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Abstract
Provenance graphs describe data flows and causal
dependencies of host activities, enabling to track
the data propagation and manipulation through-
out the systems, which provide a foundation for
intrusion detection. However, these Provenance-
based Intrusion Detection Systems (PIDSes) face
significant challenges in storage, representation,
and analysis, which impede the efficacy of ma-
chine learning models such as Graph Neural Net-
works (GNNs) in processing and learning from
these graphs. This paper presents a novel learning-
based anomaly detection method designed to effi-
ciently embed and analyze large-scale provenance
graphs. Our approach integrates dynamic graph
processing with adaptive encoding, facilitating
compact embeddings that effectively address out-
of-vocabulary (OOV) elements and adapt to nor-
mality shifts in dynamic real-world environments.
Subsequently, we incorporate this refined baseline
into a tag-propagation framework for real-time de-
tection. Our evaluation demonstrates the method’s
accuracy and adaptability in anomaly path min-
ing, significantly advancing the state-of-the-art
in handling and analyzing provenance graphs for
anomaly detection.

1. Introduction
Recently, Provenance-based Intrusion Detection Systems
(PIDSes) that utilize provenance graphs for threat mod-
eling gain widespread attention from both industry and
academia (Rehman et al., 2024; Cheng et al., 2023). Orig-
inating from system audit logs, provenance graphs cap-
ture detailed behaviors within operating systems through
causally linked relationships (Gehani & Tariq, 2012). Prove-
nance graphs model system activities by representing com-
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ponents as nodes and their interactions as edges, for ex-
ample, PROCESS A.exe READ FILE B.txt. These
edges are further enriched with temporal data, enhancing
the graph’s ability to chronologically trace system actions.
Crucially, the inherent causal structure of these graphs en-
sures that only prior actions can affect subsequent behaviors,
providing a robust framework for analyzing and predicting
system events.

Intrusion detection requires immediate responses due to the
urgent nature of the task. While provenance graphs offer
considerable benefits for security analysis, they face several
challenges that impair their effectiveness (Alahmadi et al.,
2022; Li et al., 2021). The constant growth of system logs
generates vast and intricate provenance graphs, featuring
many nodes and edges, along with a high average node de-
gree. This complexity renders the graphs computationally
intensive to manage and analyze. Additionally, although
the rich semantic and contextual information within these
graphs aids in understanding system behaviors, it also sig-
nificantly increases computational overhead (Wang et al.,
2022). Moreover, system logs are typically gathered con-
tinuously, incorporating new entities and relationships fre-
quently. This dynamic nature often results in an out-of-
vocabulary (OOV) problem during event encoding, which
affects the accuracy and effectiveness of the graph represen-
tations and presents adaptability challenges.

To address these shortcomings, we propose a novel learning-
based anomaly detection approach that more effectively cap-
tures system behaviors from provenance graphs. Anomaly
detection in dynamic graphs is a crucial aspect of net-
work analysis, especially in the intrusion detection sce-
nario (Zeng et al., 2022). Existing frequency databases
extract and record the frequency of each system event from
logs, allowing a decoupled approach to handling provenance
graphs (Hassan et al., 2019). Inspired by these databases, as
well as learned storage techniques that optimize the storage
and retrieval of large-scale graph data, our method begins by
decoupling provenance graphs into individual system events
along with their frequencies.

We employ an embedding model to convert these events
into vectors, which serve as inputs for a lightweight learning
model. This model is trained to recognize patterns based
on the frequency of occurrences, addressing the dynamic
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nature of system behaviors. As host behaviors evolve, the
challenge of normality shifts, where previously learned be-
haviors may not accurately classify new benign or malicious
events, becomes evident. Our approach includes a mech-
anism specifically designed to manage the frequent intro-
duction of new entities and relationships in the graphs, ef-
fectively tackling the out-of-vocabulary and normality shift
challenges. By learning the distribution of vector frequen-
cies that describe system behaviors, we establish a baseline
for normal system activity. This baseline is integrated into
a tag-propagation framework (Li et al., 2024a;b) for real-
time anomaly detection. Our evaluations demonstrate the
accuracy and adaptability of our method in anomaly path
mining, showcasing significant improvements in handling
and analyzing provenance graphs for intrusion detection.

We have developed a prototype of our approach1 that fea-
tures an adaptive embedding method to address out-of-
vocabulary elements and normality shifts in dynamic envi-
ronments. This method preserves the essential semantic and
contextual information in the provenance graphs and incor-
porates a lightweight machine learning model designed to
efficiently learn behavioral patterns from large-scale prove-
nance graph data in a native streaming format. We utilized
this model to establish a baseline for systems’ normal be-
haviors, which we then integrated with a tag-propagation
framework to facilitate real-time detection. Our comprehen-
sive evaluation, conducted on large-scale and open-source
datasets, confirms the effectiveness and efficiency of our
provenance graph embedding method. The results high-
light its accuracy and adaptability in real-time anomaly path
mining tasks, demonstrating its potential to significantly
enhance anomaly detection capabilities.

2. Provenance-based Intrusion Detection
2.1. Provenance Graph Definition

Provenance graphs describe the history of an operating sys-
tem’s execution (Gehani & Tariq, 2012), where nodes rep-
resent system’s entities, and edges capture the interactions
between adjacent nodes. A provenance graph can be defined
as G =< V,R >, where V represents the set of nodes in G
and R is the set of edges representing the relationship be-
tween neighbor nodes. An edge (u, v) ∈ R exists between
two entities u and v (u, v ∈ V ) when their interactions are
logged. The provenance graph is composed of a sequence
of events, each representing an interaction between a pair
of adjacent nodes and the edge connecting them. Formally,
the event streams can be aggregated into a streaming prove-
nance graph, represented as:

G = {(s, r, d, t) : s, d ∈ V, r ∈ R, t ∈ R+}, (1)

1Available at https://github.com/AddoZhu/
behavior_baseline
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Figure 1. Nginx Backdoor Attack in Provenance Graph

Table 1. Event Definitions

SRC(s) DEST(d) OPERATION(o)

Process File Write File; Create File
File Process Read File; Process Load

Process Process Start Process; End Process
Process Network Send Message
Network Process Receive Message

where (s, r, d, t) denotes an edge r from node s to d at time
t, reflecting the causality direction. Table 1 lists detailed
event flow mappings. Each event e = (s, r, d, t) ∈ E adds
to the dynamic representation of the system, capturing the
evolving nature of the provenance graph over time.

