Sparse Training from Random Initialization:
Aligning Lottery Ticket Masks using Weight Symmetry

Mohammed Adnan*!3, Rohan Jain*!, Ekansh Sharma?3, Yani Ioannou*
'University of Calgary ZUniversity of Toronto 3Vector Institute for Al
{rohan.jainl,adnan.ahmad,yani.ioannou}@ucalgary.ca, ekansh@cs.toronto.edu

The Lottery Ticket Hypothesis (LTH) suggests that there exists a sparse winning ticket
mask and weights that achieves the same generalization performance as the dense
model while using significantly fewer parameters. LTH achieves this by iteratively
sparsifying and re-training within the pruned solution basin. However, this procedure
is computationally expensive, and a winning ticket’s sparsity mask does not generalize
to other weight initializations. Recent work has suggested that Deep Neural Networks
(DNNSs) trained from random initialization find solutions within the same basin
modulo weight symmetry, and proposed a method to align trained models within the
same basins. We propose permuting the winning ticket mask to align with the new
optimization basin when performing sparse training from a different random initial-
ization. Using this permuted mask, we show it is possible to significantly increase the
generalization performance of sparse training from random initialization with the
permuted mask as compared to sparse training naively using the non-permuted mask.
We empirically demonstrate that our proposed method improves the generalization
of LTH with the new random initialization on multiple datasets (CIFAR-10/100 and
ImageNet) using VGG11 and ResNet-20/50 models of varying widths.

1. Introduction

In recent years, foundation models have achieved state-of-the-art results for different tasks. However,
the exponential increase in the size of state-of-the-art models requires a similarly exponential increase
in the memory and computational costs required to train, store and use these models — decreasing the
accessibility of these models for researchers and practitioners alike. To overcome this issue, different
model compression methods, such as pruning, quantization and knowledge distillation, have been pro-
posed to reduce the model size at different phases of training or inference. Post-training model pruning
[1] has been shown to be effective in compressing the model size, and seminal works have demon-
strated thatlarge models canbe pruned after training with minimalloss in accuracy [2, 3]. While model
pruning makes inference more efficient, it does not reduce the computational cost of training the model.

Motivated by training a sparse model from a random initialization, Frankle and Carbin [4]
demonstrated that training with a highly sparse mask is possible and proposed the Lottery Ticket
Hypothesis (LTH) to identify sparse networks that, when trained, can match the performance of
a dense model. The key caveat is that a dense model must first be trained to find the sparse mask,
which can only be used with the same random initialization that was used to train the dense model.
Despite LTH seeing significant traction in the research community, lottery tickets cannot be applied to
anew random initialization, which renders LTH impractical for training sparse models. This posits an
important question — how can we use winning tickets from LTH with a different random initialization? If the
winning ticket can be used again with a different random initialization, then it might make LTH a more
practical algorithm for training multiple sparse models (ensembles), offsetting the cost of training a
dense model once, and would provide a deeper understanding of how sparse training and LTH work.

In this work, we try to understand why LTH does not work for different random initializations from a
weight-space symmetry perspective and show that once permutation symmetries are accounted for, it

*Equal contribution.

Submitted to Second Conference on Parsimony and Learning Spotlight Track (CPAL 2025)

w1 W
initialization
train ’
mask :
solution i '
/ dense sparse '
1
1
|
1
high loss 1
1
low loss —— i
1
i
1
i
1
11:0 } L)

1
i
i
1

H []
|
Y

o o

Wy wi’ ©@my wo
(@) Dense training and pruning model A. (b) Sparse training model B with A mask.

Figure 1: Weight Symmetry and the Sparse Training Problem. A model with a single layer and only two

parameters, w = (wo,w1), operating on a single input scale z has weight symmetry in the 2D loss landscape
as illustrated above. In (a) the original dense model, w 4, is trained from a random dense initialization, wi®
to a dense solution, w'-", which is then pruned using weight magnitude resulting in the mask m 4 = (1,0). In
(b), naively using the same mask to train a model, B, from a different random initialization will likely result
in the initialization being far from a good solution. Permuting the mask to match the (symmetric) basin in which

the new initialization is in will enable sparse training. See Fig. 12 in Appendix C for the full figure including LTH.

is possible to reuse the winning ticket mask with different random initializations. Our hypothesisis that
to reuse the LTH winning ticket mask with a different random initialization, the winning ticket mask
obtained needs to be permuted such that it aligns with the optimization basin associated with the new
random initialization. We illustrate our hypothesis in Fig. 1. To empirically validate our hypothesis, we
obtain asparse mask using Iterative Magnitude Pruning (IMP) [3,5] onmodel A (from Fig. 1) and show
that given a permutation that aligns the optimization basin of model A and a new random initialization,
the mask can be reused. The sparse model (with the permuted mask) can be trained to closer match the
generalization performance of the LTH solution, and the permuted mask improves the generalization
of the trained sparse model compared to the non-permuted mask. Our contributions are as follows:

1. Due to the permutation symmetry in weight space, there are many functionally equivalent
loss basins and the new random initialization lands in a different loss basin equivalent up
to symmetry as shown in Fig. 1b [6]. We show that LTH fails to generalize well with a new
random initialization due to a mismatch between the optimization basin of the winning ticket
mask and the new random initialization’s solution basin.

2. We propose a method based on permutation matching between two dense models, that
permutes the winning ticket’s sparse mask to align with the optimization basin of the new
random initialization.

3. We empirically demonstrate on CIFAR-10/100 and ImageNet datasets using VGG11 and
ResNet models of varying widths that permuting the LTH sparse mask to align with the new
random initialization improves the performance of the trained model (permuted), compared
to the model trained without permuting the sparse mask (naive).

2. Background & Related Work

Linear Mode Connectivity. A pair of trained neural networks are said to be linearly connected if the
loss along the linear path between the networks remains small. The phenomenon of linear (mode)
connectivity was first observed in the context of Stochastic Gradient Descent (SGD) by Nagarajan and
Kolter [7], where they showed that two neural networks trained from the same initialization but differ-

ent data orders exhibit linear connectivity. The term linear mode connectivity was introduced by Frankle
etal. [8], where they showed that independently trained neural networks can be linearly connected.

Lottery Ticket Hypothesis. The LTH proposes to solve the sparse training problem by re-using the
same initialization as used to train the pruned models. For very small models, training from such
an initialization maintains the generalization performance of the pruned model and demonstrates
that training with a highly sparse mask is possible [4]. However, subsequent work has shown
that obtaining winning tickets for modestly-sized models requires using weight rewinding [8] —
requiring significantly more compute than dense training alone, especially considering that LT H also
requires IMP, i.e. training of iteratively sparsified models. We include a detailed description of IMP in
Appendix A.3. Paul et al. [9] analyzed the IMP algorithm and showed that sparse network obtained
after K" IMP iteration is linearly connected to the sparse model obtained after & + 1" IMP iteration.
Furthermore, recent work has shown that the LTH effectively re-learns the original pruned solution it
is derived from [10]. To make any practical use of sparse training, finding methods of sparse training
from random initialization is necessary to realize any efficiency gains in training.

Weight Symmetry. The process of training Deep Neural Networks (DNNs) requires optimizing over
anon-convex loss landscape consisting of numerous local minima, narrow ravines, plateaus, saddle
points and loss basins [11-16]. Despite non-convex optimization problems being NP-hard [17], the
nature of first-order stochastic optimizers such as SGD [18] have been proven to be highly effective in
optimizing DNNs in practice [19,20]. Empirical evidence suggests that when training independent
DNN using SGD, with different batch orders and initializations, the resulting training trajectories often
exhibit remarkable similarities [6, 21]. This phenomenon has been attributed to overparameterization,
which creates numerous minima in the loss landscape, leading to multiple distinct functions that
fit the data similarly [22, 23]. However, as early as the 1990s, Hecht-Nielsen [24] demonstrated that
neural networks are permutation invariant possessing a weight-symmetrical property, where swapping
any two neurons within a hidden layer does not alter the underlying function being learned. In other
words, the permuted network remains functionally equivalent to its original configuration. Hence,
the existence of permutation symmetries in the loss landscape contributes to its non-convexity, as
it creates copies of global minima at different points in weight space due to weight symmetry [25, 26].

