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Abstract

We propose a novel framework that combines deep generative time series models
with decision theory for generating personalized treatment strategies. It lever-
ages historical patient trajectory data to jointly learn the generation of realistic
personalized treatment and future outcome trajectories through deep generative
time series models. In particular, our framework enables the generation of novel
multivariate treatment strategies tailored to the personalized patient history and
trained for optimal expected future outcomes based on conditional expected utility
maximization. We demonstrate our framework by generating personalized insulin
treatment strategies and blood glucose predictions for hospitalized diabetes patients,
showcasing the potential of our approach for generating improved personalized
treatment strategies.

1 Introduction

Recent advancements in deep conditional generative models have revolutionized various domains
including the generation of textual prompt-answers [Brown et al., 2020], high-quality images [Rom-
bach et al., 2022], and molecules based on desired properties [Mollaysa et al., 2019]. However,
applying these techniques for generating complex and multivariate healthcare time series poses
unique challenges that have yet to be fully addressed. A fundamental issue is the lack of a clear and
simple framework for leveraging conditional samples from multivariate time series. To tackle this, we
explore the potential of combining deep probabilistic generative time series models [Tomczak, 2022]
with decision theory, to enable optimal personalized treatment generation learned from retrospective
patient data. By exploiting the power of conditional generative models, we can first learn to generate
feasible personalized treatment strategies conditioned on the current personalized conditions. Sec-
ond, we can also learn to generate future personalized outcome trajectories conditioned on specific
treatment trajectories. Third, to bridge the gap between the conditional generation of time series
and decision-making, we propose the personalized treatment generation by optimizing the expected
utility of the future outcome trajectories, so that both feasible and optimal treatments can be learned.

Our proposed approach is illustrated in Figure 1 and offers several innovative contributions:

• Framework for Time Series Samples: We present a new framework for leveraging
samples of conditional distributions over multivariate time series based on decision theory.
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• Generating Realistic Treatments: We exploit deep generative models for generating novel
personalized treatment strategies and future outcome trajectories.

• Optimal Personalized Treatments: We use goal-directed generation of personalized
treatments optimized for expected future outcome utility learned from retrospective data.

• Testing on Diabetes Patient Data: We demonstrate the potential of our framework by
generating insulin treatment and blood glucose trajectories for hospitalized diabetes patients.

2 Background

Generating personalized treatment trajectories based on historical patient data is the ultimate goal
of personalized medicine with machine learning (ML). In this paper, we focus on the generation
of multivariate insulin strategies that lead to optimal expected future blood glucose trajectories
(Figure 1). Several ML approaches deterministically predict the blood glucose outcome [Xie and
Wang, 2020, Liu et al., 2020, Noaro et al., 2020, Jaloli and Cescon, 2022] and only a few [Sergazinov
et al., 2023] take into account the inherent uncertainty and multi-modal distribution of the future
blood glucose. Moreover, it is not obvious how these predictions of blood glucose can be utilized for
treatment generation. On the other hand, there are several reinforcement-learning approaches [Tejedor
et al., 2020, Javad et al., 2019, Shifrin and Siegelmann, 2020, Zhu et al., 2020, Emerson et al., 2023]
optimizing a deterministic reward function, mostly exploiting synthetic or continuously measured
blood glucose data, and considering only a simplified action space, for which explicit constraints
have to be introduced to obtain feasible and consistent treatments. We instead try to generate feasible
multivariate treatment strategies consistent over multiple treatments and time without requiring
heuristic constraints using deep generative models [Tomczak, 2022], sharing analogies with [Ajay
et al., 2022]. To the best of our knowledge, our approach combining deep generative models with
expected utility learning is the first to deal with the generation of entire multivariate treatment and
outcome trajectories jointly learned from retrospective patient data, to achieve feasible, personalized,
and optimal treatment strategies.
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Figure 1: Overview of data, our approach, and objective for generating personalized treatments.

3 Methodology

We consider multivariate time series data involving outcome y1:T ∈ RP×T , treatment x1:T ∈ X =
RD×T , and covariate v1:T ∈ RV×T trajectories (Figure 1). For insulin treatments, we consider blood
glucose as outcome, basal and bolus insulin as treatments, and other medications and carbohydrates as
covariates. We divide all trajectories into past and future windows, where the latter has fixed length K,
for instance y1:T = [ȳ,y] with y ∈ RP×K . We define the personalized context c = {ȳ, x̄, v̄,v, s}
with some additional non-temporal patient data s. We use a dataset D = {yi1:Ti ,x

i
1:Ti

,vi1:Ti , s
i}Ni=1

with N historical patient time series.

