
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PARALLELSPEC: PARALLEL DRAFTER FOR EFFICIENT
SPECULATIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding has proven to be an efficient solution to large language
model (LLM) inference, where the small drafter predicts future tokens at a low
cost, and the target model is leveraged to verify them in parallel. However, most
existing works still draft tokens auto-regressively to maintain sequential depen-
dency in language modeling, which we consider a huge computational burden
in speculative decoding. We present PARALLELSPEC, an alternative to auto-
regressive drafting strategies in state-of-the-art speculative decoding approaches.
In contrast to auto-regressive drafting in the speculative stage, we train a paral-
lel drafter to serve as an efficient speculative model. PARALLELSPEC learns to
efficiently predict multiple future tokens in parallel using a single model, and it
can be integrated into any speculative decoding framework that requires aligning
the output distributions of the drafter and the target model with minimal training
cost. Experimental results show that PARALLELSPEC accelerates baseline meth-
ods in latency up to 62% on text generation benchmarks on Medusa and 9-17% on
EAGLE. It also achieves 2.84× overall speedup on the Llama-2-13B model using
third-party evaluation criteria.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (OpenAI, 2023) and Llama (Touvron et al., 2023)
have shown dominant abilities across various domains, such as question answering (Zhuang et al.,
2023), code synthesis (Rozière et al., 2023), machine translation (Zhang et al., 2023a) and beyond.
However, their auto-regressive nature requires multiple forward passes on models with billions or
trillions of parameters, bringing substantial inference latency, thus prohibiting real-time applica-
tions. In the pursuit of accelerating LLM inference, various strategies have been explored, including
utilizing model sparsity (Liu et al., 2023; Sun et al., 2024; Schuster et al., 2022; Cai et al., 2024a),
exploiting redundancy in KV Cache (Cai. et al., 2024; Zhang et al., 2023b; Li et al., 2024a), and
distilling model capabilities to smaller models (Gu et al., 2024; Agarwal et al., 2024). While these
approaches can lead to faster inference, they often come at the cost of reduced generation quality
and do not preserve the generation distributions of the original models.

Speculative decoding (SD) (Leviathan et al., 2023; Chen et al., 2023a) has been proposed as one
of the compelling alternatives to auto-regressive generation in a lossless manner. The key motiva-
tion behind SD is to utilize a low-cost small model to generate draft tokens efficiently and then use
the target model to verify them in parallel to ensure sampling integrity, known as draft-then-verify
framework. While promising, we observe that draft models in most draft-then-verify frameworks
still generate token by token, resulting in a low arithmetic intensity during the drafting stage. More-
over, the forward latency of the drafting stage still grows linearly with respect to the draft length, i.e.,
the number of tokens each draft step generates. As empirically profiled in the right part of Figure 1,
the draft latency still accounts for a significant proportion of the overall SD latency.

Researchers have spotted the draft latency issue and proposed several solutions to alleviate it by
dynamically determining the draft length either through learnable policy (Huang et al., 2024a),
confidence-guided heuristics (Li et al., 2024c), or optimized draft tree structures (Wang et al.,
2024a). Nevertheless, these solutions do not tackle the underlying issue of drafting latency scal-
ing linearly with the draft length, but operate only for maximally reducing the compute wasted in
drafting tokens that are unlikely to be accepted.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Auto-regressive Drafting Parallel Drafting

Prefix

Draft Model

Target Model

Prefix

Draft Model

Target Model Prefilling

Prefilling

Auto-regressive Drafting Wall Time Trace

Parallel Drafting Wall Time Trace

Draft Step Verification Step Latency Saved

Figure 1: Illustration of PARALLELSPEC. The Left part of the figure has been revised to highlight
the difference between the two drafting styles. Left: comparison between auto-regressive drafting
and our proposed parallel drafting. Blocks in green indicate normal draft tokens. Blocks in yellow
denote the mask tokens used to prompt the draft model to generate multiple future tokens in a single
forward pass. Right: wall time trace diagrams for two drafting styles integrated with EAGLE (Li
et al., 2024b) in two rounds of speculative sampling, given the assumption that both drafting styles
have the same speculation accuracy on the prefix sequence.

To fundamentally solve the draft latency issue, we propose building a parallel-decoding drafter as
the replacement for auto-regressive drafters in popular SD frameworks. Unlike Medusa-style frame-
works (Cai et al., 2024b; Ankner et al., 2024) that rely on separate language model heads to decode
future tokens, we propose to use a single lightweight model to decode the next k tokens simul-
taneously. We argue that using a single model for multi-token prediction can effectively leverage
parameter sharing to achieve efficient drafter alignment rather than learning several independent
language model heads. The latter design would struggle even more with memory and computation
in the large vocabulary size (128,000+) of recently introduced language models such as Llama-
3 (AI@Meta, 2024). For efficient multi-token alignment training, we introduce a group-wise paral-
lel training strategy that mitigates possible training-inference mismatches by dynamically adjusting
the attention mask, positional indexes, and token layout.

Our method still adheres to the draft-and-verify framework at inference time: At each draft step,
the drafter generates k tokens with a single forward pass, and then they are sent to the target model
for parallel verification. Since our method incorporates token-level parallelization in the drafting
stage, both stages in the SD pipeline now benefit from this parallelization. Therefore, we name our
approach PARALLELSPEC. PARALLELSPEC works as an individual module, ready to replace any
drafter in existing SD frameworks that require distilling drafters from their target models. We ex-
periment with the popular speculative decoding framework Medusa (Cai et al., 2024b) and state-of-
the-art solution EAGLE (Li et al., 2024b) by replacing their drafters. Experimental results show that
PARALLELSPEC is able to bring consistent acceleration improvement in all task domains and differ-
ent combinations of models. For instance, incorporating PARALLELSPEC into Vicuna-7B Medusa
increases the average speedup ratio from 1.42× to 2.31×, leading to a 62.7% relative improvement.
This empirically validates the superiority of parallel drafter design. PARALLELSPEC integration
with EAGLE also achieves extra speedups across all target model settings, ranging from 2.55× to
2.84×, with a relative improvement ranging from 9% to 17%. In summary, our key contributions
are as follows:

• We propose PARALLELSPEC as a parallel multi-token drafter to replace the auto-regressive drafter
design in existing SD frameworks that require aligning drafters with their target models.

• We design a group-wise training strategy that allows efficient and accurate parallel drafter training.

• We integrate the proposed method into two popular SD frameworks. Extensive experiments
demonstrate the compatibility and performance superiority of PARALLELSPEC.

