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ABSTRACT

Recommender systems aim to deeply understand users’ complex preferences based
on their past interactions. Deep collaborative filtering paradigms, leveraging ad-
vanced neural architectures like Graph Neural Networks (GNNs), excel at capturing
collaborative relationships among users. However, limitations emerge when deal-
ing with sparse data or zero-shot learning from unseen datasets, due to the design
constraints of ID-based embedding functions in existing solutions. These chal-
lenges hinder robust generalization and adaptability. To address this, we propose a
model-agnostic recommendation instruction-tuning paradigm that integrates large
language models with collaborative filtering. Our Recommendation Language
Model (RecLM) is introduced to enhance the capability of capturing user prefer-
ence diversity. We design a reinforcement learning reward function to facilitate self-
augmentation of our language models. Comprehensive evaluations demonstrate
significant advantages of our approach across various settings. It can be integrated
as a plug-and-play component with state-of-the-art recommender systems, resulting
in notable performance enhancements. We have made our RecLM available anony-
mously at: https://anonymous.4open.science/r/RecLM-A1BE/|

1 INTRODUCTION

Recommendation systems play a vital role in web applications, assisting users in navigating the vast
amount of information accessible online. These systems deliver personalized recommendations of
items that users may find interesting, including products on e-commerce platforms |Wang et al.| (a);
'Wu et al., posts on social networking sites Jamali & Ester Zhang et al.|(2021), and videos on sharing
platforms [Wei et al. (a); Zhan et al.l One of the most widely used methods for generating these
recommendations is Collaborative Filtering (CF). This approach leverages the preferences of similar
users to suggest new items to a specific user|/He et al.|(2017).

However, it is essential to emphasize that most of current recommender systems primarily rely on
the user/item ID paradigm, where the training data largely consists of mapped user and item indices.
While this approach has significantly advanced recommendation, particularly in scenarios with ample
training data Yuan et al., it also presents notable limitations. Key challenges include suboptimal
performance in cold-start scenarios and difficulties in generalizing to zero-shot learning situations. In
completely cold-start settings, ID-based recommenders struggle to generate effective representations
for new items, often leading to failures in providing valid recommendations.

To address the cold-start challenge in the ID-based recommendation paradigm, a promising approach
is to leverage external features (e.g., textual or visual information) associated with users and items
to generate their representations, rather than relying on ID-based embeddings. However, real-world
scenarios often lack complete modal features. For instance, many users may withhold personal infor-
mation due to privacy concerns, resulting in incomplete data. Additionally, these external features
often contain noise, which can distort modeling of user preferences. For example, misleading tags or
inaccurate specifications in an item’s description may lead to misguided recommendations. Conse-
quently, extracting accurate, relevant, and high-quality external features from noisy and incomplete
data has become a critical challenge for generalizing recommenders under data scarcity.

Contribution. Inspired by the robust generalization and reasoning capabilities of Large Language
Models (LLMs), we propose the development of effective language models as profiling systems
specifically designed for recommendation tasks, aimed at enhancing performance in cold-start
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recommendation scenarios. Utilizing LLMs for profile generation involves addressing two primary
challenges: (i) How can LLMs generate profile text that accurately reflects the recommendation
characteristics for users or items lacking external features? (ii) How can LLMs produce high-quality
profiles from noisy features while effectively capturing user-item interaction behavior context?

To address these challenges, we propose a novel approach that involves performing message passing
among users and items to enrich user and item profiling with information from their interactions. This
method allows users and items with insufficient external features to be effectively profiled through
their interaction dependencies from a global perspective. Additionally, we introduce an innovative
recommendation instruction tuning paradigm that integrates behavioral signals into LLMs. This
paradigm enables LL.Ms to not only incorporate external features from users and items but also
to understand user preferences in the context of user-item interaction data. By guiding LLMs to
consider collaborative relationships, this approach addresses the lack of direct supervision signals in
profile generation tasks through self-supervised learning. Furthermore, to mitigate the extraneous
noise introduced by this instruction tuning paradigm and counteract the over-smoothing caused
by collaborative relationships, we propose a reinforcement learning-based personalized feature
enhancement method. This technique aims to further improve the accuracy and personalization of the
generated profiles. Our main contributions can be summarized as follows:

* Model-Agnostic Framework. We introduce a model-agnostic instruction tuning framework
RecLM. It can be seamlessly integrated into existing recommender systems as a plug-and-play
component, significantly enhancing their generalization capacity in scenarios with limited data.

* Enhancing Profiling System. In this work, we seamlessly integrate large language models with
collaborative filtering to enhance user profiling, particularly in cold-start scenarios, where current
methods often struggle. Additionally, our approach employs reinforcement learning to refine profile
quality, effectively addressing challenges associated with data noise and over-smoothing.

* Comprehensive Evaluation. We integrate RecLM with a range of state-of-the-art recommenders to
assess the effectiveness of our approach across various settings. This includes conducting ablation
studies and efficiency evaluations. Additionally, we carry out extensive experiments in real-world
industrial recommendation scenarios, demonstrating the practicality and scalability of RecLM.

2 RELATED WORK

2.1 ID-BASED RECOMMENDER SYSTEMS

In recommender systems, numerous collaborative filtering models have been proposed to map users
and items into latent representations based on user/item IDs |Koren et al.| (2021); |Su & Khoshgoftaar
(2009). These methods have evolved significantly, starting from early matrix factorization techniques,
such as BiasMF |[Koren et al.| (2009)), to the introduction of Neural Collaborative Filtering (NCF)
with the advent of neural networks |He et al.| (2017). Recently, advancements in Graph Neural
Networks (GNNs) have opened promising avenues for constructing bipartite graphs based on user-
item interaction history, allowing for the capture of high-order collaborative relationships. GNN-based
methods, including NGCF |Wang et al.|(2019), GCCF (Chen et al.|, and LightGCN He et al.| (2020),
have demonstrated state-of-the-art performance, enhancing the effectiveness of recommendation.

Additionally, researchers have incorporated self-supervised learning (SSL) techniques as supple-
mentary learning objectives to improve the robustness of recommenders and address challenges
related to data sparsity and noise [Yu et al| (2023). Contrastive learning (CL), a widely adopted
SSL technique, has been effectively applied in CF research through approaches such as SGL Wu
et al.|(2021), SimGCL |Yu et al.| (2022), NCL Lin et al., and AdaGCL Jiang et al.. Despite these
advancements, ID-based recommenders still face significant limitations, particularly in completely
cold-start scenarios and in terms of model transferability Yuan et al.|

2.2 LARGE LANGUAGE MODELS (LLMS) FOR RECOMMENDATION

The application of large language models (LLMSs) in recommender systems has garnered significant
attention Fan et al.|(2023)); Lin et al.|(2023)); Liu et al.| (2023)). Current approaches can be categorized
into two main types. The first category includes methods such as P5|Geng et al.| and Chat-REC Gao
et al.| (2023)), which emphasize designing prompts aligned with recommendation tasks, utilizing the
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LLM directly as the inference model. The second category enhances existing recommenders by
integrating LLMs while still relying on traditional collaborative filtering methods Wang et al. (b).
For instance, LLMRec |Wei et al.| (b)) strengthens the user-item interaction graph through LLM-based
graph augmentation, while RLMRec Ren et al.|(2023) combines LLM-enhanced text embeddings
with GNN-based user/item representations. However, these approaches often lack fine-tuning tailored
to specific recommendation tasks, primarily focusing on full-shot scenarios.