3.1 Generation of Personalized Treatments

In this section, we present our approach to leverage multivariate time series samples for learning
feasible and “optimal" treatment strategies based on the joint personalized distribution p(y,x|c) =
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p(y|x, c)p(x|c). In case of insulin treatments, “optimal" is achieved when the future outcome (i.e.
blood glucose values) lie within a predefined range.

Direct Approach: We could directly learn a probabilistic mapping p(x|c) from the past personalized
conditions to the future treatments and take the most probable treatment strategy

x∗ = argmax
x∈X

p(x|c).

However, this approach learns to replicate the treatments in the historical training data, that is
problematic if these were sub-optimal regarding treatment outcomes.

Indirect Approach: In a second approach, we probabilistically predict the future outcomes y ∈
RP×T and specify a utility function u(y) describing the preferences for the future treatment outcomes
(Section A.2). For insulin treatments, the utility function is highest for blood glucose values in
the predefined band. We can indirectly optimize the conditional expected utility Up(y|x,c)(x) =∫
p(y|x, c)u(y)dy (A.2.2), that is,

x∗ = argmax
x∈X

Up(y|x,c)(x),

so that optimal treatments regarding future treatment outcomes are learned. However, optimizing over
all possible treatments X = RD×T yields unfeasible treatments, e.g. not adapted to the personalized
conditions, and the evaluation of the learned expected utility is not accurate, compare Figure 1 (right)
and subsection 3.1.

Joint Approach: We instead propose to exploit the joint distribution p(y,x|c) = p(y|x, c)p(x|c).
In particular, we first sample U feasible personalized treatment suggestions

x
(1)
|c , . . . ,x

(u)
|c , . . . ,x

(U)
|c

iid∼ p(x|c)

and secondly, we choose the treatment with maximal conditional expected utility

x∗ = argmax
x

(u)

|c ∼p(x|c)
Up(y|x,c)(x

(u)
|c ).

With this approach, we learn feasible and personalized treatment strategies x(u) ∼ p(x|c)
that have a high probability of resulting in good future treatment outcomes Up(y|x,c)(x(u)) =∫
p(y|x(u), c)u(y)dy. However, computing this integral exactly is infeasible for non-trivial distribu-

tions p(y|x, c) (A.2.8), therefore we propose an approach with deep generative models.

Expected Utility with Generative Models: Deep conditional generative models are powerful for
efficiently generating conditional samples of complex distributions over multivariate time series, for
instance, personalized outcome trajectories

y
(1)
|x,c, . . . ,y

(s)
|x,c, . . . ,y

(S)
|x,c

iid∼ p(y|x, c).

These can be exploited to approximate the integral in the expected utility Up(y|x,c)(x) =∫
p(y|x, c)u(y)dy with Monte-Carlo samples Ûp(y|x,c)(x) = 1

S

∑S
s=1 u

(
y
(s)
|x,c

)
, leading to the

optimization of the sample-based expected utility, that is,

x∗ = argmax
x

(u)

|c ∼p(x|c)
Ûp(y|x,c)(x

(u)
|c ) = argmax

x
(u)

|c ∼p(x|c)

S∑
s=1

u
(
y
(s)

|x(u),c

)
,

for which we refer to Section A.2.7 for more details.

3.2 Deep Generative Model

In this section, we present our approach to learn the personalized joint distribution

pπ(y,x|c) = pϕ(y|x, c)pθ(x|c)

with deep generative time series models [Tomczak, 2022, Murphy, 2022] with learnable parameters
π = {ϕ, θ}. In particular, we focus on a probabilistic encoder-decoder transformer [Vaswani et al.,
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Figure 2: Illustration of the joint personalized distribution p(y,x|c), with scalar and non-temporal y and x.
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2017], as illustrated in Figure 3 and further described in A.3. First, for encoding the personalized
history, we use either a deterministic encoder, where the personalized history h is mapped to
a fixed latent representation z = fψ(h) ∈ RL×(T−K), or a probabilistic encoder with a deep

parametrized probability distribution pψ(z|h) =
∏T−K
t=1

∏L
l=1 N

(
ztl|µtlψ(h), σtlψ(h)

