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Abstract

The interest in leveraging physics-based inductive bias in deep learning has resulted
in recent development of hybrid deep generative models (hybrid-DGMs) that
integrates known physics-based mathematical expressions in neural generative
models. To identify these hybrid-DGMs requires inferring parameters of the
physics-based component along with their neural component. The identifiability of
these hybrid-DGMs, however, has not yet been theoretically probed or established.
How does the existing theory of the un-identifiability of general DGMs apply to
hybrid-DGMs? What may be an effective approach to consutrct a hybrid-DGM
with theoretically-proven identifiability? This paper provides the first theoretical
probe into the identifiability of hybrid-DGMs, and present meta-learning as a
novel solution to construct identifiable hybrid-DGMs. On synthetic and real-data
benchmarks, we provide strong empirical evidence for the un-identifiability of
existing hybrid-DGMs using unconditional priors, and strong identifiability results
of the presented meta-formulations of hybrid-DGMs.

1 Introduction

There has been increasing interest in integrating mathematical expressions of known physics with
neural-network functions for hybrid, or gray-box, modeling [1, 2, 3, 4, 5]. The incorporation of
physics-based inductive bias has the potential to improve the generalizability and interpretability of
deep learning [4], while the expressive and flexible neural functions offer the opportunity to fill the gap
in our prior knowledge of physics (or expert models) [4, 5]. Recent progress in particular has started
to see principled developments of hybrid deep generative models (DGM) where the data-generation
process is described by a hybridization of physics-based and neural components. Both of these two
components are then identified from data via, for instance, amortized variational inference [2, 4].
These hybrid-DGMs have shown benefits of intepretability, generalizability, and out-of-distribution
(OoD) robustness, especially when learning to model physics systems from observational data [2, 4].
An important premise of these successes is that the hybrid expression of the physical systems can
be accurately identified from the observed data: for example, if we can identify the parameters
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and/or physics governing observed pendulum movements, we could then use the identified generative
models/parameters for predicting the future trajectory of the pendulum [2].

However, substantial research based on the theory of nonlinear independent component analysis
(nonlinear ICA) have established that a naive DGM or latent variable model is un-identifiable [6].
Active research has also reported various ways to construct an identifiable latent variable model,
primarily via constructing a conditionally independent generative model [7, 8, 9, 6]. Most of the
progress has been established for the identifiability of latent processes underlying time-series data,
leveraging the temporal dependency of the latent variables [8] or observed domain index for non-
stationary segments [7] to construct the conditional generative model. For static latent variables, the
construction of conditionally independent generative model has mainly relied on the introduction of
auxiliary observations such as class or domain labels [9].

How does the hybrid expression of a DGM impact its (un)-identifiability? Furthermore, since
hybrid-DGMs are often intended to model physics systems with unknown parameters to be identified
from data, what may be an effective approach to construct a hybrid-DGM with theoretically-proven
identifiability? Unfortunately, despite the increasing interest in hybrid-DGMs, their identifiability
remains unexplored. This identifiability however is critical for the intended use of a hybrid DGM, e.g.,
to predict beyond the observations used to identify the model, or to be robust in out-of-distribution
(OOD) generalizations.

Recent efforts in hybrid-DGMs indeed have increasingly noted the challenges in properly learning
the two components within the hybrid models, especially in ensuring a non-trivial solution to the
physics-based component due to the presence of a highly-expressive neural component [1, 2]. Various
strategies have been presented, such as regularizing the expressiveness of the neural component
[2], trajectory-based and adaptive optimization to allow automatic complexity adjustment for the
neural component [1], and expert-augmentation leveraging the physics-based component to improve
generalization to distributional shifts [4]. No existing works, however, have probed or established the
identifiability of hybrid-DGMs, theoretically or empirically.

In this work, we present the first theoretical probe of the identifiability of hybrid-DGMs. Importantly,
forgoing the need of observed auxiliary variable to condition the generative model, we present
meta-learning as a novel solution to establish the identifiability of hybrid-DGMs. To this end, we
present a learn-to-identify formulation for meta-learning hybrid-DGMs, and theoretically establish the
identifiability of these meta-hybrid-DGMs via conditional independence of the DGM given few-shot
context samples. We further provide empirical identifiability results of these meta-hybrid-DGMs in a
variety of synthetic and real datasets generated from physics systems, in contrast to existing non-meta
hybrid-DGMs where identifiability cannot be established without observed auxiliary variables. Finally,
we note that while this work focuses on hybrid-DGMs, the presented meta-learning formulation
provides a general new condition to construct identifiable DGMs beyond the hybrid setting.

2 Related Works

Hybrid-DGMs: A number of hybrid models have emerged in various domains to combine physics-
based functions with neural networks, to compensate for unknown components in the known physics.
While earlier approaches [10, 11, 12] focused on using neural networks to learn the residual between
the measurements and those obtained from physics-based simulation, tighter integrations have been
presented by, e.g., NeuralSim [13] and universal differential equations (UDEs) [14], to include neural
networks as different components within a physics-based function. Most of these earlier works are
focused on hybrid modeling in specific application domains.

More recently, several hybrid-DGMs have been presented [2, 1, 4, 3], with a focus on properly
learning the physics component within the hybrid-DGM so it is not overpowered by the expressive
neural component. In physics-integrated hybrid VAE [2], this was achieved by a regularized learning
method that controls the expressiveness of the neural component while preserving the semantics of
the physics-based component. Similarly, regularization of the expressiveness of the neural component
is considered in [1]. In [4], expert augmentation is proposed to improve the OOD robustness of these
hybrid-DGMs by fine-tuning on synthetic OOD samples, generated by sampling outside the training
distribution of the physics-based component within the trained hybrid model.
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Despite these efforts in better learning the two separate components within hybrid-DGMs, the identi-
fiability of hybrid-DGMs has not been theoretically probed nor established. Empirically, no existing
works have evaluated these hybrid-DGMs from the lens of identifiability metrics. Theoretically, no
existing works have examined the conditions for constructing identifiable hybrid-DGMs. This work
will take the first step to bridge these gaps, establish the un-identifiabilty of naive unconditional
hybrid-DGMs, and present meta-learning as a novel solution to construct identifiable hybrid-DGMs.

