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The Lottery Ticket Hypothesis (LTH) suggests that there exists a sparsewinning ticket
mask andweights that achieves the same generalization performance as the dense
model while using significantly fewer parameters. LTH achieves this by iteratively
sparsifyingandre-trainingwithin theprunedsolutionbasin. However, thisprocedure
is computationallyexpensive, andawinning ticket’s sparsitymaskdoesnotgeneralize
to otherweight initializations. Recentworkhas suggested thatDeepNeuralNetworks
(DNNs) trained from random initialization find solutions within the same basin
moduloweight symmetry, and proposed amethod to align trainedmodelswithin the
same basins. We propose permuting thewinning ticket mask to alignwith the new
optimization basin when performing sparse training from a different random initial-
ization. Using this permutedmask, we show it is possible to significantly increase the
generalization performance of sparse training from random initializationwith the
permutedmask as compared to sparse trainingnaivelyusing thenon-permutedmask.
We empirically demonstrate that our proposedmethod improves the generalization
of LTHwith the new random initialization onmultiple datasets (CIFAR-10/100 and
ImageNet) using VGG11 and ResNet-20/50models of varyingwidths.

1. Introduction
In recent years, foundationmodels have achieved state-of-the-art results for different tasks. However,
the exponential increase in the size of state-of-the-art models requires a similarly exponential increase
in thememory and computational costs required to train, store and use thesemodels—decreasing the
accessibility of thesemodels for researchers and practitioners alike. To overcome this issue, different
model compressionmethods, such aspruning, quantization andknowledgedistillation, havebeenpro-
posed to reduce themodel size at different phases of training or inference. Post-trainingmodel pruning
[1] has been shown to be effective in compressing the model size, and seminal works have demon-
strated that largemodels canbeprunedafter trainingwithminimal loss in accuracy [2, 3]. Whilemodel
pruningmakes inferencemore efficient, it does not reduce the computational cost of training themodel.
Motivated by training a sparse model from a random initialization, Frankle and Carbin [4]
demonstrated that training with a highly sparse mask is possible and proposed the Lottery Ticket
Hypothesis (LTH) to identify sparse networks that, when trained, can match the performance of
a dense model. The key caveat is that a dense model must first be trained to find the sparse mask,
which can only be usedwith the same random initialization that was used to train the densemodel.
Despite LTH seeing significant traction in the research community, lottery tickets cannot be applied to
a new random initialization, which renders LTH impractical for training sparsemodels. This posits an
important question— how can we use winning tickets from LTHwith a different random initialization? If the
winning ticket can be used againwith a different random initialization, then itmightmake LTHamore
practical algorithm for trainingmultiple sparsemodels (ensembles), offsetting the cost of training a
densemodel once, andwould provide a deeper understanding of how sparse training and LTHwork.
In this work, we try to understandwhy LTH does not work for different random initializations from a
weight-space symmetry perspective and show that once permutation symmetries are accounted for, it
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(a) Dense training and pruningmodelA. (b) Sparse trainingmodelBwithAmask.

Figure 1: Weight Symmetry and the Sparse Training Problem. A model with a single layer and only two
parameters,w= (w0,w1), operating on a single input scale x0 has weight symmetry in the 2D loss landscape
as illustrated above. In (a) the original dense model,wA, is trained from a random dense initialization,wt=0

A

to a dense solution,wt=T
A , which is then pruned usingweightmagnitude resulting in themaskmA=(1,0). In

(b), naively using the same mask to train a model, B, from a different random initialization will likely result
in the initialization being far from a good solution. Permuting themask tomatch the (symmetric) basin in which
the new initialization is in will enable sparse training. See Fig. 12 in Appendix C for the full figure including LTH.

ispossible to reuse thewinning ticketmaskwithdifferent randominitializations. Ourhypothesis is that
to reuse the LTHwinning ticket maskwith a different random initialization, the winning ticket mask
obtained needs to be permuted such that it aligns with the optimization basin associatedwith the new
random initialization. We illustrate our hypothesis in Fig. 1. To empirically validate our hypothesis, we
obtainasparsemaskusingIterativeMagnitudePruning(IMP)[3,5]onmodelA(from Fig.1)andshow
that given apermutation that aligns the optimizationbasin ofmodelA andanewrandom initialization,
themask canbe reused. The sparsemodel (with thepermutedmask) canbe trained to closermatch the
generalization performance of the LTH solution, and the permutedmask improves the generalization
of the trained sparsemodel compared to the non-permutedmask. Our contributions are as follows:

1. Due to the permutation symmetry inweight space, there aremany functionally equivalent
loss basins and the new random initialization lands in a different loss basin equivalent up
to symmetry as shown in Fig. 1b [6]. We show that LTH fails to generalize well with a new
random initialization due to amismatch between the optimization basin of the winning ticket
mask and the new random initialization’s solution basin.

2. We propose a method based on permutation matching between two dense models, that
permutes the winning ticket’s sparsemask to alignwith the optimization basin of the new
random initialization.

3. We empirically demonstrate on CIFAR-10/100 and ImageNet datasets using VGG11 and
ResNet models of varyingwidths that permuting the LTH sparse mask to alignwith the new
random initialization improves the performance of the trainedmodel (permuted), compared
to themodel trainedwithout permuting the sparsemask (naive).

2. Background&RelatedWork
LinearMode Connectivity. Apair of trained neural networks are said to be linearly connected if the
loss along the linear path between the networks remains small. The phenomenon of linear (mode)
connectivity was first observed in the context of Stochastic Gradient Descent (SGD) byNagarajan and
Kolter [7], where they showed that two neural networks trained from the same initialization but differ-
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ent data orders exhibit linear connectivity. The term linear mode connectivitywas introduced by Frankle
et al. [8], where they showed that independently trained neural networks can be linearly connected.

Lottery Ticket Hypothesis. The LTH proposes to solve the sparse training problem by re-using the
same initialization as used to train the pruned models. For very small models, training from such
an initializationmaintains the generalization performance of the prunedmodel and demonstrates
that training with a highly sparse mask is possible [4]. However, subsequent work has shown
that obtaining winning tickets for modestly-sized models requires using weight rewinding [8] —
requiring significantly more compute than dense training alone, especially considering that LTH also
requires IMP, i.e. training of iteratively sparsifiedmodels. We include a detailed description of IMP in
Appendix A.3. Paul et al. [9] analyzed the IMP algorithm and showed that sparse network obtained
afterK th IMP iteration is linearly connected to the sparsemodel obtained afterK+1th IMP iteration.
Furthermore, recent work has shown that the LTH effectively re-learns the original pruned solution it
is derived from [10]. Tomake any practical use of sparse training, findingmethods of sparse training
from random initialization is necessary to realize any efficiency gains in training.