In contrast, our work introduces a novel instruction-tuning technique for an open-source LLM,
allowing it to adapt to specific recommendation tasks and effectively capture collaborative information
for profile generation. While methods like InstructRec Zhang et al.| (2023 and TALLRec Bao et al.
align LLM capabilities with recommendation tasks, they struggle with scalability due to instruction-
question-answering prompts and exhibit poor generalization on sparse data. Our approach enhances
the generalization ability of existing recommender systems in the face of data scarcity and noise,
while maintaining efficiency in handling large-scale data in practical scenarios.

3 METHODOLOGY

3.1 ID-BASED COLLABORATIVE FILTERING

In the ID-based collaborative filtering (CF) paradigm, the main goal is to optimize the ID embeddings
of users and items. This optimization aims to accurately capture and represent user preferences for
items, while considering the interaction patterns of users and items that are similar. Formally, we
have a set of users denoted as i = {uy,--- ,us}, and a set of items denoted as V = {vy,--- ,vs}.
Each user and item is assigned initial ID embeddings, represented as x,, and x,, € R? respectively.
The objective is to obtain optimized user and item representations, denoted as e,,, e, € RY, through a
recommender model R(x,,X,). This model aims to maximize the posterior distribution p(e|X’)
p(X|e)p(e). The predicted likelihood of user-item interaction, denoted as ¢, ,, is derived by
performing a dot product between the user and item representations, as follows: 7, , = e, - e,.

Although many state-of-the-art recommender systems operating within the ID-based collaborative
filtering paradigm have demonstrated remarkable performance, they face significant challenges when
it comes to handling item cold-start scenarios, especially in situations where data scarcity is prevalent.
The primary hurdle arises from the lack of past interaction history for these new items, which disrupts
the optimization paradigm mentioned earlier. As a consequence, ID-based recommenders may
encounter difficulties in generating accurate representations for these new items, leading to a notable
decline in the overall performance of recommender systems, particularly in zero-shot scenarios.

3.2 TEXT-EMPOWERED USER/ITEM REPRESENTATIONS

To handle cold-start items in zero-shot recommendation, we propose to leverage textual side features
for user and item representation learning. Specifically, we propose to replace the aforementioned
ID embeddings with the side information associated with items, concretely items’ text descriptions
F € RIVIxd: A multi-layer perceptron T}.q., is utilized to project the raw textual features f € R% into

the latent space R?. The resulting representation f € R is then used for initial item representation:

f‘v = raw(f)- (1)

This enables items to have meaningful representations with textual semantics that go beyond simple
ID embeddings. After using textual features as item representations, the recommender system
optimizes the user ID embedding using observed item interactions, capturing user preferences for
text-based items and enabling zero-shot predictive capabilities for cold-start items.

LLM-enhanced User/Item Profiling. To further empower user representations with the rich textual
semantics provided by large language models (LLMs), we propose generating user profile information
that can reflect their interaction preferences. Specifically, item profiles can be derived from the
profiles of users who frequently interact with them. This approach proves valuable in capturing
user preferences and facilitating accurate recommendations for cold-start items. On the user side,
the original ID embedding x,, € R? is seamlessly integrated with the user profile representation
pu € R%, allowing the system to leverage both the user’s ID-based embedding and their generated
profile representation, which can capture more nuanced preferences. Similarly, on the item side, the
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Figure 1: Overall framework of the proposed RecLM.

raw text features of the item x,, are effectively combined with the item profile p, € R%, enabling
the system to better understand the item’s characteristics and how they align with user preferences.

f'ﬁug = \I/(Xu [ Tpro(pu))v f-:)zug = \Il(f” I Ti‘"’o(p”))' 2)

To fuse the multi-faceted information, we employ an MLP, V¥, to consolidate the various features.
Additionally, we use another MLP, T,,.,, to convert the profile embeddings into the model’s latent

space. This fusion process produces enhanced user and item representations, f**9 € R? and

fﬁ“g € R?, which prove instrumental in accurately predicting user behavior. Given the rapid
development and widespread use of LLMs, their data augmentation capabilities have showcased
impressive performance. Leveraging this power, we utilize LLMs to generate supplementary profiles
for users and items, effectively boosting the capabilities of our recommender system.

3.3 ENHANCING COLLABORATIVE FEATURES VIA RECOMMENDATION INSTRUCTION TUNING

To enhance collaborative features, our RecLLM proposes to integrates users’ collaborative relation-
ships into the aforementioned LLM-based profiling process, through an innovative recommendation
instruction tuning paradigm. This approach improves the generated user profiles by employing knowl-
edge distillation and a dialogue-based instruction tuning method, effectively preserving high-order
collaborative similarities between users and items. Once we have successfully generated high-quality
user profiles, we can proceed to generate item profiles by leveraging the associated user profiles,
ensuring semantic alignment and resulting in enhanced features for both users and items.

3.3.1 LLM Fine-Tuning via Knowledge Distillation

For our profiling system, using state-of-the-art LLMs like ChatGPT can be costly and inefficient, with
data security concerns. Instead, fine-tuning open-source LLMs is more common, granting flexibility
to align with computational resources and business needs. This allows designing cost-effective and
efficient batch inference methods while ensuring data security. Here, we utilize llama2-7b-chat as
the base model. To tailor it to our business, we design prompt templates and sample users and items
to construct input prompts for ChatGPT-3.5. After obtaining the inference results, we fine-tune
llama2-7b-chat using the input-output prompts. This distills knowledge from the large-scale ChatGPT
into the open-source llama2-7b-chat, yielding a fine-tuned LLM M, that meets our requirements.

3.3.2 COLLABORATIVE INSTRUCTION TUNING

Indeed, the reliance solely on historical item information from user interactions may not effectively
harness the collaborative relationships among users. Therefore, we have devised a solution to this
issue by introducing a two-turn dialogue-based instruction tuning paradigm. This paradigm not only
aids LLMs in generating higher-quality profiles by considering the collaborative relationships among
users but also tackles the challenge of lacking direct supervision in the profile generation task.

Profile Generation with Two-turn Dialogue. The challenge of evaluating generated profiles without
readily available ground truth hinders the guidance of LLMs in producing high-quality profiles.
Typically, the quality assessment is indirectly conducted through downstream recommendation tasks
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where the profiles are utilized. To tackle this challenge, we have devised a two-turn dialogue-based
instruction-tuning paradigm.

In the first turn, the input query (i.e., Q) encompasses the historical item lists of the target user and
similar users. The output response (i.e., R) is the profiles of users. Our aim in this turn is guiding
LLMs to consider both the collaborative relationships among users and their historical interactions
when generating the user’s profile. However, the profile generated in the first turn is solely based on
the distilled knowledge of M4 and lacks sufficient supervision signals for effective guidance.