Figure 1 shows a local provenance graph from DARPA
E3-CADETS2 that describes nginx backdoor attack activ-
ity (program, 2020). The attacker compromises a Nginx
web server by downloading a malicious payload and exe-
cuting to gain root privileges. The ovals, diamonds, and
rectangles represent provesses, sockets, and files, respec-
tively. To emphasize malicious behaviors, we highlight the
nodes representing attack behaviors in red and depict the
edges associated with these activities as dashed lines, while
gray nodes and solid edges represent normal behaviors.

2.2. Frequence-based Anomaly Detection

Some anomaly detection approaches (Hassan et al., 2019;
Xie et al., 2018) build event frequency databases (also
known as baseline databases) to assess the suspiciousness of
individual events and paths for detection and investigation.
The frequency database stores the occurrence frequency
of individual events in historical logs, where a higher fre-
quency indicates that the event is more likely to be normal.
We assign a regular score (Γe) to each event, representing
the degree of normality of an event, as following:

Γe =
Frequency of e(s, r, d)
Frequency of e(s, r, *)

(2)

2Transparent-Computing.https://github.com/
darpa-i2o/Transparent-Computing
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where Frequency of e(s, r, d) represents the number of the
occurrence of event e in the historical records where the
triple (s, r, d) is identical, and Frequency of e(s, r, *) repre-
sents the number of occurences of events that share the same
source and relationship. The regular score (Γe) indicates
the probability of a specific event occurring. If event e has
never occurred, its regular score is 0.

We illustrate an example of an Nginx backdoor attack in Fig-
ure 1, a behavior that has never been observed in the system
logs. Since this attack has not occurred in historical logs, it
is absent from the frequency database, leading to attack-
related events, such as Network 25.159.96.207
connect to Process Nginx, having very low regu-
lar scores close to zero. In contrast, benign events similar to
this behavior, such as Process nginx connect to
Network 78.205.235.65, may have appeared in his-
torical logs, resulting in high regular scores. However, if
such a benign event is absent from the frequency database,
this method becomes ineffective, highlighting its limited
adaptability.

As the system logs accumulate, the methods relying on the
baseline database struggle to adapt to the normality shift
problem, losing adaptability over time. Meanwhile, the
accumulation of a large number of historical events in the
databases results in memory storage pressure and query
overhead.

2.3. Online Detection with Tag-propagation Framework

In order to handle the continuously generated event stream,
several works (Hossain et al., 2017; Milajerdi et al., 2019)
adopt tag-propagation strategies to enhance the real-time
capabilities of detection systems and their proficiency in
handling streaming data. These strategies utilize tags to
cache computation results and propagate them through the
provenance graph based on causal attributes, ensuring that
each event is checked only once. Therefore, tag-propagation-
based methods can achieve real-time detection with high ac-
curacy, minimizing redundant processing, and significantly
reducing computational overhead. However, these methods
with relatively simplified detection logic always struggle to
adapt to complex and novel attacks.

2.4. Practical Challenges

Despite their advances, existing PIDSes exhibit several lim-
itations that impact their effectiveness in real-world applica-
tions:

C1. Real-time Detection. Many existing systems (Hassan
et al., 2019; Rehman et al., 2024) struggle with real-
time detection, leading to significant delays in generat-
ing alerts. These delays can be critical for preventing
or mitigating ongoing cyber attacks (Li et al., 2021).

C2. Graph Size and Complexity. Provenance graphs can
become exceedingly large due to the complexity of
modern software systems and the sophisticated na-
ture of attacks such as Advanced Persistent Threats
(APTs) (Ding et al., 2023). Managing such large graphs
requires substantial memory and can force compro-
mises between computational resources and the granu-
larity of detection.

C3. Temporal Information. Other methods (Zeng et al.,
2022; Wang et al., 2022) fail to fully leverage temporal
information within system logs, resulting in suboptimal
performance. Capturing and utilizing temporal patterns
is essential for accurately identifying and understand-
ing attack progressions.

C4. Coarse-grained Detection and Interpretability.
Some approaches (Han et al., 2020; Wang et al., 2020;
Manzoor et al., 2016) use coarse-grained detection
strategies that may efficiently process data, but often
produce alerts lacking sufficient detail for effective
analysis, compromising their practical utility.

C5. Adaptation to Unseen Benign Behaviors. Entities in
provenance graphs, such as process names, file paths,
and IP addresses, contain crucial semantic information
for detection (Ding et al., 2023). The dynamic nature of
system environments, where new entities and relation-
ships frequently emerge, calls for adaptive embedding
strategies to maintain accurate detection capabilities.
Standard anomaly detection methods establish a base-
line from historical data, but often fail to recognize
new benign behaviors, leading to false positives. While
Graph Neural Networks (GNNs) offer a potential solu-
tion by analyzing rich semantic contexts and complex
relationships, their high computational demands limit
the broader deployment.

To sovle C2 and C5, we employ a learned storage method,
utilizing a lightweight neural network model to capture
the distribution of system behaviors in historical logs, en-
abling efficient management of large and complex prove-
nance graphs. Moreover, this embedding-based learning
model possesses the generalization ability to alleviate the
out-of-vocabulary (OOV) issue arising from newly intro-
duced entities and relationships, as well as the normality
shift induced by host behavior changes.

After that, we integrate this model with the tag-propagation
algorithm to process graph streams and enable real-time
detection. Under this model, the causal order and temporal
information between events are inherently captured through
the tag propagation process, solving C1 and C3. Meanwhile,
the anomaly scores of consecutive events are propagated
and aggregated by the tag-propagation algorithm to derive a
path-level anomaly score, which facilitates real-time alerts
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Figure 2. Approach Overview

while producing interpretable attack paths, thus addressing
C4.

3. Method
This section outlines the architecture of the provenance
graph embedding method, representing the system behav-
ior, and integrating with the tag-propagation algorithm to
conduct online streaming detection based on provenance
graphs. As shown in the overview of Figure 2, our method
consists of two main phases: 1) an offline baseline learning
phase, where a lightweight neural network model learns
benign behavior patterns based on event frequencies to es-
tablish a learned baseline; and 2) an online streaming detec-
tion phase, which integrates the learned baseline with the
tag-propagation algorithm to mine anomaly paths within
real-time streams.

3.1. Events Embedding

In the preprocessing of historical audit logs, we refine at-
tributes such as process names, file paths, network IP ad-
dresses, and interactions between entities, as illustrated in
Table 1. Each event e is represented as a triple (s, r, d),
and its regular score Γe is computed using Equation 2.
These events and scores are then aggregated to construct
a frequency-based baseline. Given an event sequence
E = {e1, e2, . . . , en}, the goal is to process each event
sequentially and encode it into a fixed-dimensional vec-
tor representation. This process enables downstream tasks
such as graph representation learning, establishing a learned
baseline, and anomaly detection. In addition to encoding
models, there are specific challenges and potential optimiza-
tion methods for event encoding in provenance graphs. We
have designed the following three mechanisms to address
these issues.