Nonlinear ICA and Identifiability of DGMs: With nonlinear ICA, strong identifiability results
have been established for unsupervised latent variable models [7, 8, 9, 6, 15, 16, 17, 18]. Fundamen-
tally, construction of identifiable generative models is achieved by defining independence structure
when conditioned on observed auxiliary variables [9]. Much progress has been made in identifying
latent dynamic processes generating observed time series, including leveraging conditional indepen-
dence of the DGM given time segment index temporal dependence [8], sparse temporal encoding [15],
and even unobserved inferred domain labels for non-stationary time series [16, 17, 18]. For static
latent variables, identifiability is mainly established via the introduction of auxiliary observations
such as class or domain labels [9]. In specific, iVAE [6] established the identifiability of DGMs
assuming an exponential families conditional distributions given observed auxiliary variables.

The reliance on observed conditioning variable, however, limits the applicability of these identifiability
results to hybrid-DGMs: as hybrid-DGMs are intended for modeling physics system with unknown
and often continuous parameters, it is not clear what observed auxiliary label may be available to
construct an identifiable DGM. This work will forego this assumption of observed auxiliary variable
and present meta-learning as a novel condition to construct identifiable DGMs. While presented
for hybrid-DGMs, this connection between meta-learning and the identfiability of DGMs is a novel
contribution to general non-hybrid DGMs that has not been constructed in the existing literature.

3 Problem Formulation: Unidentifiablity of Hybrid-DGMs

Let x ∈ Rn be the observed random variables and z ∈ Rd be the latent variables generating x, with
the following generation process:

p(x, z) = p(z)p(x|z), p(x) =

∫
z

p(x, z)dz (1)

where p(z) =
∏d

i=1 p(zi) represents the prior distribution of independent generative factors zi,
p(x|z) is the likelihood function which can be defined based on the mixing function x = F(z).

Construction of Hybrid-DGMs: When constructing a generative model for Equation (1), if we
assume a known mathematical expression explaining the mechanism of the mixing function as fP,
we will have a physics-based expression of this generation process, with unknown parameters of fP
as physics-based latent variables zP. If we have no prior knowledge, we can describe the mixing
function with a neural network fN with abstract representation of the latent variables as zN – the latter
is the foundation of many successful DGMs including variational autoencoders (VAEs) [19].

When understanding complex systems in many domains, recent years have seen an increasing interest
in the middle-ground of the above two scenarios: some prior knowledge in the form of a mathematical
expression fP of physics exists about the data observed, yet often inexact with unknown gaps to the
actual data-generating mechanisms. This motivated recent developments of hybrid-DGMs where the
mixing function x = F(z) is described as a combination of a physics-based and neural component,
fP and fN, respectively, with corresponding physics-based and abstract latent variables zP and zN.

As a concrete example, suppose that we observe the time-series of the angular position φ of a damped
forced pendulum system, x = [φ0, φ1, . . . , φT ] where φi = φ(i∆t), governed by:

d2φ(t)

dt2
+ ω2 sinφ(t) + ξ

dφ(t)

dt
−A cos(2πϕt) = 0 (2)

where the first two terms describe the physics of an ideal pendulum system, the third term the
damping effect, and the last term the external force. Parameters ω, ξ, A, and ϕ specify different
systems governed by the same physics, representing the independent latent generative factors.

Suppose that we choose to leverage our prior knowledge about the ideal pendulum physics
fP(x; zP) = φ̈ + z2P sinφ with unknown parameter ω. To bridge its potential gap with actual
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data-generating physics, we then choose to complete it with a neural-network expression of an ODE
fNθ

(x; zN), parameterized by θ and with an abstract latent variable zN: while abstract, we hope
fNθ

to absorb the effect of the last two terms in the data-generating physics (Equation (2) with zN
representing its remaining data-generating parameters ξ, A, and ϕ. This gives rise to a hybrid mixing
function x = F [fP, fNθ

; zP, zN] = ODEsolve[fP(x; zP) + fNθ
(x; zN) = 0].

Assuming Gaussian observation noises, we obtain the likelihood of the Hybrid-DGMs as:
pθ(x|zP, zN) = N (x|F [fP, fNθ

; zP, zN],Σx) (3)
with prior distribution for the latent variables assumed to be Gaussian as:

p(zP) := N (zP|µP, σ
2
PI), p(zN) := N (zN|0, I) (4)

where the mean µP and variance σ2
P for p(zP) can be defined by prior knowledge due to its physical

meanings. Note that zP will be directly interpretable and physically meaningful as they will be
semantically grounded to the parameters of the physics model fP; zN, in comparison, will be abstract
but need to absorb effect of the varying parameters underlying the missing physics fN.

The data-generating process of the hybrid-DGM with parameter θ can thus be defined as:

pθ(x, zP, zN) = pθ(x|zP, zN)p(zP)p(zN), pθ(x) =

∫ ∫
pθ(x, zP, zN)dzPdzN (5)

While described in the context of a conrete example, Equations (3)-(5) represent a general expression
of hybrid-DGMs where the hybrid-mixing function x = F [fP, fNθ

; zP; zN] can be designed in various
forms (and not limited to the hybrid-ODE described in the example above).

Unidentifiability of Hybrid-DGMs: Now assume we have access to data D =
{
x(1), . . . ,x(N)

}
generated by pθ∗(x, zP, zN), where θ∗ is the true but unknown data-generating parameter. For an
identifiable DGM, our goal is to learn θ such that the likelihood p∗θ(x|zP, zN), the priors p(zP) and
p(zN), and the posteriors p∗θ(zP|x) and p∗θ(zN|x) are all correctly recovered.

In practice, because we only observe x without access to the latent variables zP or zN, we optimize θ
to match the marginal density of x, e.g., via amortized variational inference to maximize the evidence
lower bound (ELBO) of pθ(x) in VAEs, such that:

pθ(x) ≈ pθ∗(x) (6)

Unfortunately, even if the above optimization is done perfectly (i.e., pθ(x) = pθ∗(x) ), there is no
guarantee that p∗θ(x|zP, zN), p∗θ(zN|x), or pθ∗(x, zP, zN) are correctly identified. As shown in [6], for
these densities to be recovered based on matching pθ(x), the DGM needs to satisfy:

∀(θ, θ̃) : pθ(x) = pθ̃(x) ⇒ θ = θ̃ (7)

In another word, the matching of p∗θ(x) needs to imply a unique solution of θ∗ to be obtained. In
reality, however, it has been shown in [6] that DGMs with unconditional prior are unidentifiable. We
refer the readers to the important theorems and the proof in [6, 9, 20] for more details, but to what
extent is the hybrid-DGM affected by this theory of identifiability?