)
involving

deep neural networks µtlψ(h) and σtlψ(h). Second, the multivariate outcome trajectories y ∈ RP×K

are parametrized as pϕ(y|x,v, z) =
∏K
t=1

∏P
p=1 N

(
ytp|µtpϕ (x,v, z), σtpϕ

)
, with learnable mean

µtpϕ (x,v, z) and variance σtpϕ . Third, for the multivariate treatment trajectories x ∈ RD×K , a

Poisson likelihood pθ(x|v, z) =
∏K
t=1

∏D
d=1 P

(
xtd|λtpθ (x,v, z)

)
with deep parametrized mean

λtpθ (x,v, z) is used.

3.2.1 Source of Stochasticity

Although the likelihoods above are parametric distributions, the predictive distributions of the outcome
and treatment trajectories can be arbitrarily complex when using deep generative models. We compare
our model with three different sources of stochasticity in the generative process (Figure A.3.4).

Parametric Mode: For a deterministic encoder without any additional stochasticity, the joint
distribution pπ(y,x|v, z) is pϕ(y|x,v, z)pθ(x|v, z) with encoded history z = fψ(h). Training
with the log-likelihood

L1(π;D) = log pπ(y,x|v, z)

can be used as a baseline with resulting parametric predictive distributions (factorized Gaussians and
Poissons) of treatments and outcomes.

Latent Variable Mode: With a probabilistic encoder pψ(z|h) and corresponding prior
p(z) = N (z|0, σ2

pI) of the latent variable, the joint distribution is pπ(y,x, z|v,h) =
pϕ(y|x,v, z)pθ(x|v, z)p(z). Based on variational inference (A.3.4), the objective function is

L2(π;D) = Epψ(z|h) [log pϕ(y|x,v, z)] + Epψ(z|h) [log pθ(x|v, z)]−KL [pψ(z|h)||p(z)] ,

leading to infinite mixtures of Gaussian and Poisson predictive distributions of the outcomes and
treatments.

Auto-Regressive Mode: In the auto-regressive case, the joint distribution pπ(y,x|v, z)
is decomposed as

∏T
t=1 pπ(yt,xt|vt, z1:t−1) with varying encoded history z1:t−1 =

fψ([y1:t−1,x1:t−1,v1:t−1, s]). Maximizing the log-likelihood

L3(π;D) =

T∑
t=1

log p (yt|xt,vt, z1:t−1) + log p (xt|vt, z1:t−1)
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allows us to generate multivariate trajectories beyond infinite mixture distributions.

Implementation: We use a transformer encoder [Vaswani et al., 2017] with multi-head self-attention
blocks to encode the history pψ(z|h). The output pϕ(y|x,v, z) and the treatment pθ(x|v, z) predic-
tion networks are implemented using two transformer decoders with self-attention and cross-attention
blocks to attend also to the encoded past z (Figure 3). We train our model with historical patient
trajectories D = {Di}Ni=1 using the three objective functions L1, L2, and L3 (A.4, A.3.4).

Figure 3: Transformer-based model (left), illustration (middle), and evaluation (right) of personalized prediction.
Model
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4 Experiments and Results

Insulin and Blood Glucose Trajectories: We test our approach using retrospective patient data
from University hospital (N = 2621) comprised of blood glucose trajectories y1:T ∈ R1×T ,
multivariate treatment strategies x1:T ∈ R2×T representing basal and bolus insulin injection doses,
and carbohydrates as covariates v1:T ∈ R1×T . For our heterogeneous patient data, we provide
comprehensive descriptive data analysis in Appendix A.6. Note that this dataset presents particular
challenges due to the infrequent reporting of carbohydrates and sparse blood glucose measurements,
typically only 3-4 times per day.