Weight Symmetry. The process of training DeepNeural Networks (DNNs) requires optimizing over
a non-convex loss landscape consisting of numerous local minima, narrow ravines, plateaus, saddle
points and loss basins [11–16]. Despite non-convex optimization problems beingNP-hard [17], the
nature of first-order stochastic optimizers such as SGD [18] have been proven to be highly effective in
optimizing DNNs in practice [19, 20]. Empirical evidence suggests that when training independent
DNNusing SGD,withdifferent batch orders and initializations, the resulting training trajectories often
exhibit remarkable similarities [6, 21]. This phenomenon has been attributed to overparameterization,
which creates numerous minima in the loss landscape, leading to multiple distinct functions that
fit the data similarly [22, 23]. However, as early as the 1990s, Hecht-Nielsen [24] demonstrated that
neural networks are permutation invariant possessing aweight-symmetrical property, where swapping
any two neurons within a hidden layer does not alter the underlying function being learned. In other
words, the permuted network remains functionally equivalent to its original configuration. Hence,
the existence of permutation symmetries in the loss landscape contributes to its non-convexity, as
it creates copies of global minima at different points in weight space due to weight symmetry [25, 26].

LinearMode Connectivitymodulo Permutation. Entezari et al. [25] further observed that while a
model and its randomly permuted counterpart are functionally equivalent, they are rarely linearly
connected in the weight space. This misalignment suggests the presence of loss barriers—regions along
a linear path between models where the loss is significantly higher than at the endpoints. They
conjectured that independently obtained SGD solutions exhibit no loss barrier when accounting
for permutation symmetries, suggesting that all SGD-trained networks converge to a single basin
modulo permutations. Building on this conjecture, several algorithms have been developed to address
permutation invariance by aligning trained networks to the same optimization basin [6, 27–29].
Ainsworth et al. [6] demonstrated that two models trained from different random initializations
find solutions within the same basinmodulo permutation symmetry. They proposed a permutation
matching algorithm to permute the units of onemodel to align it with a referencemodel, enabling
Linear-Mode Connectivity (LMC) [8]. The use of activation matching for model alignment was
originally introduced by Li et al. [30] to ensuremodels learn similar representationswhen performing
thesametask. Jordanetal. [27] investigated thepoorperformanceof interpolatednetworks, attributing
it to a phenomenon they termed "variance collapse". To address this, they proposed amethod that
rescales the hidden units, leading to significant improvements in the performance of interpolated
networks. A rigorous study from Sharma et al. [31] introduced a notion of simultaneous weak linear
connectivitywhere a permutation, π, aligning two networks also simultaneously aligns two larger fully
trained networks throughout the entire SGD trajectory and the same π also aligns successive iterations
of independently sparsified networks found via weight rewinding. Sharma et al. [31] also showed
that for certain neural networks, sparsemask obtained via weight rewinding can be reusedmodulo
permutations without hurting the test performance.
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Figure 2: The overall framework of the training procedure, beginningwith two distinct dense randomweight
initializations, wt=0

A , wt=0
B sampled from a normal distribution, N . The sparse training problem attempts to

train the random initialization,wt=0
B using the naivemaskmA, found by pruning a dense trainedmodel,wt=T

A .
However, this results in poor generalization performance [8]. We propose to instead trainwt=k

B at some rewound
epoch k, equippedwith a permutedmask π(mA). We show that this achievesmore comparable generalization
to the prunedmodel/trained LTH solution,wt=T

A ⊙mA.

3. Method
Motivation. In this work, we try to understand why LTH masks fail to transfer to a new random
initialization. Our hypothesis is that the loss basin corresponding to the LTHmask is not alignedwith
the new random initialization, as shown in Fig. 1. Since the sparse mask is not in alignment with
the basin of the new random initialization, sparse training does not work well; therefore, aligning
the LTHmaskwith new random initializationmay improve sparse training and enable the transfer
of LTHmasks to new random initializations.
PermutationMatching. Ainsworth et al. [6] showed the permutation symmetries in theweight space
can be leveraged to align the basin of twomodels trained from different random initializations. The
permutationmapping can be obtained by either matching activations or weights. In this work, we
use activationmatching to obtain the permutationmapping as it has been shown to bemore stable
in recent works [31]. Activationmatching tries to find a permutationmapping, π∈Sd (where Sd is
the permutation group of order d!) such that by permuting the parameters of the secondmodel, the
correlation between the activations of the twomodels ismaximized. For amodel consisting ofL layers,
each layer is sequentially matched and permuted starting from the input layer. Let ZA

l ,ZB
l ∈Rd×n

be the activations of layer l of modelA andB respectively obtained using the training data, where d
represents the dimensionality of the activations at layer l and n is the number of training data points.
Then a permutationmapping for layer l, πl, is obtained by solving:

πl=argmin
π

||ZB
l −πZA

l ||=argmax
π

⟨π,ZB(ZA)⊤⟩F , (1)

where ⟨.,.⟩F denotes the Frobenius inner product. Eq. (1) can be formulated as a linear assignment
problem (LAP) [32, 33] solved via the Hungarian algorithm [34]; however, the permutation found is
not global optima but a greedy/approximate solution as permutationmatching is a NP-hard problem.
Once the permutationmapping is obtained for all the layers, themodelA can be permuted tomatch
model B. To ensure that the permuted model does not change functionally when permuting the
output dimension of layer l, the input dimension of the next layer is also permuted accordingly. Let
Wl and bl be the weights and bias of layer l respectively, then the permuted weight matrixW p

l and
permuted bias bpl for each layer can bemathematically represented as,

W p
l =πlWl(πl−1)

⊤, bpl =πlbl. (2)

Evaluating PermutationMatching. Since LAP uses a greedy search to find an approximate solution,
to ensure that the permutedmodelA andmodelB lie in the same basin, we evaluate the LMC (loss
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(a) ResNet20/CIFAR-10
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(b) ResNet20/CIFAR-100
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(c) ResNet50/ImageNet
Figure 3: Larger width exhibits better LMC. Plots showing linear interpolation between π(wt=T