At a concept level, let us first consider the neural component (zN and fNθ
) within the hybrid-DGM.

For zN of any distributions, there are always nonlinear transformations that change its values but not
its distributions [6]. In a highly expressive neural network, this transformation can be learned in the
likelihood pθ(x|zN). This will give the same fit of pθ(x), but non-unique solutions of pθ(x|zN) and
pθ(zN|x), resulting in non-identifiable neural component within the hybrid-DGM.

For the physics-based component (zP and fPθ
), this theory does not hold because the pre-specified

form of fp can not trivially accommodate any transformations applied to zP without affecting
the fitting of observations. In practice, however, because both components jointly contribute to
pθ(x|zP, zN) as defined in Equation (3), the optimization of zP and fPθ

maybe overpowered by the
overly-expressive neural component, rendering trivial solutions to zP and fPθ

.

In other words, identification of hybrid-DGMs is inflicted by two fundamental challenges: 1) the
theoretical un-identifiability of its neural component, and 2) this un-identifiable but highly expressive
component overpowering the identification of the otherwise identifiable physics-based component.
While existing works [2, 1, 3] have focused on the second challenge, we address the problem from
its fundamentals at the un-identifiability of zN and fNθ

: we introduce a novel condition to construct
identifiable hybrid-DGMs, and establish their identifiability both theoretically and empirially.
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4 Learn-to-Identify Hybrid-DGMs via Meta-Learning

Based on nonlinear ICA theory [9], an identifiable DGM can be constructed by conditionally
independent latent variables p(z|u): in the literature, the conditioning variable u is often assumed to
be additionally-observed side information such as class labels or domain indexes [6]. Here, we show
that meta-learning formulations offer an opportunity to construct an identifiable DGM, with u taking
forms of k-shot context samples sharing the same data-generation process as the query samples.

Construction of Identifiable Meta-Hybrid-DGMs: Given is a set of k context samples, Ds,
sharing the same data-generation process as query samples x, we define the generation of x as:

pϕ(x, zP, zN|Ds) = pθ(x|zP, zN)p(zP)pζ(zN|Ds), pϕ(x|Ds) =

∫ ∫
pϕ(x, zP, zN|Ds)dzPdzN

(8)
where ϕ = {θ, ζ}, pθ(x|zP, zN) is defined in Equation (3), and the conditional prior pζ(zN |Ds) is
assumed to be factorized exponential family distributions [21]:

pζ(zN |Ds) = pT,λλλζ
(zN|Ds) =

n∏
i=1

Qi(zN,i)

Zi(Ds)
exp

[
Ti(zN,i)

⊤λλλζ,i(Ds)
]

(9)

where Qi is the base measure, Zi(Ds) is the normalizing constant, Ti = (Ti,1, . . . , Ti,e) are the
sufficient statistics that are fixed (not estimated). λλλζ

i (Ds) = (λζ
i,1(Ds), . . . , λζ

i,e(Ds)) are the cor-
responding parameters conditioning on Ds. In this paper, we realize this conditioning through a
composite of a neural network hζ(x

s), parameterized by ζ, for individual context samples xs ∈ Ds,
and an averaging function across all context samples:

λζ(Ds) =
1

|Ds|
∑

xs∈Ds

hζ(x
s) (10)

Note that exponential families have universal approximation capabilities, thus this commonly-used
assumption is not very restrictive [20].

Amortized Variational Inference: To enable inference over the hybird-DGM in Equation (8), we
approximate the posterior density p(zP|x) as qη(zP|x) and pζ(zN|x,Ds) as qζ(zN|x∪Ds), the latter
realized with the same network as defined in (9) but with the additional input x in addition to Ds.

Formally, we cast the variational inference into a meta-learning formulation. Consider a dataset D with
M similar but distinct data-generation process: D = {Dm}Mm=1. For each Dm, we consider disjoint
context samples Ds

m =
{
xs,1,xs,2, . . . ,xs,k

}
and query samples Dq

m =
{
xq,1,xq,2, . . . ,xq,l

}
,

where k ≪ l. Instead of maximizing the marginal likelihood of x for all x ∈ D, we formulate a meta-
objective to learn to maximize the marginal likelihood p(xq|Ds

m) of all query samples xq ∈ Dq
m when

conditioned on support set Ds
m, for all underlying data-generation processes m ∈ {1, 2, . . . ,M}:

M∑
m=1

∑
xq∈Dq

m

p(xq|Ds
m) ≥

M∑
m=1

∑
xq∈Dq

m

{Eqη(zP|xq),qζ(zN|xq∪Ds
m)[log pθ(x

q|zP, zN)]

− KL(qη(zP|xq)||p(zP))− KL(qζ(zN|xq ∪ Ds
m)||pζ(zN|Ds

m))}

(11)

where the first term represents likelihood of the meta-hybrid-DGM on query sample xq ∈ Dq
m, and

the last two terms represent Kullback–Leibler divergences between the prior and posterior densities
of zP and zN, respectively, where densities of zN are conditioned on context samples Ds

m. The
maximization of Equation (11) is performed over {η, ζ, θ} in an episodic training where, in each
episode, the division of Ds

m and Dq
m is shuffled within each Dm. The likelihood is calcuated by the

reparameterization trick [19], while the two KL-terms are calculated analytically.

Note that in Equation (11), the meta-hybrid-DGM is formulated on the neural component within the
hybrid-DGM to establish its identifiablity. While the identifiability of the physics-based component
is not hinged on this construction, in practice, it is possible to extend the conditional prior (Equation
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(9)) to zP to obtain pζ(zP, zN|Ds
m), leading to an alternative meta-formulation:

M∑
m=1

∑
xq∈Dq

m

p(xq|Ds
m) ≥

M∑
m=1

∑
xq∈Dq

m

{Eqζ(zP,zN|xq∪Ds
m)[log pθ(x

q|zP, zN)]

− KL(qζ(zP, zN|xq ∪ Ds
m)||pζ(zP, zN|Ds

m))}

(12)

We will empirically compare the two formulations above, and demonstrate how the identifiability of
zP and zN is each affected by the proposed meta-construction of the hybrid-DGMs.