Results for Blood Glucose Prediction: We provide preliminary results from our proposed method
for generating personalized insulin treatment and future outcome blood glucose trajectories. In
particular, the probabilistic prediction of the personalized outcomes trajectories p(y|x, c) are shown
in Figure 3 (middle and right), and in the Appendix in Table 1 and Figure A.6. From Figure 3 (right),
we observe that our transformer model outperforms two simple baselines for predicting blood glucose
24 hours ahead. The green line refers to the baseline using the patient’s past average glucose level.
The red baseline is the average of glucose measurements at a particular time point from all patients.
For the sake of simplicity, the prediction always starts at midnight, so that the best performance gap
is around 3-6 hours in the future. In future work, we will predict the outcomes from any time point,
and improve the experiments in several directions, as outlined in Appendix A.5.

5 Conclusion

In this paper, we propose a framework for leveraging conditional samples of multivariate time series
generated by deep conditional generative time series models. It can be used to learn the complex
interaction between outcome, treatment, and covariate trajectories from retrospective patient time
series data. Moreover, feasible, personalized, and optimal treatment trajectories can be generated
by combining it with conditional expected utility maximization. Our preliminary results focused on
modeling insulin and blood glucose trajectories from diabetes patients, however, our framework can
be generally applied to other healthcare patient trajectory data. We plan to improve our work with
several experiments, as outlined in Appendix A.5. Moreover, we pursue interesting extensions for our
framework following the end-to-end goal-directed generation of personalized treatment strategies, as
outlined in A.2.9.
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A Details and Extension about Model

A.1 Notation

In this section, we provide more precise notation. In particular, we consider multivariate time series
data, including outcome y1:Ty ∈ Y = RP×Ty , treatment x1:Ty ∈ X = RD×Tx , and covariate
v1:Tv ∈ RV×Tv trajectories. For each time series, we assume irregularly sampled times τ y1:Ty ,
τx1:Tx , and τ v1:Tv , respectively. For the sake of simplicity, we assume a fixed future time window of
length K ∈ N (e.g. 24 hours) and divide the trajectories into past and future, that is, y1:Ty = [ȳ,y],
x1:Tx = [x̄,x], and v1:Tv = [v̄,v], where y ∈ RP×Ky , x ∈ RD×Kx , and v ∈ RV×Kv , compare
also Figure 1 on the left. Note that, in the implementation, we consider a moving future window. We
define the personalized history h = {ȳ, x̄, v̄, s}, where s are some additional non-temporal patient
information. Moreover, we define the context c = [h,v] for the sake of convenience. We assume a
dataset D = {Di}Ni=1 consisting of N historical patient time series Di = {yi1:T iy ,x

i
1:T ix

,vi1:T iv
, si},

however, we omit the explicit dependency to i if it is clear from the context.

A.2 Decision Making

A.2.1 Expected Utility

Suppose we have an utility function u(y) : Y → R for a random variable y ∈ Y with density p(y).
We define the expected utility Up(y) ∈ R as

Up(y) = Ep(y) [u(y)] =
∫

p(y)u(y)dy.

A.2.2 Conditional Expected Utility

Similarly, for a conditional distribution p(y|x) conditioned on x ∈ X , we define the conditional
expected utility Up(y|x)(x) as

Up(y|x)(x) = Ep(y|x) [u(y)] =
∫

p(y|x)u(y)dy, (1)

which can be considered as a function in x.
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A.2.3 Joint Expected Utility

For a joint distribution p(y,x), we define the joint expected utility Up(y,x) as

Up(y,x) = Ep(y,x) [u(y,x)] =
∫

p(y,x)u(y,x)dy dx =

∫
p(x)p(y|x)u(y,x)dy dx.

Here, we introduce the joint utility function u(y,x) : Y × X → R, which also expresses the utility
for the conditional variable x (treatment strategies). In the case of a factorized joint utility function
u(y,x) = u(y)u(x), we can write

Up(y,x) =
∫

p(x)p(y|x)u(y)u(x)dy dx = Ep(x)
[
u(x)Up(y|x)(x)

]
,

which can be decomposed as the expectation over the conditional variables (treatments) of the
weighted conditional expected utility. For a utility function u(y,x) = u(y), this simplifies to
Up(y,x) = Ep(x)

[
Up(y|x)(x)

]
.

A.2.4 Hierarchical Conditional Utility

We can also extend the introduced concepts to more variables, for instance, conditioning on a context
variable c, so that the expected utilities become Up(y|c)(c), Up(y|x,c)(x, c), and Up(y,x|c)(c), which
are all functions in c.