2 RELATED WORKS

Accelerating Large Language Model (LLM) Inference has attracted considerable research atten-
tion from both machine learning system and natural language processing communities and even led

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the trend of hardware-software co-design. These research efforts include model compression (Sun
et al., 2024; Huang et al., 2024b; Ma et al., 2023), novel architecture design (Gu & Dao, 2023; Peng
et al., 2023) and hardware optimization (Dao et al., 2022; Hong et al., 2023). However, some of
these methods could lead to generation discrepancies compared to the target model, representing a
trade-off between model performance and inference speed. We consider those methods that cannot
generate with the target model’s original distribution as lossy acceleration methods.

Speculative Decoding (SD) (Leviathan et al., 2023; Chen et al., 2023a) arises as one of the lossless
acceleration methods for LLM inference. It is based on the observation that the latency bottleneck of
LLM inference is brought by memory bandwidth instead of arithmetic computation. SD alleviates
the bandwidth bottleneck by utilizing a small model to draft multiple tokens and verifying them in
parallel with the target model, thereby reducing the frequency of language model calls and decreas-
ing the memory access density during decoding. The community has witnessed many improvements
in efficiently and accurately drafting tokens. Self-speculative decoding methods (Hooper et al.,
2023; Elhoushi et al., 2024; Zhang et al., 2024a; Bhendawade et al., 2024) do not explicitly rely
on draft models but use some of the intermediate layers of the target model to draft. Medusa-style
methods add independent (Cai et al., 2024b) or sequential (Ankner et al., 2024) decoding heads on
the target model to draft tokens. Lookahead decoding and its variants (Fu et al., 2024; Zhao et al.,
2024) use n-gram trajectory as drafts. DistillSpec (Zhou et al., 2024) leverages knowledge distil-
lation to closely align distributions between the draft and target models. PEARL (Liu et al., 2024)
proposes two-stage verification to alleviate the mutual waiting problem. Apart from efficient draft
methods, token tree verification (Miao et al., 2024; Sun et al., 2023) has been widely adopted for
verifying top candidate sequences that share common prefixes in parallel. Specialized SD frame-
works for long-context generation (Chen et al., 2024a;b), retrieval-augmented generation (He et al.,
2024; Wang et al., 2024b; Zhang et al., 2024b) and beyond (Chen et al., 2023b) have been proposed
to better fit individual use cases.

Parallel Decoding was first known for its efficiency in machine translation system (Ghazvininejad
et al., 2019) and code generation (Gloeckle et al., 2024) as an alternative to auto-regressive gener-
ation. However, its usage in SD frameworks remains under-explored. Cai et al. (2024b) and Stern
et al. (2018) utilize parallel language model heads to predict multiple tokens at different positions.

Santilli et al. (2023) proposed to use fixed-point iterations to replace auto-regressive decoding.
Monea et al. (2023); Yi et al. (2024) pioneered the use of parallel decoding in SD, but it is limited
to a self-speculative framework and results in different generation sampling. BiTA (Lin et al., 2024)
proposed using prompt tuning to train a small number of prompt parameters on a frozen target LM
for semi-autoregressive generation. Wu et al. (2024) suggested using trainable linear projection to
regress intermediate hidden states of target models, thereby enabling multi-token prediction. How-
ever, these methods either fail to effectively learn the draft distribution due to the limited number of
learnable parameters or cannot achieve lossless acceleration due to the method design.

3 BACKGROUND: SPECULATIVE DECODING

Notation. Speculative decoding (SD) frameworks maintain two models: the target model, denoted
as MT, is the one which we want the SD frameworks to sample from; the draft model, denoted as
MD, is the one that proposes candidate tokens which are later being verified by the target model. Let
x<t be the prompt sequence we are running the SD framework on, p (xt | x<t), q (xt | x<t) be the
inference distribution of MT and MD given the prompt x<t, respectively. We use the denotations of
p (yt) and q (yt) to indicate p (yt | x, y<t) and q (yt | x, y<t) whenever they do not lead to confusion.

Speculative Decoding Procedures. One round of speculative decoding can be divided into the
drafting and verification stages, each governed by the corresponding model. The drafting stage auto-
regressively calls MD to sample γ candidate token distributions q (yt) , . . . , q (yt+γ−1). The verifi-
cation stage calls MT once to sample γ distributions from the target model, p (yt) , . . . , p (yt+γ−1),
given yt+i is the concatenation of y<t and drafted token sequence x1, . . . , xi, where xk ∼ q (yt+k).
The verification stage determines whether the token yt+i is accepted via speculative sampling, where
its acceptance rate αi is defined as:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Prefix

Draft Model

Target Model
Auto-regressive Draft Model

Good morning

,

how are you doing

how are you doing

Good morning

,

how youare

Input Tokens

Labels

Input Tokens

Position IDs 0

𝑥! 𝑥!"# 𝑥!"$

Parallel Draft Model

how

are you doing

1 2

Prefix

Draft Model

𝑥! 𝑥!"# 𝑥!"$

Target Model

Prefix

𝑦! 𝑦!"# 𝑦!"$

𝑦! 𝑦!

Knowledge Distillation

𝑀 # 𝑀 $ 𝑀 # 𝑀 $

Inference Distillation 3 4 3 4 5

Labels

𝑀 ! 𝑀 " 𝑀 ! 𝑀 "

†

?

?

Figure 2: Illustration of parallel drafter inference, training, and the difference between training auto-
regressive drafter and parallel one. Left: Parallel drafter proposes multiple candidate tokens with a
single forward pass. Middle: Training the parallel drafter to align with the target model is a process
of knowledge distillation (KD). Right: The input, labels, and position indices for training a parallel
drafter need special treatment. † refers to Figure 3 for the special attention mask design of parallel
training.

αi =

{
1 p (yt+i) ≥ q (yt+i)
p(yt+i)
q(yt+i)

p (yt+i) < q (yt+i)
(1)

If the token yt+i is rejected before γ candidate tokens are all accepted, the remaining draft tokens
will be discarded, and yt+i will be resampled from max (0, p (yt+i)− q (yt+i)). Otherwise, drafted
tokens are all accepted and SD samples an extra token from yt+γ and appends it to the end of the
sequence. Each round of speculative decoding generates at least 1 and at most γ + 1 tokens, and
Leviathan et al. (2023) theoretically proves that the sequence from SD and the sequence from the
target model follow the same distribution.

Average Acceptance Length. One important efficiency metric to measure an SD system is the
acceptance rate of drafted tokens in each round of speculative decoding. Since each drafting step
takes a constant amount of time and each round of conventional SD takes the same drafting steps, the
overall efficiency of an SD system will be determined by the average acceptance length τ measured
on some prompt sequences.