A ) andwt=T
B

where πwas obtained through activationmatching between two densemodels for varyingwidths. As the width
of themodel increases, the permutationmatching algorithm gets more accurate, thereby reducing the loss barrier
(i.e., better LMC), which is evaluated on the test set. This shows that the permutationmatching can find a better
mapping, π, for widermodels, explainingwhy the permutedmaskworks better in case of widermodels.

barrier) between the twomodels. More formally, let θ1,θ2 be the parameters of two networks, then
the loss barrier B is defined as:

B(θ1,θ2) := sup
α∈[0,1]

[
L
(
(1−α)θ1+αθ2

)
−
(
(1−α)L(θ1)+αL(θ2)

)]
≥0 , (3)

where L is the loss function evaluated on the training dataset. If B(θ1,θ2)≈ 0, it is said that θ1 and
θ2 are linearlymode connected.
To ensure that the permutation mapping, π, can closely match modelA andmodelB, we evaluate
the loss barrier between the permutedmodelA andmodelB. However, aligning neurons alone is not
sufficient to establish a low loss barrier due to variance collapse [27]. Toovercome thevariance collapse
issue, we used REPAIR [27] to correct the variance of the activations in the interpolated/merged
model. As shown in Fig. 3, the loss barrier after permutationmatching and correcting the variance
(REPAIR) is lower than the loss at random initialization, showing permutationmapping canmatch
themodels to bring them closer/in the loss basin.

Aligning Masks via Weight Symmetry. In contrast to previous works [6], we are interested in
permuting themask obtained by LTH such that the optimization basin of the permuted sparse mask
and the new random initialization is aligned. To validate our hypothesis, we train two densemodels,
wt=0

A and wt=0
B , where t denotes the epoch, to convergence (trained for T epochs) and then use

activationmatching (implemented by Jordan et al. [27]) to find the permutationmapping π, such that
the activations of π(wt=T

A ) andwt=T
B are aligned. MaskmA, obtained using IMP, is also permuted

with the samepermutationmapπ. The intuition is that the permutedmask alignswith the loss basin of
modelwt=T

B , which is necessary for sparse training and, therefore, the sparsemodel can bemore easily
optimized (see Fig. 2). We denote trainingwith the permutedmask, π(mA) as permuted andwith the
non-permutedmask,mA as naive. As illustrated Fig. 4a, the permutedmodelA, π(wt=T

A ), is linearly
mode connectedwith the convergedmodelB,wt=T

B . Fig. 4b shows that the permuted LTH solution
is linearly mode connected with the model B trained with the permuted mask. Fig. 4c shows that
permuted LTH solution, permutedmodelA and permuted sparse solution all lie in the same basin.

Sparse Training. For evaluating the transferability of the permuted LTHmask, we use a new random
initialization wt=0

B and sparse masks mA and π(mA) for sparse training the naive and permuted
solution respectively. We also evaluate the LTH baseline, i.e., training modelwt=0

A with maskmA.
Since LTH requires weight rewinding to an earlier point in training, we also use a rewind checkpoint
from epoch t= k≪ T for both the baselines and permuted solution. In sparse training, the model
is trainedwith amaskm, masking some of the weights, during both forward and backward passes.

5



1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
(wt = T

A )
wt = T

B

wt = T
B (mA)

(a)
1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
(wt = T

A ) (mA)
wt = T

B

wt = T
B (mA)

(b)
1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
(wt = T

A ) (mA)
(wt = T

A )
wt = T

B (mA)

(c)
Figure4: Wevisualize the0–1 loss landscapeofResNet20×{4}/CIFAR-10. Thefiguresaregeneratedbyevaluating
the 0–1 loss spanned by three models in each corresponding figure. The sparse model in each of the figures
is obtained byweight rewinding to achieve≈90% sparsity. We show that, modulo permutations, reusing the
permutedmask leads to convergence in the samemode as the original model, i.e. the LTH solution. Hence, there
is a small loss barrier between the permuted and LTH solutions, demonstrating they are within the same linearly
connectedmode. In thevisualizations, lighteranddarker regionscorrespondto lowerandhigher loss, respectively.

4. Results
To validate our hypothesis, we trained ResNet20 [35] and VGG11 [36]models on the CIFAR-10/100
datasets [37] (details in Appendix A.1) across different levels of sparsity (S=0.80,0.90,0.95,0.97).
We used ResNet20 with varying widths (w = 1,4,8,16) to study the effect of increasing width on
the permutation matching and, thereby, the performance of the permuted sparse model. We also
demonstrate our hypothesis on the large-scale ImageNet dataset [38] using ResNet50, showing the
efficacy of ourmethod across different models and datasets of varying sizes.

4.1. Experimental Results.

ResNet20/CIFAR-10 &CIFAR-100. We trained ResNet20 on the CIFAR-10/100 datasets. As shown
in Figs. 5 and 6, the permuted solution outperforms the naive baseline across all model widths
and rewind points. Since it is more difficult to train models with higher sparsity, the gap between
naive and permuted solutions increases as sparsity increases, as shown in Figs. 5d, 5h and 5l. It
can also be observed that at higher sparsity increasing the rewind point improves both the LTH
and permuted solution but not the naive solution. The improved performance of the permuted
solution over naive supports our hypothesis and shows that misalignment of LTHmasks and loss
basin corresponding to the new random initialization could explain why LTHmasks do not transfer
to different initializations. We also show accuracy vs. sparsity plots for k= {10,25,50,100} (details
in Appendix A.5); as sparsity increases, the gap between permuted and naive solution increases for
all rewind points. As illustrated in figure Fig. 5, neither the LTH nor the permuted solution performs
effectively with random initialization (k=0) but improves on increasing the rewind point up to a
certain point, beyondwhich it plateaus. Detailed results are presented in Tables 4 to 7 inAppendixA.4.
We also validated our hypothesis on CIFAR-100 using ResNet20 with varying widths. As shown
in Fig. 6, the permuted solution consistently outperforms the naive solution, showing that our
hypothesis holds true across different models and datasets. Similar to the CIFAR-10 dataset, as we
increase the width, the gap between the permuted and naive solution increases showing the efficacy
of ourmethod. Detailed results are presented in Tables 10 to 13 in Appendix A.4.