A.2.5 Multivariate Utility Functions

Suppose Y = RP . We can define a factorized utility function u(y) : RP → R

u(y) =

P∏
p=1

αpu(yp)

with weights αp for each dimension. This is particularly interesting when modeling concurring
outcomes, for instance, the success of treatment together with complications or side effects. This
allows specifying the different utilities for multiple outcomes and enables the analysis of treatments
that satisfy Pareto-optimality regarding multiple outcomes.

A.2.6 Temporal Expected Utility

Suppose Y = RP×T , that is a temporal indexed multivariate random variable y = y1:T ∈ RP×T .
We can directly define the utility function over the whole matrix. For instance,

u(y1:T ) =

T∑
t=1

γtu(yt) =

T∑
t=1

γt
P∏
p=1

αpu(ypt)

with time decaying parameter 0 < γ ≤ 1. In this case, the expected utility becomes

Up(y1:T )
= Ep(y1:T )

[u(y1:T )] =

∫
p(y1:T )u(y1:T )dy1:T =

∫
p(y1:T )

T∑
t=1

γtu(yt)dy1:T . (2)

If we assume temporal independence, that is, p(y1:T ) =
∏T
t=1 p(yt), this leads to

Up(y1:T )
=

∫ T∑
t=1

p(yt)γ
tu(yt)dyt =

T∑
t=1

γtUp(yt).

A.2.7 Approximation by Generative Models

All these integrals are often hard to compute for interesting objects such as complex multivariate
time series. On the other hand, deep generative probabilistic models are powerful for generating
conditional samples from very complex distributions over objects including multivariate time series
efficiently. Thus, we propose to generate multiple conditional samples

y
(1)
|x , . . . ,y

(s)
|x , . . . ,y

(S)
|x ∼ p(y|x)
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with deep generative models to obtain a Monte-Carlo-based approximation for the expected utilities.
For instance, the expected utility Up(y|x)(x) =

∫
p(y|x)u(y)dy in Equation 1 is approximated by

Ûp(y|x)(x) =
1

S

S∑
s=1

u(y
(s)
|x ).

In the case of multivariate time series y = y1:T ∈ RP×T , we jointly sample entire trajectories
[y

(s)
1 , . . . ,y

(s)
T ] = y

(s)
1:T ∼ p(y1:T ), so that the sampling version of Equation 2 becomes

Ûp(y1:T )
=

1

S

S∑
s=1

u(y
(s)
1:T ) =

1

S

S∑
s=1

T∑
t=1

γtu(y
(s)
t ).

Similarly, we can estimate Ûp(y1:T |x1:T ) for conditioning on a whole treatment trajectory x = x1:T ∈
RD×T .

Moreover, we want to emphasize that we can take gradients with respect to the parameters of the
deep parametrized distributions based on end-to-end optimization. Sampling can be included via the
re-parametrization trick.

A.2.8 Exact Computation

Under certain circumstances, the expected utility Up(y|x)(x) = Ep(y|x) [u(y)] =
∫
p(y|x)u(y)dy

in Equation (1) can be computed exactly. It can be used as baseline to compare the approximation
with deep generative models as discussed in the previous section. For instance, if we assume a joint
Gaussian distribution or a Gaussian Process (GP) [Williams and Rasmussen, 2006, Schürch et al.,
2020, 2023] for p(y|x) and a simple utility function u(y) (for instance affine, exponential, periodic,
Gaussian, log-Gaussian, ...), then the expected utility can be computed exactly. This has the benefit
that the variance from the two-stage sampling of the response and treatment can be reduced by only
sampling the treatments.

A.2.9 Improved Treatment Generation

In order to directly learn a better distribution pθ(x|c) which take into account desired properties
regarding optimal treatment responses, we propose to learn the

θ∗ = argmax
θ

Up(y,x|c) = argmax
θ

∫
pθ(x|c)p(y|x, c)u(y)dy dx,

so that we can then directly take the most probable treatment

x∗ = argmax
x

pθ∗(x|c)

or a few high-probability samples from pθ∗(x|c), which are now coupled so that they satisfy also the
utility constraints. This idea is based on the work of Mollaysa et al. [2020].