To address this, we introduce the second turn where we utilize the user’s historical interaction records
as supervision signals to guide the profile generation process. In this second turn, the input Q consists
the target user u; and a target item v;. The output R is a prediction of whether u; will interact
with v;. This approach bridges the gap between the profile generation task and the recommendation
optimization objective, guiding LLMs to consider the collaborative relationships among users during
profile generation and allows for supervision signals from the recommendation task.

Instruction Design. In the first turn, LLMs receive the historical item list V, € V of the target
user u; € U and the historical item lists V,, € V of several users u,, € U with similar preferences.
To identify these similar users {u,, }, we employ traditional ID-based recommenders to obtain user
embeddings. By calculating the cosine similarity between user embeddings, we can obtain users who
exhibit comparable preferences. Alongside V,,, the LLM is also provided with the user profiles of
these similar users via M},4. The output R of LLMs in this turn is the profiles of both u; and {u,, }.

inr. - PTompt(Un {un}v Vta {Vn})v wa = PTOmpt(Uu {un}a Pta {Prb}) (3)

In the second turn, the input Q revolves around whether u; will interact with v;. The output R
indicates the interaction status between u; and v, in the training dataset (i.e., yes or no). To maintain
a balanced distribution of positive and negative samples, we employ the following approach: For
half of the samples (i.e., positive samples), v is chosen from V;. Additionally, it is ensured that v
appears in the interaction history {),, }. Meanwhile, when constructing the instructions for the first
turn of the dialogue, v is removed from V;. For the remaining half of the samples (i.e., negative
samples), v~ is selected from {)),, }. Importantly, v~ has not been interacted with by u; in the training
dataset. This approach ensures that the dialogue instructions maintain a balance between positive and
negative samples, while also incorporating relevant contextual information without introducing bias
towards any specific item.

Prompt(ug,vt), pos. samp. Yes, pos. samp.
Qsec. = _ sec. — (4)
Prompt(ug,v™), neg. samp. No, neg. samp.

Tuning Strategy. In the process of multi-turn dialogue instruction-tuning, the object is to utilize
the R generated by LLMs for weight updates, while excluding the Q from these updates. If simply
employing the conventional single-turn dialogue tuning approach on our paradigm, the inputs to the
LLM include Qy;,., R fir., and Qgec., With only R... being the predicted part. Therefore, only the
loss from R ... is utilized for updating LLM’s weights, which fails to fully exploit the training data
for multi-turn dialogues. In our designed paradigm, R ¢;. contains valuable textual information in
the form of profiles of multiple users. This rich information guides the generation of R ... in the
subsequent turn. On the other hand, R .. is the relatively simple text, usually a binary choice such
as yes or no. If we disregard the information in Ry, and solely use R ... for fine-tuning LLMs, it
is evident that we would not be able to achieve the desired effect.

To address this issue, we have devised a more efficient method for two-turn dialogues tuning.
Our approach involves concatenating the data from the two-turn dialogues and utilizing masking
techniques to distinguish between Q and R. When updating the weights of LLMs, only the loss from
the part marked as R is taken into account for weight updates. By adopting this method, both R f;,.
and R ... in the two-turn dialogue are able to actively contribute to the training process, allowing for
the full utilization of the dialogue data. This approach is instrumental in guiding LLMs within our
designed paradigm to effectively learn the collaborative relationships among users.

Inference Prompt. After completion of the instruction-tuning, we have devised a prompt for inferring
user profiles. This prompt combines both V; and {V,, }. Its purpose is to provide guidance to LLMs
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in generating user profiles that are enriched through collaborative relationships among users.
anf - P?"Ompt(Ut, {un}7 Vta {Vn}) (5)

3.4 REINFORCEMENT LEARNING-BASED PERSONALIZED FEATURE ENHANCEMENT

Despite the LLM’s improved ability to infer profiles through the instruction-tuning, there are still
challenges to address. The inconsistency between the prompt instruction during inference (i.e.,
generates a specific user’s profile) and the first turn of the dialogue during fine-tuning (i.e., generates
multiple users’ profiles) introduces noise into the generated profiles. Additionally, while considering
user collaborative relationships enhances performance, it compromises profile precision in terms of
personalization, similar to the over smoothing problem in GNN-based CF methods.

To address above challenges, we draw inspiration from the RLHF (Reinforcement Learning from
Human Feedback) technique |Stiennon et al., and develop a RL-based fine-tuning paradigm to further
enhance the previously tuned LLM. In this approach, we train a reward model to evaluate the quality
of the profiles generated by the LLM. Subsequently, we employ the Proximal Policy Optimization
(PPO) [Schulman et al.| (2017) to update the weights of the LLM using the scores provided by the
reward model. This iterative process enables us to progressively refine the LLM’s performance,
resulting in the generation of more accurate and personalized profiles.

Reward model. The goal of a reward model is to characterize whether the LLM’s output is considered
good by humans. That is, given an input pair of [Q, R], it outputs a scalar value that represents the
quality of the R. The optimization loss L, for the reward model is as follows:

s
Lom ==Y Bt r)plloglo(ro(Qu RT) —16(Qi, R)))], ©)

=0

where 74(-) denotes the reward model, o'(-) denotes sigmod function, R and R; are true response
and false response respectively. The success of training the reward model relies on high-quality and
effective training data. In the context of the profiling task, we utilize the same query (i.e., Q;r ¢.). The
critical aspect is to construct both positive response (i.e., R") and negative response (i.e., R™).
For R, we obtain profiles via ChatGPT. As for R, we categorize them into two groups. Firstly,
we design multiple prompt templates to generate diverse negative samples. These samples assist
the reward model in learning to distinguish low-quality responses that the LLM may generate after
the previous instruction-tuning. Secondly, we substitute the target user’s profile with profiles of
similar users. This aids the reward model in discerning between similar profiles and selecting more
personalized and accurate ones. By incorporating these techniques, we enhance the training data and
improve the reward model’s ability to evaluate the quality of generated user profiles.

Proximal Policy Optimization. Following the conventional RL framework, where the reward model
serves as an approximation of the true reward function, the LLM M is treated as the policy to be
optimized. The optimization objective in this process is as follows:

argj\rfllax }E%NDwiNM [R(yZ‘IJ] (7)

To iteratively optimize M, we sample Q; from the query set D and the corresponding R; generated
via M. We utilize the Proximal Policy Optimization (PPO) algorithm and its associated loss function
to achieve this objective. Following|Schulman et al.[|(2017), the final reward function contains an
additional penalty term (i.e., KL divergence of the original LLM M and the optimizing LLM My).
This constraint is beneficial to reducing reward hacking whereby achieving high scores from the
reward model but low scores from real human evaluation. Hence, the final reward function R(-) for
the sample R; and Q; is as follows:

R(R;:|Q;) = #(Ri]| Qi) — BDkL(Mg(Q;)]||Mo(Qs)) (8)

We report the detailed instruction designs for fine-tuning at each stage of our work, along with the
construction of positive and negative training samples for the RL reward model in Appendix [A.6]

4 EVALUATION

In this section, we verify the effectiveness of RecLM by answering the following several questions:
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* RQ1: How does our proposed RecLM enhance the performance of existing recommender systems,
particularly in item cold-start scenarios?

* RQ2: What contributions do the instruction-tuning techniques and reinforcement learning enhance-
ments make to overall recommendation performance?