Token Tree Verification. Prior studies (Miao et al., 2024; Leviathan et al., 2023) suggest that
verifying multiple candidate sequences within the same verification step could greatly improve the
expected acceptance length. This is achieved by the tree attention mechanism. By properly arranging
the top predicted tokens at different token positions and manipulating the attention mask based on a
tree structure, we enable the processing of multiple candidate sequences with only one verification
step. We refer to the details of token tree verification in Appendix A.3.

4 METHODOLOGY

In this section, we describe our parallel drafting method (§4.1), the algorithm that preserves the
output distribution of the target model with parallel drafter (§4.2) and its integration into popular
speculative sampling methods (§4.3).

4.1 PARALLEL DRAFTING

Inference. Let Mθ
D be the parallel drafter parameterized by θ, and qθ (xt, xt+1, . . . , xt+k | x<t)

be the multi-token output distribution of the parallel drafter. Naive draft models do not support
predicting multiple tokens in a single forward pass. In order to equip a drafter with such abilities,
we propose to use customized [MASK] tokens as prompt tokens to produce contextualized token-
level representations that are used to enforce multi-token training. The parallel drafter introduces k
special tokens in its vocabulary, [MASK]1, . . . ,[MASK]k. At each drafting step where the drafter
is invoked, k special tokens are concatenated after the original input sequence x<t. Apart from

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the last token representation that is used to decode the next token xt, the last-layer representations
corresponding to [MASK] tokens are leveraged to sample future tokens xt+1, . . . , xt+k. The left
part of Figure 2 demonstrates how the parallel draft model proposes 3 future tokens with 2 [MASK]
prompt tokens.

Good morni
ng

-100

, [M1] [M2] how [M1] [M2]

-100

how

are

you

are

you

doing

Parallel Group 1Prefix Parallel Group 2

src

tgt

Parallel drafter learns to predict the next-next token “you”
with “Good morning, how” and ignores [MASK] tokens from Parallel Group 1.

Figure 3: Attention mask illustration of parallel
drafter training. denotes activated attention.

denotes attention suppressed to prevent access
across parallel groups. -100 denotes ignored to-
kens in the target sequence that do not contribute
to training loss. Blocks with yellow and the leg-
end illustrate one of the next-next token prediction
training objectives.

Group-wise Parallel Training. Given
the access to either the ground truth fu-
ture tokens yt, yt+1, . . . , yt+k or their
output distributions of the target model
p(yt), p(yt+1), . . . , p(yt+k), training a parallel
drafter is a process of knowledge distillation
(KD) in either online or offline setting (Zhou
et al., 2024), which we defer to §4.3 for
detailed discussion. This process is not as
trivial as training an auto-regressive drafter,
where teacher-forcing supervision is enforced
via shift-one-token in labels as depicted in
the upper right of Figure 2. Simply shifting
the label position by k tokens would result in
discrepancies between training and inference.
Therefore, We carefully design a group-wise
training paradigm that eliminates training-
inference mismatch by manipulating the token
layout, attention masks, and position indices,
illustrated in the lower right of Figure 2.
Specifically, we introduce the concept of
parallel group, illustrated in Figure 3, where
each parallel group in the source sequence
consists of an input token and several [MASK]
tokens. At each training step, a customized
causal attention mask guarantees that all train-
ing token pairs ignore [MASK] tokens from
previous parallel groups to ensure the model
behaves the same in training and evaluation.

4.2 SPECULATIVE SAMPLING WITH
PARALLEL DRAFTING

In order to preserve the output distribution of the target model as standard speculative sampling
does, following Monea et al. (2023), we present a modified version of speculative sampling (Chen
et al., 2023a) that drafts with a parallel decoder and verifies with the target model using token tree
verification method (Miao et al., 2024), detailed in Algorithm 1.

4.3 INTEGRATION WITH POPULAR SPECULATIVE DECODING FRAMEWORKS

PARALLELSPEC can be inserted into any speculative decoding (SD) framework that requires align-
ing output distributions of the drafter and the target model. We choose two popular SD frameworks
as testbeds, Medusa (Cai et al., 2024b) and EAGLE (Li et al., 2024b).

Medusa leverages an offline knowledge distillation method, where cross-entropy loss between
Medusa heads and ground truth tokens is used for alignment. Specifically, K extra decoding heads
are added to decode the last hidden states of the target model, and the k-th head is used to predict
the (t+ k + 1)-th token given a prefix sequence of length t. The final training objective of Medusa
is expressed as:

LMEDUSA =

K∑
k=1

−λk log p
(k)
t (yt+k+1) , (2)

where λk is a coefficient to balance learning difficulties, p(k)t is the output distribution of the k-th
head and yt+k+1 is the oracle token.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Speculative Sampling with Parallel Draft Models and Token Tree Verification
Given k special tokens [MASK]1, . . . ,[MASK]k and minimum target sequence length T .
Given the target model distribution p(·|·), the parallel draft model distribution q(·|·) and initial prefix se-
quence x<n.
Return the generated sequence y.
Initialise n← t, y ← x<n.
while n < T do

Draft future token treeN by sampling from the parallel draft model with a single forward pass:

N ∼ (q(x|x<n), q(x|x<n,[MASK]1), . . . , q(x|x<n,[MASK]1, . . . ,[MASK]k))

In parallel, compute a set of logits O with the target model usingN and tree attention.

O = TreeParallelDecode(N , p)

V = ∅, u ▷ u is the root node ofN
while u is not a leaf node do
H = Child(u) ▷ Child(u) returns the child nodes of u

whileH is not empty do
Sample r ∼ U [0, 1]; s = Select(H); x̃s = H(s); t = TreeDepth(s)

if r < min

(
1,

p(x̃s|x<n,V)
q(x̃s|x<n, . . . ,[MASK]t−1)

)
then

✓ accept the draft token xs at depth t

V .append(xs); u = s; n← n+ 1

break
else
× reject the draft token xs. Normalize the residual.

p(x|x<n, . . . ,V) := (p(x|x<n, . . . ,V)− q(x|x<n, . . . ,[MASK]t−1))+

H.pop(s)

end if
end while
ifH is empty then

break
end if

end while
xnext ∼ p(x|x<n, . . . ,V); n← n+ 1; V .append(xnext)
y ← y + V

end while

5 EXPERIMENTS

This section describes the experimental settings (§5.1), including training and evaluation datasets,
metrics, and involved baselines. §5.2 reports the main results for PARALLELSPEC compared with
baselines. Finally, we discuss the impact of different experiment settings in §5.3.