This approach can also be combined with log-likelihood-based inference, so that the objective function
becomes

θ∗ = argmax
θ

αUp(y,x|c) + (1− α)L(θ;D)

= argmax
θ

α

∫
pθ(x|c)p(y|x, c)u(y)dy dx+ (1− α) log pθ(y,x|v, f(h)),

where we showed the parametric mode for the sake of simplicity.

A.2.10 Learning Utility for x

Alternatively, we could also learn the parameters π of the utility function uπ(x) over the treatments
x with deep learning, that is,

π∗ = argmax
π

Up(y,x|c) = argmax
π

∫
pθ(x|c)p(y|x, c)u(y)uπ(x)dy dx,

which constitutes a pragmatic approach for generating efficient treatment suggestions that result in
favorable outcomes.

9



A.3 Deep Generative Model

In this section, we present more details of our approach to learn the conditional joint distribution

pπ(y,x|c) = pϕ(y|x, c)pθ(x|c)

with deep generative time series models [Tomczak, 2022, Murphy, 2022] from retrospective patient
trajectories data, where we introduce the learnable parameters π = {ϕ, θ}. Among the many choices
for deep generative models, a common property is to implicitly learning the joint distribution with
deep neural networks by providing a mechanism to generate samples from these distributions. In
particular, we focus on an encoder-decoder architecture based on a transformer [Vaswani et al., 2017]
as illustrated in Figure 3 on the left.

A.3.1 Encoder of Personalized History

We consider either a deterministic or probabilistic encoder pψ(z|h). In the former, the personalized
history h is mapped to a fixed latent representation z = fψ(h) ∈ RL×(T−K)), whereas in the latter
we learn a deep parametrized probability distribution

pψ(z|h) =
T−K∏
t=1

L∏
l=1

N
(
ztl|µtlψ(h), σtlψ(h)

)
,

with deep neural networks µtlψ(h) and σtlψ(h).

A.3.2 Outcome Predictor

The future multivariate outcome trajectory y ∈ RP×K is parametrized as

pϕ(y|x,v, z) =
K∏
t=1

P∏
p=1

N
(
ytp|µtpϕ (x,v, z), σtpϕ

)
,

where the mean µtpϕ (x,v, z) and variance σtpϕ are learned with neural networks. Although this
likelihood is a parametric distribution, the final distribution of the outcomes can be arbitrarily
complex, see Section 3.2.1.

A.3.3 Treatment Predictor

For the treatment strategies x ∈ RD×K , we assume a Poisson likelihood

pθ(x|v, z) =
K∏
t=1

D∏
d=1

P
(
xtd|λtpθ (x,v, z)

)
,

with deep parametrized mean function λtpθ (x,v, z). Note that the final distribution of the deep
generative model is non-parametric, see next section.

A.3.4 Source of Stochasticity

We compare our model in three different modes as illustrated in Figure A.3.4 for modeling the source
of the stochasticity in the generation of outcome y and treatment x trajectories. As a baseline method,
we use a deterministic encoder and a simple parametric distribution for the outcomes y and treatments
x without any additional stochasticity in the model, so that the the predictive distributions are actually
Gaussian and Poisson distributed as defined in Sections A.3.2 and A.3.3. However, these distributions
are too restrictive and do not match real-world data (Appendix A.6). As a second mode, we use a
latent variable model with a probabilistic encoder (A.3.1), so that when sampling from the latent
representation, we get an infinite mixture of Gaussian or a mixture of Poisson distributions, allowing
to generate rather complex distributions. The third mode is based on auto-regressive learning and
sampling, where we use K = 1 and plug back the previous values to the history h, which is then
the source of stochasticity in the sampling. This allows to sample multivariate trajectories beyond
infinite mixture distributions.
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Figure 4: Probabilistic Modes of Generative Model.
Parametric Mode 
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Parametric Mode: For a deterministic encoder, we have the joint distribution
pπ(y,x|v, fψ(h)) = pϕ(y|x,v, fψ(h))pθ(x|v, fψ(h))

and the objective function is the log-likelihood
L1(π;D) = log pπ(y,x|v, fψ(h)).