Linear Mode Connectivity modulo Permutation. Entezarietal. [25] further observed that while a
model and its randomly permuted counterpart are functionally equivalent, they are rarely linearly
connected in the weight space. This misalignment suggests the presence of loss barriers—regions along
a linear path between models where the loss is significantly higher than at the endpoints. They
conjectured that independently obtained SGD solutions exhibit no loss barrier when accounting
for permutation symmetries, suggesting that all SGD-trained networks converge to a single basin
modulo permutations. Building on this conjecture, several algorithms have been developed to address
permutation invariance by aligning trained networks to the same optimization basin [6, 27-29].
Ainsworth et al. [6] demonstrated that two models trained from different random initializations
find solutions within the same basin modulo permutation symmetry. They proposed a permutation
matching algorithm to permute the units of one model to align it with a reference model, enabling
Linear-Mode Connectivity (LMC) [8]. The use of activation matching for model alignment was
originally introduced by Li et al. [30] to ensure models learn similar representations when performing
thesame task. Jordanetal. [27] investigated the poor performance of interpolated networks, attributing
it to a phenomenon they termed "variance collapse". To address this, they proposed a method that
rescales the hidden units, leading to significant improvements in the performance of interpolated
networks. A rigorous study from Sharma et al. [31] introduced a notion of simultaneous weak linear
connectivity where a permutation, 7, aligning two networks also simultaneously aligns two larger fully
trained networks throughout the entire SGD trajectory and the same 7 also aligns successive iterations
of independently sparsified networks found via weight rewinding. Sharma et al. [31] also showed
that for certain neural networks, sparse mask obtained via weight rewinding can be reused modulo
permutations without hurting the test performance.

VV/‘\:U ~ N WIL;“ ~ N mask
train match
H @ ...
train 2. mask
£.
t=1" =7 ©. —k
Wy W/“ i (= W,U K ®Omy w’,; m(my) Wy) 1M 4
8 .
[
prune & l train
t=1) E=1" o —(eft=1 . t="1" ~ t=1 ~ t=T ~
W, Omy wp ~AT(wy) - fwg T Omy Wi Om(my) Wi ©Omy

activation matching . LTH Problem (Naive)

Figure 2: The overall framework of the training procedure, beginning with two distinct dense random weight
initializations, w'i°, wi™" sampled from a normal distribution, A". The sparse training problem attempts to
train the random initialization, w%° using the naive mask m 4, found by pruning a dense trained model, w’" .
However, this results in poor generalization performance [8]. We propose to instead train w'; " at some rewound

epoch k, equipped with a permuted mask w(m 4). We show that this achieves more comparable generalization
to the pruned model/trained LTH solution, wiTomay.

3. Method

Motivation. In this work, we try to understand why LTH masks fail to transfer to a new random
initialization. Our hypothesis is that the loss basin corresponding to the LTH mask is not aligned with
the new random initialization, as shown in Fig. 1. Since the sparse mask is not in alignment with
the basin of the new random initialization, sparse training does not work well; therefore, aligning
the LTH mask with new random initialization may improve sparse training and enable the transfer
of LTH masks to new random initializations.

Permutation Matching. Ainsworth etal. [6] showed the permutation symmetries in the weight space
can be leveraged to align the basin of two models trained from different random initializations. The
permutation mapping can be obtained by either matching activations or weights. In this work, we
use activation matching to obtain the permutation mapping as it has been shown to be more stable
in recent works [31]. Activation matching tries to find a permutation mapping, 7 € S; (where Sy is
the permutation group of order d!) such that by permuting the parameters of the second model, the
correlation between the activations of the two models is maximized. For a model consisting of L layers,
each layer is sequentially matched and permuted starting from the input layer. Let Z/*,Zf € R¥*"
be the activations of layer [of model A and B respectively obtained using the training data, where d
represents the dimensionality of the activations at layer [and n is the number of training data points.
Then a permutation mapping for layer [, 7;, is obtained by solving:

m=argmin||ZP —n Z{|| = argmax(r,Z8(Z*) ") r, (1)

where (.,.) r denotes the Frobenius inner product. Eq. (1) can be formulated as a linear assignment
problem (LAP) [32, 33] solved via the Hungarian algorithm [34]; however, the permutation found is
not global optima but a greedy/approximate solution as permutation matching is a NP-hard problem.
Once the permutation mapping is obtained for all the layers, the model A can be permuted to match
model B. To ensure that the permuted model does not change functionally when permuting the
output dimension of layer /, the input dimension of the next layer is also permuted accordingly. Let
W, and b; be the weights and bias of layer [respectively, then the permuted weight matrix W} and
permuted bias b} for each layer can be mathematically represented as,

Wlp:’iTlWl(’]Tl_l)T, bf:mbl. (2)

Evaluating Permutation Matching. Since LAP uses a greedy search to find an approximate solution,
to ensure that the permuted model A and model B lie in the same basin, we evaluate the LMC (loss

— =1 — =1 — =1
0.7 w=4 3.0 w=4 5
0.6 15 = wets
0 0n25 0na
905 g]
- - -
= 0.3 F 1.5 =
2
0.2 .j_ 1.0 A
0.1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
a a a
(a) ResNet20/CIFAR-10 (b) ResNet20/CIFAR-100 (c) ResNet50/ImageNet

Figure 3: Larger width exhibits better LMC. Plots showing linear interpolation between m(w's") and wiz ©
where 7 was obtained through activation matching between two dense models for varying widths. As the width
of the model increases, the permutation matching algorithm gets more accurate, thereby reducing the loss barrier
(ie., better LMC), which is evaluated on the test set. This shows that the permutation matching can find a better
mapping, 7, for wider models, explaining why the permuted mask works better in case of wider models.

barrier) between the two models. More formally, let 6,65 be the parameters of two networks, then
the loss barrier B is defined as:

B(61,02) := 21[10p1] [L((1—a)b1+aby)— ((1—a)L(01)+aL(62))] >0, (3)

where £ is the loss function evaluated on the training dataset. If 5(6:,62) ~ 0, it is said that #; and
0 are linearly mode connected.

To ensure that the permutation mapping, 7, can closely match model A and model B, we evaluate
the loss barrier between the permuted model A and model B. However, aligning neurons alone is not
sufficient to establish a low loss barrier due to variance collapse [27]. To overcome the variance collapse
issue, we used REPAIR [27] to correct the variance of the activations in the interpolated/merged
model. As shown in Fig. 3, the loss barrier after permutation matching and correcting the variance
(REPAIR) is lower than the loss at random initialization, showing permutation mapping can match
the models to bring them closer/in the loss basin.

Aligning Masks via Weight Symmetry. In contrast to previous works [6], we are interested in
permuting the mask obtained by LTH such that the optimization basin of the permuted sparse mask
and the new random initialization is aligned. To validate our hypothesis, we train two dense models,
wi% and wi;%, where t denotes the epoch, to convergence (trained for T epochs) and then use
activation matching (implemented by Jordan et al. [27]) to find the permutation mapping 7, such that
the activations of m(w'"") and wi; 7 are aligned. Mask m 4, obtained using IMP, is also permuted
with the same permutation map 7. The intuition is that the permuted mask aligns with the loss basin of
model wi;7, which is necessary for sparse training and, therefore, the sparse model can be more easily
optimized (see Fig.2). We denote training with the permuted mask, 7(m) as permuted and with the
non-permuted mask, m 4 as naive. As illustrated Fig. 4a, the permuted model A, m(wiT), is linearly
mode connected with the converged model B, wi; 7. Fig. 4b shows that the permuted LTH solution
is linearly mode connected with the model B trained with the permuted mask. Fig. 4c shows that
permuted LTH solution, permuted model A and permuted sparse solution all lie in the same basin.

Sparse Training. For evaluating the transferability of the permuted LTH mask, we use a new random
initialization wi;® and sparse masks m4 and 7(m) for sparse training the naive and permuted
solution respectively. We also evaluate the LTH baseline, i.e., training model wi;® with mask m 4.
Since LTH requires weight rewinding to an earlier point in training, we also use a rewind checkpoint
from epoch t = k < T for both the baselines and permuted solution. In sparse training, the model
is trained with a mask m, masking some of the weights, during both forward and backward passes.

Figure4: Wevisualize the 0-1losslandscape of ResNet20x {4} /CIFAR-10. The figures are generated by evaluating
the 0-1 loss spanned by three models in each corresponding figure. The sparse model in each of the figures
is obtained by weight rewinding to achieve ~90% sparsity. We show that, modulo permutations, reusing the
permuted mask leads to convergence in the same mode as the original model, i.e. the LTH solution. Hence, there
is a small loss barrier between the permuted and LTH solutions, demonstrating they are within the same linearly
connected mode. In the visualizations, lighter and darker regions correspond tolower and higher loss, respectively.