Adaptive Embedding To address the out-of-vocabulary
(OOV) problem, we encode unrecognized entities, which

are not present in the training corpus of the embedding
models, as zero vectors. Formally, to encode an event ei =
{wi1, wi2, ..., wij}, each word wik is represented based on
its presence in the system audit logs L. The event ei’s vector
vei is as follow shows:

vei =


Embed s[ei], if ei ∈ L,⊕
w∈ei

vw

{
Embed w[w], if w ∈ L,

vector(0), otherwise,
if ei /∈ L.

(3)

As Doc2Vec and FastText are capable of handling OOV
words through specific encoding mechanisms. Their math-
ematical formulations and underlying principles are pre-
sented in Appendix B.2. In our experiments, we compared
these models with the adaptive encoding method.

Doc2Vec can use infer vector() function to encode
documents that do not appear in the training set. We treat
an event as a document, which is the unit processed by
Doc2Vec. The inference process optimizes the event vector
ve to maximize its compatibility with the model’s trained
parameters, given the context of the words in ei. Formally,
this can be expressed as:

vei = argmax
v

∏
t∈ei

P (t|v,Θ) (4)

where t represents tokens in the event ei and P (t|v,Θ) is the
probability of token t given the embedding v and the model
parameters Θ. The optimization is typically performed
through a few iterations of the Stochastic Gradient Descent
(SGD) algorithm, starting from a random vector v.

As a subword-level embedding model, FastText could en-
code each word into a targeted length vector using the sub-
words. Each word w is decomposed into a set of subwords
Sw = {s1, s2, ..., sn}, where each subword is a substring
of the word w. If w /∈ L, its embedding vector vw is com-
puted as the average embeddings of its constituent subwords.
Formally, this process can be expressed as:

vw =
1

|Sw|
∑
s∈Sw

vs (5)

where |Sw| is the cardinality of the subword set Sw. After
obtaining the vector for each word in an event, we con-
catenate them sequentially to form the completed vector
representation of the event sentence.

Weight Embedding Long file paths may blur the
distinction between vector representations of differ-
ent regular score events. For example, the file
path /home/user/.../benign and the file path
/home/user/.../malicious would be mapped to
two very similar vectors, even though the regular score of
the benign file is much higher than that of the malicious file.
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This makes it difficult for the subsequent learning model to
capture the distinguishing data features. So we assign differ-
ent weights to each directory level, with directories closer
to the file name receiving higher weights. The embedding
of the file path is then calculated as the weighted sum of its
directory levels. Formally, the embedding vector of a file
name is defined as:

vFile name =
1∑
wi

∑
wi · vi (6)

where vFile name represents the embedding vector of the
i-th element in the file path separated by a slash, and wi is
the weight. The weight wi of the i-th element in a file path
is defined as wi = log n+1

n−i , where n is the number of all
elements in a file path. This weighting scheme is designed
to reduce the influence of long file paths on the vectorization
of file names, prioritizing the significance of directory levels
closer to the file name.

One-hot Embedding Intuitively, higher-dimensional vec-
tors can encode more information, allowing the subsequent
graph representation learning model to capture richer fea-
tures. As the categories of relationships and entities are
limited, as shown in Table 1, we can use one-hot encoding
to represent the categories of entities and relationships, al-
lowing more dimensions within the same vector sapce to
be allocated for representing more critical features, such as
process names and network IPs. To optimize storage space,
we can adopt a 3-dimensional one-hot vector for the cate-
gories of entities and an 8-dimensional one-hot vector for
the types of relationships between entities. This approach
reduces the dimensionality of individual event vectors and
mitigates memory overhead. However, encoding these fea-
tures as (1, 0, 0) can lead to conflicts with zero vectors used
to encode OOV words, potentially reducing the predictive
performance of the model. To avoid this issue, we adopt a
variant representation such as (0.5, -0.5, -0.5) for one-hot
encoding.

vei = one-hotc(s) +vs + one-hotr(r) + one-hotc(d) +vd (7)

Despite this adjustment, one-hot vectors lack the capacity to
capture meaningful information about relationships between
entities, which is critical for understanding their structure
and properties.

3.2. Offline Baseline Learning

The task of learning the distribution of benign behaviors
in provenance graphs is modeled as a frequency-based re-
gression problem, where the goal is to predict the regular
score of each event, which reflects the degree of abnormal-
ity. To alleviate memory pressure and efficiently process
real-time log streams, we employ a lightweight regression
model that functions as a learned baseline and facilitates

real-time detection by integrating with the tag-propagation
algorithm. So we select three popular regression models,
namely, the Multilayer Perceptron (MLP) model, the Long
Short-Term Memory (LSTM) model, and the Convolutional
Neural Network (CNN) model.

In real-world scenarios, the model encounters unobserved
events categorized as benign or malicious. Malicious
events often feature unique entities and relationships, distin-
guishing them from benign behaviors. Due to the mod-
els’ lack of exposure to malicious events during train-
ing, it frequently misclassifies such events. To mitigate
this issure, we construct relevant negative samples by re-
placing subjects or objects in benign events with uncom-
mon entities. For example, an uncommon network entity
<10.1.1.2> replaces the common IP address in the be-
nign event <128.55.12.122, network connect,
nginx>. Similarly, uncommon file paths and process
names are used to create diverse negative samples. Then we
assign regular scores to every negative samples, as follow-
ing:

Snegative = f(∆event) (8)

where ∆event denotes the difference in event letters be-
tween the negative samples and their corresponding benign
counterparts. By incorporating such artificially constructed
negative events, the model is better equipped to differentiate
between benign and malicious events, thereby enhancing its
predictive accuracy.

The encoding model maps an event sequence E =
{e1, e2, . . . , en} into a series of vectors VE =
{ve1 ,ve2 , . . . ,ven}, where each event ei is represented by
a vector vei ∈ Rd, with d denoting the dimensionality of
the vector representation. Each event corresponds to a regu-
lar score yi ∈ R, and the model outputs a predicted score
ŷi ∈ R. When applying three different models, we only add
or modify specific layers unique to each model to flexibly
construct the respective architectures. We parameterize a
function fθ using a model, which maps the input vector to
the predicted score:

ŷi = fθ(vei) (9)

To ensure that the predicted scores ŷi closely match the true
regular scores yi, we adopt the Mean Squared Error (MSE),
one of the most commonly used loss functions in regression
tasks. The loss function Lθis defined as:

Lθ =
1

n

n∑
i=1

(ŷi − yi)
2 (10)

Using backpropagation, the model computes the gradient of
the loss function with respect to the model parameters. The
gradient of the loss with respect to the parameters of layer l

5



The Case for Learned Provenance-based System Behavior Baseline

is computed as:

∇θ(l)L =
∂L
∂ŷi
·

l+1∏
k=L

∂h(k)

∂h(k−1)
· ∂h

(l)

∂θ(l)
(11)

where L denotes the total number of layers in the neural net-
work, i.e., the index of the output layer. And then the model
updates the parameters of the l-th layer θ(l) via gradient
descent to minimize the loss:

θ(l) ← θ(l) − η · ∇θ(l)L (12)

where η is the learning rate.

