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ABSTRACT

Speculative decoding has proven to be an efficient solution to large language
model (LLM) inference, where the small drafter predicts future tokens at a low
cost, and the target model is leveraged to verify them in parallel. However, most
existing works still draft tokens auto-regressively to maintain sequential depen-
dency in language modeling, which we consider a huge computational burden
in speculative decoding. We present PARALLELSPEC, an alternative to auto-
regressive drafting strategies in state-of-the-art speculative decoding approaches.
In contrast to auto-regressive drafting in the speculative stage, we train a paral-
lel drafter to serve as an efficient speculative model. PARALLELSPEC learns to
efficiently predict multiple future tokens in parallel using a single model, and it
can be integrated into any speculative decoding framework that requires aligning
the output distributions of the drafter and the target model with minimal training
cost. Experimental results show that PARALLELSPEC accelerates baseline meth-
ods in latency up to 62% on text generation benchmarks on Medusa and 9-17% on
EAGLE. It also achieves 2.84× overall speedup on the Llama-2-13B model using
third-party evaluation criteria.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (OpenAI, 2023) and Llama (Touvron et al., 2023)
have shown dominant abilities across various domains, such as question answering (Zhuang et al.,
2023), code synthesis (Rozière et al., 2023), machine translation (Zhang et al., 2023a) and beyond.
However, their auto-regressive nature requires multiple forward passes on models with billions or
trillions of parameters, bringing substantial inference latency, thus prohibiting real-time applica-
tions. In the pursuit of accelerating LLM inference, various strategies have been explored, including
utilizing model sparsity (Liu et al., 2023; Sun et al., 2024; Schuster et al., 2022; Cai et al., 2024a),
exploiting redundancy in KV Cache (Cai. et al., 2024; Zhang et al., 2023b; Li et al., 2024a), and
distilling model capabilities to smaller models (Gu et al., 2024; Agarwal et al., 2024). While these
approaches can lead to faster inference, they often come at the cost of reduced generation quality
and do not preserve the generation distributions of the original models.

Speculative decoding (SD) (Leviathan et al., 2023; Chen et al., 2023a) has been proposed as one
of the compelling alternatives to auto-regressive generation in a lossless manner. The key motiva-
tion behind SD is to utilize a low-cost small model to generate draft tokens efficiently and then use
the target model to verify them in parallel to ensure sampling integrity, known as draft-then-verify
framework. While promising, we observe that draft models in most draft-then-verify frameworks
still generate token by token, resulting in a low arithmetic intensity during the drafting stage. More-
over, the forward latency of the drafting stage still grows linearly with respect to the draft length, i.e.,
the number of tokens each draft step generates. As empirically profiled in the right part of Figure 1,
the draft latency still accounts for a significant proportion of the overall SD latency.

Researchers have spotted the draft latency issue and proposed several solutions to alleviate it by
dynamically determining the draft length either through learnable policy (Huang et al., 2024a),
confidence-guided heuristics (Li et al., 2024c), or optimized draft tree structures (Wang et al.,
2024a). Nevertheless, these solutions do not tackle the underlying issue of drafting latency scal-
ing linearly with the draft length, but operate only for maximally reducing the compute wasted in
drafting tokens that are unlikely to be accepted.
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Auto-regressive Drafting Parallel Drafting
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Auto-regressive Drafting Wall Time Trace

Parallel Drafting Wall Time Trace

Draft Step Verification Step Latency Saved

Figure 1: Illustration of PARALLELSPEC. The Left part of the figure has been revised to highlight
the difference between the two drafting styles. Left: comparison between auto-regressive drafting
and our proposed parallel drafting. Blocks in green indicate normal draft tokens. Blocks in yellow
denote the mask tokens used to prompt the draft model to generate multiple future tokens in a single
forward pass. Right: wall time trace diagrams for two drafting styles integrated with EAGLE (Li
et al., 2024b) in two rounds of speculative sampling, given the assumption that both drafting styles
have the same speculation accuracy on the prefix sequence.

To fundamentally solve the draft latency issue, we propose building a parallel-decoding drafter as
the replacement for auto-regressive drafters in popular SD frameworks. Unlike Medusa-style frame-
works (Cai et al., 2024b; Ankner et al., 2024) that rely on separate language model heads to decode
future tokens, we propose to use a single lightweight model to decode the next k tokens simul-
taneously. We argue that using a single model for multi-token prediction can effectively leverage
parameter sharing to achieve efficient drafter alignment rather than learning several independent
language model heads. The latter design would struggle even more with memory and computation
in the large vocabulary size (128,000+) of recently introduced language models such as Llama-
3 (AI@Meta, 2024). For efficient multi-token alignment training, we introduce a group-wise paral-
lel training strategy that mitigates possible training-inference mismatches by dynamically adjusting
the attention mask, positional indexes, and token layout.