5 Identifiablility Theory for Meta-Hybrid-DGMs

We consider the meta-formulation a novel condition to ensure the identifiability of unsupervised
DGMs. Here, we show that, built on nonlinear ICA and the theory of identifiability for conditional-
VAEs established in [6], the presented meta-hybrid-DGMs are identifiable.

For readability, below we collect the formulations of the hybrid-DGM from previous sections:
pϕ(x, zP, zN|Ds) = pθ(x|zP, zN)p(zP)pT,λλλζ

(zN|Ds) (13)
pθ(x|zP, zN) = pε(x−F [fP, fNθ

; zP, zN]) (14)

pT,λλλζ
(zN|Ds) =

n∏
i=1

Qi(zN,i)

Zi(Ds)
exp

[
Ti(zN,i)

⊤λλλζ,i(Ds)
]

(15)

where ϕ = (θ,T,λλλζ) are model parameters and λλλζ is defined in Equation (10). Equation (14) gives
a more general definition than Equation (3) where ε is an independent noise variable.

Definition 1: Let ∼ be an equivalence relation on the parameter space Φ. We say the DGM in 1 is
∼-identifiable if pϕ(x) = pϕ̃(x) ⇒ ϕ ∼ ϕ̃

Definition 2: Let ∼ be the equivalence relation on Φ defined as follows:
(θ,T,λλλζ) ∼ (θ̃, T̃,λλλζ̃) ⇔ ∃A, c : T(F−1

θ (x)) = AT̃(F−1

θ̃
(x)) + c,∀x ∈ X (16)

where A is a de× de matrix and c is a vector of dimension de, d being the dimension of zN and e
the dimensionality of the sufficient statistics Ti. If A is invertible, we denote this relation by ∼A.

Definition 2 establishes a specific equivalence relation that allows to recover the sufficient statistics
of the generative model up to a linear matrix multiplication.

Theorem 1: Assume we observe data sampled from pθ(x, zP, zN|Ds) as defined in Equations
(13)-(15) with parameters ϕ = (θ,T,λλλζ). Assume the following holds:

(i) The set {x ∈ X |φε(x) = 0} has measure zero, where φε is the characteristic function of the
density pε defined in pε(x−F [fP, fNθ

; zP, zN]).
(ii) The hybrid mixing function Fθ is injective.

(iii) The sufficient function Ti,j are differentiable almost everywhere, and linearly independent on
any subset of X of measure greater than zero.

(iv) There exist de + 1 distinct context sets Ds,0,Ds,1, . . . ,Ds,de such that the de × de matrix L
defined as follows is invertible:

L = (λλλ(Ds,1)− λλλ(Ds,0), . . . ,λλλ(Ds,de)− λλλ(Ds,0)) (17)

Then the parameters ϕ = (θ,T,λλλζ) are ∼A-identifiable.

The proof for Theorem 1 directly builds on that presented in [6]. Condition (iv) in Theorem 1
establishes that, if the generative factors in the neural component of the hybrid-DGM is d-dimensional
each specified with e-dimensional sufficient statistics, we will need observations from a minimum
of ne + 1 distinct and independent generation processes in order to identify the hybrid-DGM.
Considering the pendulum-system example discussed in Section 3 and Equation (2), since the neural
component is generated by three independent system parameters ξ, A, and ϕ (d = 3) and assuming
Gaussian statistics (e = 2), the hybrid-DGMs will be identifiable if we have observations generated
from more than 3× 2+ 1 = 7 distinct combination of parameter values for ω, ξ,A, and ϕ in the true
data-generation process (Equation (2)). We will empirically verify this condition in Section 6.
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Table 1: Quantitative identifiability metrics for the presented meta-hybrid-VAE in comparison to
physics-integrated hybrid-VAE [2] and APHYNITY [1], including MSE and MCC metrics on the
latent variables, as well as MSE of generated x during reconstruction of observed samples (Rec) and
prediction of unobserved samples (Pre).

Forced Damped Pendulum Advection-Diffusion System
APHYNITY Hybrid-VAE Meta-Hybrid-VAE APHYNITY Hybrid-VAE Meta-Hybrid-VAE

MSE of zP ↓ 6.96(0.01)e-2 4.14(0.29)e-2 1.59(0.07)e-2 1.9(0.3)e-2 7.12(5.32)e-4 1.34(0.75)e-4
MCC ↑ 0.79(0.02) 0.59(0.03) 0.99(0.00) 0.98(0.01) 0.94(0.00) 0.99(0.00)

MSE of x (Rec) ↓ 5.2(0.01)e-2 2.66(0.03)e-2 2.91(0.06)e-2 6.22(0.41)e-3 4.90(0.75)e-3 2.93(0.22)e-3
MSE of x (Pre) ↓ 2.37(0.67) 1.74(0.20) 6.85(1.11)e-2 8.25(0.58)e1 8.53(5.72)e-2 5.63(1.34)e-3

Double Pendulum Real Double Pendulum
APHYNITY Hybrid-VAE Meta-Hybrid-VAE APHYNITY Hybrid-VAE Meta-Hybrid-VAE

MSE of zP ↓ 4.58(0.04)e-1 3.97(0.06)e-1 3.85(0.19)e-1 / / /

MCC ↑ 0.50(0.00) 0.51(0.00) 0.98(0.00) / / /

MSE of x (Rec) ↓ 4.88(0.00)e-2 4.05(0.25)e-2 3.83(0.06)e-2 3.78(0.52)e-2 2.20(0.14)e-3 2.67(0.34)e-2

MSE of x (Pre) ↓ 1.29(0.23)e1 5.52(0.06) 2.80(0.48)e-1 5.16(0.69) 1.87(0.13) 2.88(0.34)e-2

6 Experiments and Results

Data: We considered three simulated and one real-world benchmarks for hybrid-DGMs, including
three simulated physics systems of forced damped pendulum [2], advection-diffusion system [2]
and double pendulum [4], and one real-world system double pendulum [4]. For each of the three
simulated physics systems, we randomly sampled the initial states and parameters of the governing
function to generate observations. We refer to the governing functions used for the generation of
data as full physics functions, and design partial physics functions for represent our imperfect prior
knowledge about the observed data, reflecting a variety of potentially additive and multiplicative
errors – these partial physics functions are used as the fP in the hybrid models. In data generation, we
varied the parameters in the components both present and absent in the prior physics. More details on
each dataset can be found in Appendix A.

