows, the average inference time per instance for L2C-Insert scales with the
problem size as expected, increasing from 2.9 seconds for TSP100 to 97.8 seconds for TSP100K.
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I Clarification on Method Positioning and Technical Contribution

Regarding the positioning of our method (construction heuristic vs. improvement heuristic) and its
technical contributions, we make the following discussion to clarify and strengthen the core value of
our paper.

The "insertion-based construction" is a well-established concept in the traditional field of Operations
Research. The core contribution of our work is not the invention of the ’insertion’ operation itself, but
rather being the first learning-driven, insertion-based framework specifically designed for solution
construction in the field of NCO for solving the vehicle routing problem, which is currently dominated
by the ’appending-based’ paradigm.

The make the technical contribution of this paper clear, we elaborate from the following three
perspectives:

1. The Essence of Our Core Method: A Pure Insertion-based Construction Method

Our core model, L2C-Insert, is fundamentally a construction-based model in its design. Its task is to
learn a policy p(positionnode, partial tour) to predict the best insertion position, given an incomplete
solution (partial solution) and a node to be inserted. This process starts from an initial solution (e.g.,
one node) and builds a complete solution by sequentially adding unvisited nodes, which fully aligns
with the definition of a construction-based neural model.

* Model Architecture and Training: As described in Sections 3.1 and 3.2 of the paper,
our model architecture (especially the decoder) and the supervised learning scheme are
designed to learn this single-step constructive action. The model learns to master the
optimal "insertion" decision at each step by reconstructing a given optimal solution. This
is fundamentally different from an improvement heuristic (like 2-opt), which requires a
complete solution as input for iterative refinement.

* Comparison with the Appending-based Paradigm: The starting point of our work
is precisely to overcome the limitations of the popular "appending-based paradigm" in
existing NCO methods (as mentioned in the Introduction and Figure 1). "Appending" is a
construction method, and so is "insertion." However, the latter offers greater flexibility and a
larger solution space, which is the core of our exploration.

2. The Application of the Method: Distinguishing the Core Construction Model from the
Inference Improvement Strategy

We would like to clarify that our adoption of the Insertion-based Local Reconstruction strategy during
the inference stage (Section 3.3) is an advanced search strategy that uses our learned "construction
model" as a core operator, rather than being the model itself.

This can be understood as a two-tiered structure:

¢ Lower Level (Core Contribution): A learned, efficient construction heuristic model
(L2C-Insert) that knows how to intelligently "insert" nodes.

» Upper Level (Application Strategy): An improvement framework (akin to Large Neigh-
borhood Search, LNS) that utilizes the lower-level construction model to iteratively "destroy
and repair" a solution during inference to enhance its quality.

This practice of "embedding a learned construction model into an improvement framework" is one of
the most recognized, state-of-the-art, and effective practices in the current NCO field (as referenced
in the paper, e.g., LEHD [22], GLOP [40]). Our storyline does not confuse the two. Instead, it is:
* We propose a new, more flexible construction model (L2C-Insert).
* To validate its powerful performance, we follow the best practices in the field and use it as a
potent "local reconstruction” tool during the inference stage.

3. Clear Technical Contributions

Based on the two points above, our technical contributions can be summarized more clearly as
follows:
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* Paradigm Innovation: In the NCO field, we are the first to explore and successfully
implement a learning-driven "insertion-based" construction framework, breaking the reliance
of previous research on "appending-based" construction. This is an important supplement
and a rethinking of the existing NCO construction methodology.

* Novel Model Architecture and Training Mechanism: We designed a specific decoder
structure (Section 3.1) to handle the complex "insertion" decision. It needs to simultaneously
understand the intricate relationships between the node to be inserted, all unvisited nodes,
and all possible insertion positions in the current partial solution. This is much more complex
than an "appending" model, which only needs to focus on the last node. The corresponding
supervised learning training scheme (Section 3.2) is also newly designed to fit the "insertion"
task.

* Synergistic Inference Strategy: We propose a distance-based destruction strategy (Section
3.3) that is highly synergistic with the "insertion" paradigm. As described in the paper,
this strategy can more effectively identify and break "bad edges" that are spatially close
but sequentially distant, a flexibility that traditional "sequence-based destruction strategies"
lack. The experiment (Table 5) also proves its effectiveness. This demonstrates the powerful
synergy between our proposed construction paradigm and inference strategy.

In summary, our work is not a simple application of a known "insertion heuristic" to NCO. Our
core is a novel construction model, and its application during the inference stage is an advanced and
reasonable improvement strategy. We believe that this clear hierarchical division and the technical
innovations at each level together constitute the solid technical contribution of this paper.
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J Analysis of Computational Complexity for Insertion-based and
Appending-based heavy decoder-based NCO model

A formal analysis of computational complexity is essential for a thorough comparison. Here is a
detailed comparison:

Computational Complexity of Appending-based NCO (L2C-Append)

The primary source of computational complexity of the Transformer-based model comes from the
attention mechanism employed.