As the regular scores of events range in (0, 1), we use the
sigmoid function in the output layer to limit the prediction
output of the model. The sigmoid function tacks its value in
(0,1) and reads

σ(x) =
1

1 + e−x
(13)

where x presents the input of the output layer.

3.3. Online Anomaly Path Mining

We further conduct an anomaly path mining task, leveraging
the embeddings learned from provenance graphs generated
from benign system logs to establish a learned baseline
for normal system behaviors. This allows us to evaluate
the effectiveness of our method for embedding provenance
graphs in practical scenarios.

Given each newly observed system event, the baseline model
effectively and adaptively assesses the normality of the
event, initializing a continuous regular score ranging from
0 to 1. Higher scores indicate more normal events, while
lower scores suggest anomalies. Intuitively, while a single
infrequent event might be coincidental, a sequence of such
events is more likely indicative of an attack. Therefore, we
employ the tag-propagation algorithm to aggregate tags of
causally related events, deriving the regular score of the path
(ΓP ), as the following shows:

ΓP =
1

α

∏
e∈P

(Γe · α) (14)

where α represents a decay factor, and Γe is generated by
Equation 2. Since Γe ranges from 0 to 1, simply multiply-
ing them cumulatively means that ΓP will monotonically
decrease, eventually falling below a specific threshold. The
decay factor (α) (Hossain et al., 2020) can cause the normal
score to increase when there are no anomalous events. The
tag-propagation framework consists of four main stages:
tag initialization, propagation, removal, and alert trigger-
ing, tailored for anomaly path mining, to balance overhead
and analytical capabilities. The detailed process of the
tag-propagation framework is provided in the Appendix C.
While reducing caching overhead and computational re-
source, it also ensures that alerts are triggered immediately

once threshold-reaching events are processed, effectively
shortening the system’s response time.

We initialize the tags using our learned baseline model to
predict the frequency of each event. We analyze each event
in the log stream. Firstly, each event ei is encoded into
a vector representation vei . The trained machine learning
model fθ is then applied to compute the predicted regular
score ŷi. We use ŷi as the initial tag. In order to avoid
excessive tags accumulation, only when the regular score
of the event (Γe) is lower than the preset threshold and the
source node does not have a tag, a new tag will be assined
and stored in the destination node. The regular score of the
event Γe propagates along the provenance graphs together
with the initialized tags, resulting in the regular score of
the path ΓP according to Equation 14. An alert will be
triggered when ΓP decreases below a predefined threshold
during propagation.

4. Experiments
4.1. Experimentanl Setting

We utilize the TensorFlow library to construct neural net-
work models, enabling flexible modifications of layer con-
figurations to implement various architectures such as MLP,
LSTM and CNN. This approach facilitates the evaluation
of different machine learning models in the provenance
graph embedding and anomaly path mining task. Here, we
evaluated the efficiency of various encoding and regression
models, the accuracy of regression models in predicting reg-
ular scores, the effectiveness of our approach in handling the
real-time anomaly path mining task, and a comparison with
state-of-the-art provenance-based intrusion detection sys-
tems. We conducted all experiments on an Ubuntu 18.04.6
LTS server with an Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40GHz, 251GiB of memory, and three NVIDIA GeForce
RTX 3090 GPUs.

Datasets In our experiments, we utilized datasets from the
DARPA Transparent Computing (TC) dataset (tra, 2015.2),
which contains millions of benign and hundreds of mali-
cious events collected from platforms with diverse back-
ground activities, providing provenance-rich data capturing
system events and dependencies over time. This dataset
includes a series of realistically simulated Advanced Persisi-
tent Threats (APT), such as malware execution, privilege
escalation, remote exploitation, and data exfiltration. We pri-
marily use the E3-CADETS dataset, constructing a training
dataset with 1,042k system events and a testing dataset with
26k events. Additionally, we demonstrate the adaptability
of our method on other dataests in Appendix D.3.

We categorize event encoding methods into two main types:
one that encodes out-of-vocabulary (OOV) words as zero
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Table 2. Time of Encoding

Embedding Models Training Set (s) Testing Set (s)

Word2Vec∗ 28.84 6.06
Doc2Vec∗ 30.78 6.41
Doc2Vec 488.24 122.23
FastText∗ 43.07 9.46
FastText 52.17 13.43

FastText(weight)∗ 85.42 20.62
FastText(weight) 177.91 44.21

FastText(one-hot)∗ 14.2 3.16
FastText(one-hot) 43.41 10.53

TinyBERT 5152.08 1338.71

vectors and another that does not apply special handling for
OOV words. Since Word2Vec throws an exception when
encoding OOV words, it can only be used for the first type.
In contrast, the training corpus for TinyBERT is unknown,
so it’s only applicable to the second type. Among all the en-
coding models that we employed, FastText demonstrated the
best performance. Therefore, we further conducted experi-
ments using FastText in combination with weight encoding
and one-hot encoding to compare their effectiveness. In
addition to the ablation experiments, we trained encoding
models on system logs and mapped each event to a 500-
dimensional vector. Apart from using the one-hot method
to encode each event into a 214-dimensional vector, Tiny-
BERT treats each event as a sentence and encodes it into a
312-dimensional vector.

In training the baseline model for the regression task, we use
the TensorFlow library to modify the regression models by
adjusting the number of layers. Through controlled variable
experiments, we ultimately employed the Adam optimizer
with a learning rate of 0.001, and 200 training epochs for
each model configuration. we evaluated the learned model’s
performance based on the prediction accuracy of event reg-
ular scores. A prediction is considered true if the difference
between the predicted regular score and the true score is
less than a threshold of 0.2, which is selected because the
frequencies of negative saples we constructed are generally
below this value. For the anomaly path mining task, we
use path-level precision, recall, and F1 score as evaluation
metrics. In the comparative experiments, due to the varying
detection granularity across methods, we adopt node-level
metrics for consistency.

4.2. Results

Events Embedding For the two types of encoding meth-
ods, encoding OOV words as zero vectors and not applying
special handling for OOV words, we use the asterisk (*)
symbol to distinguish between them. Encoders marked with
this symbol indicate the first encoding method.