4. Results

To validate our hypothesis, we trained ResNet20 [35] and VGG11 [36] models on the CIFAR-10/100
datasets [37] (details in Appendix A.1) across different levels of sparsity (S =0.80,0.90,0.95,0.97).
We used ResNet20 with varying widths (w = 1,4,8,16) to study the effect of increasing width on
the permutation matching and, thereby, the performance of the permuted sparse model. We also
demonstrate our hypothesis on the large-scale ImageNet dataset [38] using ResNet50, showing the
efficacy of our method across different models and datasets of varying sizes.

4.1. Experimental Results.

ResNet20/CIFAR-10 & CIFAR-100. We trained ResNet20 on the CIFAR-10/100 datasets. As shown
in Figs. 5 and 6, the permuted solution outperforms the naive baseline across all model widths
and rewind points. Since it is more difficult to train models with higher sparsity, the gap between
naive and permuted solutions increases as sparsity increases, as shown in Figs. 5d, 5h and 51. It
can also be observed that at higher sparsity increasing the rewind point improves both the LTH
and permuted solution but not the naive solution. The improved performance of the permuted
solution over naive supports our hypothesis and shows that misalignment of LTH masks and loss
basin corresponding to the new random initialization could explain why LTH masks do not transfer
to different initializations. We also show accuracy vs. sparsity plots for k = {10,25,50,100} (details
in Appendix A.5); as sparsity increases, the gap between permuted and naive solution increases for
all rewind points. Asillustrated in figure Fig. 5, neither the LTH nor the permuted solution performs
effectively with random initialization (k£ = 0) but improves on increasing the rewind point up to a
certain point, beyond which it plateaus. Detailed results are presented in Tables 4 to 7 in Appendix A.4.

We also validated our hypothesis on CIFAR-100 using ResNet20 with varying widths. As shown
in Fig. 6, the permuted solution consistently outperforms the naive solution, showing that our
hypothesis holds true across different models and datasets. Similar to the CIFAR-10 dataset, as we
increase the width, the gap between the permuted and naive solution increases showing the efficacy
of our method. Detailed results are presented in Tables 10 to 13 in Appendix A.4.

VGG11/CIFAR-10. We utilize the modified VGG11 architecture implemented by Jordan et al. [27]
trained on CIFAR-10 (details in Appendix A.1). We observe that for a moderate sparsity (80%)
in Fig. 8a, the gap between the permuted and the naive baseline is not large, however for a higher
sparsity level (90%), the permuted solution significantly outperforms the naive solution as shown
in Fig. 8b. For the VGG11 model, on increasing the rewind point, the permuted solution closely
matches the accuracy of LTH, while the naive solution significantly plateaus and does not improve
on increasing the rewind point. For higher sparsities, the naive baseline was unstable in training as

©
W
©
W

©
~
©
N
©
~
©
N

©
2
©
=]
©
=)

@
&

©
S

Test Accuracy (%)
© ©
3 =

Test Accuracy (%)

@
@

Test Accuracy (%)
©
=3

Test Accuracy (%)

@
©

@
©

LTH Naive Permuted LTH Naive Permuted LTH Naive Permuted LTH Naive Permuted

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Rewind Points Rewind Points Rewind Points Rewind Points

(a) sparsity = 0.80 (b) sparsity = 0.90 (c) sparsity = 0.95 (d) sparsity = 0.97

96.0

@
o
3
S

©

-3

o
©
-3

©
o
o

e\i95.5

©
vl
in
©
v

©
o
n

295.0
©

©
@
o

©

g

5
3945

©
u
o
©
R
in

M
<940
o

Test Accuracy (%)
©
vy

Test Accuracy (%)

©
>
)
Test Accuracy (%)

i
o35

©
g
o

©
~

TH Naive Permuted LTH Naive Permuted 93.0 LTH Naive Permuted" LTH Naive Permuted
0 20 40 60 80 100 0 20 40 60 80 100) 20 40 60 80 100 0 20 40 60 80 100
Rewind Points Rewind Points Rewind Points Rewind Points

(e) sparsity = 0.80 (f) sparsity = 0.90 (g) sparsity = 0.95 (h) sparsity = 0.97

96.25

©
o
o

96.25

©
>
)

§96 00

(%)
©
o
)
S
©
u
in

$95.75

©
o
n

©
u
o
el
©
@
)

I
£
395.50
o

©
o
°

95.50:

©
»
n

I+
< 95.25:
-

©
u
N
[

Test Accuracy (%)
£
n

Test Accuracy (%)

w
Test Accuracy (%,
©
®
o

i
2 95.00:

95.00- LTH Naive Permuted
0

24.75 LTH Naive Permuted TH Naive Permuted LTH Naive permuted

100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Rewind Points Rewind Points Rewind Points

©
»
o

0 40 60 80
Rewind Points

(i) sparsity = 0.80 (j) sparsity = 0.90 (k) sparsity = 0.95 (1) sparsity = 0.97

96.6 96.7:

©
>
n
©
o
n

X 96.4 :\;96 50

©

o

°
©
o
)

>96.2 >.96.25
g 8

e

596.0 596.00:
2

16

©
v
n
©
o
o

o

g g
595‘8 <95.75:

w

I

0 95.6

©
&
n

Test Accuracy (%)
&
o

Test Accuracy (%)

I
[2 95.50;
95.4

©
>
o

TH Naive Permuted 95.25. LTH Naive Permuted TH Naive Permuted TH Naive Permuted

0 20 40 60 80 100 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Rewind Points Rewind Points Rewind Points Rewind Points

(m) sparsity = 0.80 (n) sparsity = 0.90 (o) sparsity = 0.95 (p) sparsity = 0.97

Figure 5: ResNet20x {w}/CIFAR-10.Test accuracy of sparse network solutions vs. increasing rewind points
for different sparsity levels and widths, w. The dashed (- -) line shows the dense model accuracy. The effect
of the rewind point on the test accuracy for different sparsities is shown. As the width increases, the gap between
training from a random initialization with the permuted mask and the LTH/dense baseline (dashed line)
decreases, unlike training with the non-permuted mask (naive), showing a model trained with the permuted
mask generalizes better than naive.

the modified VGG11 architecture does not have BatchNorm layers [39]; we omit those results in the
discussion for a fair comparison. Detailed results are presented in Table 8 in Appendix A.4.

ResNet50/ImageNet. We also validated our hypothesis on the ILSVRC 2012 (ImageNet) dataset,
which consists of 1.28 million images across 1,000 classes [38]. We used the ResNet50 model to
evaluate the performance of the permuted mask at different sparsity levels. As observed in Fig. 7,
the permuted solution outperforms the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While the permuted solution performs better
than the naive solution, there is still a significant gap between LTH and the permuted solution in
the case of the ImageNet dataset as compared to the CIFAR-10/100 dataset. This could be due to
permutation matching not being accurate enough, as only a small subset of the training dataset was
used for activation matching. This can also be visualized in terms of the loss barrier in Fig. 3c between
the permuted model A and model B; the loss barrier after permutation is more prominent compared
to the CIFAR dataset (Figs. 3a and 3b). Thus, the permutation mapping = cannot match the models
perfectly in the case of ImageNet since the permutation matching algorithm uses a greedy search
algorithm to find the permutation mapping. However, given a perfect mapping, it could be possible
to further improve the performance of the permuted solution as discussed in Section 4.2. Detailed