Our method still adheres to the draft-and-verify framework at inference time: At each draft step,
the drafter generates k tokens with a single forward pass, and then they are sent to the target model
for parallel verification. Since our method incorporates token-level parallelization in the drafting
stage, both stages in the SD pipeline now benefit from this parallelization. Therefore, we name our
approach PARALLELSPEC. PARALLELSPEC works as an individual module, ready to replace any
drafter in existing SD frameworks that require distilling drafters from their target models. We ex-
periment with the popular speculative decoding framework Medusa (Cai et al., 2024b) and state-of-
the-art solution EAGLE (Li et al., 2024b) by replacing their drafters. Experimental results show that
PARALLELSPEC is able to bring consistent acceleration improvement in all task domains and differ-
ent combinations of models. For instance, incorporating PARALLELSPEC into Vicuna-7B Medusa
increases the average speedup ratio from 1.42× to 2.31×, leading to a 62.7% relative improvement.
This empirically validates the superiority of parallel drafter design. PARALLELSPEC integration
with EAGLE also achieves extra speedups across all target model settings, ranging from 2.55× to
2.84×, with a relative improvement ranging from 9% to 17%. In summary, our key contributions
are as follows:

• We propose PARALLELSPEC as a parallel multi-token drafter to replace the auto-regressive drafter
design in existing SD frameworks that require aligning drafters with their target models.

• We design a group-wise training strategy that allows efficient and accurate parallel drafter training.

• We integrate the proposed method into two popular SD frameworks. Extensive experiments
demonstrate the compatibility and performance superiority of PARALLELSPEC.

2 RELATED WORKS

Accelerating Large Language Model (LLM) Inference has attracted considerable research atten-
tion from both machine learning system and natural language processing communities and even led
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the trend of hardware-software co-design. These research efforts include model compression (Sun
et al., 2024; Huang et al., 2024b; Ma et al., 2023), novel architecture design (Gu & Dao, 2023; Peng
et al., 2023) and hardware optimization (Dao et al., 2022; Hong et al., 2023). However, some of
these methods could lead to generation discrepancies compared to the target model, representing a
trade-off between model performance and inference speed. We consider those methods that cannot
generate with the target model’s original distribution as lossy acceleration methods.

Speculative Decoding (SD) (Leviathan et al., 2023; Chen et al., 2023a) arises as one of the lossless
acceleration methods for LLM inference. It is based on the observation that the latency bottleneck of
LLM inference is brought by memory bandwidth instead of arithmetic computation. SD alleviates
the bandwidth bottleneck by utilizing a small model to draft multiple tokens and verifying them in
parallel with the target model, thereby reducing the frequency of language model calls and decreas-
ing the memory access density during decoding. The community has witnessed many improvements
in efficiently and accurately drafting tokens. Self-speculative decoding methods (Hooper et al.,
2023; Elhoushi et al., 2024; Zhang et al., 2024a; Bhendawade et al., 2024) do not explicitly rely
on draft models but use some of the intermediate layers of the target model to draft. Medusa-style
methods add independent (Cai et al., 2024b) or sequential (Ankner et al., 2024) decoding heads on
the target model to draft tokens. Lookahead decoding and its variants (Fu et al., 2024; Zhao et al.,
2024) use n-gram trajectory as drafts. DistillSpec (Zhou et al., 2024) leverages knowledge distil-
lation to closely align distributions between the draft and target models. PEARL (Liu et al., 2024)
proposes two-stage verification to alleviate the mutual waiting problem. Apart from efficient draft
methods, token tree verification (Miao et al., 2024; Sun et al., 2023) has been widely adopted for
verifying top candidate sequences that share common prefixes in parallel. Specialized SD frame-
works for long-context generation (Chen et al., 2024a;b), retrieval-augmented generation (He et al.,
2024; Wang et al., 2024b; Zhang et al., 2024b) and beyond (Chen et al., 2023b) have been proposed
to better fit individual use cases.

Parallel Decoding was first known for its efficiency in machine translation system (Ghazvininejad
et al., 2019) and code generation (Gloeckle et al., 2024) as an alternative to auto-regressive gener-
ation. However, its usage in SD frameworks remains under-explored. Cai et al. (2024b) and Stern
et al. (2018) utilize parallel language model heads to predict multiple tokens at different positions.

Santilli et al. (2023) proposed to use fixed-point iterations to replace auto-regressive decoding.
Monea et al. (2023); Yi et al. (2024) pioneered the use of parallel decoding in SD, but it is limited
to a self-speculative framework and results in different generation sampling. BiTA (Lin et al., 2024)
proposed using prompt tuning to train a small number of prompt parameters on a frozen target LM
for semi-autoregressive generation. Wu et al. (2024) suggested using trainable linear projection to
regress intermediate hidden states of target models, thereby enabling multi-token prediction. How-
ever, these methods either fail to effectively learn the draft distribution due to the limited number of
learnable parameters or cannot achieve lossless acceleration due to the method design.

3 BACKGROUND: SPECULATIVE DECODING

Notation. Speculative decoding (SD) frameworks maintain two models: the target model, denoted
as MT, is the one which we want the SD frameworks to sample from; the draft model, denoted as
MD, is the one that proposes candidate tokens which are later being verified by the target model. Let
x<t be the prompt sequence we are running the SD framework on, p (xt | x<t), q (xt | x<t) be the
inference distribution of MT and MD given the prompt x<t, respectively. We use the denotations of
p (yt) and q (yt) to indicate p (yt | x, y<t) and q (yt | x, y<t) whenever they do not lead to confusion.