Table 3. Average Training Time of Models

Learning Models Training Time (s) Testing Time (s)

MLP 276.94 11.35
LSTM 456.11 20.41
CNN 2601.59 27.21

Table 2 presents the event encoding times for different en-
coding models and methods. Similar results were obtained
on other datasets, so we only display the results on the
CADETS dataset as an example, showing in Table 8. We
notice that if we directly encode the OOV words with zero
vectors, it will accelerate the embedding process. In con-
trast, encoding models tend to speed more time handling
unknown words. For instance, in Doc2Vec, inferring the
vector for an unseen event takes significantly more time
compared to directly using pre-trained event vectors. In
addition, we find that if we use one-hot encoding method,
it will drastically reduce the encoding time. But we must
remember that it only uses 214 dimensions to represent
an event, while other methods use 500 dimensions (except
TinyBERT, which uses 312 dimensions).

The encoding time of TinyBERT is significantly longer
compared to other models, as they operate on entirely dif-
ferent scales of computational complexity. TinyBERT is
based on the Transformer architexture, a deep neural net-
work where every input token interacts with all other tokens
in events. This results in substantial computational over-
head during the encoding process. In contrast, other models
such as Word2Vec are shallow neural networks with much
lower computational complexity than TinyBERT. Overall,
except for TinyBERT, the encoding time for each event
using the other encoding models is in the microsecond
range, which meets the requirements for processing real-
time stream graphs and providing an immediate response.
Due to the inherent characteristics of provenance graphs and
the real-time requirements of intrusion detection, complex
encoding models are not suitable.

Frequency Prediction We evaluated the regression perfor-
mance of the baseline model using the model’s prediction
of the regular scores of events. We analyzed the predic-
tion results on the testing dataset (Accuracy1(%)) and for
malicious events not present in the frequency dtabase (Accu-
racy2(%)), indicating that regular scores of these events are
expected to be zero. Since we found that the event encod-
ing methods have a significant impact on provenance graph
embedding performance, while the effect of the learning
models is relatively small, Table 4 presents the mean and
standard deviations of the prediction for different encoding
models and methods. More detailed results are provided
in the Appendix D. Similarly, the training and testing time
of the models was only dependent on the dimensionality of
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Table 4. Detection Accuracy of Single Events and Paths

Provenance Graph Embedding Anomaly Path Mining
Embedding Models Accuracy1(%) Accuracy2(%) Precision Recall F1 Score

Word2Vec∗ 0.8886±0.0001 1.0000±0.0000 0.9545±0.0643 0.6852±0.1593 0.7809±0.0865
Doc2Vec∗ 0.9055±0.0058 1.0000±0.0000 0.9772±0.0004 0.7778±0.1571 0.8568±0.1050
FastText∗ 0.9058±0.0058 1.0000±0.0000 0.9927±0.0052 1.0000±0.0000 0.9963±0.0026

FastText(weight)∗ 0.9057±0.0017 0.5714±0.0117 0.9464±0.0758 0.3518±0.0262 0.5124±0.0350
FastText(onehot)∗ 0.8661±0.0195 0.8809±0.1279 0.8302±0.1322 0.5556±0.3175 0.6275±0.2331

Doc2Vec 0.6121±0.0992 0.2905±0.0135 0.0953±0.0710 0.1297±0.0524 0.0867±0.0657
FastText 0.9049±0.0005 0.5952±0.0828 0.0467±0.0334 0.4259±0.2579 0.0694±0.0437

FastText(weight) 0.9057±0.0003 0.5619±0.0067 0.8493±0.2025 0.3333±0.0000 0.4716±0.3357
FastText(onehot) 0.9054±0.0002 0.5619±0.0243 0.4741±0.2373 0.2593±0.2283 0.2734±0.2001

TinyBERT 0.9038±0.0014 0.1143±0.0117 0.6752±0.4591 0.0556±0.0485 0.0785±0.0871

the events. Table 3 presents the average training and testing
time when each event is encoded into a 500-dimensional
vector.

In general, special handling of OOV words by mapping them
to zero vectors can improve the prediction performance of
models, among which FastText demonstrated the best per-
formance in this case. Since our processing unit is an event,
where each event consists of two entities and the interaction
between them (i.e., adjacent nodes and the connecting edge
in the provenance graph), malicious events typically contain
a higher proportion of OOV elements. In contrast, unseen
benign events tend to include fewer such elements. As a
result, the model assigns lower regular scores to the former,
enabling it to distinguish actual malicious behavior from
unseen benign behavior, thereby reducing false positives.
Therefore, for models that do not incorporate explicit han-
dling of OOV words (as indicated by rows without asterisks
in Table 4), although they achieve comparable performance
on the overall testing set (Accuracy1% column), their pre-
dictions for actual malicious events are significantly less
effective (Accuracy2% column). Meanwhile, prediction
performance using the one-hot encoding method is the poor-
est. The reason is that one-hot encoding fails to capture the
inherent meaning of the categories of entities and relation-
ships, resulting in a loss of semantic information during the
encoding process.

In the absence of special handling for OOV words, the
method of assigning weights to file paths can, to some extent,
enhance the model’s prediction performance. For a long
file path, if a benign path and a malicious path differ only
in the final file name while sharing identical directories in
the preceding segments, the two paths will be encoded into
vectors that are relatively close to each other. By assigning
greater weights to the directories towards the end of the path,
this problem can be mitigated to a certain extent, thereby
improving the model’s prediction performance.

As Table 3 shows, the training time for the CNN model is
much longer than other two models, and for events encoded

into the same dimensionality (except for the TinyBERT
model and the one-hot embedding method), the testing time
of three models increases. Moreover, reducing the dimen-
sionality of event embeddings does not necessarily reduce
training time. This is because lower-dimensional embed-
dings may lose some semantic information, making it more
difficult for the model to capture data features and requiring
more epochs to converge.

Anomaly Detection Table 4 presents the experimental
results of integrating the learned baseline model with the tag-
propagation algorithm for the anomaly path mining task in
real-time log streams. Our method enables the identification
of anomalous paths and the generation of real-time alerts,
thereby further reducing false positives.

In general, handling OOV words as zero vectors can signifi-
cantly improve detection performance. This observation is
closely related to the regression performance of the baseline
model. The model predicts the regular score for each event
and uses them as initial tags, which are subsequently propa-
gated and aggregated following the information flow in the
provenance graph. Among the evaluated methods, using the
FastText model for events embedding and mapping OOV
words to zero vectors performed best. The detection results
achieved an F1 score that exceeded 99%.

The encoding methods that do not handle OOV words specif-
ically, compared to the above methods, show little difference
in the provenance graph embedding phase. However, the dis-
tinction between the vectors of malicious and benign events
is smaller, making it more difficult to detect malicious paths
during the detection phase and leading to a higher rate of
false positives.