70 70
Ses g g Ses
> >66: =65 >
3 g H 860
™ 566 5 64: 5 £
g g geo g
< <62 < <55
S o o -
064 ki 9 9
2 260 2ss @50
LTH Naive Permuted s8d, L'(H 1 Naive i Pgrmuted . LTH Naive Permuted LTH Naive Permuted
0 20 40 60 80 100 [20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Rewind Points Rewind Points Rewind Points Rewind Points
(a) sparsity = 0.80 (b) sparsity = 0.90 (c) sparsity = 0.95 (d) sparsity = 0.97
78 78 78 78
S S IS S
c;’77 i 9;76 376
S 576 S S
C76 e e g4
3 5 574 5
g g g 872
<75 <74 < <
S o w72 o
¢ 3] 370
=74 [= [
v LT_H 1 Naive | Pe_rmuted | 72 LTH Naive Permuted 70 LTH Naive Permuted 68 TH Naive Permuted
% 70 40 60 80 100 [70 40 60 80 100 [} 20 40 60 & 100) 70 40 60 80 100
Rewind Points Rewind Points Rewind Points Rewind Points
(e) sparsity = 0.80 (f) sparsity = 0.90 (g) sparsity = 0.95 (h) sparsity = 0.97
81
81
- - - 80
g geo g g
580 379 Iy 278
o0 8 © ©78 ©
g g e g
379 378 3 3
g g g g
S 5 78 : 77 5 76 f
9 3 2 374
S 6 [S
7 LTH Naive Permuted LTH Naive Permuted 74 LTH Naive Permuted 2L, LTH - Naive permuted
0 20 40 60 80 100 [20 40 60 160 0 20 40 60 80 100 0 20 40 60 100
Rewind Points Rewind Points Rewind Points Rewind Points
(i) sparsity = 0.80 (j) sparsity = 0.90 (k) sparsity = 0.95 (1) sparsity = 0.97
83 82 82
- ~82 - -
Lo g Ea g
z Te1 z 380
©s g €50 g
- 3 g g
|| v} U 80 o 078
< < <79 <
o o o -
2 feo 5 g g
] =79 F78 76
LTH Naive Permuted LTH Naive Permuted LTH Naive Permuted LTH Naive Permuted
[} 20 40 60 160 [] 20 40 60 160 [} 20 40 60 & 100 8 20 40 60 100
Rewind Points Rewind Points Rewind Points Rewind Points
(m) sparsity = 0.80 (n) sparsity = 0.90 (o) sparsity = 0.95 (p) sparsity = 0.97

Figure 6: ResNet20x{w}/CIFAR-100. Test accuracy of sparse network solutions vs. increasing rewind points
for different sparsity levels and widths, w. The dashed (- -) line shows the dense model accuracy. The effect
of the rewind points on the test accuracy for different sparsities is shown. As the width increases, the gap
between training from a random initialization with the permuted mask and the LTH/dense baseline (dashed
line) decreases, unlike training with the non-permuted mask (naive), showing model trained with the permuted
model generalizes better than naive.

R0 S ;;90.0
88 -
) by 875
© 88 B 36 8
= = B8s.0
= =
] 9 84]
Ss6 & g 82.5
'ﬁ 582 $80.0
= g4 = 80 ﬁ
LTH Naive Permuted LTH Naive Permuted 71.5 LTH Naive Permuted
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Rewind Points Rewind Points Rewind Points
(a) sparsity = 0.80 (b) sparsity = 0.90 (c) sparsity = 0.95

Figure 7: ResNet50x{1}/ImageNet. Top-5 test accuracy vs. rewinds points of sparse network solutions at
various sparsity levels. We observe the permuted solution consistently performing better than the naive solution
for all sparsities. The dashed (- -) line shows the dense model accuracy.

A91.5 L A91.5
3\0— §91 0
391.0 a
g 290.5
3 90.5 3 90.0
< <7
] 0
'9 90.0 |9 89.5
LTH Permuted LTH Permuted
895+, | | = Nave | 89.07 i | | = Naive |
) 10 20 30 40 50 0 10 20 30 40 50
Rewind Points Rewind Points
a) sparisty = 0.80 b) sparsity = 0.90
y y

Figure 8: VGG11x{1}/CIFAR-10. Test accuracy of sparse network solutions at increasing rewind points
for different sparsity levels. The dashed (- -) line shows the dense model accuracy. In Fig. 8b, the permuted
solution closely matches the LTH solution. However, beyond a certain rewind point, particularly for £ > 20 the
performance of the naive solution plateaus. Resulting in a more noticeable gap between the permuted and naive
solutions compared to Fig. 8a.

results are presented in Table 9 in Appendix A.4. As demonstrated in Table 9, the permuted solution
outperforms the naive approach by nearly 2% at higher sparsity levels.

4.2. Effect of Model Width Multiplier.

Permutation matching is an NP-hard problem; the activation matching algorithm proposed by
Ainsworth et al. [6] does not find the global optimum; rather, it uses a greedy search to explore
arestricted solution space. Therefore, the permutation matching may not perfectly align/match two
models. However, it has been observed that for wider models, the algorithm works better in practice
and can closely align two models [6,31]. To understand how the performance of the permuted model is
affected by the approximation error of the matching algorithm, we evaluated the LMC and the accuracy
of the permuted solution on ResNet20 models with varying layer widths. Asshownin Fig. 3, onincreas-
ing the layer width, the loss barrier of the interpolated network reduces, showing that permutation
mapping becomes more accurate and aligns two models better. Also, it can be observed in Figs. 5and 6
that the permuted solution becomes close to the LTH solution on increasing the model width, showing
that as the permutation matching becomes more accurate, the gap between the LTH and the permuted
solution reduces. Given the hypothesis of Ainsworth et al. [6], i.e., neural network loss landscapes nearly
contain a single solution basin modulo permutations, it may be that with an ideal/perfect permutation
mapping, we would be able to train a sparse model with the permuted mask using a new random initial-
ization that would match the LTH solution. However, our experiments still corroborate our hypothesis,
and our work provides novel insights into why LTH does not transfer well to a new initialization.

5. Conclusion

Sparse training and the Lottery Ticket Hypothesis (LTH) have gained significant traction in recent
years. In this work, we seek new insights into sparse training from random initialization and the LTH
by leveraging weight symmetry in Deep Neural Networks (DNNs). Our empirical findings across
various models and datasets support the hypothesis that misalignment between the mask and loss
basin prevents effective use of LTH masks with new initialization. Although finding a permutation to
align dense models is computationally expensive, the goal of our work is to develop insights into the
working of LTH and how the sparse mask can be reused, not to improve the efficiency of LTH. We hope
that our work will spur future work in this direction and will be useful to the research community
working in the realm of sparse training.

References

[1]

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. In 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. CoRR,
abs/1902.09574,2019. URL http://arxiv.org/abs/1902.09574.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections
for efficient neural network. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi
Sugiyama, and Roman Garnett, editors, Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 1135-1143,2015. URL https://proceedings.neurips.cc/paper/2015/
hash/aeOeb3eed39d2bcef4622b2499a05fe6-Abstract.html.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=rJ1-b3RcF7.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-
tuning in neural network pruning. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=S1gSjONKvB.

Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha S. Srinivasa. Git re-basin: Merging
models modulo permutation symmetries. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=CQsmMYm1P5T.

Vaishnavh Nagarajan and]. Zico Kolter. Uniform convergence may be unable to explain
generalization in deep learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper . pdf.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In Proceedings of the 37th International Conference
on Machine Learning, ICML20. JMLR.org, 2020.

Mansheej Paul, Feng Chen, Brett W. Larsen, Jonathan Frankle, Surya Ganguli, and
Gintare Karolina Dziugaite. Unmasking the lottery ticket hypothesis: What’s encoded
in a winning ticket’s mask? In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=xSsW2Am-ukZ.

Utku Evci, Yani Ioannou, Cem Keskin, and Yann N. Dauphin. Gradient flow in sparse neural
networks and how lottery tickets win. In Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event,
February 22 - March 1, 2022, pages 6577-6586. AAAI Press, 2022. doi: 10.1609/AAAILV3616.20611.
URL https://doi.org/10.1609/aaai.v361i6.20611.

Anna Choromanska, Mlkael Henaff, Michael Mathieu, Gerard Ben Arous, and Yann LeCun.
The Loss Surfaces of Multilayer Networks. In Guy Lebanon and S. V. N. Vishwanathan, editors,
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, volume 38
of Proceedings of Machine Learning Research, pages 192-204, San Diego, California, USA, 09-12
May 2015. PMLR. URL https://proceedings.mlr.press/v38/choromanskal5.html.

10

http://arxiv.org/abs/1902.09574
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=S1gSj0NKvB
https://openreview.net/forum?id=CQsmMYmlP5T
https://proceedings.neurips.cc/paper_files/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf
https://openreview.net/forum?id=xSsW2Am-ukZ
https://doi.org/10.1609/aaai.v36i6.20611
https://proceedings.mlr.press/v38/choromanska15.html

[12]

[14]

[15]

[16]

[17]

[18]

[19]

Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NeurIPS’14, page 2933-2941, Cambridge, MA, USA, 2014. MIT Press.

Ian J. Goodfellow and Oriol Vinyals. Qualitatively characterizing neural network optimization
problems. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
URLhttp://arxiv.org/abs/1412.6544.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks, 2021.

Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, vol-
ume 70 of Proceedings of Machine Learning Research, pages 2603-2612. PMLR, 2017. URL
http://proceedings.mlr.press/v70/nguyeni7a.html.

Berfin Simsek, Frangois Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram
Gerstner, and Johanni Brea. Geometry of the loss landscape in overparameterized neural
networks: Symmetries and invariances. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 9722-9732. PMLR, 2021. URL
http://proceedings.mlr.press/v139/simsek2la.html.

Alexander Shapiro and Arkadi Nemirovski. On complexity of stochastic programming problems.
Continuous optimization: Current trends and modern applications, pages 111-146, 2005.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400-407, 1951.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of the
33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24,
2016, volume 48 of JMLR Workshop and Conference Proceedings, pages 1225-1234. JMLR.org, 2016.
URL http://proceedings.mlr.press/v48/hardt16.html.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape
saddle points efficiently. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pages 1724-1732. PMLR, 2017. URL
http://proceedings.mlr.press/v70/jinl7a.html.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

Kenji Kawaguchi. Deep learning without poor local minima. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages 586-594, 2016. URL https://proceedings.
neurips.cc/paper/2016/hash/f2fc990265c712c49d51a18a32b39f0c-Abstract.html.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural

11

http://arxiv.org/abs/1412.6544
http://proceedings.mlr.press/v70/nguyen17a.html
http://proceedings.mlr.press/v139/simsek21a.html
http://proceedings.mlr.press/v48/hardt16.html
http://proceedings.mlr.press/v70/jin17a.html
https://openreview.net/forum?id=Sy8gdB9xx
https://proceedings.neurips.cc/paper/2016/hash/f2fc990265c712c49d51a18a32b39f0c-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/f2fc990265c712c49d51a18a32b39f0c-Abstract.html

[28]

[29]

Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 5947-5956, 2017. URL https://proceedings.
neurips.cc/paper/2017/hash/10ce03aled01077e3e289£3e53c72813-Abstract.html.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces, 1990.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
URL https://openreview.net/forum?id=dNigytemkL.

Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning. Adaptive
computation and machine learning. MIT Press, 2016. ISBN 978-0-262-03561-3. URL
http://www.deeplearningbook.org/.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. REPAIR:
renormalizing permuted activations for interpolation repair. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/forum?id=gU5sJ6ZggcX.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/fb2697869f56484404c8ceee2985b01d-Abstract.html.

N. Joseph Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai.
Optimizing mode connectivity via neuron alignment. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.
cc/paper/2020/hash/aecad42329922dfc97eee948606e1f8e-Abstract.html.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning:
Do different neural networks learn the same representations? In Dmitry Storcheus, Afshin
Rostamizadeh, and Sanjiv Kumar, editors, Proceedings of the 1st International Workshop on
Feature Extraction: Modern Questions and Challenges at NIPS 2015, volume 44 of Proceedings
of Machine Learning Research, pages 196-212, Montreal, Canada, 11 Dec 2015. PMLR. URL
https://proceedings.mlr.press/v44/1ilbconvergent.html.

Ekansh Sharma, Devin Kwok, Tom Denton, Daniel M. Roy, David Rolnick, and Gintare Karolina
Dziugaite. Simultaneous linear connectivity of neural networks modulo permutation. In
Machine Learning and Knowledge Discovery in Databases. Research Track, pages 262-279, Cham, 2024.
Springer Nature Switzerland. URL https://doi.org/10.1007/978-3-031-70368-3_16.

Dimitri Bertsekas. Network optimization: continuous and discrete models, volume 8. Athena
Scientific, 1998.

Akira Ito, Masanori Yamada, and Atsutoshi Kumagai. Analysis of linear mode con-
nectivity via permutation-based weight matching. CoRR, abs/2402.04051, 2024. doi:
10.48550/ ARXIV.2402.04051. URL https://doi.org/10.48550/arXiv.2402.04051.

Harold W. Kuhn. The hungarian method for the assignment problem. In Michael Jiinger,
Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard
Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer Programming
1958-2008 - From the Early Years to the State-of-the-Art, pages 29—47. Springer, 2010. doi:
10.1007/978-3-540-68279-0_2. URL https://doi.org/10.1007/978-3-540-68279-0_2.

12

https://proceedings.neurips.cc/paper/2017/hash/10ce03a1ed01077e3e289f3e53c72813-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/10ce03a1ed01077e3e289f3e53c72813-Abstract.html
https://openreview.net/forum?id=dNigytemkL
http://www.deeplearningbook.org/
https://openreview.net/forum?id=gU5sJ6ZggcX
https://proceedings.neurips.cc/paper/2020/hash/fb2697869f56484404c8ceee2985b01d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb2697869f56484404c8ceee2985b01d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/aecad42329922dfc97eee948606e1f8e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/aecad42329922dfc97eee948606e1f8e-Abstract.html
https://proceedings.mlr.press/v44/li15convergent.html
https://doi.org/10.1007/978-3-031-70368-3_16
https://doi.org/10.48550/arXiv.2402.04051
https://doi.org/10.1007/978-3-540-68279-0_2

[35]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 770-778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1409.1556.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Techni-
cal report, University of Toronto, 2009. URL https://www.cs.toronto.edu/ kriz/
learning-features-2009-TR.pdf.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA,
pages 248-255. IEEE Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848. URL
https://doi.org/10.1109/CVPR.2009.5206848.

Sergey loffe and Christian Szegedy. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML'15, page 448-456. JMLR.org, 2015.

PyTorch Contributors. Pytorch examples, 2024. URL https://github.com/pytorch/
examples/tree/main/imagenet. Accessed: 2024-11-26.

Michela Paganini and Jessica Zosa Forde. Streamlining tensor and network pruning in pytorch.
CoRR, abs/2004.13770,2020. URL https://arxiv.org/abs/2004.13770.

13

https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1409.1556
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/CVPR.2009.5206848
https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/pytorch/examples/tree/main/imagenet
https://arxiv.org/abs/2004.13770

A. Appendix

A.1. Implementation Details for ResNet20 & VGG11 on CIFAR-10/100

Architectures For residual neural networks, we train the standard ResNet20 on CIFAR-10 and
CIFAR-100 with varying width. We implemented a scalar, w, that adjusts the number of channels
in each convolutional and fully connected layer:

o First Convolution Layer: The number of output channels is scaled from 16 to w x 16.

e Layer 1,2,3: The number of output channels for the convolutional blocks in these layers are
scaled from 16, 32, and 64 to w x 16, w x 32, and w x 64, respectively.

e Fully Connected Layer: The input dimension to the final linear layer is scaled to w x 64.

For convolutional neural networks, we train a modified version of the standard VGG11 implemented
by [27] on CIFAR-10. Primary differences are:

o A single fully connected layer at the end which directly maps the flattened feature map output
from the convolutional layers to the 10 classes for CIFAR-10 classification.

o The classifier is set up for CIFAR-10 with 10 output classes as originally VGG11 was designed
for ImageNet with 1000 output classes [38].

Each of our results for a given rewound point, k, is averaged over 3 runs.

Datasets For our set of experiments we used the CIFAR-10 and CIFAR-100 datasets [37]. We apply
the following standard data augmentation techniques to the training set:

e RandomHorizontalFlip: Randomly flips the image horizontally with a given probability (by
default, 50%).
e RandomCrop: Randomly crops the image to a size of 32 x 32 pixels, with a padding of 4 pixels

around the image.

Optimizers We use the following hyperparameters for ResNet20 and VGG11 trained on CIFAR-10/100,
as outlined in Table 1.

Hyperparameter Value
Optimizer SGD
Momentum 0.9

Dense Learning Rate | 0.08
Sparse Learning Rate | 0.02

Weight Decay 5x10~1
Batch Size 128
Epochs (7)) 200

Table 1: Hyperparameters for dense and sparse training of both ResNet20 and VGG11.

A.2. Implementation Details for ResNet50 on ImageNet

Architecture We utilize the standard ResNet50 implementation provided by torchvision and
customize PyTorch'’s distributed data parallel codebase for training models on ImageNet [40].

Dataset For our set of experiments we used the ImageNet datatset [38]. We apply the following
standard data augmentation techniques to the training set:

e RandomHorizontalFlip: Randomly flips the image horizontally with a given probability (by
default, 50%).

14

e RandomResizedCrop: Randomly crops a region from the image and resizes it to 224 x 224
pixels.