* RQ3: How effective is our LLM-empowered user/item profiling system as an embedding function?
* RQ4: How does our method perform in terms of efficiency?
* RQS5: What advantages does our method have compared to existing LLM-enhanced recommenders?

* RQ6: How does the reinforcement learning-based feature enhancement module enhance the
performance of our LLM-empowered profiling system?

4.1 EXPERIMENTAL SETTINGS

To evaluate the effectiveness of our proposed method, we conduct extensive experiments using two
public datasets: MINIﬂ Wu et al.|(2020) and Netﬂixﬂ along with a large-scale dataset derived from
real-world industrial data (referred to as Industrial for anonymity).

We assess the accuracy of the top-K recommendation results using two widely adopted metrics:
Recall@K (R@K) and NDCG (N@K), with K set to 20 by default. To reduce bias, we employ an
all-rank evaluation strategy, where positive items in the test set are ranked alongside all non-interacted
items for each user. The final metric is reported as the average score across all users in the test set.

We evaluate the effectiveness of our RecLM approach by integrating it with state-of-the-art rec-
ommender systems, allowing us to assess performance improvements in a model-agnostic manner
compared to baseline models. The selected CF recommenders include non-graph methods such as
BiasMF [Koren et al.| (2009) and NCF He et al.| (2017), the GNN-enhanced method LightGCN He
et al.| (2020), and graph contrastive learning approaches SGL |Wu et al.|(2021) and SimGCL Yu et al.
(2022). Details regarding the datasets and baseline methods are provided in Appendices[A.T|and[A.2]

4.2 PERFORMANCE COMPARISON (RQ1)

Table 1: Performance comparison on MIND, Netflix and Industrial data in terms of Recall and NDCG.

The superscript * indicates the improvement is statistically significant where the p-value < 0.05.
Dataset I MIND I Netflix I Industrial
Backbone| Variants R @20 R@40 N@20 N@40 R@20 R@40 N@20 N@40 R@20 R@40 N@20 N@40
Full-Shot Setting
Base [0.0683 0.1030 00311 0.0399 [0.0449 00790 0.145] 01375 [0.0078 00143 0.0046  0.0066
BiasMF |Augment.[0.0719"  0.1353"  0.0272 0.0411*  |0.0531"  0.0868" 0.1761*  0.1630° |0.0121*  0.0198"  0.0074"  0.0097"
Tmprove.5.27% 1 30.22% 1 12.54% | 3.01%1 [18.26% * 9.87%1 21.36% 1 18.55% 1 [55.13% 1 38.46% 1 60.87% 1 46.97% 1
Base [0.0713  0.0085 00325 00445 [0.058] 00936  0.1848 0.I721 [0.0102 0.0076  0.0188  0.0091
NCF  |Augment|0.0760°  0.1233°  0.0288  0.0414  [0.0591°  0.0968" 0.1903° 0.1785° (0.0133"  0.0087°  0.0206° 0.0108 x
Tmprove.[6.50% 1 25.18% 1 11.38% | 6.97% | [1.72%1 3.42%1 2.98%1 3.72%1 [30.39%1 14.47%1 9.57%1 18.68% 1
Base [0.0389 0.0702 0.0150 0.0219 [0.0467 0.0815  0.1488 0.1424 [0.0096 00162 0.0059 _ 0.0076
LightGCN|Augment.0.0788°  0.0983°  0.0337°  0.0384" [0.0652°  0.1026" 01703  0.1606° (0.0143"  0.0225"  0.0087°  0.0107°
Improve.|102.57% 140.03% 1 124.67% 175.34% 1 |39.61% 1 25.89% 1 14.45% 1 12.78% 1 |48.96% 1 38.89% 1 47.46% 1 40.79% 1
Base [0.0345 0.0708 0.0127 0.0210 0.0277 0.0416 0.0855 0.0762 0.0078 0.0138 0.0050 0.0068
SGL |Augment0.0732°  0.0967°  0.0367° 0.0421° |0.0788° 0.1204" 0.1958° 0.1831° [0.0133°  0.0221"  0.0080°  0.0106"
Improve.|112.17% 1 36.58% 1 188.98% 1 100.48% 1{184.48% 1 189.42% 1 129.01% 1 140.29% 1/70.51% 1 60.14% 1+ 60% 1+  55.88% 1
Base [0.0421 0.0636 0.0155 0.0212 0.0231 0.0441 0.0810 0.0825 0.0042 0.0078 0.0026 0.0037
SimGCL |Augment(0.0576"  0.0908°  0.0232°  0.0329° [0.0567° 0.0908"  0.1782°  0.1673° [0.0128"  0.0205° 0.0080" 0.0099"
Improve.|36.82% 1 42.77% 1 49.68% 1 55.19% 1 [145.45% 1 105.90% 1 120.00% 1 102.79% 1|204.76% 1 162.82% 1 207.69% 1 167.57% 1
Zero-Shot Setting
Base {0.0096 0.0165 0.0031 0.0041 0.0311 0.0769 0.0167 0.0292 0.0038 0.0068 0.0020 0.0029
BiasMF |Augment(0.0246"  0.0373°  0.0107° 0.0135" [0.1381°  0.1490°  0.0828° 0.0584° [0.0056" 0.0103°  0.0026"  0.0040°
Improve.|156.25% 1 126.06% 1 245.16% 1 229.27% 1|344.05% 1 93.76% 1 395.81% 1 100.00% 147.37% 1 51.47% 1 30.00% 1 37.93% 1
Base {0.0301 0.0383 0.0080 0.0097 0.0480 0.1158 0.0196 0.0384 0.0044 0.0022 0.0056 0.0026
NCF  |Augment|0.0424°  0.0469°  0.0112°  0.0122° [0.1700° 0.1774°  0.0984° 0.0974° [0.0051" 0.0031°  0.0088"  0.0041°
Improve.|40.86% 1 22.45% 1 40.00% 1 25.77% 1 [254.17% 153.20% 1 402.04% 1 153.65% 1/15.91% 1 40.91% 1 57.14% 1 57.69% 1
Base [0.0138 0.0292 0.0046 0.0078 0.0974 0.1256 0.0446 0.0415 0.0092 0.0160 0.0051 0.0070
LightGCN|Augment.0.0196"  0.0389°  0.0064°  0.0086" [0.1371°  0.1453°  0.0697° 0.0459° [0.0133'  0.0188°  0.0090°  0.0106"
Improve.|42.03% 1 33.22% 1 39.13% 1 10.26% 1 |40.76% 1 15.68% 1 56.28% 1 10.60% 1 [44.57% 1 17.50% 1 76.47% 1 51.43% 1
Base |0.0162 0.0264 0.0062 0.0074 0.0385 0.1441 0.0274 0.0579 0.0065 0.0114 0.0036 0.0050
SGL  |Augment|0.0254°  0.0450°  0.0089° 0.0107° [0.1126° 0.1756" 0.0384° 0.1066° (0.0111° 0.0176°  0.0066°  0.0084"
Improve.|56.79% 1 70.45% 1 43.55% 1 44.59% 1 |92.47% 1 21.86% 1 40.15% 1 84.11% 1 |70.77% 1 54.39% 1 83.33% 1 68.00% 1
Base (0.0164 0.0300 0.0055 0.0084 0.0793 0.1259 0.0336 0.0460 0.0078 0.0140 0.0042 0.0059
SimGCL |Augment(0.0312°  0.0388°  0.0098° 0.0115° |0.1508"° 0.1895° 0.1550° 0.1647° [0.0084" 0.0137  0.0044°  0.0059
Improve.|90.24% 1 29.33% 1 78.18% 1 36.90% 1 |90.16% 1 50.52% 1 361.31% 1258.04% 17.69% 1 2.14% ] 4.76% 1