To integrate PARALLELSPEC into Medusa, we introduce a Transformer model specialized in multi-
token prediction to replace K Medusa heads as the new draft model. The draft model shares the
embedding layer and the language model head with the target model to minimize memory overhead,
and they remain frozen to preserve the target model’s output distribution. K trainable [MASK]
tokens are added to the embedding layer of the draft model to facilitate parallel training. During the
training, each parallel group is trained with a similar objective denoted in Equation 2, except that
the log term now denotes the output distribution of the parallel drafter at position k, and we need to
consider the non-mask token at the beginning of each parallel group:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

LMEDUSA-Parallel = − log q (yt+1|x<t)−
K∑

k=1

λk log q (yt+k+1|x<t,[MASK]1, . . . ,[MASK]k) . (3)

EAGLE utilizes an online knowledge distillation method that directly regresses the last-layer hidden
states at the feature level. Specifically, we denote the last-layer hidden states of the target model at
t-th position as ft, the embedding of t-th token as et, and the oracle token as yt. EAGLE proposed
to use a fully connected layer and an auto-regression head π

(
f̃t|f<t, e<t

)
as the draft model to

predict the next feature that is used to decode draft tokens. The training objective of EAGLE on
each token position is a linear combination of the regression loss Lreg and the cross-entropy loss Lcls
between draft tokens and oracle tokens:

Lreg = SmoothL1
(
ft+1, π

(
f̃t|f<t, e<t

))
,

Lcls = − logµ (yt+1) ,
(4)

where µ denotes the language model head distribution conditioned on drafted feature f̃t.

Integrating PARALLELSPEC into EAGLE is more intuitive, as it only requires minor modifications
to turn the auto-regression head into a parallel head with the method outlined in §4.1, without extra
adaptation. For a parallel group of size K starting at token position t, the training loss of EAGLE-
Parallel is the sum of EAGLE losses (defined in Equation 4) over K tokens within the same group.
At inference time, EAGLE integration needs an additional effort. Each drafting step uses only the
embedding of [MASK] tokens with the target features of [MASK] tokens left empty, i.e.:

f̃t, . . . , f̃t+K+1 = π
(
[f<t, 0, . . . 0] ;

[
e<t, e[MASK1], . . . , e[MASKK]

])
. (5)

This is because these introduced [MASK] tokens are not in the original vocabulary of the target
models; therefore, there is no way to produce target features for these [MASK] tokens. We only use
the trainable embeddings of [MASK] as a signal for the drafter to predict tokens at different future
time steps.

5.1 SETTINGS

Datasets, Tasks, and Training. Following the setup of SpecBench (Xia et al., 2024), we con-
duct evaluations on six types of text generation tasks, including MT-bench (Zheng et al., 2023)
for multi-turn conversation, CNN/Daily Mail (Nallapati et al., 2016) for text summarization, Natu-
ral Questions (Karpukhin et al., 2020) for retrieval-augmented generation and question answering,
WMT14 DE-EN (Bojar et al., 2014) for machine translation, GSM8K (Cobbe et al., 2021) for math-
ematical reasoning. As PARALLELSPEC falls into the category of speculative decoding methods
that require an extra alignment stage, supervised fine-tuning (i.e., SFT) data are needed for aligning
distributional similarity between the drafter and the target model. To ensure a fair comparison with
baselines in this category, we follow Li et al. (2024b) to use 68,000 ShareGPT (Tay et al., 2023)
conversations as training data without self-distillation. For the self-distillation setting where multi-
turn conversations are distilled from the target model given the prompts from the dataset, we refer
to §5.3. Due to the group-wise parallel training strategy, the training sequences for PARALLELSPEC
will become longer than the ones of conventional auto-regressive drafter. Training PARALLELSPEC
on 7B models takes 13 hours on 8 A100-PCIE-40GB GPUs for 40 epochs. The size of parallel
group is set to 5, i.e., the number of [MASK] tokens k = 4 unless stated otherwise. We refer to
Appendix A.2 for details such as computing environment, other hyper-parameters, etc.

Baselines. We select seven competitive speculative decoding methods as baselines. Some of
them work as plugin modules like Speculative Sampling (SpS) (Chen et al., 2023a), Prompt Lookup
Decoding (PLD) (Saxena, 2023; Yang et al., 2023) and Lookahead Decoding (Fu et al., 2024), which

1While we name this model Medusa + PARALLELSPEC, we clarify that only Medusa-style loss is used in
the Medusa PARALLELSPEC integration, and no more Medusa heads are utilized as drafter.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Method Multi-turn
Conversation Translation Summarization Question

Answering
Mathematical

Reasoning
Retrieval-aug.

Generation Avg. τ (tokens)

Temperature = 0.0

V 7B

SpS 1.67×±0.04 1.13×±0.02 1.71×±0.01 1.49×±0.04 1.50×±0.03 1.67×±0.02 1.53×±0.03 2.27
PLD 1.61×±0.02 1.02×±0.01 2.57×±0.02 1.14×±0.02 1.61×±0.01 1.82×±0.06 1.62×±0.01 1.75
Hydra 2.50×±0.02 1.94×±0.03 1.89×±0.04 2.02×±0.04 2.53×±0.02 1.86×±0.07 2.13×±0.04 3.26
Lookahead 1.48×±0.02 1.15×±0.02 1.36×±0.02 1.27×±0.02 1.59×±0.03 1.23×±0.03 1.35×±0.02 1.64
Medusa 1.60×±0.01 1.39×±0.01 1.22×±0.03 1.37×±0.00 1.68×±0.01 1.20×±0.06 1.42×±0.01 2.39

+PARALLELSPEC
1 2.63×±0.02 1.97×±0.03 2.32×±0.04 2.20×±0.02 2.78×±0.03 1.98×±0.03 2.31×±0.02 3.31

Medusa† 1.87×±0.01 1.56× ±0.01 1.49×±0.02 1.56×±0.02 1.85×±0.04 1.42×±0.02 1.63×±0.02 2.31
EAGLE-2 2.68×±0.05 1.78×±0.04 2.23×±0.03 2.04×±0.04 2.69×±0.04 2.02×±0.03 2.24×±0.04 4.34
EAGLE 2.57×±0.02 1.85×±0.04 2.17×±0.05 2.03×±0.04 2.57×±0.05 1.92×±0.04 2.18×±0.04 3.58