Speculative Decoding Procedures. One round of speculative decoding can be divided into the
drafting and verification stages, each governed by the corresponding model. The drafting stage auto-
regressively calls MD to sample γ candidate token distributions q (yt) , . . . , q (yt+γ−1). The verifi-
cation stage calls MT once to sample γ distributions from the target model, p (yt) , . . . , p (yt+γ−1),
given yt+i is the concatenation of y<t and drafted token sequence x1, . . . , xi, where xk ∼ q (yt+k).
The verification stage determines whether the token yt+i is accepted via speculative sampling, where
its acceptance rate αi is defined as:

3
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Figure 2: Illustration of parallel drafter inference, training, and the difference between training auto-
regressive drafter and parallel one. Left: Parallel drafter proposes multiple candidate tokens with a
single forward pass. Middle: Training the parallel drafter to align with the target model is a process
of knowledge distillation (KD). Right: The input, labels, and position indices for training a parallel
drafter need special treatment. † refers to Figure 3 for the special attention mask design of parallel
training.

αi =

{
1 p (yt+i) ≥ q (yt+i)
p(yt+i)
q(yt+i)

p (yt+i) < q (yt+i)
(1)

If the token yt+i is rejected before γ candidate tokens are all accepted, the remaining draft tokens
will be discarded, and yt+i will be resampled from max (0, p (yt+i)− q (yt+i)). Otherwise, drafted
tokens are all accepted and SD samples an extra token from yt+γ and appends it to the end of the
sequence. Each round of speculative decoding generates at least 1 and at most γ + 1 tokens, and
Leviathan et al. (2023) theoretically proves that the sequence from SD and the sequence from the
target model follow the same distribution.

Average Acceptance Length. One important efficiency metric to measure an SD system is the
acceptance rate of drafted tokens in each round of speculative decoding. Since each drafting step
takes a constant amount of time and each round of conventional SD takes the same drafting steps, the
overall efficiency of an SD system will be determined by the average acceptance length τ measured
on some prompt sequences.

Token Tree Verification. Prior studies (Miao et al., 2024; Leviathan et al., 2023) suggest that
verifying multiple candidate sequences within the same verification step could greatly improve the
expected acceptance length. This is achieved by the tree attention mechanism. By properly arranging
the top predicted tokens at different token positions and manipulating the attention mask based on a
tree structure, we enable the processing of multiple candidate sequences with only one verification
step. We refer to the details of token tree verification in Appendix A.3.

4 METHODOLOGY

In this section, we describe our parallel drafting method (§4.1), the algorithm that preserves the
output distribution of the target model with parallel drafter (§4.2) and its integration into popular
speculative sampling methods (§4.3).

4.1 PARALLEL DRAFTING

Inference. Let Mθ
D be the parallel drafter parameterized by θ, and qθ (xt, xt+1, . . . , xt+k | x<t)

be the multi-token output distribution of the parallel drafter. Naive draft models do not support
predicting multiple tokens in a single forward pass. In order to equip a drafter with such abilities,
we propose to use customized [MASK] tokens as prompt tokens to produce contextualized token-
level representations that are used to enforce multi-token training. The parallel drafter introduces k
special tokens in its vocabulary, [MASK]1, . . . ,[MASK]k. At each drafting step where the drafter
is invoked, k special tokens are concatenated after the original input sequence x<t. Apart from
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the last token representation that is used to decode the next token xt, the last-layer representations
corresponding to [MASK] tokens are leveraged to sample future tokens xt+1, . . . , xt+k. The left
part of Figure 2 demonstrates how the parallel draft model proposes 3 future tokens with 2 [MASK]
prompt tokens.

Good morni
ng

-100

, [M1] [M2] how [M1] [M2]

-100

how

are

you

are

you

doing

Parallel Group 1Prefix Parallel Group 2

src

tgt

Parallel drafter learns to predict the next-next token “you”
with “Good morning, how” and ignores [MASK] tokens from Parallel Group 1.

Figure 3: Attention mask illustration of parallel
drafter training. denotes activated attention.

denotes attention suppressed to prevent access
across parallel groups. -100 denotes ignored to-
kens in the target sequence that do not contribute
to training loss. Blocks with yellow and the leg-
end illustrate one of the next-next token prediction
training objectives.

Group-wise Parallel Training. Given
the access to either the ground truth fu-
ture tokens yt, yt+1, . . . , yt+k or their
output distributions of the target model
p(yt), p(yt+1), . . . , p(yt+k), training a parallel
drafter is a process of knowledge distillation
(KD) in either online or offline setting (Zhou
et al., 2024), which we defer to §4.3 for
detailed discussion. This process is not as
trivial as training an auto-regressive drafter,
where teacher-forcing supervision is enforced
via shift-one-token in labels as depicted in
the upper right of Figure 2. Simply shifting
the label position by k tokens would result in
discrepancies between training and inference.
Therefore, We carefully design a group-wise
training paradigm that eliminates training-
inference mismatch by manipulating the token
layout, attention masks, and position indices,
illustrated in the lower right of Figure 2.
Specifically, we introduce the concept of
parallel group, illustrated in Figure 3, where
each parallel group in the source sequence
consists of an input token and several [MASK]
tokens. At each training step, a customized
causal attention mask guarantees that all train-
ing token pairs ignore [MASK] tokens from
previous parallel groups to ensure the model
behaves the same in training and evaluation.

4.2 SPECULATIVE SAMPLING WITH
PARALLEL DRAFTING

In order to preserve the output distribution of the target model as standard speculative sampling
does, following Monea et al. (2023), we present a modified version of speculative sampling (Chen
et al., 2023a) that drafts with a parallel decoder and verifies with the target model using token tree
verification method (Miao et al., 2024), detailed in Algorithm 1.