"https://msnews.github.io
“https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
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To demonstrate the effectiveness of our RecLM in enhancing performance, particularly in cold-start
scenarios, we apply it to five common collaborative filtering methods. The "full-shot" setting corre-
sponds to the complete dataset, while the "zero-shot" setting refers to the pure cold-start condition.
The Base variant applies the cold-start recommendation paradigm to the baseline recommenders
without any profiling enhancement via LLLMs, whereas the Augment variant integrates RecLM
into the base recommenders. Detailed settings and implementation information are provided in
Appendices[A.3]and[A.5] The evaluation results in Table[I|reveal several interesting observations.

(i) Performance Improvement in Integrated Recommenders. We consistently find that integrating
RecLLM with backbone recommenders leads to enhanced performance compared to the base variant,
which relies on raw external item features and ID-based user embeddings in both supervised and
zero-shot settings. This provides compelling evidence for the effectiveness of RecLM. We attribute
these improvements to two key factors: First, for supervised recommendation scenarios, RecLM
leverages instruction-tuned LLMs to generate accurate user and item profiles as auxiliary information,
effectively enhancing the semantic representation of user preference. Second, our tuning paradigm
guides the LLMs in capturing user collaborative relationships, allowing for the generation of high-
quality, personalized profiles that demonstrate strong generalization in zero-shot scenarios.

(ii) Outstanding Performance in Cold-Start Scenarios. This improvement arises from our in-
novative modifications to the ID-embedding paradigm employed in current recommenders. By
incorporating external features specifically designed to address the challenges of interaction data
scarcity, we have significantly enhanced the effectiveness of these systems. Remarkably, we observe
substantial performance improvements even in the relatively sparser MIND and Industrial datasets,
where data limitations traditionally pose significant hurdles. By leveraging our RecLM for user and
item profiling, we significantly enhance the generalization capabilities of existing recommenders.

(>iii) Practicality and Scalability for Real-World Deployment. The results from the Industrial
dataset demonstrate that RecLM consistently enhances the performance of recommenders in large-
scale, highly sparse real-world scenarios. Furthermore, our user and item profile generation methods
can be efficiently executed as an offline profiling system to support online applications, making them
highly practical for real-world recommendations. To facilitate online recommendation systems, user
and item profiles can be updated at regular intervals, such as daily or weekly. The performance
improvements observed across various backbone models indicate that RecLM can easily adapt to a
range of business models, significantly enhancing their overall effectiveness.

4.3 ABLATION STUDY (RQ2)

0.05 0.09 0.21
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aive urs
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(a) MIND data (b) Netflix data

Figure 2: Ablation study on the LLM tuning techniques in the RecLM framework.

We conducted extensive experiments to validate the effectiveness of our proposed instruction tuning
techniques by customizing three variants of RecLM: GPT_KD, Naive, and Mask. Detailed descrip-
tions of these variants can be found in Appendix[A.4] The results of our experiments are illustrated in
Figure[2] allowing us to draw the following conclusions:

(i) Advantage of Collaborative Instruction Tuning. The results in Figure [2| show that using
instruction tuning to capture collaborative relationships among users and items, along with the
masking tuning strategy (Mask), significantly enhances performance compared to GPT_KD. This
improvement suggests that our tuning solution generates more precise, high-quality profiles by
leveraging collaborative information effectively. In contrast, profiling based solely on user interaction
history has limitations, as it lacks the guidance from collaborative insights. Consequently, this
approach often results in less accurate profiles that may include noisy interaction records.
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(ii) Effectiveness of the Masking-Based Tuning Strategy. Although the Naive variant also employs
a two-round dialogue-based instruction tuning technique similar to the Mask variant, its improvement
over the GPT_KD variant is limited. This underscores the advantages of the masking-based tuning
strategy, which effectively utilizes responses from the two-round dialogue to update the weights of
the LLM and guide its learning of collaborative relationships between users.

(iii) Benefits of Reinforcement Learning-Based Feature Enhancement. The results indicate that
the Mask variant performs significantly worse than RecLM. This finding suggests that the proposed
reinforcement learning (RL)-based personalized feature enhancement technique effectively addresses
the noise issues and over-smoothing problems associated with the collaborative instruction-tuning
paradigm. As a result, it enables the LLM to generate more accurate and personalized profiles.

4.4 EFFECTIVENESS OF LLM-EMPOWERED PROFILING SYSTEM IN RECLM (RQ3)

To investigate the impact of our LLM-

. ; Table 2: Performance w.r.t. various aug. variants.
empowered profiling system on user and item

f t h t d 1 dt . Dataset MIND Netflix
cature enhancements, we developed twWo varl-  —giqgone Variants R@20 N@20 | R@20 N@20
ants of RecLM: one that excludes user feature Base 0.0389 0.0150 | 0.0467 0.1488
. ) wlo User Aug. | 0.0302 0.0123 | 0.0384 0.1213
enhancement (denoted as i.e., w/o User Aug.)  LightGCN wio liem Aug. | 00719 00287 | 00505 0.1621
and another that excludes item feature enhance- RecLM 0.0788  0.0337 | 0.0652 0.1703
ment (denoted as i.e., w/o Item Aug.). The ex- Base 0.0345 - 0.0127°1 0.0277 0.0853
. SGL w/o User Aug. | 0.0253 0.0093 | 0.0173 0.0578
periments were conducted on the MIND and wlo Ttem Aug. | 0.0719  0.0289 | 0.0502 0.1546
Netflix datasets using the full-shot setting, with ReclM | 0.0732 0.0367 | 0.0788 0.1958

LightGCN and SGL as the backbone models.
The evaluation results are presented in Table [2] allowing us to draw the following conclusions.

(i) User-Side Feature Enhancement. The exclusion of user-side feature enhancements (denoted
as i.e., w/o User Aug.) results in a significant decline in performance across both evaluated datasets
and backbone models. This underscores the critical role of our RecLLM as the profiling system for
improving performance. Relying solely on the original ID embedding for the user side is insufficient
for effectively capturing and modeling user preferences. We attribute this outcome to both the
effective extraction of text features and the successful integration of graph and textual information.

(ii) Item-Side Feature Enhancement. The exclusion of item-side feature enhancements (denoted as
i.e., w/o Item Aug.) also leads to a noticeable decline in the recommender’s performance. Interest-
ingly, when item-side feature enhancements are retained without incorporating any user-side feature
enhancements (denoted as i.e., w/o User Aug.), the performance can drop even below that of the Base
variant. This discrepancy can be attributed to the interplay between raw and enhanced features on
the item side, which creates a complex dynamic. Relying solely on ID embedding for the user side
proves inadequate for effectively modeling user preferences.