Latent Variable Mode: In the latent variable mode, we have the joint distribution
pπ(y,x, z|v,h) = pϕ(y|x,v, z)pθ(x|v, z)p(z)

with prior distribution p(z) = N (z|0, σ2
pI). The ideal objective function would be the marginal log-

likelihood M(π;D) = log
∫
pπ(y,x, z|v,h)dz, which is not feasible to compute exactly. Therefore,

we propose to use an amortized variational inference approach [Kingma and Welling, 2013, Blei
et al., 2017], which maximizes a lower bound L2(π;D) ≤ M;D(π), that is

L2(π;D) = Epψ(z|h) [log pϕ(y|x,v, z)] + Epψ(z|h) [log pθ(x|v, z)]−KL [pψ(z|h)||p(z)] .

Auto-Regressive Mode: In the auto-regressive mode, we set the window size to K = 1 and we
decompose the joint distribution as

pπ(y,x|v, fψ(h)) =
T∏
t=1

pπ(yt,xt|vt, fψ(h1:t−1))

=

T∏
t=1

pϕ (yt|xt,vt, fψ(h1:t−1)) pθ (xt|vt, fψ(h1:t−1)) ,

where we define the temporal varying personalized history h1:t−1 = [y1:t−1,x1:t−1,v1:t−1, s]. By
maximizing the log-likelihood, we get the objective

L3(π;D) = log

T∏
t=1

pπ(yt,xt|vt, fψ(h1:t−1))

=

T∑
t=1

log pϕ (yt|xt,vt, fψ(h1:t−1)) + log pθ (xt|vt, fψ(h1:t−1)) .

In the training, we can use the actually observed values h1:t−1 = [y1:t−1,x1:t−1,v1:t−1, s] without
any stochasticity, which is called teacher mode. Only for the generation of novel trajectories, we
auto-regressively sample from the model.

Optimization: In all three modes L1(π;D), L2(π;D), L3(π;D), we optimize the parameters with
a datasets D = {Di}Ni=1 by

π∗ = argmax
π

N∑
i=1

Ti−K∑
k=0

Li(π;Dk
i ),

which is computed with stochastic optimization using mini-batches of patients. Here, Dk
i refers to

the data of patient i until time point k.
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A.4 Implementation Details

A.4.1 Data Pre-processing

Since the time series is irregularly sampled, we convert it to an hourly sampled time series via
imputation. The glucose level x is linearly imputed. The treatment x (i.e., basal and bolus insulin
dose) is imputed with zero. We linearly scale y to have mean 0 and standard deviation 1. We also
linearly scale x to have standard deviation 1.

A.4.2 Transformer architecture

We use the transformer encoder, decoder, and positional encoding from Vaswani et al. [2017]. We
train with learning rate 10−3, batch size 8, one decoder and encoder layer, 64 features, 16 heads, and
a single-hidden-layer embedding of size 100 for the feedforward network of the encoder/decoder as
well as for the embedding of the input variables. When training the outcome predictor pϕ(y|x,v, z),
we only compute the loss for the non-imputed measured future y values.

A.5 Planned Experiments

In this Section, we provide several planned experiments for our method.

In general, in order to assess the quality of our approach, we will compare the prediction accuracy
and reliability (uncertainty) of the outcome and treatments against the true future in the retrospective
data. Moreover, to assess the quality of the generated samples, we will implement a simple classifier
to distinguish whether it is a real or generated sample.

A.5.1 Outcome Trajectory Generation

In our model, we will examine how the personalized history h, the covariates v and the treatment x
affect the prediction performance for y. In particular, we will compare different conditional sets such
as pϕ(y), pϕ(y|τy), pϕ(y|ȳ), pϕ(y|x̄), pϕ(y|h), pϕ(y|x,h), pϕ(y|v,h), and pϕ(y|x,v,h).

A.5.2 Treatments Strategy Generation

Similarly, we compare the samples of different distributions of treatment trajectories, that is pθ(x),
pθ(x|v), pθ(x|h), and pθ(x|v,h). It is particularly interesting to see the effect of the past history h
as well as the effect from the carbohydrates v.

A.5.3 Comparison of Modes

We will compare the three different modes of stochasticity in the generative model, as explained
in Section 3.2.1. It will be interesting to see whether the parametric, the latent variable, or the
auto-regressive approach leads to the best performance. Besides comparing the performance, it
will be particularly interesting to compare the quality of the generated multivariate samples of the
trajectories. Moreover, we will examine the latent space of the latent variable approach. In particular,
we try to visualize the learned latent space of the treatment trajectories and check if the interpolation
property is satisfied. Moreover, we check if we can generate samples around particular interesting
points in the latent space.