4.3 INTEGRATION WITH POPULAR SPECULATIVE DECODING FRAMEWORKS

PARALLELSPEC can be inserted into any speculative decoding (SD) framework that requires align-
ing output distributions of the drafter and the target model. We choose two popular SD frameworks
as testbeds, Medusa (Cai et al., 2024b) and EAGLE (Li et al., 2024b).

Medusa leverages an offline knowledge distillation method, where cross-entropy loss between
Medusa heads and ground truth tokens is used for alignment. Specifically, K extra decoding heads
are added to decode the last hidden states of the target model, and the k-th head is used to predict
the (t+ k + 1)-th token given a prefix sequence of length t. The final training objective of Medusa
is expressed as:

LMEDUSA =

K∑
k=1

−λk log p
(k)
t (yt+k+1) , (2)

where λk is a coefficient to balance learning difficulties, p(k)t is the output distribution of the k-th
head and yt+k+1 is the oracle token.
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Algorithm 1 Speculative Sampling with Parallel Draft Models and Token Tree Verification
Given k special tokens [MASK]1, . . . ,[MASK]k and minimum target sequence length T .
Given the target model distribution p(·|·), the parallel draft model distribution q(·|·) and initial prefix se-
quence x<n.
Return the generated sequence y.
Initialise n← t, y ← x<n.
while n < T do

Draft future token treeN by sampling from the parallel draft model with a single forward pass:

N ∼ (q(x|x<n), q(x|x<n,[MASK]1), . . . , q(x|x<n,[MASK]1, . . . ,[MASK]k))

In parallel, compute a set of logits O with the target model usingN and tree attention.

O = TreeParallelDecode(N , p)

V = ∅, u ▷ u is the root node ofN
while u is not a leaf node do
H = Child(u) ▷ Child(u) returns the child nodes of u

whileH is not empty do
Sample r ∼ U [0, 1]; s = Select(H); x̃s = H(s); t = TreeDepth(s)

if r < min

(
1,

p(x̃s|x<n,V)
q(x̃s|x<n, . . . ,[MASK]t−1)

)
then

✓ accept the draft token xs at depth t

V .append(xs); u = s; n← n+ 1

break
else
× reject the draft token xs. Normalize the residual.

p(x|x<n, . . . ,V) := (p(x|x<n, . . . ,V)− q(x|x<n, . . . ,[MASK]t−1))+

H.pop(s)

end if
end while
ifH is empty then

break
end if

end while
xnext ∼ p(x|x<n, . . . ,V); n← n+ 1; V .append(xnext)
y ← y + V

end while

5 EXPERIMENTS

This section describes the experimental settings (§5.1), including training and evaluation datasets,
metrics, and involved baselines. §5.2 reports the main results for PARALLELSPEC compared with
baselines. Finally, we discuss the impact of different experiment settings in §5.3.

To integrate PARALLELSPEC into Medusa, we introduce a Transformer model specialized in multi-
token prediction to replace K Medusa heads as the new draft model. The draft model shares the
embedding layer and the language model head with the target model to minimize memory overhead,
and they remain frozen to preserve the target model’s output distribution. K trainable [MASK]
tokens are added to the embedding layer of the draft model to facilitate parallel training. During the
training, each parallel group is trained with a similar objective denoted in Equation 2, except that
the log term now denotes the output distribution of the parallel drafter at position k, and we need to
consider the non-mask token at the beginning of each parallel group:

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

LMEDUSA-Parallel = − log q (yt+1|x<t)−
K∑

k=1

λk log q (yt+k+1|x<t,[MASK]1, . . . ,[MASK]k) . (3)

EAGLE utilizes an online knowledge distillation method that directly regresses the last-layer hidden
states at the feature level. Specifically, we denote the last-layer hidden states of the target model at
t-th position as ft, the embedding of t-th token as et, and the oracle token as yt. EAGLE proposed
to use a fully connected layer and an auto-regression head π

(
f̃t|f<t, e<t

)
as the draft model to

predict the next feature that is used to decode draft tokens. The training objective of EAGLE on
each token position is a linear combination of the regression loss Lreg and the cross-entropy loss Lcls
between draft tokens and oracle tokens:

Lreg = SmoothL1
(
ft+1, π

(
f̃t|f<t, e<t

))
,

Lcls = − logµ (yt+1) ,
(4)

where µ denotes the language model head distribution conditioned on drafted feature f̃t.

Integrating PARALLELSPEC into EAGLE is more intuitive, as it only requires minor modifications
to turn the auto-regression head into a parallel head with the method outlined in §4.1, without extra
adaptation. For a parallel group of size K starting at token position t, the training loss of EAGLE-
Parallel is the sum of EAGLE losses (defined in Equation 4) over K tokens within the same group.
At inference time, EAGLE integration needs an additional effort. Each drafting step uses only the
embedding of [MASK] tokens with the target features of [MASK] tokens left empty, i.e.:

f̃t, . . . , f̃t+K+1 = π
(
[f<t, 0, . . . 0] ;

[
e<t, e[MASK1], . . . , e[MASKK ]

])
. (5)

This is because these introduced [MASK] tokens are not in the original vocabulary of the target
models; therefore, there is no way to produce target features for these [MASK] tokens. We only use
the trainable embeddings of [MASK] as a signal for the drafter to predict tokens at different future
time steps.