Although TinyBERT uses Transformer architecture and sur-
passes traditional Natural Language Process (NLP) models
in contextual modeling capability, the detection performance
of using TinyBERT as the event encoder is suboptimal. This
is due to the long-term and distributed nature of network
attacks necessitates a broader analytical scope beyond a
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Table 5. Node-Level Comparison with SOTA PIDSes

E3-CADETS

# of TPs # of FNs # of FPs F1 score

Ours 32 1 69 0.4778
Nodoze 31 2 667 0.0885

ProvDetector 20 13 77 0.3636
Flash 7 25 6996 0.0019
Karios 23 10 119878 0.0003

E3-THEIA

# of TPs # of FNs # of FPs F1 score

Ours 12 5 46 0.3200
Nodoze 12 5 105 0.1791

ProvDetector 0 17 91 0.0000
Flash 2 15 23330 0.0002
Karios 11 6 10219 0.0021

E3-TRACE

# of TPs # of FNs # of FPs F1 score

Ours 17 1 1448 0.0229
Nodoze 17 1 2689 0.0125

ProvDetector 5 13 44 0.1493
Flash 4 14 60484 0.0001
Karios N/A N/A N/A N/A

limited n-hop neighbors. We employ the tag-propagation
algorithm to aggregate information along long paths in the
provenance graph, while requiring only minimal cache mem-
ory.

Comparison We also provide a comparison with SOTA
provenance-based intrusion detection systems in Table 5,
including Nodoze (Hassan et al., 2019), which uses the fre-
quency database as a baseline, and Flash (Rehman et al.,
2024) and Kairos (Cheng et al., 2023), which adopt GNN-
based approaches. Since different methods have different
detection granularities, we uniformly use node-level granu-
larity for statistics.

The results demonstrate the advantages of our approach in
terms of accuracy and the reduction of false positives. Mean-
while, GNN-based methods not only incur high computa-
tional and memory overhead when processing large-scale
provenance graphs, but also struggle to support real-time
intrusion detection tasks. Kairos (Cheng et al., 2023) adopts
an approach based on time-window; however, due to the
complex and prolonged spatio-temporal characteristics of
APT attacks, a complete attack may span multiple disjoint
time windows, thereby hindering the detection of the entire
attack chain.

5. Conclusion and Discussion
In this paper, we address the out-of-vocabulary (OOV) prob-
lem caused by the constant emergence of new entities and
relationships, and significant computational and memory
overhead resulting from processing large-scale provenance
graphs. To alleviate the issues, we propose an adaptive and
scalable provenance-based intrusion detection model. For
real-time provenance graph streams, we use a lightweight
neural model to assign a regular score to every event, com-
bining it with the tag-propagation algorithm, to conduct
efficient detection.

The prolonged spatio-temporal characteristics of APT at-
tacks, along with the structural complexity and scale
of provenance graphs, pose significant challenges to the
widespread adoption of GNN-based models and transformer
architectures for this task. We evaluated our method on mul-
tiple datasets and conducted a comparative analysis against
SOTA approaches, demonstrating the efficiency, adaptabil-
ity, and scalability of our method, as well as its effectiveness
in reducing false positives.
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A. Related Work
A.1. Anomaly-based PIDSes

As cyberattacks become increasingly rampant, provenance
graphs are widely used in network malicious activity de-
tection. The anomaly detection approaches (Rehman et al.,
2024; Cheng et al., 2023; Wang et al., 2022; Zeng et al.,
2022) train learning models that learn the benign behav-
ior patterns based on the historical provenance graphs, and
subsequently detect anomalous behaviors that deviate from
these learned benign baseline. To extract semantic informa-
tion during detection, some methods employ embedding
techniques to encode various node attributes present in
provenance graphs, such as process names, command line ar-
guments, file paths, and IP addresses, into semantically rich
feature vectors. Some methods also use machine learning
models to generate contextual embeddings, thereby estab-
lishing a baseline for benign behavior. For example, Shade-
Watcher (Zeng et al., 2022) used TransR to learn a separate
representation for a system entity conditioned on different
relations and then used Graph Neural Network (GNN) to
capture high-order connectivity. And Flash (Rehman et al.,
2024) generated semantic and contextual embeddings using
Word2Vec and GNN, respectively.

A.2. Learned Storage

The learned indexes, replacing traditional index structures
with machine learning models, have been demonstrated

that can offer substantial advantages in storage and query
efficiency (Kraska et al., 2018). Leonard (Ding et al., 2023)
applies learning-based indexing methods to the storage and
querying of provenance graphs, simplifying both the storage
and query process by optimizing the storage format and
replacing traditional indexing methods with the Deep Neural
Network (DNN).

Inspired by these works (Hassan et al., 2019; Ding et al.,
2023; Kraska et al., 2018), we introduce a learned-baseline-
based approach to overcome the challenges of PIDSes. This
method adapts to various entities and events within real-
world scenarios. Subsequently, we integrate an anomaly
path mining algorithm into the tag-propagation framework,
enabling efficiently process real-time event streams. This
method optimizes the storage of raw provenance graphs,
reduces caching overhead during real-time detection, and
facilitates timely alerts.

B. Selected Models for Our Tasks
B.1. Embedding Models

• Word2Vec. Word2Vec (Mikolov, 2013) uses deep neu-
ral networks with two hidden layers, continuous bag-of-
words (CBOW) model to create a low-dimensional dense
vector for each word, ensuring that semantically similar
words have similar vector representations.

• Doc2Vec. While bag-of-words features have notable limi-
tations, Doc2Vec (Le & Mikolov, 2014) represents each
document as a dense vector, offering a solution to over-
come the shortcomings of bag-of-words models.

• FastText. Unlike Word2Vec which feeds individual
words into the neural network, FastText (Joulin et al.,
2016; Bojanowski et al., 2017) breaks words into n-grams
(sub-words) and then represents words as the sum of the
n-gram vectors to enhance its embedding capability of
words.

• TinyBert. While contextual word embedding techniques
like BERT (Devlin, 2018) effectively capture entity infor-
mation, their high computational cost makes them ineffi-
cient for large-scale provenance graph processing; there-
fore, we adopt TinyBERT (Jiao et al., 2020) to perform
the event embedding task.

B.2. Out-of-vocabulary Embedding

As Doc2Vec and FastText are capable of handling OOV
words through specific encoding mechanisms.