A.5.4 Comparison with other Approaches

We will compare our approach with other prediction models for the outcomes and treatments, such as
deterministic deep neural networks (RNN, CNN). Moreover, it would be interesting to find a setting
in which we can compare our generated treatment with approaches from reinforcement learning and
compare their quality. In particular, it would be interesting to compare how realistic and consistent
our multivariate samples are.
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A.5.5 Generalization to other Applications

We plan to test our general framework for generating personalized and optimal treatment strategies to
other diseases. For instance, we plan to apply it to cancer treatment data as well as rheumatic disease
data [Trottet et al., 2023].

A.6 Descriptive Data Analysis

In the following, we describe the blood glucose, carbohydrate intake, basal insulin, and bolus
insulin data. We plot their typical values/doses (throughout the day) as well as the number of
observations/insulin injections per day. We would like to empathize that the shown results show
global distributions involving all patients, whereas the personalized distributions of the trajectories of
treatment outcomes are mostly multi-modal, often due to the latent, unobserved variables such as
carbohydrates or medications.

Figure 5: Blood glucose is mostly measured around 3-4 times per day and usually takes values
between 5 and 15.

Figure 6: Blood glucose is usually measured at 7-8 a.m., 12 p.m., 6 p.m., or 10 p.m..

Figure 7: Blood glucose levels exhibit fluctuations throughout the day, with their lowest point
typically occurring around 7 a.m.
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Figure 8: Carbohydrate intake data is usually not provided. If it is provided, then usually 3 times per
day. Carbohydrate consumption per meal mostly ranges from 20 to 70.

Figure 9: Carbohyrdates are usually consumed at 7-8 a.m., 12 p.m., or 6 p.m..

Figure 10: Carbohydrate intake throughout the day. If carbohydrates are consumed and this is
reported, then the amount of carbohydrates does not depend on the time of the day.

Figure 11: Basal insulin is usually injected once per day or not at all. The dose per injection is around
2-20.
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Figure 12: Basal insulin injection almost exclusively occurs at 7–8 a.m. or 6 p.m.

Figure 13: The basal insulin injection dose is independent of the time of the day.

Figure 14: Bolus insulin is usually injected 0–4 times per day. The dose per injection is around 0–30.

Figure 15: If bolus insulin is injected, then this occurs at 7–8 a.m., 12 a.m., 6 p.m., and, less frequently,
at 10 p.m.
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Figure 16: Bolus insulin injection doses throughout the day. Injections at 10 p.m. almost always have
the same low dose. The injection dose at other times is higher and varies more.

Figure 17: Probabilistic online prediction pϕ(y|x, c) for different splits of past and future windows.

Model MAE RMSE
Baseline: Past average glucose level of the patient 2.671 3.671
Baseline: Average glucose level of all patients at this time 3.049 3.927
Transformer (using glucose data only) 1.840 2.625
Transformer (using glucose, insulin, carbs data) 1.789 2.616

Table 1: Mean performance of the y-prediction network across 30 random 50/50 train-validation
splits. Absolute Error (MAE) and Root Mean Squared Error (RMSE) for baseline and transformer
models.

16


	Introduction
	Background
	Methodology
	Generation of Personalized Treatments
	Deep Generative Model
	Source of Stochasticity


	Experiments and Results
	Conclusion
	Details and Extension about Model
	Notation
	Decision Making
	Expected Utility
	Conditional Expected Utility
	Joint Expected Utility
	Hierarchical Conditional Utility
	Multivariate Utility Functions
	Temporal Expected Utility
	Approximation by Generative Models
	Exact Computation
	Improved Treatment Generation 
	Learning Utility for x

	Deep Generative Model
	Encoder of Personalized History
	Outcome Predictor
	Treatment Predictor
	Source of Stochasticity

	Implementation Details
	Data Pre-processing
	Transformer architecture

	Planned Experiments
	Outcome Trajectory Generation
	Treatments Strategy Generation
	Comparison of Modes
	Comparison with other Approaches
	Generalization to other Applications

	Descriptive Data Analysis