In a heavy decoder-based appending-based NCO model (e.g., LEHD, where heavy decoder means
the decoder has six attention layers), the task at each construction step t is to select one node from the
n — t unvisited nodes. The decoder computes a context query and attends to the embeddings of all n
initial nodes to determine the next node to append. This attention mechanism has a complexity of
O((n—t)?-d), where n is the total number of nodes and d is the embedding dimension. This process

is repeated for n steps. Thus, the total complexity for constructing a single solution is O(%S -d). In
Big O notation, this is simplified to O(n?d).

Computational Complexity of Insertion-based NCO (L2C-Insert)

Our proposed L2C-Insert framework also adopts a heavy decoder-based model. The task at each
step t is more complex. To make an informed decision, our decoder processes a much richer set
of inputs simultaneously: the embedding of the current node to be inserted, the embeddings of all
n’"t remaining unvisited nodes, and the embeddings of all ¢ 1 possible insertion positions. The
total number of input embeddings processed by the self-attention layers at every step is therefore
(1) + (n —t) + (t — 1) = n. The complexity of a single construction step is O(n?d). This step is
repeated n times to build the full solution. Consequently, the total theoretical complexity is O(n>d).

Discussion and Practical Implications

Theoretically, both heavy-decoder paradigms exhibit a cubic complexity of O(n®d). However, the
insertion-based paradigm is computationally more intensive as it consistently processes n nodes per
step, whereas the appending-based approach processes a decreasing number of nodes (n — ¢). This
higher computational cost is a direct trade-off for the enhanced flexibility and expressive power of
the insertion mechanism.

To ensure practical applicability to large-scale problems, we can employ a k-nearest neighbor (k-NN)
strategy during inference. Instead of processing all n contextual nodes, the decoder’s attention
mechanism is constrained to only the k-nearest unvisited nodes and positions. This reduces the
effective sequence length from n to a much smaller, constant k (e.g., & = 100 in our paper), making
the per-step complexity approximately O(k2d).
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K Clarification on the Definition of Target Position

We provide the following clarification to clarify the definition of the target position.
1. Why two visited nodes in the current partial solution determine the target position

During the process of the insertion construction, at each step, an unvisited node is inserted into a
position of the partial solution constructed in the current step. Since 1) the nodes connected in the
current partial solution are all visited nodes; 2) an insertion position is essentially an edge and is
uniquely determined by the two nodes it connects, therefore, the only insertion position is determined
by two visited points.

2. How the target position is determined

To make the process of identifying the target position clearer, we break it down into two steps. Given
a labeled solution, a current partial solution, and a selected unvisited node to insert:

Step 1: Identify the circular sequence in the labeled solution

We first consider the complete labeled solution 7* and remove all unvisited nodes except for the
currently selected one. This leaves us with a circular sequence containing only the selected unvisited
node and the nodes already in the partial solution, preserving their original ordering from 7*.

For example, suppose the labeled solution is #* = (7, 7a, 73, 74, 75, g, 77 ), the partial solution is
(m1, 73, m6, T7), and the selected unvisited node is 7. Then the other unvisited nodes are {4, 75 }.
After removing {74, 75} from 7v*, the resulting circular sequence is (71, 72, 73, g, 77)-

Step 2: Identify the target position in the current partial solution

Within this newly formed circular sequence, we can find the two nodes that are now adjacent to the
selected unvisited node. These two nodes, which are part of the partial solution, define the target
position for the insertion.

Continue the above example. In the circular sequence (71, 72, 3, 76, 77), the nodes adjacent to 7o
are {m,m3}. Since 7; and 75 are connected in the current partial solution, these two visited nodes
determine the target position.
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L Rationale and Principles of the Logarithmic Loss Function in Equation 3|

The use of the negative log-likelihood loss function in Equation [3]is a standard and principled choice
for our supervised learning framework, primarily because it is highly effective for gradient-based
optimization.

Our model treats the selection of an insertion position at each construction step as a classification
problem. The model’s decoder, via a softmax function, outputs a probability distribution pg over all
valid insertion positions. Our objective is to train the model to assign the highest possible probability
to the correct target position €™,

The logarithmic nature of this loss function £(0) = —logpg (€* | €r,,,, ") provides two key
advantages for training:

Strong Error Correction: When the model assigns a very low probability to the correct target
position (i.e., pg(€*) — 0), the loss —log py(€™) approaches infinity. This results in a very large
gradient, providing a strong signal to the optimizer to correct the model’s parameters significantly.

Stable Convergence: Conversely, as the model’s prediction for the correct class approaches 1, the
loss approaches 0. This leads to smaller gradients, promoting stable convergence once the model
learns to make correct predictions. This behavior effectively focuses the training effort on the most
difficult examples.
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M Visualization

In this section, we provide graphical examples from both TSPLIB and CVRPLIB to illustrate
the insertion-based construction process clearly. As shown in Figure [5] the process begins by
randomly selecting an unvisited node as the starting node for the incomplete solution. The model
then continuously selects unvisited points to insert into the incomplete solution. Notably, in step 47,
there are no unvisited nodes near the current node that can be connected without crossing the existing
path. If the construction process is appending-based, the next step will involve directly connecting
the last node to a distant unvisited node, resulting in a very long edge. However, the insertion-based
construction allows for the direct insertion of the distant unvisited node into the incomplete solution
(as seen in step 48), thereby avoiding the generation of the long edge mentioned above. Similarly, in
Figure [0 steps 42 to 43 demonstrate a similar behavior of error correction in previous steps. This
highlights the flexibility of the insertion-based construction.