5.1 SETTINGS

Datasets, Tasks, and Training. Following the setup of SpecBench (Xia et al., 2024), we con-
duct evaluations on six types of text generation tasks, including MT-bench (Zheng et al., 2023)
for multi-turn conversation, CNN/Daily Mail (Nallapati et al., 2016) for text summarization, Natu-
ral Questions (Karpukhin et al., 2020) for retrieval-augmented generation and question answering,
WMT14 DE-EN (Bojar et al., 2014) for machine translation, GSM8K (Cobbe et al., 2021) for math-
ematical reasoning. As PARALLELSPEC falls into the category of speculative decoding methods
that require an extra alignment stage, supervised fine-tuning (i.e., SFT) data are needed for aligning
distributional similarity between the drafter and the target model. To ensure a fair comparison with
baselines in this category, we follow Li et al. (2024b) to use 68,000 ShareGPT (Tay et al., 2023)
conversations as training data without self-distillation. For the self-distillation setting where multi-
turn conversations are distilled from the target model given the prompts from the dataset, we refer
to §5.3. Due to the group-wise parallel training strategy, the training sequences for PARALLELSPEC
will become longer than the ones of conventional auto-regressive drafter. Training PARALLELSPEC
on 7B models takes 13 hours on 8 A100-PCIE-40GB GPUs for 40 epochs. The size of parallel
group is set to 5, i.e., the number of [MASK] tokens k = 4 unless stated otherwise. We refer to
Appendix A.2 for details such as computing environment, other hyper-parameters, etc.

Baselines. We select seven competitive speculative decoding methods as baselines. Some of
them work as plugin modules like Speculative Sampling (SpS) (Chen et al., 2023a), Prompt Lookup
Decoding (PLD) (Saxena, 2023; Yang et al., 2023) and Lookahead Decoding (Fu et al., 2024), which

1While we name this model Medusa + PARALLELSPEC, we clarify that only Medusa-style loss is used in
the Medusa PARALLELSPEC integration, and no more Medusa heads are utilized as drafter.
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Model Method Multi-turn
Conversation Translation Summarization Question

Answering
Mathematical

Reasoning
Retrieval-aug.

Generation Avg. τ (tokens)

Temperature = 0.0

V 7B

SpS 1.67×±0.04 1.13×±0.02 1.71×±0.01 1.49×±0.04 1.50×±0.03 1.67×±0.02 1.53×±0.03 2.27
PLD 1.61×±0.02 1.02×±0.01 2.57×±0.02 1.14×±0.02 1.61×±0.01 1.82×±0.06 1.62×±0.01 1.75
Hydra 2.50×±0.02 1.94×±0.03 1.89×±0.04 2.02×±0.04 2.53×±0.02 1.86×±0.07 2.13×±0.04 3.26
Lookahead 1.48×±0.02 1.15×±0.02 1.36×±0.02 1.27×±0.02 1.59×±0.03 1.23×±0.03 1.35×±0.02 1.64
Medusa 1.60×±0.01 1.39×±0.01 1.22×±0.03 1.37×±0.00 1.68×±0.01 1.20×±0.06 1.42×±0.01 2.39

+PARALLELSPEC
1 2.63×±0.02 1.97×±0.03 2.32×±0.04 2.20×±0.02 2.78×±0.03 1.98×±0.03 2.31×±0.02 3.31

Medusa† 1.87×±0.01 1.56× ±0.01 1.49×±0.02 1.56×±0.02 1.85×±0.04 1.42×±0.02 1.63×±0.02 2.31
EAGLE-2 2.68×±0.05 1.78×±0.04 2.23×±0.03 2.04×±0.04 2.69×±0.04 2.02×±0.03 2.24×±0.04 4.34
EAGLE 2.57×±0.02 1.85×±0.04 2.17×±0.05 2.03×±0.04 2.57×±0.05 1.92×±0.04 2.18×±0.04 3.58

+PARALLELSPEC 3.01×±0.04 2.09×±0.01 2.62×±0.06 2.40×±0.03 2.84×±0.05 2.36×±0.02 2.55×±0.03 3.52

L2 7B

SpS 1.33×±0.03 1.25×±0.03 1.21×±0.02 1.30×±0.01 1.34×±0.02 1.43×±0.03 1.31×±0.02 1.67
PLD 1.42×±0.01 1.17×±0.02 1.44×±0.02 1.07×±0.02 1.31×±0.02 1.57×±0.01 1.33×±0.01 1.42
Lookahead 1.46×±0.05 1.36×±0.04 1.34×±0.04 1.32×±0.03 1.47×±0.04 1.37×±0.03 1.39×±0.04 1.60
EAGLE 2.61×±0.02 2.38×±0.02 2.25×±0.02 2.30×±0.05 2.66×±0.06 2.23×±0.01 2.40×±0.02 3.55

+PARALLELSPEC 2.95×±0.03 2.67×±0.01 2.64×±0.03 2.76×±0.04 2.88×±0.02 2.52×±0.03 2.74×±0.03 3.49

V 13B

SpS 1.69×±0.01 1.16×±0.01 1.78×±0.00 1.45×±0.01 1.60×±0.01 1.76×±0.04 1.57×±0.01 2.18
Medusa 2.06×±0.01 1.77×±0.02 1.66×±0.04 1.74×±0.01 2.12×±0.01 1.62×±0.05 1.84×±0.02 2.39