+PARALLELSPEC 3.01×±0.04 2.09×±0.01 2.62×±0.06 2.40×±0.03 2.84×±0.05 2.36×±0.02 2.55×±0.03 3.52

L2 7B

SpS 1.33×±0.03 1.25×±0.03 1.21×±0.02 1.30×±0.01 1.34×±0.02 1.43×±0.03 1.31×±0.02 1.67
PLD 1.42×±0.01 1.17×±0.02 1.44×±0.02 1.07×±0.02 1.31×±0.02 1.57×±0.01 1.33×±0.01 1.42
Lookahead 1.46×±0.05 1.36×±0.04 1.34×±0.04 1.32×±0.03 1.47×±0.04 1.37×±0.03 1.39×±0.04 1.60
EAGLE 2.61×±0.02 2.38×±0.02 2.25×±0.02 2.30×±0.05 2.66×±0.06 2.23×±0.01 2.40×±0.02 3.55

+PARALLELSPEC 2.95×±0.03 2.67×±0.01 2.64×±0.03 2.76×±0.04 2.88×±0.02 2.52×±0.03 2.74×±0.03 3.49

V 13B

SpS 1.69×±0.01 1.16×±0.01 1.78×±0.00 1.45×±0.01 1.60×±0.01 1.76×±0.04 1.57×±0.01 2.18
Medusa 2.06×±0.01 1.77×±0.02 1.66×±0.04 1.74×±0.01 2.12×±0.01 1.62×±0.05 1.84×±0.02 2.39

+PARALLELSPEC 2.76×±0.04 2.37×±0.05 2.16×±0.02 2.33×±0.03 2.62×±0.03 2.27×±0.04 2.52×±0.05 3.34
EAGLE 2.78×±0.02 2.03×±0.03 2.41×±0.02 2.11×±0.03 2.78×±0.04 2.20×±0.03 2.39×±0.02 3.64

+PARALLELSPEC 3.03×±0.04 2.30×±0.03 2.65×±0.02 2.36×±0.03 3.04×±0.05 2.46×±0.04 2.64×±0.02 3.56

L2 13B
SpS 1.38×±0.03 1.30×±0.03 1.26×±0.04 1.36×±0.03 1.41×±0.02 1.47×±0.06 1.36×±0.03 1.66
EAGLE 2.80×±0.01 2.60×±0.02 2.53×±0.06 2.42×±0.03 2.85×±0.03 2.39×±0.12 2.60×±0.03 3.66

+PARALLELSPEC 3.02×±0.02 2.81×±0.03 2.77×±0.07 2.68×±0.03 3.00×±0.02 2.74×±0.04 2.84×±0.04 3.60

Temperature = 1.0

V 7B
SpS 1.35×±0.00 1.01×±0.00 1.39×±0.02 1.25×±0.01 1.29×±0.02 1.38×±0.05 1.28×±0.01 1.82
PLD 1.56×±0.01 0.98×±0.01 2.49×±0.01 1.12×±0.00 1.56×±0.01 1.73×±0.01 1.57×±0.00 1.70
Lookahead 1.43×±0.00 1.10×±0.01 1.32×±0.00 1.21×±0.01 1.53×±0.01 1.16×±0.00 1.29×±0.00 1.64
EAGLE 2.10×±0.01 1.59×±0.02 1.83×±0.05 1.70×±0.02 2.04×±0.02 1.78×±0.06 1.84×±0.01 3.18

+PARALLELSPEC 2.32×±0.02 1.78×±0.03 2.06×±0.04 1.89×±0.02 2.10×±0.01 1.96×±0.02 2.02×±0.03 3.09

L2 7B
SpS 1.11×±0.00 1.07×±0.01 1.04×±0.02 1.09×±0.01 1.13×±0.01 1.15×±0.01 1.10×±0.01 1.47
EAGLE 2.19×±0.02 1.92×±0.05 1.91×±0.03 1.93×±0.05 2.31×±0.05 1.87×±0.07 2.02×±0.04 3.30

+PARALLELSPEC 2.47×±0.03 2.15×±0.02 2.08×±0.04 2.11×±0.03 2.42×±0.01 2.06×±0.03 2.22×±0.02 3.25

Table 1: Speedup ratios and average acceptance lengths τ of different methods tested on an A100-
PCIE-40GB GPU using third-party benchmark toolkit SpecBench (Xia et al., 2024). V: Vicuna-v1.3.
L2: LLaMA2-Chat. We report the mean and standard deviation of speedup ratios on 3 different runs.
Best metrics for each model are marked in boldface. † denotes additional evaluation that runs on an
RTX-4090 GPU.

do not need additional training. For SpS methods, we use vicuna-68m2 and llama-68m3 as the
drafter for Vicuna and Llama target models, respectively. SpS implementation strictly follows Spec-
Bench (Xia et al., 2024) and Huggingface (Wolf et al., 2019) assisted generation setup, where the
number of draft tokens per step γ is updated with heuristic rules. For PLD, we follow the default
settings of n-gram size = 3 and number of lookup tokens = 10. For Lookahead Decoding, we
use the official recommended configuration of level = 5, window size = 7, and n-gram size = 7.
The remaining methods, including Medusa (Cai et al., 2024b), Hydra (Ankner et al., 2024), and
EAGLE (Li et al., 2024b), that require extra training while preserving the output distributions, are
the main peer works for comparison. We use their official drafter checkpoints to report results.

Models. We conduct experiments on the Vicuna series (7B, 13B) (Zheng et al., 2023) and the
Llama-2-Chat series (7B, 13B) (Touvron et al., 2023). We chose these models as they are highly
representative, and most prior methods built their drafters upon these models, allowing a fair compar-
ison. We provide results for more recent target models in §5.3. All parallel drafters are constructed
with a single Transformer layer, with hyper-parameters identical to those of layers in their target
models. This results in a 202M drafter for 7B models and a 317M one for 13B models. We keep the
same draft token tree structure with the selected two baseline methods in PARALLELSPEC.

Metrics. Similar to other speculative decoding methods, we primarily focus on the end-to-end
wall-time speedup ratio compared to naive auto-regressive decoding. We also report the average
acceptance length τ in each round of speculative decoding.

2https://huggingface.co/double7/vicuna-68m
3https://huggingface.co/JackFram/llama-68m

8

https://huggingface.co/double7/vicuna-68m
https://huggingface.co/JackFram/llama-68m

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1

1.7

2.4

3.1

3.8

4.5

2 3 4 5

3.933.80

3.17

2.31 2.993.01

2.32

1.45

K =
1

1.7

2.4

3.1

3.8

4.5

2 3 4 5

3.31
3.10

2.89

2.09
2.462.40

1.94

1.23
K =

1

1.7

2.4

3.1

3.8

4.5

2 3 4 5

4.073.90

3.22

2.34 2.852.84

2.21

1.50

K =
1

1.7

2.4

3.1

3.8

4.5

2 3 4 5

3.553.52
3.17

2.23
2.532.55

2.01

1.46

K =

1.23

Multi-turn Conversations Question Answering Math Reasoning Overall

τspeedup

Figure 4: Ablations on speedup ratio and average acceptance length τ with respect to the number of
[MASK] tokens K on all three test datasets.