VGG11/CIFAR-10. Weutilize themodified VGG11 architecture implemented by Jordan et al. [27]
trained on CIFAR-10 (details in Appendix A.1). We observe that for a moderate sparsity (80%)
in Fig. 8a, the gap between the permuted and the naive baseline is not large, however for a higher
sparsity level (90%), the permuted solution significantly outperforms the naive solution as shown
in Fig. 8b. For the VGG11 model, on increasing the rewind point, the permuted solution closely
matches the accuracy of LTH, while the naive solution significantly plateaus and does not improve
on increasing the rewind point. For higher sparsities, the naive baseline was unstable in training as
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Figure 5: ResNet20×{w}/CIFAR-10.Test accuracy of sparse network solutions vs. increasing rewind points
for different sparsity levels and widths, w. The dashed (- -) line shows the dense model accuracy. The effect
of the rewind point on the test accuracy for different sparsities is shown. As the width increases, the gap between
training from a random initialization with the permuted mask and the LTH/dense baseline (dashed line)
decreases, unlike trainingwith the non-permutedmask (naive), showing amodel trainedwith the permuted
mask generalizes better than naive.

themodified VGG11 architecture does not have BatchNorm layers [39]; we omit those results in the
discussion for a fair comparison. Detailed results are presented in Table 8 in Appendix A.4.

ResNet50/ImageNet. We also validated our hypothesis on the ILSVRC 2012 (ImageNet) dataset,
which consists of 1.28 million images across 1,000 classes [38]. We used the ResNet50 model to
evaluate the performance of the permuted mask at different sparsity levels. As observed in Fig. 7,
the permuted solution outperforms the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While the permuted solution performs better
than the naive solution, there is still a significant gap between LTH and the permuted solution in
the case of the ImageNet dataset as compared to the CIFAR-10/100 dataset. This could be due to
permutationmatching not being accurate enough, as only a small subset of the training dataset was
used for activationmatching. This can also be visualized in terms of the loss barrier in Fig. 3c between
the permutedmodelA andmodelB; the loss barrier after permutation is more prominent compared
to the CIFAR dataset (Figs. 3a and 3b). Thus, the permutationmapping π cannotmatch themodels
perfectly in the case of ImageNet since the permutation matching algorithm uses a greedy search
algorithm to find the permutationmapping. However, given a perfect mapping, it could be possible
to further improve the performance of the permuted solution as discussed in Section 4.2. Detailed
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Figure 6: ResNet20×{w}/CIFAR-100. Test accuracy of sparse network solutions vs. increasing rewind points
for different sparsity levels and widths, w. The dashed (- -) line shows the dense model accuracy. The effect
of the rewind points on the test accuracy for different sparsities is shown. As the width increases, the gap
between training from a random initializationwith the permutedmask and the LTH/dense baseline (dashed
line) decreases, unlike training with the non-permutedmask (naive), showingmodel trainedwith the permuted
model generalizes better than naive.
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Figure 7: ResNet50×{1}/ImageNet. Top-5 test accuracy vs. rewinds points of sparse network solutions at
various sparsity levels. We observe the permuted solution consistently performing better than the naive solution
for all sparsities. The dashed (- -) line shows the densemodel accuracy.
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Figure 8: VGG11×{1}/CIFAR-10. Test accuracy of sparse network solutions at increasing rewind points
for different sparsity levels. The dashed (- -) line shows the dense model accuracy. In Fig. 8b, the permuted
solution closelymatches the LTH solution. However, beyond a certain rewind point, particularly for k≥20 the
performance of the naive solution plateaus. Resulting in amore noticeable gap between the permuted and naive
solutions compared to Fig. 8a.

results are presented in Table 9 in Appendix A.4. As demonstrated in Table 9, the permuted solution
outperforms the naive approach by nearly 2% at higher sparsity levels.

4.2. Effect ofModelWidthMultiplier.
Permutation matching is an NP-hard problem; the activation matching algorithm proposed by
Ainsworth et al. [6] does not find the global optimum; rather, it uses a greedy search to explore
a restricted solution space. Therefore, the permutationmatchingmay not perfectly align/match two
models. However, it has been observed that for wider models, the algorithmworks better in practice
and can closely align twomodels [6, 31]. Tounderstandhowtheperformanceof thepermutedmodel is
affectedby the approximation error of thematchingalgorithm,weevaluated theLMCand the accuracy
of thepermuted solutiononResNet20modelswithvarying layerwidths. As shown inFig. 3, on increas-
ing the layer width, the loss barrier of the interpolated network reduces, showing that permutation
mapping becomesmore accurate and aligns twomodels better. Also, it can be observed in Figs. 5 and 6
that the permuted solution becomes close to the LTH solution on increasing themodelwidth, showing
that as the permutationmatching becomesmore accurate, the gap between the LTH and the permuted
solution reduces. Given the hypothesis of Ainsworth et al. [6], i.e., neural network loss landscapes nearly
contain a single solution basin modulo permutations, it may be that with an ideal/perfect permutation
mapping,wewouldbeable to train a sparsemodelwith thepermutedmaskusinganewrandominitial-
ization thatwouldmatch the LTH solution. However, our experiments still corroborate our hypothesis,
and our work provides novel insights into why LTH does not transfer well to a new initialization.

5. Conclusion
Sparse training and the Lottery Ticket Hypothesis (LTH) have gained significant traction in recent
years. In this work, we seek new insights into sparse training from random initialization and the LTH
by leveragingweight symmetry in DeepNeural Networks (DNNs). Our empirical findings across
variousmodels and datasets support the hypothesis that misalignment between themask and loss
basin prevents effective use of LTHmasks with new initialization. Although finding a permutation to
align densemodels is computationally expensive, the goal of our work is to develop insights into the
working of LTH and how the sparsemask can be reused, not to improve the efficiency of LTH.We hope
that our work will spur future work in this direction andwill be useful to the research community
working in the realm of sparse training.
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A. Appendix

A.1. ImplementationDetails for ResNet20 &VGG11 on CIFAR-10/100
Architectures For residual neural networks, we train the standard ResNet20 on CIFAR-10 and
CIFAR-100 with varying width. We implemented a scalar, w, that adjusts the number of channels
in each convolutional and fully connected layer:

• First Convolution Layer: The number of output channels is scaled from 16 tow×16.
• Layer 1,2,3: The number of output channels for the convolutional blocks in these layers are

scaled from 16, 32, and 64 tow×16,w×32, andw×64, respectively.
• Fully Connected Layer: The input dimension to the final linear layer is scaled tow×64.