Baselines: We considered 1) physics-integrated hybrid VAE [2] and 2) APHYNITY [1], both using
regularization to control the expressiveness of the neural component. Note that while the original
formulation of APHYNITY does not have an inference network to identify zP or zN (making it
intended for data generated from a single parameter setting), we added an inference network (that
shares a similar architecture with the other two models) for fairness of comparison.

Metrics: With a focus on identifiability, we focus on the following metrics: 1) for physics-based
latent variable zP, we consider mean squared error (MSE) owing to its physical meaning; 2) for
abstract latent variable zN modeled in the neural component, we consider the mean correlation
coefficient (MCC) between the true data-generating parameters and zN sampled from its learned
posterior density. The calculation of MCC follows standard practice in the identifiability literature
[6, 9]: to evaluate ∼A-identifiablity, we calculate the weak MCC with the method described in [22],
where a high MCC provides evidence of successful identification. We also evaluate a more strong
identifiable relation ∼P with strong MCC and the details can be found in Appendix E.

In addition to metrics on zP and zN, we further introduce MSE metrics on the generated x in two
distinct scenarios: 1) reconstruction MSE measures how well an observed x is reconstructed from
the identified zP and zN, and 2) prediction MSE measures how well the identified zP and zN can be
used to generate outside the observed x used to identify them, e.g., for predicting over long time
domains, or predicting for a different sample that comes from the same generation process but with
different initial conditions. We use these two metrics to showcase that a good reconstruction does not
guarantee a good identification, while the ability to use the identified latent variables to predict for
different samples (other than observed) may be a surrogate for identifiaiblity.
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Figure 1: Visual results on synthetic data for reconstruction and prediction performances.

6.1 Results on Synthetic Data

Reconstruction vs. Prediction Performance: Table 1 summarizes quantitative identifiability
metrics on the presented meta-hybrid-VAE in comparison to its baselines, where the prediction
performance of all models is mentioned by their ability – once identified – to predict for a sample
sharing the same data-generating parameters but different initial conditions. As shown, meta-hybrid-
VAE significantly improved the identifiability of the abstract latent variable zN (the highest MCC
close to 1) and via which, moderately improved the accuracy of the physics-based latent variable
zP (the lowest MSE). Very importantly, while both baseline models identified zP with a reasonable
accuracy, their MCC values were significantly lower – providing strong empirical support for the
un-identifiability of the neural component of the hybrid-DGM as theorized in this paper.

Also importantly, all hybrid models achieved comparable reconstruction MSE for observed x’s,
where the meta-hybrid-VAE did not necessarily produce the lowest MSE. The ability of the identified
hybrid-DGM to predict for different samples other than observed, however, varied significantly:
while the meta-hybrid-VAE was able to deliver a MSE comparable to the reconstruction task, the two
baseline models saw a deterioration of MSE by two magnitudes. Fig. 1 provides visual examples
to demonstrate this performance difference between reconsruction and prediction tasks, stressing
the importance to 1) look beyond reconstruction performance for evaluating hybrid-DGMs, and 2)
consider prediction of unobserved samples as a potential surrogate for identifiability measures when
ground-truth of latent variables is not available (real data settings in Section 6.2).

Interestingly, among the three datasets, the advection-diffusion system appeared to be relatively
simple to identify as the baselines did not exhibit as significant a degradation of performance in
the more difficult identifiability metrics (MCC and prediction-MSE). This is potentially because
the missing component from the prior physics has a small effect. In comparison, the MCC and
prediction-MSE of the baseline models were significantly poorer in double pendulum, suggesting a
difficult missing physics to be identified. Regardless, meta-hybrid-VAE was able to obtain significant
margins of improvements compared to baselines across all datasets.

Predictions over Longer Time Domains: Fig. 2 shows the prediction performance of the three
models when predicting the trajectory of pendulum movement beyond the time domain used to
identify the model, with a visual sample of forced damped pendulum system. As shown, while all
models’ performance deteriorated as they predicted outside the time domain used in training, the
presented meta-hybrid-VAE demonstrated significantly smaller drop in performance and slower rate
of deterioration as the prediction horizon increased. This provides strong evidence regarding the
importance of the identifiability, even for the neural component, of a hybrid model for the purpose of
predictive tasks.

OOD Performance: Figure 3 (left) summarizes the performance of the three models in settings
where either the physics-based component zP or the neural component zN was outside the training
distribution for forced damped pendulum system. Results demonstrated that, meta-hybrid-VAE
obtained the strongest performance in OOD settings for both the identification of the physics and
neural components. Details of the OOD parameters can be found in the Appendix A.1.

Empirical Verification of the Condition for Identifiability: Theorem 1-iv) stipulates that the
identifiability of the hybrid-DGM depends on the number of independent conditional densities
observed, in relation to the dimension of the latent factors to be identified. To experimentally
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Figure 2: (Left) The performance of predictions over longer time domains; (Right) A visual example
of forced damped pendulum system.The dark part is the training time domain, and the light part is
the time domain outside training (longer time domain).

Figure 3: (left) Results of OOD; (right) Results of the condition for identifiability.

verify this, we evaluated the identifiability metric MCC of the hybrid-DGM when learning over data
generated from an increasing number of distinct parameter values governing the pendulum system
(Equation (2)), i.e., number of tasks in meta-learning. The results in Figure 3 (right) showed that
the MCC metric exceeded 0.85 when 7 tasks appeared in the training data and stablized when 8
or more tasks appeared. This agreed with the theorem that, for the pendulum system that had a
3-dimensional parameter vector to be identified in the neural component of the hybrid model with a
Gaussian assumption of 2-dimensional sufficient statistics, a minimum of 3*2+1 = 7 distinct “tasks”
s needed to identify the system.