+PARALLELSPEC 2.76×±0.04 2.37×±0.05 2.16×±0.02 2.33×±0.03 2.62×±0.03 2.27×±0.04 2.52×±0.05 3.34
EAGLE 2.78×±0.02 2.03×±0.03 2.41×±0.02 2.11×±0.03 2.78×±0.04 2.20×±0.03 2.39×±0.02 3.64

+PARALLELSPEC 3.03×±0.04 2.30×±0.03 2.65×±0.02 2.36×±0.03 3.04×±0.05 2.46×±0.04 2.64×±0.02 3.56

L2 13B
SpS 1.38×±0.03 1.30×±0.03 1.26×±0.04 1.36×±0.03 1.41×±0.02 1.47×±0.06 1.36×±0.03 1.66
EAGLE 2.80×±0.01 2.60×±0.02 2.53×±0.06 2.42×±0.03 2.85×±0.03 2.39×±0.12 2.60×±0.03 3.66

+PARALLELSPEC 3.02×±0.02 2.81×±0.03 2.77×±0.07 2.68×±0.03 3.00×±0.02 2.74×±0.04 2.84×±0.04 3.60

Temperature = 1.0

V 7B
SpS 1.35×±0.00 1.01×±0.00 1.39×±0.02 1.25×±0.01 1.29×±0.02 1.38×±0.05 1.28×±0.01 1.82
PLD 1.56×±0.01 0.98×±0.01 2.49×±0.01 1.12×±0.00 1.56×±0.01 1.73×±0.01 1.57×±0.00 1.70
Lookahead 1.43×±0.00 1.10×±0.01 1.32×±0.00 1.21×±0.01 1.53×±0.01 1.16×±0.00 1.29×±0.00 1.64
EAGLE 2.10×±0.01 1.59×±0.02 1.83×±0.05 1.70×±0.02 2.04×±0.02 1.78×±0.06 1.84×±0.01 3.18

+PARALLELSPEC 2.32×±0.02 1.78×±0.03 2.06×±0.04 1.89×±0.02 2.10×±0.01 1.96×±0.02 2.02×±0.03 3.09

L2 7B
SpS 1.11×±0.00 1.07×±0.01 1.04×±0.02 1.09×±0.01 1.13×±0.01 1.15×±0.01 1.10×±0.01 1.47
EAGLE 2.19×±0.02 1.92×±0.05 1.91×±0.03 1.93×±0.05 2.31×±0.05 1.87×±0.07 2.02×±0.04 3.30

+PARALLELSPEC 2.47×±0.03 2.15×±0.02 2.08×±0.04 2.11×±0.03 2.42×±0.01 2.06×±0.03 2.22×±0.02 3.25

Table 1: Speedup ratios and average acceptance lengths τ of different methods tested on an A100-
PCIE-40GB GPU using third-party benchmark toolkit SpecBench (Xia et al., 2024). V: Vicuna-v1.3.
L2: LLaMA2-Chat. We report the mean and standard deviation of speedup ratios on 3 different runs.
Best metrics for each model are marked in boldface. † denotes additional evaluation that runs on an
RTX-4090 GPU.

do not need additional training. For SpS methods, we use vicuna-68m2 and llama-68m3 as the
drafter for Vicuna and Llama target models, respectively. SpS implementation strictly follows Spec-
Bench (Xia et al., 2024) and Huggingface (Wolf et al., 2019) assisted generation setup, where the
number of draft tokens per step γ is updated with heuristic rules. For PLD, we follow the default
settings of n-gram size = 3 and number of lookup tokens = 10. For Lookahead Decoding, we
use the official recommended configuration of level = 5, window size = 7, and n-gram size = 7.
The remaining methods, including Medusa (Cai et al., 2024b), Hydra (Ankner et al., 2024), and
EAGLE (Li et al., 2024b), that require extra training while preserving the output distributions, are
the main peer works for comparison. We use their official drafter checkpoints to report results.

Models. We conduct experiments on the Vicuna series (7B, 13B) (Zheng et al., 2023) and the
Llama-2-Chat series (7B, 13B) (Touvron et al., 2023). We chose these models as they are highly
representative, and most prior methods built their drafters upon these models, allowing a fair compar-
ison. We provide results for more recent target models in §5.3. All parallel drafters are constructed
with a single Transformer layer, with hyper-parameters identical to those of layers in their target
models. This results in a 202M drafter for 7B models and a 317M one for 13B models. We keep the
same draft token tree structure with the selected two baseline methods in PARALLELSPEC.

Metrics. Similar to other speculative decoding methods, we primarily focus on the end-to-end
wall-time speedup ratio compared to naive auto-regressive decoding. We also report the average
acceptance length τ in each round of speculative decoding.

2https://huggingface.co/double7/vicuna-68m
3https://huggingface.co/JackFram/llama-68m
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Figure 4: Ablations on speedup ratio and average acceptance length τ with respect to the number of
[MASK] tokens K on all three test datasets.

Model & Method Multi-turn
Conversation Translation Summarization Question

Answering
Mathematical

Reasoning
Retrieval-aug.