4.5 TRAINING EFFICIENCY ANALYSIS OF RECLM (RQ4)

To evaluate the efficiency of our RecLM approach, we
conduct both a theoretical complexity analysis and an
empirical running time test. Theoretical Analysis: The

Table 3: Training efficiency w.r.t. inte-
gration with various recommenders.

Dataset | Recommender | Base | RecLM |  Cost

time compledxity Qf the MLP used to transfer textual feall— BasME | 0725 | 085 | T18.06%
tures f € R of items into the model’s latent space R VIND | ik | 476 | 085 1181564;/
. igl .79s .86s .86%
is O(N x (dy x d 4+ d x d)), where N represents the SGL 1935 | 201s | +4.15%
: : L SimGCL 2.63s 2.69s +2.28%

number of nodes, and d; and d denote the dimensionalities BasME 1438 T 1645 T1A10%
of the original text features and the latent space, respec- NCF 15025 | 1717 | +14.31%
. o e . Netflix LightGCN 20.47s | 20.95s +2.34%
tively. Empirical Evaluation: We present the per-epoch SGL 64985 | 65.085 | +0.15%
training time in Table[3] The evaluation was conducted |0y Mol | L
on a server equipped with NVIDIA A100 GPUs (40 GB NCF 7.585 | 8455 | +11.48%
. . Industrial LightGCN 9.33s 10.25s +9.86%

memory). The results indicate that for larger models (e.g., 'SGL 3234 | 32.87s | +1.64%
GNN-based methods), our RecLM requires relatively little SmGCL__ | 85415 | 86525 | +1.30%

additional time, often falling below 10%. In denser datasets like Netflix, this additional time can be
reduced to under 5%. Even for smaller recommenders, the maximum additional time is approximately
25%. Given the substantial improvements in recommendation performance provided by our method,
the incurred costs are considered acceptable.
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4.6 COMPARISON WITH EXISTING LLM-ENHANCED METHODS(RQ5)

We further compare RecLM with the existing ., u10 4. perf C : ith LLMR
work LLMRec Wei et al.| (b), which also en- able 'D ?r f)rmance OTAFI)SSSOH e — e
atasel etrhx

hances recommendation systems using LLMS, g T30 N@0 | R@0 N@0

to highlight the superiority of our proposed LightGCN Base 0.0389 0.0150 | 0.0467 0.1488

instruction-tuning technique. The experimen- w/ A MRec 00532 00923 | D0o1> 1674
. . W, 3 a3 3 .

tal results are presented in Tablq Ml Specifically, oL Base 00345 00127 100277 0.0855

LLMRec generates profiles for items and users w/LLMRec | 0.0405 0.0185 | 0.0529 0.1721

by directly calling the LLM’s API without fine- w/RecLM | 00732 00367 | 0.0788 0.1958

tuning for the profile generation task. This approach fails to effectively leverage the collaborative
relationships among users. As a result, RecLM demonstrates significant performance advantages
across two public datasets, leading to notable improvements in the performance of the base models.

4.7 CASE STUDY(RQ®6)

To intuitively explore the contribution of
reinforcement learning to the personaliza-

Interacted Items Similar Users with Collaborative Information

tion of generated profiles, we conducted a [;iﬁe‘:”,ﬁ;n,éﬁz‘{c'ef‘;‘;’js Out Of The <|.a; Faodle Fondand

case study using the MIND dataset. In this R [ useraasy S MO

study, as shown in Figure 3| the target user oo -

for whom the profile is being generated is fem 472 Q gy - Horoscope, ” ©
User 49. This user has interacted with two N User20s22 o
items: Item 472 and Item 1572. Addition- : 7) Reward Mode
ally, we identified three similar users who (... s p i‘; e .

provide collaborative information: User Tite Katie Hoymesbest fashion of User 341 “

11451, User 20522, and User 341.

User identity: Foodie, Movie buff, Sports fan; User interests: Food and drink, Horoscope,
Movies, Soccer.

The user profile generated for User 49 after
instruction tuning, but without reinforce-
ment learning (RL) tuning, contains sev-
eral irrelevant keywords related to the inter-  w/rt
acted items, such as "Foodie," "Food and
drink," and "Horoscope." Notably, these
terms also appear in the profiles of User 11451 and User 20522, suggesting that the generated
profile is overly influenced by too many collaborative users. In contrast, the profile generated for
User 49 after RL tuning effectively preserves the preferences indicated in the interaction history
while incorporating relevant implicit keywords from collaborative users. For example, the term "pop
culture" is derived from User 341’s profile. This approach provides precise and valuable additional
information for modeling User 49’s preferences. We attribute this improvement to our proposed
RL-based personalized feature enhancement techniques, which effectively address the noise and
over-smoothing issues that can arise during the instruction-tuning process.

W/ORL

User identity: Sports fan, fashion enthusiast, moviegoer; User interests: Fashion, celebrity
news, pop culture.

Figure 3: Generated profiles w/ and w/o RL.

5 CONCLUSION

In this work, we introduce RecLLM, a groundbreaking model-agnostic recommendation instruction-
tuning paradigm that seamlessly integrates large language models (LLMs) with collaborative filtering
techniques to significantly enhance user profiling, especially in cold-start scenarios. This innova-
tive approach leverages LLMs to generate rich user and item profiles by harnessing collaborative
relationships and textual features, effectively tackling the critical challenges of data sparsity and
noise. Furthermore, we incorporate a unique reinforcement learning mechanism to refine profile
quality and optimize recommendation outputs, enabling substantial performance gains across diverse
recommender systems. This combination of techniques not only enhances the robustness of the
recommendations but also ensures scalability and adaptability in real-world applications.

10
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 DETAILS OF DATASET

Table [5] provides a summary of the statistical information for the three datasets. The following
sections outline the specific details for each dataset:

MIND: This large-scale dataset is designed for news recommendation research. We selected data
from two consecutive days, assigning one day as the training set and the other as the test set. The
raw text includes the news category, title, and abstract.

Netflix: It is selected from a renowned video streaming platform, and we get the implicit feedback
data from the Netflix Prize Data on Kaggle. We curated two consecutive years’ worth of data based
on time, utilizing one year as the training set and the other as the test set. The raw text information
for the items was derived from the movie titles themselves.

Industrial: It is a large-scale real dataset, which is collected from a prominent online content
platform (name omitted for anonymity), serving millions of users. It comprises news articles. We
sampled data from two consecutive dates, assigning them as the training set and test set, respectively.
The raw text information for each item is represented by its title.

Table 5: Statistics of the experimental datasets.

Statistics MIND Netflix | Industrial
# User 57128 16835 117433
# Overlap. Item 1020 6232 72417
# Snapshot daily yearly daily
Training Set
# Item 2386 6532 152069
# Interactions 89734 1655395 858087
# Sparsity 99.934% | 98.495% | 99.995%
Test Set
# Item 2461 8413 158155
# Interactions 87974 1307051 876415
# Sparsity 99.937% | 99.077% | 99.995%

A.2 DETAILS OF SELECTED BASE MODELS

This section gives a brief introduction of the selected base models in this work.

BiasMF |Koren et al.|(2009): It is a matrix factorization method that aims to enhance user-specific
preferences for recommendation by incorporating bias vectors for users and items.