Optimizers We use the following hyperparameters for ResNet50 trained on ImageNet, as outlined
in Table 2.

Hyperparameter Value
Optimizer SGD
Momentum 0.9

Dense Learning Rate | 0.4
Sparse Learning Rate | 0.4

Weight Decay 1x10~7
Batch Size 1024
Epochs (7T') 80

Table 2: Hyperparameters for dense and sparse training of ResNet50.

A.3. Pruning

We apply standard Iterative Magnitude Pruning - Fine Tuning (IMP-FT) [3-5] to obtain our
final mask, my4, producing a sparse subnetwork wffT ® my. For pruning, we utilize PyTorch’s
torch.nn.utils.prune library [41].

1. Inan unstructured, global manner, we identify and mask (set to zero) the smallest 20% of
unpruned weights based on their magnitude.

2. This process is repeated for s rounds to achieve the target sparsity .S, with each subsequent
round pruning 20% of the remaining weights.

3. During each round, the model is trained for train_epochs_per_prune epochs.

Hyperparameter ResNet20/VGG11 | ResNet50
train_epochs_per_prune | 50 20
Learning Rate 0.01 0.04

Table 3: Hyperparameters used for pruning ResNet20/VGG11 on CIFAR-10/100 and ResNet50 on ImageNet.

A 4. Results

Detailed results for ResNet20x {w}/CIFAR-10 are provided in Tables 4 to 7, for VGG11 x {1} /CIFAR-10
inTable 8, for ResNet50x {1} /ImageNetin Table 9, and for ResNet20x {w} /CIFAR-100in Tables 10 to 13.

A.5. Additional Plots

Refer to Figs. 9 and 10 for additional accuracy-vs-sparsity plots for ResNet20 on CIFAR-10 and
CIFAR-100. Refer to Fig. 11 for Top-1 accuracy vs. rewind points for ResNet50 on ImageNet.

B. Computational Overhead of the Permuted Solution

The primary difference in computational complexity between the LTH, naive, and permuted solutions
lies in the process of neuronal alignment, where weight/activation matching is used to locate per-
mutations in order to bring the hidden units of two networks into alignment. To obtain the permuted
solution, two distinct models must be trained independently to convergence, after which their weights
or activations are aligned through a permutation-matching process. This alignment, though relatively
efficient, adds a small computational overhead compared to LTH and naive solutions, which do not

15

Table 4: ResNet20x{1}/CIFAR-10. Results using the ResNet20x {1} trained on CIFAR-10, from a rewind
point k, using various methods of sparse training with sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization.

Rewind Epoch k
S Method k=0 5 10 15 20 25 50 75 100
LTH 90.41+0.14 92124025 92.08+0.36 92.10£0.27 92.25+0.14 92324026 92154+0.13 9226+0.19 9221+0.16
80% naive 89.67+035 89.74+0.69 90.16+0.14 90.07+£0.09 90.13+£0.11 90.40+0.11 90.660.12 90.31+0.27 90.45+0.22
perm. 89.74+0.05 90.15+0.16 9026+0.08 90.72+0.12 90.68+0.18 90.72+0.28 90.76£0.27 91.13+0.06 90.82+0.21
LTH 89.45+0.10 91.27+£037 91.34+£029 91.34+£0.09 91.184+0.27 91.43+0.22 91.44+0.12 91.36+0.18 91.68+0.28
90% ‘aive 88.47+021 8870+0.14 88774021 8884+043 88.83+027 88.78+0.02 88.99+0.08 8881+0.17 88.82+0.07
perm. 88.59+0.11 89.09+022 89.56+028 89.71+0.12 89.50+027 89.97+0.13 89.84+0.15 90.03+0.07 89.77+0.15
LTH 87.83+0.38 90.33+022 90394028 90.37+021 90584026 90.43+0.20 90.56+0.29 90.44+0.26 90.40+0.19
95% ‘aive 86.89+021 87.01+023 86.88+0.13 8728+0.19 87314036 87.00+0.19 86.88+0.08 86.99+029 86.50+0.22
perm. 87.24+022 87.70+£0.08 8792+£025 8823+0.52 8829+0.52 88244020 88214030 88214020 88.04+0.22
LTH 86.03+0.22 88.004+0.02 88.73+0.05 89.00+0.24 89.21+0.23 89.27+0.14 89.03+£0.27 89.12+0.25 89.06+0.21
97% ‘naive 85.60+0.38 8543+040 85894037 8548+0.13 85364014 8570+021 8530+£032 8514+029 84.64+0.34
perm. 85.61 £0.48 85.93+£034 86.26+0.40 86.48+0.39 86.124+0.27 86.16+0.14 86.43+0.27 86.06+0.26 85.95+0.14

Table 5: ResNet20x {4}/CIFAR-10. Results using the ResNet20x {4} trained on CIFAR-10, from a rewind
point k, using various methods of sparse training with sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization. Note this table is the same setting
as Table 4 except w=4.

Rewind Epoch k&
S Method k=0 5 10 15 20 25 50 75 100
LTH 94.67+0.14 9557+0.05 9584+0.15 9580+0.12 9588+020 9572+0.09 9581+0.10 95.83+0.21 95.71+0.16
80% aive 9436+0.04 9455+0.14 94594029 94.74+0.13 94.69+0.09 9481+0.06 9507+0.17 9502+0.11 94.97+0.21
perm. 9439+0.19 94.88+0.28 9515+0.14 9520+0.16 95.17+021 9528+0.29 9543+0.14 9540+0.10 95.30+0.08
LTH 9443+0.17 9553+021 95.63+0.07 9565+0.30 9566+0.07 9561+0.14 9556+0.16 95.62+0.14 95.50+0.04
0% aive 93.79+£0.15 93.96+0.05 94.09+0.11 9420+0.29 9435+025 9420+0.13 9427+0.19 9423+0.08 94.19+0.27
perm. 93.97+0.29 94.64+0.13 9473+0.17 9493+0.12 9492+0.11 9490+0.07 95.044+0.14 95.07+0.18 9491+0.19
LTH 93.65+0.12 9526+0.08 9539+0.05 9532+0.18 9526+0.03 9533+0.07 9540+0.14 9519+0.05 95.37+0.21
%% haive 9327 +£0.07 9330+0.11 93.63+0.04 93.61+0.21 93.66+0.13 93.67+0.14 9343+021 9351+032 93.14+0.03
perm. 93.54+0.24 94.17+0.07 9446+0.10 9427+0.19 94.61+£0.07 9454+0.07 94.754+0.11 94.75+0.09 94.54+0.27
LTH 93.00£0.11 94.77+0.09 94.86+0.06 94.94+0.17 9496+0.06 94.89+021 9500+024 9494+0.10 94.97+0.13
7% haive 92.63+£0.12 92.80+0.10 92.85+0.21 92.66+0.21 9274+0.11 92.69+0.14 9228+0.09 92.02+0.18 91.87+0.10
perm. 92.81+0.27 93.54+0.08 93.83+0.12 93.75+0.34 9400+0.33 9412+0.04 94.074+0.31 94.324+0.24 94.14+0.04

involve matching steps. However, it’s important to note that the primary goal of this study is not to
improve training efficiency but rather to investigate why the LTH framework fails when applied to
sparse training from new random initializations (not associated with the winning ticket’s mask).

C. Full Symmetry Figure including Lottery Ticket Hypothesis

In Fig. 12 we include the full version of Fig. 1, including an illustration of the LTH in Fig. 12b.

16

Table 6: ResNet20x{8}/CIFAR-10. Results using the ResNet20x {8} trained on CIFAR-10, from a rewind
point k, using various methods of sparse training with sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization. Note this table is the same setting
as Table 4 except w=38.

Rewind Epoch k&
S Method k=0 10 25 50 100
LTH 9535+ 007 9598+0.14 9612+004 96.10+020 9621+ 0.06
80% aive 9517+017 9532+013 95.63+013 9562008 9579+0.15
perm. 9536+014 9560015 95.89+0.19 9594-+0.17 95.94+0.06
LTH 9496+ 018 9597 +0.15 96.02+005 96.00+019 96.12=0.10
90% aive 9505+007 9512+003 9520+022 9544+0.14 9506+ 025
perm. 9505+005 9558+0.06 9578+0.12 95.87+0.13 95.85+0.11
LTH 94.86 +0.08 9590015 9593+026 96.07+025 9600+ 025
95% aive 9460+014 9484+013 9493+017 9501 +033 9459+ 052
perm. 9485+019 95294027 95.63+0.11 95.67+0.16 9559+ 0.22
LTH 9454+ 023 9579+014 9587+003 9578+021 9590 0.04
9% haive 9439+ 004 9439+004 9449+018 9419+011 93.83+0.08
perm. 9446+0.14 95264010 95.16+0.26 9556+0.06 95.45 0.05

Table 7: ResNet20x{16}/CIFAR-10. Results using the ResNet20x {8} trained on CIFAR-10, from a rewind
point k, using various methods of sparse training with sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization. Note this table is the same setting
as Table 4 except w=16.