Model & Method Multi-turn
Conversation Translation Summarization Question

Answering
Mathematical

Reasoning
Retrieval-aug.

Generation Avg. τ (tokens)

LLaMA 2 7B w/ EAGLE 2.61× 2.38× 2.25× 2.30× 2.66× 2.23× 2.40× 3.55
+PARALLELSPEC 2.95×+13.0% 2.67×+12.2% 2.64×+17.3% 2.76×+20.0% 2.88×+8.3% 2.52×+13.0% 2.74×+14.2% 3.49
+PARALLELSPEC +self-distillation 3.02×+15.7% 2.77×+17.3% 2.71×+20.4% 2.87×+24.8% 2.98×+12.0% 2.56×+14.8% 2.82×+17.5% 3.78

Table 2: Ablations on alignment training data.

5.2 MAIN RESULTS

Table 1 gives a performance overview of PARALLELSPEC and established prior approaches on dif-
ferent types of text generation benchmarks. We refer to Appendix A.1 for qualitative case studies. In
general, PARALLELSPEC integration brings a consistent acceleration improvement in all domains,
two selected methods, and different decoding temperatures. Based on the results, we have the fol-
lowing key observations:

PARALLELSPEC significantly accelerates Medusa frameworks by a large margin. For example,
integrating PARALLELSPEC into Vicuna-7B Medusa boosts the average speedup ratio from 1.42×
to 2.31×, resulting in a 62.7% relative improvement. This even outperforms EAGLE, which can be
attributed to the parallel drafter design. It not only increases the average acceptance tokens from
2.39 to 3.31 but also significantly reduces drafter runtime overhead. Similar improvements are also
observed on Vicuna-13B Medusa, showing PARALLELSPEC is not sensitive to the target model size.

Equipping EAGLE with PARALLELSPEC also achieves considerable speedups. For instance,
the average speedup ratio on Vicuna-7B increased from 2.18× to 2.55×; on Llama2-7B-Chat, it rose
from 2.40× to 2.74×; and on LLaMA-13B-Chat, it went from 2.60× to 2.84×. It is worth noting
that incorporating PARALLELSPEC into EAGLE causes a slight drop in average acceptance length.
This is fully expected, as we no longer preserve the sequence dependency during the draft stage, and
the parallel decoding leads to a small decline in drafting accuracy. In addition, we also conduct ex-
periments on EAGLE-PARALLELSPEC with temperature decoding settings and observe substantial
overall speedup up to 2.22×. Still, the speculative decoding efficiency at high temperature degrades
compared with greedy decoding, echoing conclusions in previous studies (Xia et al., 2024).

5.3 ABLATION STUDIES

Training Data. Prior works often assume the availability of training data that aligns with the output
distribution of target models, which is not usually the case. Thus, directly using ShareGPT conver-
sations as SFT data for drafter training may suffer from the domain shift. In order to bypass this,
we follow Cai et al. (2024b) to employ the self-distillation technique to build the training dataset
that matches the target model. Specifically, we employ vLLM (Kwon et al., 2023) to obtain distilled
multi-turn conversations by feeding the prompts from ShareGPT in a greedy decoding setting. Ta-
ble 2 demonstrates that the self-distillation technique can further improve the speedup ratio, with the
average acceptance tokens greatly increased to 3.78.

Size of Parallel Group. The size of the parallel group is an important hyper-parameter of our
method, and it determines how many tokens the parallel drafter will predict at each step. It equals

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model & Method Multi-turn
Conversation Translation Summarization Question

Answering
Mathematical

Reasoning
Retrieval-aug.

Generation Avg. τ (tokens)

LLaMA 3 8B w/ EAGLE 2.66× 2.42× 2.33× 2.32× 2.75× 2.32× 2.47× 3.42
+PARALLELSPEC 3.03×+13.9% 2.63×+8.7% 2.61×+12.0% 2.83×+22.0% 2.92×+6.2% 2.45×+5.6% 2.75×+11.3% 3.36

Table 3: Ablations on recent advanced target models.

the number of [MASK] tokens K plus one. To investigate its impact on the speedup performance,
we conduct ablation studies to re-train parallel drafter with different K and report the speedup ratio
and average acceptance length in Figure 4. We notice the increase in the average acceptance length
τ resulting from larger parallel group size is steady for small K but saturates after K = 4, leading
the speedup ratio to no longer improve beyond that point. We believe this could be attributed to the
difficulty of predicting distant future tokens using parallel decoding. The benefit of increasing the
parallel group size cannot counterbalance the overhead of predicting distant tokens, resulting in a
speedup ratio sweet spot around K = 4.

Advanced Target Model. Table 3 reflects that more advanced models like LLaMA3-8B-
Instruct (AI@Meta, 2024) can still benefit from the design of PARALLELSPEC. However, the rela-
tive improvements on LLaMA3-Instruct series are slightly lower than those on LLaMA2-Chat and
Vicuna, possibly because of the larger misalignment between ShareGPT SFT data and LLaMA3-
Instruct.

6 CONCLUSION

In this paper, we introduce PARALLELSPEC, a powerful speculative decoding solution that could
be inserted into popular speculative decoding frameworks. It proposes to use a single lightweight
model and several trainable [MASK] tokens to facilitate fast multi-token prediction as drafters,
thereby mitigating the issue of drafting latency scaling linearly with the draft length. Compared with
the Medusa-style multi-head multi-token draft strategy, PARALLELSPEC demonstrates significant
advantages in drafting accuracy, latency, and parameter efficiency. Extensive experiments on various
benchmarks and different target models demonstrate the compatibility and performance superiority
of PARALLELSPEC.

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding,
2024.

Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry Mason, Mohammad Rastegari, and Mahyar
Najibi. Speculative streaming: Fast llm inference without auxiliary models. arXiv preprint arXiv:
2402.11131, 2024.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes Lev-
eling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia Spe-
cia, and Ale s Tamchyna. Findings of the 2014 workshop on statistical machine translation. In
Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 12–58, Baltimore,
Maryland, USA, June 2014. Association for Computational Linguistics.

Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi Chen. Lococo: Dropping in convolutions for
long context compression. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024a.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple LLM inference acceleration framework with multiple decoding heads. In Forty-
first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net, 2024b.

Zefan Cai., Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling. arXiv preprint arXiv: 2406.02069, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv: 2302.01318, 2023a.

Jian Chen, Vashisth Tiwari, Ranajoy Sadhukhan, Zhuoming Chen, Jinyuan Shi, Ian En-Hsu Yen,
and Beidi Chen. Magicdec: Breaking the latency-throughput tradeoff for long context generation
with speculative decoding. arXiv preprint arXiv: 2408.11049, 2024a.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia,
and Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. CoRR,
abs/2402.12374, 2024b.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chen-Chuan Chang, and Jie Huang.
Cascade speculative drafting for even faster llm inference. arXiv preprint arXiv: 2312.11462,
2023b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv: 2110.14168,
2021.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mohamed, A. Agarwal,
Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed A Aly, Beidi Chen, and
Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative decoding. arXiv
preprint arXiv: 2404.16710, 2024.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of LLM in-
ference using lookahead decoding. In Forty-first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel de-
coding of conditional masked language models. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 6112–6121, Hong Kong, China, November
2019. Association for Computational Linguistics.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. arXiv preprint arXiv:
2404.19737, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
guage models. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D. Lee, and Di He. REST: retrieval-based speculative
decoding. In Proceedings of the 2024 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),
NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 1582–1595. Association for Computa-
tional Linguistics, 2024.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Yuhan Dong,
and Yu Wang. Flashdecoding++: Faster large language model inference on gpus. arXiv preprint
arXiv: 2311.01282, 2023.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Hasan Genc, Kurt Keutzer, Amir Gholami,
and Sophia Shao. Speed: Speculative pipelined execution for efficient decoding. arXiv preprint
arXiv: 2310.12072, 2023.

Kaixuan Huang, Xudong Guo, and Mengdi Wang. Specdec++: Boosting speculative decoding via
adaptive candidate lengths. CoRR, abs/2405.19715, 2024a.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024b.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781, Online, November 2020. Association for Computational Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via specula-
tive decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Re-
search, pp. 19274–19286. PMLR, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv: 2404.14469, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: speculative sampling re-
quires rethinking feature uncertainty. In Forty-first International Conference on Machine Learn-
ing, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: faster inference of language
models with dynamic draft trees. CoRR, abs/2406.16858, 2024c.

Feng Lin, Hanling Yi, Hongbin Li, Yifan Yang, Xiaotian Yu, Guangming Lu, and Rong Xiao. Bita:
Bi-directional tuning for lossless acceleration in large language models. CoRR, abs/2401.12522,
2024.

Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, and Winston Hu. Parallel speculative decoding
with adaptive draft length. arXiv preprint arXiv: 2408.11850, 2024.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Con-
ference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating large language model serving
with tree-based speculative inference and verification. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 3, ASPLOS 2024, La Jolla, CA, USA, 27 April 2024- 1 May 2024, pp. 932–949. ACM,
2024.

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. arXiv
preprint arXiv: 2311.13581, 2023.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulehre, and Bing Xiang. Abstrac-
tive text summarization using sequence-to-sequence RNNs and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural Language Learning, pp. 280–290, Berlin,
Germany, August 2016. Association for Computational Linguistics.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Bider-
man, Huanqi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, Xingjian Du, Matteo
Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming
Kong, Bartłomiej Koptyra, Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, At-
sushi Saito, Guangyu Song, Xiangru Tang, Johan S. Wind, Stanisław Woźniak, Zhenyuan Zhang,
Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: Reinventing RNNs for the transformer era.
In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code. arXiv
preprint arXiv: 2308.12950, 2023.

Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Ric-
cardo Marin, and Emanuele Rodola. Accelerating transformer inference for translation via paral-
lel decoding. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 12336–12355, Toronto, Canada, July 2023. Association for Computational Linguistics.

Apoorv Saxena. Prompt lookup decoding, November 2023. URL https://github.com/
apoorvumang/prompt-lookup-decoding/.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. In Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623, 2023.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pp. 10107–10116, 2018.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix X.
Yu. Spectr: Fast speculative decoding via optimal transport. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

13

https://github.com/apoorvumang/prompt-lookup-decoding/
https://github.com/apoorvumang/prompt-lookup-decoding/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Steven Tay et al. Sharegpt, 2023. URL https://sharegpt.com/.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

Jikai Wang, Yi Su, Juntao Li, Qingrong Xia, Zi Ye, Xinyu Duan, Zhefeng Wang, and Min Zhang.
Opt-tree: Speculative decoding with adaptive draft tree structure. CoRR, abs/2406.17276, 2024a.
doi: 10.48550/ARXIV.2406.17276.

Zilong Wang, Zifeng Wang, Long Le, Huaixiu Steven Zheng, Swaroop Mishra, Vincent Perot,
Yuwei Zhang, Anush Mattapalli, Ankur Taly, Jingbo Shang, Chen-Yu Lee, and Tomas Pfister.
Speculative rag: Enhancing retrieval augmented generation through drafting. arXiv preprint
arXiv: 2407.08223, 2024b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing. arXiv preprint arXiv: 1910.03771, 2019.

Pengfei Wu, Jiahao Liu, Zhuocheng Gong, Qifan Wang, Jinpeng Li, Jingang Wang, Xunliang Cai,
and Dongyan Zhao. Parallel decoding via hidden transfer for lossless large language model ac-
celeration. arXiv preprint arXiv: 2404.12022, 2024.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of
speculative decoding. In Findings of the Association for Computational Linguistics ACL 2024, pp.
7655–7671, Bangkok, Thailand and virtual meeting, August 2024. Association for Computational
Linguistics.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan Majumder, and
Furu Wei. Inference with reference: Lossless acceleration of large language models. arXiv
preprint arXiv: 2304.04487, 2023.

Hanling Yi, Feng Lin, Hongbin Li, Ning Peiyang, Xiaotian Yu, and Rong Xiao. Generation meets
verification: Accelerating large language model inference with smart parallel auto-correct de-
coding. In Findings of the Association for Computational Linguistics ACL 2024, pp. 5285–5299,
Bangkok, Thailand and virtual meeting, August 2024. Association for Computational Linguistics.

Biao Zhang, Barry Haddow, and Alexandra Birch. Prompting large language model for machine
translation: A case study. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 41092–41110. PMLR, 2023a.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft&
verify: Lossless large language model acceleration via self-speculative decoding. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 11263–11282, Bangkok, Thailand, August 2024a. Association for Computational
Linguistics.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O:
heavy-hitter oracle for efficient generative inference of large language models. In Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023b.