Doc2Vec can use infer vector() function to encode
documents that do not appear in the training set. We treat an
event as a sentence, which is the unit processed by Doc2Vec.
The inference process optimizes the event vector ve to max-
imize its compatibility with the model’s trained parameters,
given the context of the words in ei. Formally, this can be
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expressed as:

vei = argmax
v

∏
t∈ei

P (t|v,Θ) (15)

where t represents tokens in the event ei and P (t|v,Θ) is the
probability of token t given the embedding v and the model
parameters Θ. The optimization is typically performed
through a few iterations of the stochastic gradient descent
(SGD) algorithm, starting from a random vector v.

As a subword-level embedding model, FastText could en-
code each word into a targeted length vector using the sub-
words. Each word w is decomposed into a set of subwords
Sw = {s1, s2, ..., sn}, where each subword is a substring
of word w. If w /∈ L, its embedding vector vw is computed
as the average embeddings of its constituent subwords. For-
mally, this process can be expressed as:

vw =
1

|Sw|
∑
s∈Sw

vs (16)

where |Sw| is the cardinality of the subword set Sw. After
obtaining the vector for each word in an event, we con-
catenate them sequentially to form the completed vector
representation of the event sentence.

B.3. Learning Models

• MLP. A Multi-Layer Perceptron (MLP) model is com-
posed of fully connected layers that perform feature ex-
traction and transformation. The input layer receives
encoded event vectors, which are subsequently processed
by the hidden layers. During training, the system employs
the backpropagation algorithm to compute the gradients
of the loss function with respect to weights and biases.
These parameters are iteratively updated via the gradient
descent method to minimize loss.

• LSTM. Long Short Term Memory (LSTM) networks
forward the data not only in a spatial direction, but also
in a time-dependent direction, allowing the network to
capture temporal dependencies more effectively. A key
advantage of LSTM lies in their ability to address the gra-
dient vanishing problem often encountered by standard
RNNs when processing long sequences. Utilizing mem-
ory cells, LSTM retains long-term context information,
making them particularly well suited for tasks requiring
the modeling of extended dependencies. Despite these
advantages, training LSTM can be more computation-
ally demanding than training simpler architectures like
MLP, due to the complexity of their internal structure,
which involves multiple gating mechanisms and memory
updates.

• CNN. Convolutional Neural Network (CNN) models are
featured by varying groups of convolutional and pooling
layers, which make them computationally intensive, as

each convolutional layer requires extensive matrix opera-
tions and local feature extractions, and pooling layers con-
tribute to additional computational complexity. A CNN
is formed by several convolution and pooling operations,
usually followed by one or more fully connected layers.
While CNNs are traditionally applied to spatial data, they
can be adapted to regression tasks by modifying the ar-
chitecture and loss functions. In an MLP, one just has to
compute two kinds of backpropagations: from output to
fully connected layers and fully connected layers to fully
connected layers. In a traditional CNN, four new kinds of
propagations have to be computed: fully connected layers
to pool layers, pool layers to conv layers, conv layers to
conv layers and conv layers to pool layers.

C. Tag-propagation Framework
Here, we provide a detailed description of the four stages
of the tag-propagation framework: tag initialization, tag
propagation, tag removel, and alert triggering.

• Tag Initialization. We analyze each event in the log
stream. Firstly, each event ei is encoded into a vector
representation vei . The trained machine learning model
fθ is then applied to compute the predicted regular score
ŷi. We use ŷi as the event frequency Γe. In order to avoid
excessive tags accumulation, only when the regular score
of the event (Γe) is lower than the preset threshold and
the source node does not have a tag, a new tag will be
assined and stored in the destination node.

• Tag Propagation. We check whether there is a tag in
the source node of each event. If so, we will update the
regular score of the path (ΓP ) according to Equation 14
and log the new tag result, while retaining the previous tag
for subsequent propagation. When different tags converge
on a node, we will retain the lowest regular score and
its corresponding path, while archiving other paths for
potential backtracking and attack reconstruction.

• Tag Removal. To avoid the dependency explosion prob-
lem (Hossain et al., 2020), we use the dacay factor (α)
to remove tags. If no suspicious events are encountered
during the propagation process, ΓP gradually increases
and is removed when it reaches a certain threshold. On
the other hand, tags that have not been updated for a long
time will also be removed.

• Alert Triggering. If suspicious events are continuously
encountered, ΓP will gradually decrease. Once it falls
below a predefined threshold, an alert will be triggered to
provide timely notifications. The triggered alert tag is also
retained and propagated for several more rounds to ensure
that subsequent suspicious activities can be effectively
captured.
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Table 6. Detailed Detection Results of Single Events and Paths