Generation Avg. τ (tokens)

LLaMA 2 7B w/ EAGLE 2.61× 2.38× 2.25× 2.30× 2.66× 2.23× 2.40× 3.55
+PARALLELSPEC 2.95×+13.0% 2.67×+12.2% 2.64×+17.3% 2.76×+20.0% 2.88×+8.3% 2.52×+13.0% 2.74×+14.2% 3.49
+PARALLELSPEC +self-distillation 3.02×+15.7% 2.77×+17.3% 2.71×+20.4% 2.87×+24.8% 2.98×+12.0% 2.56×+14.8% 2.82×+17.5% 3.78

Table 2: Ablations on alignment training data.

5.2 MAIN RESULTS

Table 1 gives a performance overview of PARALLELSPEC and established prior approaches on dif-
ferent types of text generation benchmarks. We refer to Appendix A.1 for qualitative case studies. In
general, PARALLELSPEC integration brings a consistent acceleration improvement in all domains,
two selected methods, and different decoding temperatures. Based on the results, we have the fol-
lowing key observations:

PARALLELSPEC significantly accelerates Medusa frameworks by a large margin. For example,
integrating PARALLELSPEC into Vicuna-7B Medusa boosts the average speedup ratio from 1.42×
to 2.31×, resulting in a 62.7% relative improvement. This even outperforms EAGLE, which can be
attributed to the parallel drafter design. It not only increases the average acceptance tokens from
2.39 to 3.31 but also significantly reduces drafter runtime overhead. Similar improvements are also
observed on Vicuna-13B Medusa, showing PARALLELSPEC is not sensitive to the target model size.

Equipping EAGLE with PARALLELSPEC also achieves considerable speedups. For instance,
the average speedup ratio on Vicuna-7B increased from 2.18× to 2.55×; on Llama2-7B-Chat, it rose
from 2.40× to 2.74×; and on LLaMA-13B-Chat, it went from 2.60× to 2.84×. It is worth noting
that incorporating PARALLELSPEC into EAGLE causes a slight drop in average acceptance length.
This is fully expected, as we no longer preserve the sequence dependency during the draft stage, and
the parallel decoding leads to a small decline in drafting accuracy. In addition, we also conduct ex-
periments on EAGLE-PARALLELSPEC with temperature decoding settings and observe substantial
overall speedup up to 2.22×. Still, the speculative decoding efficiency at high temperature degrades
compared with greedy decoding, echoing conclusions in previous studies (Xia et al., 2024).

5.3 ABLATION STUDIES

Training Data. Prior works often assume the availability of training data that aligns with the output
distribution of target models, which is not usually the case. Thus, directly using ShareGPT conver-
sations as SFT data for drafter training may suffer from the domain shift. In order to bypass this,
we follow Cai et al. (2024b) to employ the self-distillation technique to build the training dataset
that matches the target model. Specifically, we employ vLLM (Kwon et al., 2023) to obtain distilled
multi-turn conversations by feeding the prompts from ShareGPT in a greedy decoding setting. Ta-
ble 2 demonstrates that the self-distillation technique can further improve the speedup ratio, with the
average acceptance tokens greatly increased to 3.78.

Size of Parallel Group. The size of the parallel group is an important hyper-parameter of our
method, and it determines how many tokens the parallel drafter will predict at each step. It equals
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Model & Method Multi-turn
Conversation Translation Summarization Question

Answering
Mathematical

Reasoning
Retrieval-aug.

Generation Avg. τ (tokens)

LLaMA 3 8B w/ EAGLE 2.66× 2.42× 2.33× 2.32× 2.75× 2.32× 2.47× 3.42
+PARALLELSPEC 3.03×+13.9% 2.63×+8.7% 2.61×+12.0% 2.83×+22.0% 2.92×+6.2% 2.45×+5.6% 2.75×+11.3% 3.36

Table 3: Ablations on recent advanced target models.

the number of [MASK] tokens K plus one. To investigate its impact on the speedup performance,
we conduct ablation studies to re-train parallel drafter with different K and report the speedup ratio
and average acceptance length in Figure 4. We notice the increase in the average acceptance length
τ resulting from larger parallel group size is steady for small K but saturates after K = 4, leading
the speedup ratio to no longer improve beyond that point. We believe this could be attributed to the
difficulty of predicting distant future tokens using parallel decoding. The benefit of increasing the
parallel group size cannot counterbalance the overhead of predicting distant tokens, resulting in a
speedup ratio sweet spot around K = 4.

Advanced Target Model. Table 3 reflects that more advanced models like LLaMA3-8B-
Instruct (AI@Meta, 2024) can still benefit from the design of PARALLELSPEC. However, the rela-
tive improvements on LLaMA3-Instruct series are slightly lower than those on LLaMA2-Chat and
Vicuna, possibly because of the larger misalignment between ShareGPT SFT data and LLaMA3-
Instruct.

6 CONCLUSION

In this paper, we introduce PARALLELSPEC, a powerful speculative decoding solution that could
be inserted into popular speculative decoding frameworks. It proposes to use a single lightweight
model and several trainable [MASK] tokens to facilitate fast multi-token prediction as drafters,
thereby mitigating the issue of drafting latency scaling linearly with the draft length. Compared with
the Medusa-style multi-head multi-token draft strategy, PARALLELSPEC demonstrates significant
advantages in drafting accuracy, latency, and parameter efficiency. Extensive experiments on various
benchmarks and different target models demonstrate the compatibility and performance superiority
of PARALLELSPEC.
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A APPENDIX

A.1 CASE STUDY

Using the first two equations, we can express x and y in 
terms of z: 

x = 4z - y 
y = 4z^2 - x 

Substituting the second equation into the first, we get: 

4z - y = 4z^2 - x 

Simplifying, we get: 

x - y = 4z^2 - 4z - x 
x - y = 3z^2 - 4z 

Therefore, x - y = 3z^2 - 4z.