Step 1 Step 2 Step 3 Step 46

Step 47 Step 48 Step 50 Step 50 Step 51
Figure 5: Insertion-based construction process on the TSPLIB instance “eil51”. The green dot is the

node selected in the current step for insertion. The hollow dots are the unvisited nodes. The black
dots are visited nodes.

PRt SR

Step 40 Step 41 Step 42 Step 43 Step 44
Figure 6: Insertion-based construction process on the CVRPLIB instance “A-n45-k7”. The red
triangle is the depot node, the green dot is the unvisited customer node selected in the current step for

insertion. The hollow dots are the unvisited nodes. The black dots are visited nodes.
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N Detailed Formulation of Attention Layer

N.1 Attention Layer

The attention layer in the transformer model [36] is widely adopted in NCO for solving VRPs,
mainly including a multi-head attention (MHA) sublayer and a node-wise feed-forward (FF) sublayer.
Each sublayer is followed by a skip-connection [89] and normalization (Norm) [90]. We denote
X (=1 ¢ R7*4 a5 the inputs of the (-th attention layer, the output of the attention layer is calculated
as:

X = Norm(MHA (X =) 4 x(¢=1)),

N . ®)
X® = Norm(FF(X) + X).
We denote this calculation process as follows:
X = AttnLayer(X(“~1). )

In this paper, the normalization is removed from the attention layer for enhancing generalization
performance following Luo et al. [22]]. For readability, we omit the (¢) and (¢ — 1) in the following
context.

N.2 Multi-head Attention

We first describe the single-head self-attention function as follows:
XWo(XWg)T
Vd

where X € R™*4 is the input matrice, and W € R¥*d% Wy € R¥4 Wy, € R¥*4v are learnable
parameters.

Attn(X) = softmax ( ) XWy, (10)

The multi-head attention sublayer applies the single-head attention function in Equation for h
times in parallel with independent parameters:

MHA (X) = Concat(heady, . .., head;, )W ©°,

11
head; = Attn; (X)), (in
where for each of Attn;(X), dj, = d, = d/h. WO € R?*4 is a learnable matrix.
N.3 Feed Forward Layer
FF(X) = maX(O,XWfl —|—bf1)Wf2 + bya, (12)

where Wy, € R%dss b 1€ R%f and Wyo € Ressxd p 2 € R? are learnable parameters.
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O Broader Impacts

This research advances the field of neural combinatorial optimization by introducing the L2C-Insert
framework, which employs advanced machine learning techniques to solve Vehicle Routing Problems
(VRPs). We believe this framework will provide valuable insights and inspire subsequent research
focused on developing more efficient and effective neural methods for VRPs. Moreover, as a general
learning-based approach for solving VRPs, the proposed L2C-Insert framework is not anticipated to
have specific negative societal impacts.

P Licenses

The licenses for the codes and the datasets used in this work are listed in Table[T3]

Table 15: List of licenses for the codes and datasets we used in this work

Resource | Type | Link | License

LKH3 [49] Code http://webhotel4.ruc.dk/ keld/research/LKH-3/ Auvailable for academic research use

HGS [42] Code https://github.com/chkwon/PyHygese MIT License

Concorde [41] Code https://github.com/jvkersch/pyconcorde BSD 3-Clause License

POMO [21] Code https://github.com/yd-kwon/POMO MIT License

Att-GCN+MCTS [43] | Code https://github.com/SaneLY X/TSP_Att-GCRN-MCTS MIT License

LEHD [22] Code https://github.com/CIAM-Group/NCO_code/tree/main/ MIT License
single_objective/LEHD

BQ [23] Code https://github.com/naver/bg-nco CC BY-NC-SA 4.0

GLOP [40] Code https://github.com/henry-yeh/GLOP MIT License

HTSP [53] Code https://github.com/Learning4Optimization-HUST/H-TSP | MIT License

DIMES [73] Code https://github.com/DIMES Team/DIMES MIT License

DIFUSCO [51) Code https://github.com/Edward-Sun/DIFUSCO MIT License

UDC [32] Code https://github.com/CIAM-Group/NCO_code/tree/main/ MIT License
single_objective/UDC-Large-scale-CO-master

ELG [30] Code https://github.com/gaocrt/ELG MIT License

INVIT [50] Code https://github.com/Kasumigaoka-Utaha/INViT Available for academic research use

NeurOpt [55] Code https://github.com/yining043/NeuOpt MIT License

TSPLib [46]

Dataset ‘ http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ | Available for any non-commercial use

CVRPLIb [47] Dataset | http://vrp.galgos.inf.puc-rio.br/index.php/en/ Available for academic research use
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