For convolutional neural networks, we train amodified version of the standard VGG11 implemented
by [27] on CIFAR-10. Primary differences are:

• A single fully connected layer at the endwhich directlymaps the flattened featuremap output
from the convolutional layers to the 10 classes for CIFAR-10 classification.

• The classifier is set up for CIFAR-10 with 10 output classes as originally VGG11was designed
for ImageNet with 1000 output classes [38].

Each of our results for a given rewound point, k, is averaged over 3 runs.
Datasets For our set of experiments we used the CIFAR-10 and CIFAR-100 datasets [37]. We apply
the following standard data augmentation techniques to the training set:

• RandomHorizontalFlip: Randomly flips the image horizontally with a given probability (by
default, 50%).

• RandomCrop: Randomly crops the image to a size of 32×32 pixels, with a padding of 4 pixels
around the image.

Optimizers Weuse the followinghyperparameters forResNet20andVGG11trainedonCIFAR-10/100,
as outlined in Table 1.

Hyperparameter Value
Optimizer SGD
Momentum 0.9
Dense Learning Rate 0.08
Sparse Learning Rate 0.02
Weight Decay 5×10−4

Batch Size 128
Epochs (T ) 200

Table 1: Hyperparameters for dense and sparse training of both ResNet20 and VGG11.

A.2. ImplementationDetails for ResNet50 on ImageNet
Architecture We utilize the standard ResNet50 implementation provided by torchvision and
customize PyTorch’s distributed data parallel codebase for trainingmodels on ImageNet [40].
Dataset For our set of experiments we used the ImageNet datatset [38]. We apply the following
standard data augmentation techniques to the training set:

• RandomHorizontalFlip: Randomly flips the image horizontally with a given probability (by
default, 50%).
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• RandomResizedCrop: Randomly crops a region from the image and resizes it to 224× 224
pixels.

Optimizers Weuse the following hyperparameters for ResNet50 trained on ImageNet, as outlined
in Table 2.

Hyperparameter Value
Optimizer SGD
Momentum 0.9
Dense Learning Rate 0.4
Sparse Learning Rate 0.4
Weight Decay 1×10−4

Batch Size 1024
Epochs (T ) 80

Table 2: Hyperparameters for dense and sparse training of ResNet50.

A.3. Pruning
We apply standard Iterative Magnitude Pruning - Fine Tuning (IMP-FT) [3–5] to obtain our
final mask, mA, producing a sparse subnetwork wt=T

A ⊙mA. For pruning, we utilize PyTorch’s
torch.nn.utils.prune library [41].

1. In an unstructured, global manner, we identify andmask (set to zero) the smallest 20% of
unprunedweights based on their magnitude.

2. This process is repeated for s rounds to achieve the target sparsity S, with each subsequent
round pruning 20% of the remainingweights.

3. During each round, themodel is trained for train_epochs_per_prune epochs.

Hyperparameter ResNet20/VGG11 ResNet50
train_epochs_per_prune 50 20
Learning Rate 0.01 0.04

Table 3: Hyperparameters used for pruning ResNet20/VGG11 on CIFAR-10/100 and ResNet50 on ImageNet.

A.4. Results
Detailed results for ResNet20×{w}/CIFAR-10 are provided in Tables 4 to 7, for VGG11×{1}/CIFAR-10
inTable 8, forResNet50×{1}/ImageNet inTable 9, and forResNet20×{w}/CIFAR-100 inTables 10 to 13.

A.5. Additional Plots
Refer to Figs. 9 and 10 for additional accuracy-vs-sparsity plots for ResNet20 on CIFAR-10 and
CIFAR-100. Refer to Fig. 11 for Top-1 accuracy vs. rewind points for ResNet50 on ImageNet.

B. Computational Overhead of the Permuted Solution
The primary difference in computational complexity between the LTH, naive, and permuted solutions
lies in the process of neuronal alignment, where weight/activation matching is used to locate per-
mutations in order to bring the hidden units of two networks into alignment. To obtain the permuted
solution, two distinct modelsmust be trained independently to convergence, after which their weights
or activations are aligned through a permutation-matching process. This alignment, though relatively
efficient, adds a small computational overhead compared to LTH and naive solutions, which do not
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Table 4: ResNet20×{1}/CIFAR-10. Results using the ResNet20×{1} trained on CIFAR-10, from a rewind
point k, using variousmethods of sparse trainingwith sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization.

Rewind Epoch k

S Method k= 0 5 10 15 20 25 50 75 100

80%
LTH 90.41± 0.14 92.12± 0.25 92.08± 0.36 92.10± 0.27 92.25± 0.14 92.32± 0.26 92.15± 0.13 92.26± 0.19 92.21± 0.16
naive 89.67± 0.35 89.74± 0.69 90.16± 0.14 90.07± 0.09 90.13± 0.11 90.40± 0.11 90.66± 0.12 90.31± 0.27 90.45± 0.22
perm. 89.74± 0.05 90.15± 0.16 90.26± 0.08 90.72± 0.12 90.68± 0.18 90.72± 0.28 90.76± 0.27 91.13± 0.06 90.82± 0.21

90%
LTH 89.45± 0.10 91.27± 0.37 91.34± 0.29 91.34± 0.09 91.18± 0.27 91.43± 0.22 91.44± 0.12 91.36± 0.18 91.68± 0.28
naive 88.47± 0.21 88.70± 0.14 88.77± 0.21 88.84± 0.43 88.83± 0.27 88.78± 0.02 88.99± 0.08 88.81± 0.17 88.82± 0.07
perm. 88.59± 0.11 89.09± 0.22 89.56± 0.28 89.71± 0.12 89.50± 0.27 89.97± 0.13 89.84± 0.15 90.03± 0.07 89.77± 0.15

95%
LTH 87.83± 0.38 90.33± 0.22 90.39± 0.28 90.37± 0.21 90.58± 0.26 90.43± 0.20 90.56± 0.29 90.44± 0.26 90.40± 0.19
naive 86.89± 0.21 87.01± 0.23 86.88± 0.13 87.28± 0.19 87.31± 0.36 87.00± 0.19 86.88± 0.08 86.99± 0.29 86.50± 0.22
perm. 87.24± 0.22 87.70± 0.08 87.92± 0.25 88.23± 0.52 88.29± 0.52 88.24± 0.20 88.21± 0.30 88.21± 0.20 88.04± 0.22