Rewind Epoch &
S Method k=0 10 25 50 100
LTH 9562+ 019 9584+036 96.05+034 9631+018 9636+ 0.24
80% aive 95474015 9571+022 9571+026 96.09+004 9599+021
perm. 9577+011 9579+029 96.00+0.14 96.24+0.11 96.21+0.06
LTH 9559 £ 022 9610+ 048 96.19+049 96184020 9641+ 0.14
0% haive 9537+009 9547+013 9566+001 9570+013 9576 0.14
perm. 9558+022 9580+0.14 96.11+0.13 96.17+0.17 96.04 0.05
LTH 9508+ 021 9596+039 96124021 96.16+030 9626+0.23
95% haive 9527+013 9543+009 9557+037 9563+025 9527+ 055
perm. 9539+026 96.02+022 96.12+0.18 96.18=+0.18 96.06 = 0.09
LTH 9519+ 027 9584+025 96.14+030 96.12+027 9617+ 033
97% aive 94944004 9506+017 9529+015 9513+0.19 9435+ 045
perm. 95.07+0.06 9551+022 95.88+0.14 9590024 95.88 = 0.09

17

Table 8: VGG11x {1}/CIFAR-10. Results using the VGG11 trained on CIFAR-10, from a rewind point k, using
various methods of sparse training with sparsity .S. LTH trains within the original dense/pruned solution basin,
while naive/permuted train from a new random initialization.

Rewind Epoch k
S Method k=0 5 10 15 20 25 50
LTH 89.94+0.06 90.44+0.17 9091+0.12 90.87+£0.16 91.14+0.28 91.11+£0.08 91.224+0.08
80% naive 89.70£0.13 89.90+£0.18 90.04+£0.07 90.34+0.16 9048+0.19 90.55+0.17 90.87+0.19
perm. 89.94+0.1 90.18+0.08 90.52+0.17 90.71+0.22 90.77+£0.19 90.81+0.19 91.07+0.21
LTH 89.33+0.16 90.82+0.09 9097+0.14 91.05+0.04 91.15+0.11 90.91+0.17 91.08+0.31
90% naive 89.17+0.2 89.55+0.02 89.81+0.02 89.49+0.05 89.68+0.11 89.80+0.03 89.80+0.05
perm. 89.30+0.02 90.33+0.08 90.44+0.14 90.46£0.04 90.75+0.22 90.76£0.12 91.01+0.06

Table 9: ResNet50x{1}/ImageNet. Top-1 and Top-5 Accuracies of ResNet50 trained on ImageNet, from a
rewind point k, using various methods of sparse training with sparsity S.

Top-1 Accuracy |

Top-5 Accuracy

Method k=10 25 50 | k=10 25 50
LTH 7287 7216 6523 | 9113 90.66 86.65
80% Taive 69.13 6894 6030 | 88.85 881 8322
perm. 69.87 69.85 61.14 | 89.16 89.45 84.04
LTH 7140 7074 6062 | 9027 90.00 83.94
90% aive 6549 6477 5446 | 8655 8626 79.07
perm. 6625 6637 57.40 | 87.23 87.37 8145
LTH 6861 6807 59.83 | 89.03 8825 8296
95% haive 6139 6077 5178 | 8379 8358 76.79
perm. 6248 6277 5298 | 8451 8479 7811

Table 10: ResNet20x {1}/CIFAR-100. Results using the ResNet20x {1} trained on CIFAR-100, from a rewind
point k, using various methods of sparse training with sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization.

Rewind Epoch k&
S Method k=0 10 25 50 100
LTH 63.69 L 041 67.67+008 67.66+025 6782+017 67.73+0.38
80% aive 62.89+0.16 6337+009 6307044 63364027 6333+ 0235
perm. 63.04+024 6407015 6471+0.10 6452+0.78 64.57 % 0.49
LTH 50.81+029 6521+017 6515+028 6510+030 65.17+021
90% Laive 5877 +028 5959+ 018 59441027 59194041 5858+ 016
perm. 59.32+032 60.60+079 6132+033 6153065 60.93%0.51
LTH 5571+ 052 61.08+054 61.73+018 61.65+037 61.68+0.18
95% Laive 54.04+029 55204039 5465+038 5496+057 5397 +0091
perm. 55.12+017 5693+026 57.64+0.36 57.47+0.66 57.13%0.34
LTH 5110+ 034 56141056 5692+ 025 56.94+0.13 56.93+0.06
97% aive 4970 +064 4960+ 025 4949+032 49.16+021 47.70+ 083
perm. 50.34+021 51.55+0.69 51.88+1.08 52.64+034 50.96+1.15

18

Table 11: ResNet20x {4} /CIFAR-100. Results using the ResNet20x {4} trained on CIFAR-100, from a rewind
point k, using various methods of sparse training with sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization. Note this table is the same setting
as Table 10 except w=4.

Rewind Epoch k&
S Method k=0 10 25 50 100
LTH 7446 +0.12 7757+0.06 7735+£031 77.75+026 77.64+0.14
80% naive 73.30+£0.08 74.104+0.12 7498+0.17 7521+£0.12 75.204+0.16
perm. 73.68£0.09 75244031 75.744+041 76.12+0.37 76.194+0.39
LTH 7254 +057 7656+0.11 7656+032 76.80+0.34 76.804+0.21
90% naive 7197 £0.30 72564022 7289+027 7259+0.15 725440.33
perm. 7218 +£0.23 74174035 7421+023 7445+0.27 74.8940.47
LTH 71.16+0.23 75414018 7553+0.11 75.68+0.17 75.764+0.17
95% naive 70.17 £0.47 70954+050 7090+£0.18 71.21+026 69.95+0.42
perm. 7041 4+0.07 72704+£021 7292+039 73.65+0.28 73.41+0.18
LTH 69.06 :-0.03 74.00+039 74.08+0.37 74.184+0.18 74.29+0.31
97% naive 68.404+021 69264+0.19 69.06+£0.11 68.67+047 6842+0.78
perm. 69.084+0.22 71414+054 7149+0.32 71924+0.17 72.20+0.08

Table 12: ResNet20x {8}/CIFAR-100. Results using the ResNet20x {8} trained on CIFAR-100, from a rewind
point k, using various methods of sparse training with sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization. Note this table is the same setting
as Table 10 except w=38.

Rewind Epoch &
S Method k=0 10 25 50 100
LTH 78.09 £ 028 80.63+032 80.83+039 80.92+006 80.66+034
80% aive 7686+017 7747+035 7820+061 78.65+033 7874+ 039
perm. 77.34+026 78.82+034 7920+0.16 79.55+0.38 79.54+0.39
LTH 7647 + 043 80.02+007 80.10+0.13 79.98+033 79.98 +0.20
0% haive 75.68+023 7636+021 7680+014 7727+012 7655+ 049
perm. 76174026 77.99+017 7822+0.15 78.62+0.19 78.82+0.17
LTH 7538 £ 0.02 7942 +006 79244019 79.35+0.06 79.29+0.13
95% haive 7478+015 U548+018 7553+015 7527+015 7438+0.65
perm. 7507+0.14 7697+046 77.80+0.14 77.74+051 78.04+0.42
LTH 7397 £ 021 78.63+025 78654050 7874L049 7847+0.16
7% aive 73134026 7373+012 7376+027 7326+007 7279+ 046
perm. 73.81+0.67 7629+014 7638+0.57 7657+029 76.790.76

19

Table 13: ResNet20x {16}/CIFAR-100. Results using the ResNet20x {16} trained on CIFAR-100, from a rewind
point k, using various methods of sparse training with sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization. Note this table is the same setting
as Table 10 except w=16.