Input prompt:  
x+y = 4z, x*y = 4z^2, express x-y in z

Using the first two equations, we can express x and y in 
terms of z: 

x = 4z - y 
y = 4z^2 - x 

Substituting the second equation into the first, we get: 

4z - y = 4z^2 - x 

Simplifying, we get: 

x - y = 4z^2 - 4z - x 
x - y = 3z^2 - 4z 

Therefore, x - y = 3z^2 - 4z.

(a) Vicuna-7B 
Medusa 

(b) Vicuna-7B 
Medusa-ParallelSpec 

Tokens without acceleration Tokens accelerated w/ Medusa

Tokens accelerated w/ Medusa-ParallelSpec

Average Acceptance Length: 2.66 Average Acceptance Length: 3.71

1.5ms 27.1ms

the first

2.8ms

two equations we

27.1ms

first two wethe

Latency: ~59.8ms

Latency: ~103.8ms

Latency Saved

,

equations ,

Figure 5: Upper: Visualization of accelerated tokens in generation from (a) Vicuna-7B Medusa and
(b) Vicuna-7B Medusa-PARALLELSPEC given an input prompt from GSM8K (Cobbe et al., 2021).
Lower: Simulated wall-time trace of two different methods generating the text in the highlighted
box. We only consider the forward pass latency of draft and verification while ignoring the negligible
post-processing overhead. : accepted draft tokens. : rejected draft tokens. : tokens without
speculative acceleration.

We provide an illustration of two different speculative decoding methods running on the same
prompt from GSM8K in Figure 5. The side-by-side comparison indicates that Vicuna-7B Medusa
equipped with PARALLELSPEC not only achieves a higher average acceptance length (3.71 vs. 2.66)
but also shows a significant advantage in end-to-end latency, thanks to the one-pass decoding nature
of parallel-decoding drafter. The lower part of Figure 5 even reveals that PARALLELSPEC nearly
cut half of the time cost when decoding the same text span compared with the baseline method.

A.2 EXPERIMENTAL DETAILS

Hyper Parameter Medusa-PARALLELSPEC EAGLE-PARALLELSPEC

Global Batch Size 32 32
Learning Rate 5× 10−4 5× 10−5

Optimizer AdamW (β1 = 0.9, β2 = 0.999) AdamW(β1 = 0.9, β2 = 0.95)
Weight Decay 0.0 0.0
Epochs 20 40

Table 4: Hyper parameters of PARALLELSPEC variants for 7B models.
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All training was conducted using a node with 8 NVIDIA A100-PCIE-40GB GPUs, 2 AMD EPYC
7282 CPUs, and 512GB RAM. Evaluations were conducted using one GPU of the above node.
PyTorch 2.2.0 with CUDA 12.1 version was used in all experiments. To avoid the discrepancies
brought by computing environment differences, we re-ran all baseline methods and our method 3
times and reported the mean speedup ratio. We list hyper-parameters used in PARALLELSPEC in
Table 4. One might notice that the baseline results have around 10% differences in terms of speedup
ratios compared with the original Spec-Bench (Xia et al., 2024). First, we refer you to the latest
benchmark page4 for updated results. We also appreciate your understanding that, due to budget
and practical constraints, we do not have access to the same computational resources as the Spec-
Bench team. Therefore, we were not able to reproduce their speedup results. However, since all the
improvements in this paper were obtained using the same hardware environment, our comparisons
are relatively fair. We also notice that in the Spec-Bench paper, Table 5 and Table 6 also reported
entirely different sets of speedup ratios when the only difference is the GPU used for benchmarking,
indicating the hardware specifications are one of the major factors that impact reported speedup.

A.3 TOKEN TREE VERIFICATION

Initially proposed in SpecInfer (Miao et al., 2024), and also explored in several follow-up works (Cai
et al., 2024b; Li et al., 2024b; Spector & Re, 2023), tree-based structure for token verification is
proved to be useful. Following existing studies, PARALLELSPEC leverages tree attention to realize
this process. Specifically, to guarantee that each token only accesses its predecessors, we use an
attention mask that exclusively permits attention flow from the current token back to its antecedent
tokens. The positional indices for positional encoding are adjusted in line with this structure. A
conceptual view of this process is visualized in Figure 6, with the draft tree structure in the figure
being adopted in all experiments. As the main contribution of this paper is not a novel token tree
verification strategy, we adopt the same static token trees used in Medusa-1 (Cai et al., 2024b) and
EAGLE (Li et al., 2024b). Starting from “Root”, every node is expanded with k tokens with top-k
highest probabilities. k is designed based on manually crafted rules, and is dynamically changing as
the tree depth grows.

Root k = 4

k = 3

k = 3

k = 3

k = 2

Figure 6: An example of the tree-structured verification process. Each circle represents a token, and
the shading of the color indicates the probability of each token in the distribution. Tokens with the
highest probability are selected and gradually expanded with dynamically designed k.

4https://github.com/hemingkx/Spec-Bench/blob/main/Leaderboard.md
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