97%
LTH 86.03± 0.22 88.00± 0.02 88.73± 0.05 89.00± 0.24 89.21± 0.23 89.27± 0.14 89.03± 0.27 89.12± 0.25 89.06± 0.21
naive 85.60± 0.38 85.43± 0.40 85.89± 0.37 85.48± 0.13 85.36± 0.14 85.70± 0.21 85.30± 0.32 85.14± 0.29 84.64± 0.34
perm. 85.61± 0.48 85.93± 0.34 86.26± 0.40 86.48± 0.39 86.12± 0.27 86.16± 0.14 86.43± 0.27 86.06± 0.26 85.95± 0.14

Table 5: ResNet20×{4}/CIFAR-10. Results using the ResNet20×{4} trained on CIFAR-10, from a rewind
point k, using variousmethods of sparse trainingwith sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization. Note this table is the same setting
as Table 4 exceptw=4.

Rewind Epoch k

S Method k=0 5 10 15 20 25 50 75 100

80%
LTH 94.67± 0.14 95.57± 0.05 95.84± 0.15 95.80± 0.12 95.88± 0.20 95.72± 0.09 95.81± 0.10 95.83± 0.21 95.71± 0.16
naive 94.36± 0.04 94.55± 0.14 94.59± 0.29 94.74± 0.13 94.69± 0.09 94.81± 0.06 95.07± 0.17 95.02± 0.11 94.97± 0.21
perm. 94.39± 0.19 94.88± 0.28 95.15± 0.14 95.20± 0.16 95.17± 0.21 95.28± 0.29 95.43± 0.14 95.40± 0.10 95.30± 0.08

90%
LTH 94.43± 0.17 95.53± 0.21 95.63± 0.07 95.65± 0.30 95.66± 0.07 95.61± 0.14 95.56± 0.16 95.62± 0.14 95.50± 0.04
naive 93.79± 0.15 93.96± 0.05 94.09± 0.11 94.20± 0.29 94.35± 0.25 94.20± 0.13 94.27± 0.19 94.23± 0.08 94.19± 0.27
perm. 93.97± 0.29 94.64± 0.13 94.73± 0.17 94.93± 0.12 94.92± 0.11 94.90± 0.07 95.04± 0.14 95.07± 0.18 94.91± 0.19

95%
LTH 93.65± 0.12 95.26± 0.08 95.39± 0.05 95.32± 0.18 95.26± 0.03 95.33± 0.07 95.40± 0.14 95.19± 0.05 95.37± 0.21
naive 93.27± 0.07 93.30± 0.11 93.63± 0.04 93.61± 0.21 93.66± 0.13 93.67± 0.14 93.43± 0.21 93.51± 0.32 93.14± 0.03
perm. 93.54± 0.24 94.17± 0.07 94.46± 0.10 94.27± 0.19 94.61± 0.07 94.54± 0.07 94.75± 0.11 94.75± 0.09 94.54± 0.27

97%
LTH 93.00± 0.11 94.77± 0.09 94.86± 0.06 94.94± 0.17 94.96± 0.06 94.89± 0.21 95.00± 0.24 94.94± 0.10 94.97± 0.13
naive 92.63± 0.12 92.80± 0.10 92.85± 0.21 92.66± 0.21 92.74± 0.11 92.69± 0.14 92.28± 0.09 92.02± 0.18 91.87± 0.10
perm. 92.81± 0.27 93.54± 0.08 93.83± 0.12 93.75± 0.34 94.00± 0.33 94.12± 0.04 94.07± 0.31 94.32± 0.24 94.14± 0.04

involvematching steps. However, it’s important to note that the primary goal of this study is not to
improve training efficiency but rather to investigate why the LTH framework fails when applied to
sparse training from new random initializations (not associatedwith the winning ticket’s mask).

C. Full Symmetry Figure including Lottery Ticket Hypothesis
In Fig. 12 we include the full version of Fig. 1, including an illustration of the LTH in Fig. 12b.
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Table 6: ResNet20×{8}/CIFAR-10. Results using the ResNet20×{8} trained on CIFAR-10, from a rewind
point k, using variousmethods of sparse trainingwith sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization. Note this table is the same setting
as Table 4 exceptw=8.

Rewind Epoch k

S Method k=0 10 25 50 100

80%
LTH 95.35± 0.07 95.98± 0.14 96.12± 0.04 96.10± 0.20 96.21± 0.06
naive 95.17± 0.17 95.32± 0.13 95.63± 0.13 95.62± 0.08 95.79± 0.15
perm. 95.36± 0.14 95.60± 0.15 95.89± 0.19 95.94± 0.17 95.94± 0.06

90%
LTH 94.96± 0.18 95.97± 0.15 96.02± 0.05 96.00± 0.19 96.12± 0.10
naive 95.05± 0.07 95.12± 0.03 95.20± 0.22 95.44± 0.14 95.06± 0.25
perm. 95.05± 0.05 95.58± 0.06 95.78± 0.12 95.87± 0.13 95.85± 0.11

95%
LTH 94.86± 0.08 95.90± 0.15 95.93± 0.26 96.07± 0.25 96.00± 0.25
naive 94.60± 0.14 94.84± 0.13 94.93± 0.17 95.01± 0.33 94.59± 0.52
perm. 94.85± 0.19 95.29± 0.27 95.63± 0.11 95.67± 0.16 95.59± 0.22

97%
LTH 94.54± 0.23 95.79± 0.14 95.87± 0.03 95.78± 0.21 95.90± 0.04
naive 94.39± 0.04 94.39± 0.04 94.49± 0.18 94.19± 0.11 93.83± 0.08
perm. 94.46± 0.14 95.26± 0.10 95.16± 0.26 95.56± 0.06 95.45± 0.05

Table 7: ResNet20×{16}/CIFAR-10. Results using the ResNet20×{8} trained on CIFAR-10, from a rewind
point k, using variousmethods of sparse trainingwith sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization. Note this table is the same setting
as Table 4 exceptw=16.