Additional Alation Analyses of Meta-Hybrid-VAE: In Appendix C.1, we provided ablation
results on the pendulum system to demonstrate that the identifiability results of the presented meta-
hybrid-VAE were minimally affected by the number of parameters to be identified, as long as the
theoretical condition for identifiability is met. In Appendix C.2, we provided further ablation studies
to show that the physics-based component did not suffer from the type of un-identifiabilty discussed
in this paper as the neural component, although the meta-formulation did moderately improve the
accuracy of the estimation of the physics-based parameters.

6.2 Real Data of Double Pendulum

Experimental settings: We used the dataset of a double pendulum introduced by [4], which
contains 21 videos of the pendulum. Each run lasts approximately 40 seconds and is recorded at
400Hz. We extractd the position of the pendulum limbs from each frame with elementary computer-
vision tools. We divided each video into observations of x’s to consist of 20 temporal frames with a
sampling frequency of 100 Hz. Because there is no clear indication of which samples belong to the
same data-generation process, we use 7 samples preceding the current query sample as the context
samples. We generated 10000, 3400, and 3400 training, validation, and test samples, respectively.

We adopted Equation (19) as the physics-component of the hybrid-DGM, using the known lengths of
the two arms (L1 = 91mm and L2 = 70mm) and assuming m̃ = 1. The total energy of the double
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Figure 4: Examples of reconstruction and generation results on real double pendulum data.

pendulum decreases over time in all videos, which is not explained by this physics model. Nor does
the physics model consider potential vibrations or errors in extracting the arms’ positions, which is
expected to be learned by the neural component of the hybrid-DGM with the dimension of zN = 4.

Results: As ground-truth generative factors are not available in the real data, we relied on prediction
MSE as a surrogate for the identifiability metric as informed by results in Sections A.1-A.3. While all
models delivered comparable reconstruction MSE, meta-hybrid-VAE was able to achieve a prediction
MSE at a level similar to reconstruction while the two baselines experienced a deterioration by 2-3
magnitudes. Visual examples are provided in Fig. 4. This strong performance in real data provides
solid evidence for the presented meta-formulation to establish identifiability of hybrid-DGMs.

7 Conclusions & Discussion

In this paper, we probe the un-identifiability of hybrid-DGMs with unconditioned priors, and present
meta-learning as a novel solution to construct identifiabile hybrid-DGMs – both results were supported
by strong theoretical and empirical evidence. Moving forward, this work can be improved as follows.

Comprehensive ablation studies of the meta-hybrid-VAE are needed to examine the effect of several
key hyperparameters, such as the size of k-shot context set and the dimension of zN. The latter
was set to the number of true generative factors in synthetic experiments, and its effect on model
performance needs to be further examined. Note that this setting was identical across baselines, thus
it had no effect on the significant margins of improvements seen by meta-hybrid-VAE compared to
baselines. Future ablation studies should also delve into the benefit of hybrid-DGMs in comparison to
purely physics-based and purely neural DGMs, which we considered out of scope of the current study
that focused on establishing the identifiability of hybrid-DGMs both theoretically and empirically.

Regarding the generality of the meta-formulation as a solution to identifiable DGMs beyond the
hybrid formulation, Appendix D presented an initial investigation on the performance of the presented
meta-formulation on a general non-hybrid VAE on a synthetic dataset of non-stationary Gaussian time-
series, in comparison to the identifiable-VAE [6] constructed using known class labels to condition
the generative model.

Future works could investigate this effect in a broader context. Finally, while the meta-formulation
foregoes explicitly observed auxiliary variable, it does assume the ability to pair context and query
samples from the same data generation process. This is a common assumption in meta-learning and,
in scenarios where this knowledge is not evident, simply pairing by preceding temporal samples was
shown to be effective in our real-data experiments. In scenarios where no information is available for
pairing, the presented meta-solution will not be applicable.
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A Details on Experimental Data Generation

A.1 Forced Damped Pendulum

We generated data from the full physics function in Equation (2), with observed x =
[φ0, . . . , φi, . . . , φT ], φi = φ(i∆t), T = 49,∆t = 0.05. We randomly sampled the initial con-
dition φ0 ∈ (−1.57, 1.57] (with φ̇0 = 0 fixed). Physics parameters [ω, ξ, A, ϕ] to be identified
were varied as follows: ω ∈ [0.785, 3.14] , ξ ∈ [0.0, 0.8], A ∈ [0, 40] and ϕ ∈ [3.14, 6.28]. We
generated total 60000 samples and separated them into a training, validation, and test sets with 4,0000,
10000, and 1,0000 samples, respectively. In all hybrid-DGMs, we considered the first two terms n in
Equation (2) as the partial physics, thus zP = ω and zN with a dimension of 3 is expected to recover
[ξ, A, ϕ]. This setting induces an additive error in the prior physics. In OOD setting, we set OOD zP
as ω ∈ [3.14, 3.5] and OOD zN as ξ ∈ [0.8, 1.0], while keeping the rest of the parameters unchanged.

A.2 Advection-diffusion System

We generate data from the following full physics function:

∂T

∂t
− a

∂2T

∂s2
+ b

∂T

∂s
= 0 (18)

where s is the spatial dimension. The solution T (s, t) was observed as x := [T0, . . . ,TT ], where
Tj := [T (0, tj), . . . , T (smax, tj)]

T at tj := j∆t is uniformly distributed in space with a dimension
of 20. We set T = 49,∆t = 0.02, the boundary condition as T (0, t) = T (smax, t) = 0, and the
initial condition as T (s, 0) = c sin(πs/smax) with c ∈ [0.5, 1.5]. Physics parameters to be identified
[a, b] were sampled as: a ∈ [0.01, 0.1] and b ∈ [0.01, 0.1]. We generated 20000, 5000, and 5000
training, validation, and test samples, respectively. In all hybrid-DGMs, we set partial physics as the
first two terms of Equation (18), thus zp = a and zN with a dimension of 1 is expected to recover b.
This represents an additive error in the prior physics.