Zhihao Zhang, Alan Zhu, Lijie Yang, Yihua Xu, Lanting Li, Phitchaya Mangpo Phothilimthana, and
Zhihao Jia. Accelerating iterative retrieval-augmented language model serving with speculation.
In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net, 2024b.

14

https://sharegpt.com/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Weilin Zhao, Yuxiang Huang, Xu Han, Wang Xu, Chaojun Xiao, Xinrong Zhang, Yewei Fang,
Kaihuo Zhang, Zhiyuan Liu, and Maosong Sun. Ouroboros: Generating longer drafts phrase by
phrase for faster speculative decoding. arXiv preprint arXiv: 2402.13720, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
decoding via knowledge distillation. In The Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for LLM
question answering with external tools. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CASE STUDY

Using the first two equations, we can express x and y in
terms of z:

x = 4z - y
y = 4z^2 - x

Substituting the second equation into the first, we get:

4z - y = 4z^2 - x

Simplifying, we get:

x - y = 4z^2 - 4z - x
x - y = 3z^2 - 4z

Therefore, x - y = 3z^2 - 4z.

Input prompt:
x+y = 4z, x*y = 4z^2, express x-y in z

Using the first two equations, we can express x and y in
terms of z:

x = 4z - y
y = 4z^2 - x

Substituting the second equation into the first, we get:

4z - y = 4z^2 - x

Simplifying, we get:

x - y = 4z^2 - 4z - x
x - y = 3z^2 - 4z

Therefore, x - y = 3z^2 - 4z.

(a) Vicuna-7B
Medusa

(b) Vicuna-7B
Medusa-ParallelSpec

Tokens without acceleration Tokens accelerated w/ Medusa

Tokens accelerated w/ Medusa-ParallelSpec

Average Acceptance Length: 2.66 Average Acceptance Length: 3.71

1.5ms 27.1ms

the first

2.8ms

two equations we

27.1ms

first two wethe

Latency: ~59.8ms

Latency: ~103.8ms

Latency Saved

,

equations ,

Figure 5: Upper: Visualization of accelerated tokens in generation from (a) Vicuna-7B Medusa and
(b) Vicuna-7B Medusa-PARALLELSPEC given an input prompt from GSM8K (Cobbe et al., 2021).
Lower: Simulated wall-time trace of two different methods generating the text in the highlighted
box. We only consider the forward pass latency of draft and verification while ignoring the negligible
post-processing overhead. : accepted draft tokens. : rejected draft tokens. : tokens without
speculative acceleration.

We provide an illustration of two different speculative decoding methods running on the same
prompt from GSM8K in Figure 5. The side-by-side comparison indicates that Vicuna-7B Medusa
equipped with PARALLELSPEC not only achieves a higher average acceptance length (3.71 vs. 2.66)
but also shows a significant advantage in end-to-end latency, thanks to the one-pass decoding nature
of parallel-decoding drafter. The lower part of Figure 5 even reveals that PARALLELSPEC nearly
cut half of the time cost when decoding the same text span compared with the baseline method.

A.2 EXPERIMENTAL DETAILS

Hyper Parameter Medusa-PARALLELSPEC EAGLE-PARALLELSPEC

Global Batch Size 32 32
Learning Rate 5× 10−4 5× 10−5

Optimizer AdamW (β1 = 0.9, β2 = 0.999) AdamW(β1 = 0.9, β2 = 0.95)
Weight Decay 0.0 0.0
Epochs 20 40

Table 4: Hyper parameters of PARALLELSPEC variants for 7B models.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

All training was conducted using a node with 8 NVIDIA A100-PCIE-40GB GPUs, 2 AMD EPYC
7282 CPUs, and 512GB RAM. Evaluations were conducted using one GPU of the above node.
PyTorch 2.2.0 with CUDA 12.1 version was used in all experiments. To avoid the discrepancies
brought by computing environment differences, we re-ran all baseline methods and our method 3
times and reported the mean speedup ratio. We list hyper-parameters used in PARALLELSPEC in
Table 4. One might notice that the baseline results have around 10% differences in terms of speedup
ratios compared with the original Spec-Bench (Xia et al., 2024). First, we refer you to the latest
benchmark page4 for updated results. We also appreciate your understanding that, due to budget
and practical constraints, we do not have access to the same computational resources as the Spec-
Bench team. Therefore, we were not able to reproduce their speedup results. However, since all the
improvements in this paper were obtained using the same hardware environment, our comparisons
are relatively fair. We also notice that in the Spec-Bench paper, Table 5 and Table 6 also reported
entirely different sets of speedup ratios when the only difference is the GPU used for benchmarking,
indicating the hardware specifications are one of the major factors that impact reported speedup.

A.3 TOKEN TREE VERIFICATION

Initially proposed in SpecInfer (Miao et al., 2024), and also explored in several follow-up works (Cai
et al., 2024b; Li et al., 2024b; Spector & Re, 2023), tree-based structure for token verification is
proved to be useful. Following existing studies, PARALLELSPEC leverages tree attention to realize
this process. Specifically, to guarantee that each token only accesses its predecessors, we use an
attention mask that exclusively permits attention flow from the current token back to its antecedent
tokens. The positional indices for positional encoding are adjusted in line with this structure. A
conceptual view of this process is visualized in Figure 6, with the draft tree structure in the figure
being adopted in all experiments. As the main contribution of this paper is not a novel token tree
verification strategy, we adopt the same static token trees used in Medusa-1 (Cai et al., 2024b) and
EAGLE (Li et al., 2024b). Starting from “Root”, every node is expanded with k tokens with top-k
highest probabilities. k is designed based on manually crafted rules, and is dynamically changing as
the tree depth grows.

Root k = 4

k = 3

k = 3

k = 3

k = 2

Figure 6: An example of the tree-structured verification process. Each circle represents a token, and
the shading of the color indicates the probability of each token in the distribution. Tokens with the
highest probability are selected and gradually expanded with dynamically designed k.

4https://github.com/hemingkx/Spec-Bench/blob/main/Leaderboard.md

17

https://github.com/hemingkx/Spec-Bench/blob/main/Leaderboard.md

	Introduction
	Related Works
	Background: Speculative Decoding
	Methodology
	Parallel Drafting
	Speculative Sampling with Parallel Drafting
	Integration with Popular Speculative Decoding Frameworks

	Experiments
	Settings
	Main Results
	Ablation Studies

	Conclusion
	Appendix
	Case Study
	Experimental Details
	Token Tree Verification