Rewind Epoch k

S Method k=0 10 25 50 100

80%
LTH 95.62± 0.19 95.84± 0.36 96.05± 0.34 96.31± 0.18 96.36± 0.24
naive 95.47± 0.15 95.71± 0.22 95.71± 0.26 96.09± 0.04 95.99± 0.21
perm. 95.77± 0.11 95.79± 0.29 96.00± 0.14 96.24± 0.11 96.21± 0.06

90%
LTH 95.59± 0.22 96.10± 0.48 96.19± 0.49 96.18± 0.20 96.41± 0.14
naive 95.37± 0.09 95.47± 0.13 95.66± 0.01 95.70± 0.13 95.76± 0.14
perm. 95.58± 0.22 95.80± 0.14 96.11± 0.13 96.17± 0.17 96.04± 0.05

95%
LTH 95.08± 0.21 95.96± 0.39 96.12± 0.21 96.16± 0.30 96.26± 0.23
naive 95.27± 0.13 95.43± 0.09 95.57± 0.37 95.63± 0.25 95.27± 0.55
perm. 95.39± 0.26 96.02± 0.22 96.12± 0.18 96.18± 0.18 96.06± 0.09

97%
LTH 95.19± 0.27 95.84± 0.25 96.14± 0.30 96.12± 0.27 96.17± 0.33
naive 94.94± 0.04 95.06± 0.17 95.29± 0.15 95.13± 0.19 94.35± 0.45
perm. 95.07± 0.06 95.51± 0.22 95.88± 0.14 95.90± 0.24 95.88± 0.09
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Table 8: VGG11×{1}/CIFAR-10. Results using the VGG11 trained on CIFAR-10, from a rewind point k, using
variousmethods of sparse trainingwith sparsity S. LTH trains within the original dense/pruned solution basin,
while naive/permuted train from a new random initialization.

Rewind Epoch k

S Method k= 0 5 10 15 20 25 50

80%
LTH 89.94± 0.06 90.44± 0.17 90.91± 0.12 90.87± 0.16 91.14± 0.28 91.11± 0.08 91.22± 0.08
naive 89.70± 0.13 89.90± 0.18 90.04± 0.07 90.34± 0.16 90.48± 0.19 90.55± 0.17 90.87± 0.19
perm. 89.94± 0.1 90.18± 0.08 90.52± 0.17 90.71± 0.22 90.77± 0.19 90.81± 0.19 91.07± 0.21

90%
LTH 89.33± 0.16 90.82± 0.09 90.97± 0.14 91.05± 0.04 91.15± 0.11 90.91± 0.17 91.08± 0.31
naive 89.17± 0.2 89.55± 0.02 89.81± 0.02 89.49± 0.05 89.68± 0.11 89.80± 0.03 89.80± 0.05
perm. 89.30± 0.02 90.33± 0.08 90.44± 0.14 90.46± 0.04 90.75± 0.22 90.76± 0.12 91.01± 0.06

Table 9: ResNet50×{1}/ImageNet. Top-1 and Top-5 Accuracies of ResNet50 trained on ImageNet, from a
rewind point k, using variousmethods of sparse trainingwith sparsity S.

Top-1 Accuracy Top-5 Accuracy
S Method k= 10 25 50 k= 10 25 50

80%
LTH 72.87 72.16 65.23 91.13 90.66 86.65
naive 69.13 68.94 60.30 88.85 88.1 83.22
perm. 69.87 69.85 61.14 89.16 89.45 84.04

90%
LTH 71.40 70.74 60.62 90.27 90.00 83.94
naive 65.49 64.77 54.46 86.55 86.26 79.07
perm. 66.25 66.37 57.40 87.23 87.37 81.45

95%
LTH 68.61 68.07 59.83 89.03 88.25 82.96
naive 61.39 60.77 51.78 83.79 83.58 76.79
perm. 62.48 62.77 52.98 84.51 84.79 78.11

Table 10: ResNet20×{1}/CIFAR-100. Results using the ResNet20×{1} trained on CIFAR-100, from a rewind
point k, using variousmethods of sparse trainingwith sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization.

Rewind Epoch k

S Method k=0 10 25 50 100

80%
LTH 63.69± 0.41 67.67± 0.08 67.66± 0.25 67.82± 0.17 67.73± 0.38
naive 62.89± 0.16 63.37± 0.09 63.07± 0.44 63.36± 0.27 63.33± 0.35
perm. 63.04± 0.24 64.07± 0.15 64.71± 0.10 64.52± 0.78 64.57± 0.49

90%
LTH 59.81± 0.29 65.21± 0.17 65.15± 0.28 65.10± 0.30 65.17± 0.21
naive 58.77± 0.28 59.59± 0.18 59.44± 0.27 59.19± 0.41 58.58± 0.16
perm. 59.32± 0.32 60.60± 0.79 61.32± 0.33 61.53± 0.65 60.93± 0.51

95%
LTH 55.71± 0.52 61.08± 0.54 61.73± 0.18 61.65± 0.37 61.68± 0.18
naive 54.04± 0.29 55.20± 0.39 54.65± 0.38 54.96± 0.57 53.97± 0.91
perm. 55.12± 0.17 56.93± 0.26 57.64± 0.36 57.47± 0.66 57.13± 0.34

97%
LTH 51.10± 0.34 56.14± 0.56 56.92± 0.25 56.94± 0.13 56.93± 0.06
naive 49.70± 0.64 49.60± 0.25 49.49± 0.32 49.16± 0.21 47.70± 0.83
perm. 50.34± 0.21 51.55± 0.69 51.88± 1.08 52.64± 0.34 50.96± 1.15
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Table 11: ResNet20×{4}/CIFAR-100. Results using the ResNet20×{4} trained on CIFAR-100, from a rewind
point k, using variousmethods of sparse trainingwith sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization. Note this table is the same setting
as Table 10 exceptw=4.