Rewind Epoch k&
S Method k=0 10 25 50 100
LTH 8021 +018 8232+034 8240+026 8248+038 82.16+0.30
80% aive 7931+006 79.50+0.09 8024+017 81.02+0.11 81.01+007
perm. 79.35+011 8044+040 81.15+048 81.57+038 8181+ 0.21
LTH 7931+ 016 8226+018 8214+008 81.95+003 82.11+012
90% aive 78784037 7926+ 011 7942+051 79.56+026 79.57+0.13
perm. 7920+0.09 80.49+032 8059+0.15 81.12+£0.05 81.24+0.09
LTH 7832+ 034 8157+009 8157+032 8147+025 81.63+007
95% aive 78.01+002 7853+010 7845+021 7838+043 7749+ 0.06
perm. 7825+020 79.76+020 80.50=0.04 80.47+0.08 80.25+0.21
LTH 7749+ 027 81.07+007 8L06+011 8111+018 8L14+032
7% aive 7646 +044 7671+ 041 77.19+009 7693 +036 7553+ 040
perm. 77.04+038 79.14+0.17 79.30+021 79.62+0.14 79.63 % 0.06

20

~92 ~92 ~92 =92
g g g g
Z90 g S0 S0
— g goo g g
3 3 3 3
Il 84 g Ses Ses
< <38 < <
Sy § ¥ %
L6 e o ©s6 L6
LTH Naive Permuted oH Naive Permuted LTH Naive Permuted LTH Naive Permuted
0.50 0.85 0.50 0.55 0.50 085 0.50 0.85 0.50 085 0.50 0.55 0.50 0.85 0.50 0.55
Sparsity Sparsity Sparsity Sparsity
(a) rewind=10 (b) rewind = 25 (c) rewind = 50 (d) rewind = 100
96 9 96 96
g g g g
7% 7 7 7%
<t £ g e e
1 Bos g4 3
© 94 9 9 © 94
< < < <
IS o o -
9 2 393 3
[o3 [o
LTH Naive Permuted LTH Naive Permuted LTH Naive Permuted LTH Naive Permuted
0.80 0.85 0.50 0.95 0.80 0.85 0.90 0.85 92550 0.85 0.90 0.95 0.80 0.85 0.90 0.95
Sparsity Sparsity Sparsity Sparsity
(e) rewind=10 (f) rewind =25 (g) rewind =50 (h) rewind = 100
96.0
- ~96.0 - ~96.0
g g 8960 g
T95.5 Tos.s5 Tos.5 955
O g g - 4
I3 H 3 3950
g g 8 95.0: g
£95.0 &95.0 g &
Sy g g 5%
] o $94.5]
Fass Foas = Foas0
LTH Naive Permuted LTH Naive Permuted 94.0 LTH Naive Permuted LTH Naive Permuted
050 0.85 0.50 055 0.50 0.85 0.50 0.55 0.50 085 0.50 055 080 085 0.50 055
Sparsity Sparsity Sparsity Sparsity
(i) rewind=10 (j) rewind = 25 (k) rewind =50 (1) rewind =100
96.5 967> 96.50 96.5
2 o650 £96.25 Ro60
> 29625 - >
96.0 2 296.00
g E H H Ees‘s
3 £96.00 595.75 H
| §95.5 So5.75 M 8 95.0
3 €95. & &95.50 <
i - - -
] 1 95.50] Boas
95.25
e e e e
95.0 iTH Naive permuted 9525 LTH Naive Permuted 95.00 LTH Naive permuted 94.0 UTH Naive permuted
0.80 0.85 0.90 0.55 050 055 0.50 0.55 050 055 0.50 0.55 0.80 0.85 0.90 0.55
Sparsity Sparsity Sparsity Sparsity

(m) rewind=10

(n) rewind =25

(o) rewind =50

(p) rewind = 100

Figure 9: Accuracy vs sparsity trend for ResNet20x {w} /CIFAR-10.As the width increases, the gap between
permuted and naive solutions increases, showing permuted masks help with sparse training. With increased
width, we observe a more significant gap seen throughout Figs. 9d, 9h, 91 and 9p and the permuted solution
approaches the LTH solution. The dashed (- -) line shows the dense model accuracy.

21

70 70 70 70
Les Les os os
> > > >
3 3 3 3
— oo 60 S0 £e0
3 w5 =55 =55 =
I3 n n n
e e e £50
50 oH Naive Permuted 50 oH Naive Permuted 50 LTH Naive Permuted LTH Naive Permuted
0.80 0.85 0.50 0.85 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95
Sparsity Sparsity Sparsity Sparsity
(a) sparsity = 0.80 (b) sparsity = 0.90 (c) sparsity = 0.95 (d) sparsity = 0.97
78 78 78 78
9 9 9 9
<76 6 76 76
> > > >
8 8 H 874
74
< £74 S7a < £
I8] 8 872
<72 <72 < <
3 o 2 i 070
[, 20 g7 e
LTH Naive Permuted LTH Naive Permuted 68 LTH Naive Permuted 68 LTH Naive Permuted
0.80 0.85 0.50 0.55 0.80 0.85 0.90 0.5 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95
Sparsity Sparsity Sparsity Sparsity
(e) rewind=10 (f) rewind =25 (g) rewind =50 (h) rewind = 100
- - ~80: ~80:
g geo g g
g [z 378
78
oo 878 €78 © g
3 3 3 3
I8 4 9 976
<76 <76 K76 g
S e - - -
¢ 3 3 874
[(2 o [
74 LTH Naive Permuted LTH Naive Permuted LTH Naive Permuted 720, LTH | Naive | Permgted
0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95
Sparsity Sparsity Sparsity Sparsity
(i) rewind=10 (j) rewind = 25 (k) rewind =50 (1) rewind =100
83
82
~82 ~82 - -
S8t >81 =81 >50
3 3 3 3
© 8§30 g Eg0 £
— 5 580 5 5
I | 3 9 3 s 79 8 78
< <79 < <
F77 r78 Fo F76
7 LTH Naive Permuted 77 LTH Naive Permuted LTH Naive Permuted LTH Naive Permuted
0.80 0.85 0.50 0.95 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95
Sparsity Sparsity Sparsity Sparsity

(m) rewind=10 (n) rewind =25 (o) rewind =50 (p) rewind = 100
Figure 10: Accuracy vs sparsity trend for ResNet20x {w}/CIFAR-100. Similar to the phenomenon seen in Fig.9,
with higher width the gap between permuted and naive solutions increases. As seen in Figs. 10d, 10h, 101 and 10p

and the permuted solution approaches the LTH solution. The dashed (- -) line shows the dense model accuracy.

~72 - -
R x70 Q70
g g ey
568 865 g
= = =
66
5 5" %
(] () @ 55
62 - -
60 LTH Naive Permuted 55 LTH Naive Permuted LTH Naive Permuted
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

Rewind Points Rewind Points

(b) sparsity = 0.90

Rewind Points
(a) sparsity = 0.80 (c) sparsity = 0.95

Figure 11: ResNet50x{1}/ImageNet. Top-1 test accuracy vs rewinds points of sparse network solutions at
various sparsity levels. We observe the permuted solution consistently peroforming better than the naive solution
for all sparsities. The dashed (- -) line shows the dense model accuracy.

22

w1y wn

initialization
train
mask
solution -

/ dense sparse

high loss

low loss ——

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
)
1
1
1
1
1
1
:
1
Y
o

w5l o my Wo

(c) Sparse training model B with A mask.

Figure 12: Weight Symmetry and the Sparse Training Problem (Full Figure). A model with a single layer
and only two parameters, w = (wo,w1), operating on a single input scale zo has the weight symmetry in the
2D loss landscape as illustrated above. In (a) the original dense model, w 4, is trained from a random dense
initialization, w%° to a dense solution, w’", which is then pruned using weight magnitude resulting in the
mask m = (1,0). In (b) we re-use the init. w'i-°, to train model A with the pruned mask from (a), m4, as in
LTH. In (c), naively using the same mask to train a model, B, from a different random initialization will likely
result in the initialization being far from a good solution. Permuting the mask to match the (symmetric) basin
in which the new initialization is in will enable sparse training.

23

	. Introduction
	. Background & Related Work
	. Method
	. Results
	. Experimental Results.
	. Effect of Model Width Multiplier.

	. Conclusion
	. Appendix
	. Implementation Details for ResNet20 & VGG11 on CIFAR-10/100
	. Implementation Details for ResNet50 on ImageNet
	. Pruning
	. Results
	. Additional Plots

	. Computational Overhead of the Permuted Solution
	. Full Symmetry Figure including Lottery Ticket Hypothesis