A.3 Double Pendulum

We generated data from the following full physics function:

d

dt

[
φ̇1

φ̇2

]
=

[
G sinφ2 cos(φ1−φ2)−sin(φ1−φ2)(L1φ̇

2
1 cos(φ1−φ2)+L2φ̇

2
2)−(m̃+1)G sinφ1

L1(m̃+sin(φ1−φ2)2)
(m̃+1)(L1φ̇

2
1 sin(φ1−φ2)−G sinφ2+G sinφ1 cos(φ1−φ2))+L2φ̇

2
2 cos(φ1−φ2) sin(φ1−φ2)

L2(m̃+sin(φ1−φ2)2)

]
(19)

where m̃ = m1/m2. The observed x := [(φ1,0, φ2,0), . . . , (φ1,j , φ2,j) . . . , (φ1,T , φ2,T )], where
(φ1,j , φ2,j) is the value of a solution at tj := j∆t with T = 79,∆t = 0.025, L1 = L2 = 1.0. We
randomly sampled the initial condition φ1,0, φ2,0 ∈ (−1.57, 1.57] (with φ̇1,0 = φ̇2,0 = 0). Physical
parameters [G, m̃] to be identified were sampled as follows: G ∈ [5.0, 15.0] and m̃ ∈ [0.5, 1.5].
We generated 20000, 5000, and 5000 training, validation, and test samples, respectively. In all
hybrid-DGMs, we set partial physics to be Equation (19) with m̃ = 1, thus zp = G and zN with a
dimension of 1 is expected to recover m̃. This induces a multiplicative error in the prior physics.

B The proof of Theorem 1

Theorem 1: Assume we observe data sampled from pθ(x, zP, zN|Ds) as defined in Equations
(13)-(15) with parameters ϕ = (θ,T,λλλζ). Assume the following holds:

(i) The set {x ∈ X |φε(x) = 0} has measure zero, where φε is the characteristic function of the
density pε defined in pε(x−Fθ[fP, fNθ

; zP, zN]).
(ii) The hybrid mixing function Fθ is injective.

(iii) The sufficient function Ti,j are differentiable almost everywhere, and linearly independent on
any subset of X of measure greater than zero.

(iv) There exist de+ 1 distinct context sets Ds
0,Ds

1, . . . ,Ds
de such that the de× de matrix L defined

as follows is invertible:

L = (λλλ(Ds,1)− λλλ(Ds,0), . . . ,λλλ(Ds,de)− λλλ(Ds,0)) (20)
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Then the parameters ϕ = (θ,T,λλλζ) are ∼A-identifiable.

Proof: This proof mainly refers to [6]. For simplicity, we denote Fθ as f , Fθ̃ as f̃ , λλλζ as λλλ and
λλλζ̃ as λ̃λλ. Suppose we have two sets of parameters (f ,T,λλλ) and (f̃ , T̃, λ̃λλ) such that pf ,T,λλλ(x|Ds) =

pf̃ ,T̃,λ̃λλ(x|D
s) for all pairs (x,Ds). Then:∫

Z
pT,λλλ(z|Ds)pf (x|z)dz =

∫
Z
pT̃,λ̃λλ(z|D

s)pf̃ (x|z)dz (21)∫
Z
pT,λλλ(z|Ds)pε(x− f(z))dz =

∫
Z
pT̃,λ̃λλ(z|D

s)pε(x− f̃(z))dz (22)∫
X
pT,λλλ(f

−1(x̄)|Ds)volJf−1(x̄)pε(x− x̄)dx̄ =

∫
X
pT̃,λ̃λλ(f̃

−1(x̄)|Ds)volJf̃−1(x̄)pε(x− x̄)dx̄

(23)∫
Rd

p̃T,λλλ,f ,Ds(x̄)pε(x− x̄)dx̄ =

∫
Rd

p̃T̃,λ̃λλ,f̃ ,Ds(x̄)pε(x− x̄)dx̄ (24)

(p̃T,λλλ,f ,Ds ∗ pε)(x) = (p̃T̃,λ̃λλ,f̃ ,Ds ∗ pε)(x) (25)

F [p̃T,λλλ,f ,Ds ](ω)φε(ω) = F [p̃T̃,λ̃λλ,f̃ ,Ds ](ω)φε(ω) (26)

F [p̃T,λλλ,f ,Ds ](ω) = F [p̃T̃,λ̃λλ,f̃ ,Ds ](ω) (27)

p̃T,λλλ,f ,Ds(x) = p̃T̃,λ̃λλ,f̃ ,Ds(x) (28)

By taking the logarithm on both sides of equation (28) and replacing pT,λλλ by its expression from (9),
we get:

log volJf−1(x) +

n∑
i=1

(logQi(f
−1
i (x))− logZi(Ds)) +

k∑
j=1

Ti,j(f
−1
i (x)λi,j(Ds)) =

log volJf̃−1(x) +

n∑
i=1

(log Q̃i(f̃
−1
i (x))− log Z̃i(Ds)) +

k∑
j=1

T̃i,j(f̃
−1
i (x)λ̃i,j(Ds))

(29)

Let Ds
0,Ds

1, . . . ,Ds
de be the context sets provided by assumption (iv) of the Theorem, and define

λ̄λλ(Ds
l ) = λλλ(Ds

l ) − λλλ(Ds
0). We plug each of those Ds

l in (29) to obtain de + 1 such equations. We
subtract the first equation for Ds

0 from the remaining de equations to get for l = 1, . . . , de:〈
T(f−1(x)), λ̄λλ(Ds

l )
〉
+
∑
i

log
Zi(Ds

0)

Zi(Ds
l )

=
〈
T̃(f̃−1(x)),

¯̃
λλλ(Ds

l )
〉
+

∑
i

log
Z̃i(Ds

0)

Z̃i(Ds
l )

(30)

Let L be the matrix defined in assumption (iv), and L̃ similarly defined for λ̃λλ. Define bl =∑
i log

Z̃i(Ds
0)Zi(Ds

l )

Zi(Ds
0)Z̃i(Ds

l )
and b the vector of all bl for l = 1, . . . , de. Experssing equation (30) for

all points ul in matrix form, we get:

LTT(f−1(x)) = L̃T T̃(f̃−1(x)) + b (31)

We multiply both sides by the transpose of the inverse of LT from the left to find:

T(f−1(x)) = AT̃(f̃−1(x)) + c (32)

where A = L−T L̃ and c = L−Tb.