Rewind Epoch k

S Method k=0 10 25 50 100

80%
LTH 74.46± 0.12 77.57± 0.06 77.35± 0.31 77.75± 0.26 77.64± 0.14
naive 73.30± 0.08 74.10± 0.12 74.98± 0.17 75.21± 0.12 75.20± 0.16
perm. 73.68± 0.09 75.24± 0.31 75.74± 0.41 76.12± 0.37 76.19± 0.39

90%
LTH 72.54± 0.57 76.56± 0.11 76.56± 0.32 76.80± 0.34 76.80± 0.21
naive 71.97± 0.30 72.56± 0.22 72.89± 0.27 72.59± 0.15 72.54± 0.33
perm. 72.18± 0.23 74.17± 0.35 74.21± 0.23 74.45± 0.27 74.89± 0.47

95%
LTH 71.16± 0.23 75.41± 0.18 75.53± 0.11 75.68± 0.17 75.76± 0.17
naive 70.17± 0.47 70.95± 0.50 70.90± 0.18 71.21± 0.26 69.95± 0.42
perm. 70.41± 0.07 72.70± 0.21 72.92± 0.39 73.65± 0.28 73.41± 0.18

97%
LTH 69.06± 0.03 74.00± 0.39 74.08± 0.37 74.18± 0.18 74.29± 0.31
naive 68.40± 0.21 69.26± 0.19 69.06± 0.11 68.67± 0.47 68.42± 0.78
perm. 69.08± 0.22 71.41± 0.54 71.49± 0.32 71.92± 0.17 72.20± 0.08

Table 12: ResNet20×{8}/CIFAR-100. Results using the ResNet20×{8} trained on CIFAR-100, from a rewind
point k, using variousmethods of sparse trainingwith sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization. Note this table is the same setting
as Table 10 exceptw=8.

Rewind Epoch k

S Method k=0 10 25 50 100

80%
LTH 78.09± 0.28 80.63± 0.32 80.83± 0.39 80.92± 0.06 80.66± 0.34
naive 76.86± 0.17 77.47± 0.35 78.20± 0.61 78.65± 0.33 78.74± 0.39
perm. 77.34± 0.26 78.82± 0.34 79.20± 0.16 79.55± 0.38 79.54± 0.39

90%
LTH 76.47± 0.43 80.02± 0.07 80.10± 0.13 79.98± 0.33 79.98± 0.20
naive 75.68± 0.23 76.36± 0.21 76.80± 0.14 77.27± 0.12 76.55± 0.49
perm. 76.17± 0.26 77.99± 0.17 78.22± 0.15 78.62± 0.19 78.82± 0.17

95%
LTH 75.38± 0.02 79.42± 0.06 79.24± 0.19 79.35± 0.06 79.29± 0.13
naive 74.78± 0.15 75.48± 0.18 75.53± 0.15 75.27± 0.15 74.38± 0.65
perm. 75.07± 0.14 76.97± 0.46 77.80± 0.14 77.74± 0.51 78.04± 0.42

97%
LTH 73.97± 0.21 78.63± 0.25 78.65± 0.50 78.74± 0.49 78.47± 0.16
naive 73.13± 0.26 73.73± 0.12 73.76± 0.27 73.26± 0.07 72.79± 0.46
perm. 73.81± 0.67 76.29± 0.14 76.38± 0.57 76.57± 0.29 76.79± 0.76
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Table 13: ResNet20×{16}/CIFAR-100. Results using the ResNet20×{16} trained on CIFAR-100, from a rewind
point k, using variousmethods of sparse trainingwith sparsity S. LTH trains within the original dense/pruned
solution basin, while naive/permuted train from a new random initialization. Note this table is the same setting
as Table 10 exceptw=16.

Rewind Epoch k

S Method k=0 10 25 50 100

80%
LTH 80.21± 0.18 82.32± 0.34 82.40± 0.26 82.48± 0.38 82.16± 0.30
naive 79.31± 0.06 79.50± 0.09 80.24± 0.17 81.02± 0.11 81.01± 0.07
perm. 79.35± 0.11 80.44± 0.40 81.15± 0.48 81.57± 0.38 81.81± 0.21

90%
LTH 79.31± 0.16 82.26± 0.18 82.14± 0.08 81.95± 0.03 82.11± 0.12
naive 78.78± 0.37 79.26± 0.11 79.42± 0.51 79.56± 0.26 79.57± 0.13
perm. 79.20± 0.09 80.49± 0.32 80.59± 0.15 81.12± 0.05 81.24± 0.09

95%
LTH 78.32± 0.34 81.57± 0.09 81.57± 0.32 81.47± 0.25 81.63± 0.07
naive 78.01± 0.02 78.53± 0.10 78.45± 0.21 78.38± 0.43 77.49± 0.06
perm. 78.25± 0.20 79.76± 0.20 80.50± 0.04 80.47± 0.08 80.25± 0.21

97%
LTH 77.49± 0.27 81.07± 0.07 81.06± 0.11 81.11± 0.18 81.14± 0.32
naive 76.46± 0.44 76.71± 0.41 77.19± 0.09 76.93± 0.36 75.53± 0.40
perm. 77.04± 0.38 79.14± 0.17 79.30± 0.21 79.62± 0.14 79.63± 0.06
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Figure 9: Accuracy vs sparsity trend for ResNet20×{w}/CIFAR-10.As thewidth increases, the gap between
permuted and naive solutions increases, showing permutedmasks helpwith sparse training. With increased
width, we observe a more significant gap seen throughout Figs. 9d, 9h, 9l and 9p and the permuted solution
approaches the LTH solution. The dashed (- -) line shows the densemodel accuracy.
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Figure 10: Accuracy vs sparsity trend for ResNet20×{w}/CIFAR-100. Similar to the phenomenon seen in Fig. 9,
with higherwidth the gap between permuted and naive solutions increases. As seen in Figs. 10d, 10h, 10l and 10p
and the permuted solution approaches the LTH solution. The dashed (- -) line shows the densemodel accuracy.
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Figure 11: ResNet50×{1}/ImageNet. Top-1 test accuracy vs rewinds points of sparse network solutions at
various sparsity levels. We observe the permuted solution consistently peroforming better than the naive solution
for all sparsities. The dashed (- -) line shows the densemodel accuracy.
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(a) Dense training and pruningmodelA. (b) LTH trainingmodelAwith prunedmask.

(c) Sparse trainingmodelBwithAmask.
Figure 12: Weight Symmetry and the Sparse Training Problem (Full Figure). A model with a single layer
and only two parameters, w = (w0,w1), operating on a single input scale x0 has the weight symmetry in the
2D loss landscape as illustrated above. In (a) the original dense model,wA, is trained from a random dense
initialization,wt=0

A to a dense solution,wt=T
A , which is then pruned using weight magnitude resulting in the

maskmA =(1,0). In (b) we re-use the init.wt=0
A , to train modelAwith the pruned mask from (a),mA, as in

LTH. In (c), naively using the samemask to train amodel, B, from a different random initializationwill likely
result in the initialization being far from a good solution. Permuting themask tomatch the (symmetric) basin
in which the new initialization is in will enable sparse training.
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