NCF [He et al.| (2017): It is a neural network-based method that replaces the dot-product operation
in conventional matrix factorization with multi-layer neural networks. This allows the model to
capture complex user-item interactions and provide recommendations. For our comparison, we
utilize the NeuMF variant of NCF.

LightGCN |He et al.|(2020): This model leverages the power of neighborhood information in the
user-item interaction graph by using a layer-wise propagation scheme that involves only linear
transformations and element-wise additions.

SGL [Wu et al.|(2021): The model enhances LightGCN by integrating contrastive learning with
self-supervision. It employs data augmentation strategies, including random walks and node/edge
dropout, to corrupt graph structures.

SimGCL Yu et al.[(2022): This work introduces a straightforward contrastive learning (CL) method
that eliminates graph augmentations. Instead, it adds uniform noise to the embedding space to
generate contrastive views.

A.3 PERFORMANCE COMPARISON: SETTING

In the performance comparison experiments outlined in Sec.[4.2] we considered two distinct testing
data settings: the full-shot setting and the zero-shot setting. The full-shot setting entailed using the
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original test set as the testing data, where certain items in the test set had appeared in the training
set previously. Conversely, the zero-shot setting involved exclusively testing items that had not been
encountered in the training set. This setting was specifically designed to assess the effectiveness of
our proposed RecLM in addressing the item cold-start scenario, where limited or no prior information
is available for certain items.

In the conducted experiments, we explored two variants: Base and Augment. The Base variant
demonstrates the application of our proposed cold-start recommendation paradigm by utilizing only
user-side ID embeddings and item-side raw text embeddings, without incorporating the profiles
generated by LLMs. On the other hand, the Augment variant involves fully integrating our proposed
RecLM into traditional recommenders. The comparison between two variants enables us to assess the
effectiveness of our approach in enhancing the performance of recommenders by leveraging LLMs to
generate informative profiles.

A.4 ABLATION STUDY: SETTING

In the case of GPT_KD variant, the approach involves exclusively fine-tuning the open-source LLM by
utilizing user profile data generated solely through ChatGPT3.5, as discussed in Sec.[3.3.1] Conversely,
for Naive variant, the two-turn dialogue-based instruction tuning technique (i.e., Sec.[3.3.2) is applied
based on the variant GPT_KD, but with the tuning strategy limited to the conventional single-turn
dialogue tuning approach. As for the variant Mask, a similar two-turn dialogue-based instruction
tuning technique is employed based on the variant GPT_KD, with the additional application of
a masking-based tuning strategy. As for Ours, it refers to RecLM, which employs RL-based
personalized feature enhancement based on the variant Mask.

A.5 IMPLEMENTATION DETAILS
A.5.1 PARAMETER-EFFICIENT FINE-TUNING

To achieve efficient fine-tuning of LLMs while preserving their inherent knowledge reasoning
capabilities, we employed the Parameter-Efficient Fine-Tuning (PEFT) method. Specifically, in this
study, we chose Low-Rank Adaptation (LoRA)Hu et al.|(2021) as the fine-tuning technique for the
open-source LLMs, specifically Llama2-7b-chat Touvron et al.[(2023)). This approach allows us to
strike a balance between retaining the valuable knowledge of the pre-trained models and adapting
them to specific tasks effectively.

A.5.2 INTEGRATION OF RECLM INTO VARIOUS BASE RECOMMENDERS

Following the integration of our method into various base recommenders, we meticulously conducted
an extensive hyperparameter search, and also explored the optimal approach for incorporating profile
features for each recommendation methods, ensuring a fair comparison. Specifically, each base model
is implemented with PyTorch, using Adam optimizer and Xavier initializer with default parameters.
Training batch size is set as 4096. The dimensionality of embedding vectors is set as 32. The
learning rate is set as le — 3. The coefficient for controling Lo regularization term is searched
in {le — 3,1le — 4,1e — 5,1e — 6, 1e — 7}. For GNN-based models (e.g., LightGCN, SGL, and
SimGCL), the number of GCN layers is set as 2. For SSL-based models (e.g., SGL and SimGCL),
the temperature coefficient is searched in {0.1,0.5,1.0}.

A.6 INSTRUCTION DESIGNS

In this section, we provide a comprehensive overview of the instructions utilized for fine-tuning
at each stage of our process. We will also discuss the methodologies employed to construct both
positive and negative training samples for the reinforcement learning reward model.

* Instruction designs for ChatGPT knowledge distillation. As shown in Figure 4] to facilitate the
knowledge distillation process of ChatGPT, we leverage the textual information associated with
each user and the items they interact with as inputs for the LLMs. The LLMs then generate user
profiles, encompassing the user’s identity along with their respective interests.
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ﬁ Now you are a user profile generator. | will provide you with a list of news articles that a user has clicked on in the past. Each news article contains four pieces of information: category,
v subcategory, title, and abstract. Based on this information, please generate the user's profile. Here is the list of previously clicked news articles:: [ltem Text Info. ], [ltem Text Info.2], ...,
@ [ltem Text Info.N]. Please provide the profile strictly in the following format: User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest I], [Interest 2], [Interest 3].
Emphasize that only the most likely three identities and interests should be provided, and strictly adhere to the above format.

User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest 1], [Interest 2], [Interest 3].

Instruction Designs for GPT_KD

Figure 4: Instruction designs for ChatGPT knowledge distillation.

* Instruction designs for two-turn dialogue instruction tuning. For the instruction-tuning based on
two-round dialogues, meticulous attention has been given to designing corresponding instructions.
As illustrated in Figure[5] we commence by providing specific system instructions to stimulate
the LLMs’ comprehension of collaborative filtering methods. Subsequently, in the first round of
dialogue, the input instructions encompass the interaction history of several similar users, along with
the relevant details of the items involved. To obtain those similar users, we employ a conventional
ID-based collaborative filtering recommendation system, followed by similarity calculation based
on these embeddings. The expected output from the LLMs should include user profiles for each
mentioned user in the input. Moving on to the second round of dialogue, we explicitly prompt the
LLMs to determine, based on the acquired user profiles and item information, whether a previously
mentioned item is likely to be interacted with by a specific user using collaborative filtering methods.
The expected response from the LLMs should be a binary "Yes" or "No" answer.

You are a recommendation system capable of predicting user-item interactions based on the principles of collaborative filtering. Specifically, it can be divided into two stages. In the first stage,
you will generate a user preference profile based on the user’s historical behavior. In the second stage, using the preference profile generated in the first stage, you will find users with similar
preferences and apply their historical interaction records to the target user. This allows you to determine whether the target user is likely to interact with a particular item in the future.

First Round
ﬁ Each user’s historical item interaction list is as follows: [User ID, item interaction list:[Item ID, Item ID, Item ID, ..]]; [User ID, item interaction list:[Iltem ID, Item ID, Item ID, ..]] ... [User
3 ID, item interaction list:[Item ID, Item ID, Item ID, ...]]. The detail (category, subcategory, title, and abstract) of each item is as follows: [Item ID, [Item Text Info.]]; [ltem ID, [Item Text

i, 'nfoll.. [Item ID, [Item Text Info.]]. Please provide the profile strictly in the following format: User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest 1], [Interest 2],
[Interest 3].