Now by the definition of T and according to assumption (iii), its Jacobian exists and is an de × d
matrix of rank d. This implies that the Jacobian of T̃ ◦ f̃−1 exists and is of rank d and so is A. We
distinguish two cases:
(1) If e = 1, then this means that A is invertible (becuase A is d× d).
(2) If e > 1, define x̄ = f−1(x) and Ti(x̄i) = (Ti,1(x̄i), . . . ,Ti,e(x̄i)). According to Lemma 3 in
[6], for each i ∈ [1, . . . , d] there exist e points x̄1

i , . . . , x̄
e
i such that (T′

i(x̄
1
i ), . . . ,T

′
i(x̄

e
i )) are linearly

independent. Collect those points into e vectors (x̄1, . . . , x̄e), and concatenate the e Jacobians JT(x̄
l)
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Table 2: The results of the different dimensions of unknown parameters

The number of
parameters MSE of zP ↓ MCC ↑ MSE of x (Rec) MSE of x (Pre)

2 1.22(0.08)e-2 0.97(0.01) 1.22(0.08)e-2 2.02(0.13)e-2
3 3.62(0.01)e-2 0.99(0.00) 1.29(0.05)e-2 5.01(0.00)e-2
4 1.59(0.07)e-2 0.99(0.00) 2.91(0.06)e-2 6.85(1.11)e-2

Table 3: Comparison results of Non-meta and Meta

Method MSE of zP ↓ MCC ↑ MSE of x (Rec) MSE of x (Pre)
Non-Meta zP 9.17(1.33)e-3 0.99(0.00) 3.28(0.17)e-2 8.82(2.03)e-2

Meta zP 5.63(0.42)e-3 0.99(0.00) 3.18(0.19)e-2 3.37(0.00)e-2

evaluated at each of those vectors horizontally into the matrix Q = (JT(x̄
1), . . . ,JT(x̄

e)) (and
similarly define Q̃ as the concatenation of the Jacobians of T̃(f−1(f̃(x̄))) evaluated at those points).
Then the matrix Q is invertible (through a combination of Lemma 3 and the fact that each component
of T̃ is univariate). By differentiating equation (32) for each xl, we get (in matrix form): Q = AQ̃.
The invertibility of Q implies the invertibility of A and Q̃.

Hence, equation (32) and the invertibility of A mean that (f ,T,λλλ) ∼A (f̃ , T̃, λ̃λλ)

C Alation Analyses of Meta-Hybrid-VAE

C.1 Effect of the Dimension of Unknown Parameters

Here, we provided ablation results on the pendulum system to demonstrate that the identifiability
results of the presented meta-hybrid-VAE were minimally affected by the number of parameters to be
identified, as long as the theoretical condition for identifiability is met. The results can be seen in
Table 2.

C.2 Meta-component on cp

Here, we provided further ablation studies to show that the physics-based component did not suffer
from the type of un-identifiabilty discussed in this paper as the neural component, although the meta-
formulation did moderately improve the accuracy of the estimation of the physics-based parameters.
The results can be seen in Table 3.

D Results on General Non-Hybrid VAEs

We compare our meta-formulation of the non-hybrid VAE (Meta-VAE) compared to the original VAE
and identifiable VAE (iVAE) on a synthetic datasets about non-stationary Gaussian time-series in [6].
To evaluate the performance of the method, we compute the MCC between the original sources and
the corresponding latent samples from the learned posterior. The results can be seen in Table 4.

Table 4: The results on General Non-Hybrid VAEs

VAE iVAE Meta-VAE
MCC 0.67(0.04) 0.91(0.03) 0.88(0.00)

E Strong MCC results

We also evaluate proposed model on a more strong identifiable relation ∼P defined as follow:

Definition 3: Let ∼ be the equivalence relation on Φ defined the same as 16:

(θ,T,λλλζ) ∼ (θ̃, T̃,λλλζ̃) ⇔ ∃A, c : T(F−1
θ (x)) = AT̃(F−1

θ̃
(x)) + c,∀x ∈ X (33)
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Figure 5: Visual samples of learned latent variables between different runs.

Table 5: The results of strong MCC

Forced Damped Pendulum Advection-Diffusion System Double Pendulum
Strong MCC
Ground Truth

Strong MCC
Different Runs

Strong MCC
Ground Truth

Strong MCC
Different Runs

Strong MCC
Ground Truth

Strong MCC
Different Runs

APHYNITY 0.38(0.02) 0.81(0.08) 0.86(0.05) 0.83(0.04) 0.50(0.00) 0.73(0.00)
Hybrid-VAE 0.29(0.00) 0.80(0.01) 0.80(0.12) 0.79(0.11) 0.50(0.00) 0.72(0.00)

Meta-Hybrid-VAE 0.55(0.02) 0.90(0.06) 0.97(0.03) 0.96(0.00) 0.96(0.00) 1.00(0.00)

If A is a block permutation matrix, we denote this relation by ∼P .

The theory according to ∼P is following:

Theorem 2: (e ≥ 2) Assume the hypotheses of Theorem 1 hold and that e ≥ 2. Further assume:

(2.i) The sufficient statistics Ti,j in Equation 15 are twice differentiable.

(2.ii) The mixing function Fθ has all second order cross derivatives.

then the parameters (θ,T,λλλζ) are ∼P -identifiable.

Theorem 3: (e = 1) Assume the hypotheses of Theorem 1 hold and that e = 1. Further assume:

(3.i) The sufficient statistics Ti,1 not monotonic.

(3.ii) All partial derivatives of Fθ are continuous.

then the parameters (θ,T,λλλζ) are ∼P -identifiable.

The proof of Theorem 2 and 3 can be found in [6]. Then to evaluate the performance on ∼P , we
calculate the strong MCC between learned latent variables and ground truth variables (Strong MCC
Ground Truth) and strong MCC between runs of the model (Strong MCC Different Runs) [6, 9, 22].
The results can be found in Table 5 and we provide a visualization example of forced damped
pendulum system to show the relation of learned latent variables between two different runs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our method and experiments have show our main claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed it on Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The proofs of the theorem in the main paper can be found in Appendix B .
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided enough information to reproduce the results in Section 6
and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The data and code will be released soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experimental settings and details on Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the standard deviation of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:[NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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