User ID, profile: User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest 1], [Interest 2], [Interest 3].
User ID, profile: User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest 1], [Interest 2], [Interest 3].

User ID, profile: User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest 1], [Interest 2], [Interest 3].
Second Round

2 Based on the user preferences and item information mentioned above, using collaborative filtering method, please determine whether User ID will interact with Item ID. Just answer Yes

ah °r No.

Yes / No

Instruction Designs for Two-Turn Dialogue Instruction Tuning
Figure 5: Instruction designs for two-turn dialogue instruction tuning.

* Instruction designs for user profile generation. Once the instruction-tuning stage is complete,
the LLMs are equipped with the capability to generate profiles while considering collaborative
relationships. In line with Figure[6] we have meticulously designed instructions specifically for
user profile generation. Consistent with the instruction-tuning stage, we provide explicit system
instructions to stimulate the LLMs’ comprehension of collaborative filtering methods. The input
instructions encompass the interaction records of multiple similar users (including a target user
for whom the LL.Ms are required to generate a profile) as well as detailed textual information
pertaining to the involved items. The expected output from the LLM:s is the target user profile.

You are a recommendation system capable of predicting user-item interactions based on the principles of collaborative filtering. Specifically, it can be divided into two stages. In the first stage,
you will generate a user preference profile based on the user’s historical behavior. In the second stage, using the preference profile generated in the first stage, you will find users with similar
preferences and apply their historical interaction records to the target user. This allows you to determine whether the target user is likely to interact with a particular item in the future.

(®  FEachusers historicalitem interaction ls s as follows: [Target User ID, item interaction lisc{Item ID, Item ID, ltem ID, .]J; [User ID, item interacion list{Item ID, Item ID, ltem ID, .]] ..
1 [User ID, item interaction list:[item ID, Item ID, Item ID, ..J]. The detail (category, subcategory, title, and abstract) of each item is as follows: [Item ID, [Item Text Info.]]; [item ID, [Item
B, TextInfo]].. [item ID, [item Text Info.]. Please provide the profile of the target User ID strictly in the following format: User identity: [Identity 1], [identity 2], [Identity 3]; User interests:

[Interest 1], [Interest 2], [Interest 3]. Emphasize that only the most likely three identities and interests of the target user should be provided, and strictly adhere to the above format.

User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest 1], [Interest 2], [Interest 3].

Instruction Designs for User Profile Generation
Figure 6: Instruction designs for user profile generation.

* Instruction designs for item profile generation. To ensure semantic alignment between user-side
and item-side features, our next objective, after obtaining high-quality user profiles, is to generate
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item profiles based on the user’s profile. Here, the item profile refers to the profile of the target user
for that particular item. To accomplish this, we adopt a two-step approach. Firstly, for items that
have user interactions, we generate item profiles by leveraging the profiles of the interacting users.
This helps establish a connection between the users and the items they engage with. Secondly,
using the raw embeddings of the items, we search for similar cold-start items and employ the LLM
to infer their profiles based on semantic similarity. As depicted in Figure|/} the input instructions
consist of a target item and several similar items. We provide the specific textual information of
these items, along with the profiles of the similar items (selected from items that already have
profiles). The expected output from the LLMs is the profile of the target item, further enhancing
semantic alignment across the recommendation system.

Now you are a profile generator. | will provide you with textual information about one target item as well as a list of other items with their textual information and their targeting users'
H profiles. Based on this information, please generate the user profile of this target item. The target item text information: [Item Text Info.]. Here is the list of item (text information and the
profile of the users that the item is targeting): [Item ID: [Item Text Info], the profile of the users that the item is targeting: [Targeting Profile]]; [ltem ID: [Item Text Info], the profile of the
A, users that the item is targeting: [Targeting Profile]] ... [ltem ID: [Iltem Text Info], the profile of the users that the item is targeting: [Targeting Profile]]. Please provide the profile with 5
identities and 5 interests strictly in the following format: User identity: [Identity 1], [Identity 2], [Identity 3], [Identity 4], [Identity 5]; User interests: [Interest |], [Interest 2], [Interest 3],
[Interest 4], [Interest 5].

User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest 1], [Interest 2], [Interest 3].

Instruction Designs for Item Profile Generation
Figure 7: Instruction designs for item profile generation.

* Positive/Negative responses construction for reward model training. In Sec|3.4] we propose
personalized feature enhancement based on reinforcement learning as a means to address the
noise introduced by instruction-tuning and the potential over-smoothing issue stemming from
collaborative feature enhancement. The crux of reinforcement learning lies in training the reward
model, and constructing high-quality positive and negative samples plays a pivotal role in this
process. As shown in Figure[§] for positive samples, we leverage SOTA LLMs (e.g., ChatGPT)
with a manual selection approach. For negative samples, they can be categorized into two distinct
groups. The first category consists of profiles of similar users, which aim to train the reward model
in distinguishing more nuanced profiles and mitigating the over-smoothing issue. The second
category encompasses low-quality responses of various types, such as missing or repeated profiles,
thereby providing negative examples for training the reward model effectively.

Each user's historical item interaction list is as follows: [Target User ID, item interaction list:[Item ID, Item ID, Item ID, ...]]; [User ID, item interaction list:[Iltem ID, Item ID, Item ID, ..]] ...
[User ID, item interaction list:[Item ID, Item ID, Item ID, ..J]. The detail (category, subcategory, title, and abstract) of each item is as follows: [tem ID, [Item Text Info.]]; [ltem ID, [Item
Text Info.]]... [item ID, [ltem Text Info.]]. Please provide the profile of the target User ID strictly in the following format: User identity: [Identity 1], [Identity 2], [Identity 3]; User interests:
[Interest 1], [Interest 2], [Interest 3]. Emphasize that only the most likely three identities and interests of the target user should be provided, and strictly adhere to the above format.

Similar User identity: [/dentity /), [/dentity 2}, [/denticy 3];

User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest 1], [Interest 2], [Interest 3]. U mresics [Umeress 1), eereses A (e 4

Pos.

A Neg.
&)

Neg.

User identity: [/dentity /], [/dentity 2), [/dentity 3]; User interests: [Interest [, [Interest 2], [Interest 3]. .
Over-Smoothing Issue

User identity: [Identity I], [Identity 2]; User interests: [Interest 1], [Interest 2]. Profile Missing Issue

User identity: [Identity 1], [Identity 1], [Identity I]; User interests: [Interest 1], [Interest 1], [Interest I].

Neg. Profile Duplication Issue

- More Positive / Negative Responses Construction for Reward Model Training

Figure 8: Positive/Negative responses construction for reward model training.

A.7 LIMITATIONS AND BROADER IMPACTS

In real-world scenarios, items commonly have abundant modal information, including text, images,
audio, and more. However, this work primarily focuses on exploring the collaborative feature
enhancement paradigm based on textual features, and does not fully exploit the potential of multi-
modal information. While the proposed method can be extended to other modalities using distinct
modal encoders, it is important to note that other modalities may introduce novel challenges and
opportunities for feature enhancement. Thus, the exploration of these modalities represents a
promising future direction for further investigation.
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