Provenance Graph Embedding Anomaly Path Mining
Embedding

Models
Learning
Models Train Time(s) Accuracy1(%) Accuracy2(%) True

Positives
False

Positives Precision Recall F1 Score

Word2Vec∗
MLP 302.22 87.03 100.00 67 0 1.0000 0.6667 0.8000

LSTM 648.85 89.01 100.00 38 6 0.8636 0.8889 0.8761
CNN 2120.37 90.54 100.00 598 0 1.0000 0.5000 0.6667

Doc2Vec∗
MLP 157.62 90.55 100.00 87 2 0.9775 0.8889 0.9311

LSTM 288.44 90.55 100.00 87 2 0.9775 0.8889 0.9311
CNN 2148.61 90.54 100.00 84 2 0.9767 0.5556 0.7083

FastText∗
MLP 184.02 90.59 100.00 90 1 0.9890 1.0000 0.9945

LSTM 289.03 90.58 100.00 90 1 0.9890 1.0000 0.9945
CNN 2435.54 90.58 100.00 90 0 1.0000 1.0000 1.0000

FastText(weight)∗
MLP 170.80 90.56 57.14 978 0 1.0000 0.3333 0.5000

LSTM 290.31 90.56 58.57 21 0 1.0000 0.3889 0.5600
CNN 2289.49 90.55 55.71 1722 330 0.8392 0.3333 0.4771

FastText(onehot)∗
MLP 328.71 85.58 70.00 11 6 0.6471 0.2778 0.3887

LSTM 478.22 84.91 97.14 21 1 0.9545 0.3889 0.5526
CNN 955.17 89.34 97.14 104 13 0.8889 1.0000 0.9412

Doc2Vec
MLP 631.38 67.40 27.14 154 1460 0.0954 0.0556 0.0703

LSTM 1072.17 69.02 30.00 7 839 0.0083 0.1667 0.0158
CNN 4543.2 47.22 30.00 271 1217 0.1821 0.1667 0.1471

FastText
MLP 298.32 90.54 48.57 47 9091 0.0051 0.7778 0.0102

LSTM 317.98 90.42 68.57 36 379 0.0867 0.1667 0.1141
CNN 2457.85 90.50 61.43 9 178 0.0481 0.3333 0.0841

FastText(weight)
MLP 194.24 90.58 55.71 22 0 1.0000 0.3333 0.5000

LSTM 286.00 90.57 57.14 14 0 1.0000 0.3333 0.5000
CNN 2216.07 90.55 55.71 39 32 0.5493 0.3333 0.4149

FastText(onehot)
MLP 216.71 90.57 58.57 48577 69868 0.4101 0.5556 0.4719

LSTM 267.41 90.53 52.86 22824 6040 0.7907 0.2222 0.3469
CNN 740.50 90.52 57.14 70 249 0.2194 0.0000 0.0000

TinyBERT
MLP 275.06 90.45 12.86 435 0 1.0000 0.0000 0.0000

LSTM 298.42 90.16 10.00 85 3183 0.0260 0.0556 0.0354
CNN 1838.12 90.45 11.43 8050 3 0.9996 0.1111 0.2000

D. More Results
Here, we present more detailed experimental results. To pro-
vide a more comprehensive explanation of the experimental
design and to demonstrate the effectiveness of our method,
Table 6 presents a more detailed breakdown of the results
shown in Table 4. In addition, we conducted a parameter
sensitivity analysis on the regression model, evaluated the
model’s adaptability on additional datasets, and performed
ablation studies on the learned baseline.

D.1. Detection Results

Different representation methods and learning models can
affect the performance of provenance graph embedding and
representation learning. As shown in the Provenance Graph
Embedding section of Table 6, we present the training time,
testing time, and prediction accuracy of different methods
and models. The meanings of Accuracy1(%) and Accu-
racy2(%) are consistent with those described in the main
text. Similarly, Table 6 also presents the performance of
using embedded provenance graphs as a baseline in the
downstream task of anomaly detection, specifically in the
Anomaly Path Mining section. In this case, an alert path is

considered a True Positive (TP) if it contains at least one ma-
licious node from the ground truth. Conversely, if the alert
path does not contain any malicious nodes, it is condidered
a False Positive (TP).

D.2. Parameter Sensitivity

Empirically chosen default parameters are used for the em-
bedding model, whereas optimal hyperparameters for the
regression model are identified through controlled exper-
iments. Table 7 illustrates the controlled experiments for
tuning hyperparameters in the regression model, such as
learning rate and optimizer. Figure 3 represents the effects
of the batch size and the dimension of the event embedding
on memory usage, computational efficiency, prediction ac-
curacy, and et al. Table 7 shows that hyperparameter tuning
has limited influence on the predictive performance of the
regression model. Therefore, in the experiments reported
in the main text, we use an L1 kernel regularizer with a
coefficient of 0.001, the Adam optimizer (learning rate =
0.001), and the Mean Squared Error (MSE) loss function.

To study the impacts of batch sizes, we use different batch
sizes from 32 to 2048 to train MLP models on the E3-
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Table 7. Hyperparameters Tuning for Regression Models

Kernal Regularizer

Training Time(s) Accuracy 1(%) Accuracy 2(%)

L2(0.0001) 176.51 90.59 100.00
L2(0.001) 179.33 90.59 100.00
L2(0.01) 229.91 90.59 100.00

L1(0.0001) 174.01 90.59 100.00
L1(0.001) 278.39 90.59 100.00
L1(0.01) 123.69 35.86 0.00

Learning Rate

Training Time(s) Accuracy 1(%) Accuracy 2(%)

Adam(0.0001) 176.30 90.59 100.00
Adam(0.001) 155.75 90.59 100.00
Adam(0.01) 124.24 90.50 100.00

SGD(0.0001) 605.49 90.47 100.00
SGD(0.001) 244.00 90.51 100.00
SGD(0.01) 1298.20 90.56 100.00

Loss Function

Training Time(s) Accuracy 1(%) Accuracy 2(%)

MSE 117.25 90.59 100.00
MAE 169.29 90.44 100.00
Huber 148.53 90.53 100.00

CADETS dataset, using the FastText model to generate
event embeddings. Figure 3a shows the maximum memory
usage during training and the time cost of training models
with different batch sizes. As the batch size increases, the
memory usage during model training gradually rises. It
remains relatively constant for batch sizes below 256, but
exhibits a significant upward trend for batch sizes above
256. Meanwhile, the training time decreases as the batch
size increases, though the rate of decrease becomes pro-
gressively smaller. Figure 3b shows the model size and the
prediction accuracy. As the batch size increases, the model
size remains unchanged, while the prediction performance
shows slight flustuations, but remains largely consistent. In
general, the batch size can be appropriately increased within
the limits of the hardware capabilities.

The dimension of event embeddings represents the complex-
ity of encoding entities and their relationships within an
event. As shown in Figure 3c, the event encoding time ex-
hibits a fluctuating upward trend with increasing embedding
dimensions, and the storage space required for the encoded
files increases linearly. The model prediction results of dif-
ferent embedding dimensions are shown in Figure 3d. As
the embedding dimension increases, the size of the learn-
ing model rises approximately linearly. Meanwhile, the
proportion of predictions with deviations smaller than the
threshold gradually decreases. For dimensions less than 300
or greater than 500, the decrease in deviation is not obvious;
whereas between 300 and 500 dimensions, the deviation
decreases markedly. Therefore, encoding each event into a
500-dimensional space is considered more appropriate.
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Figure 3. Hyperparameters Tuning

D.3. Adaptability Experiment

To evaluate the adaptability of our provenance graph embed-
ding method, we tested the two best performing methods
from Table 4 and Table 6 on other datasets, with the results
presented in Table 8. Our method demonstrates good em-
bedding performance and detection result on these datasets
as well, indicating its adaptability.

D.4. Ablation Study

To assess the effectiveness of the learned baseline con-
structed by our method compared to the traditional dababase
baseline, we conducted an in-depth evalution of the predic-
tion accuracy of the learned baseline and the frequency
database in the ablation study, illustrated in Figure 4. Fig-
ure 4a shows the proportion of correct predictions made
by the learning model and the frequency database predic-
tion model. We find that even using a 200-dimensional
vector to represent each event, the deviation rate remains
smaller than the frequency database. Figure 4b illustrates
the storage of the database compared to the learning-based
baseline at different embedding dimensions. It is evident
that the storage of the learning model is much smaller than
the frequency database. When each event is encoded into a
500-dimensional vector space, the storage of the frequency
database is approximately 28 times larger than the learning
model. The results indicate that the learning-based baseline
not only significantly optimizes storage but also outperforms
the frequency database in terms of prediction accuracy for
unseen events.

This discrepancy arises primarily from fundamental dif-
ferences in their prediction mechanisms. The frequency
database relies on the frequencies of historical events stored
in its database for predictions. If an event is not stored in
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Table 8. Results on Other Datasets

Provenance Graph Embedding Anomaly Path Mining

Datasets Embedding
Models Training Time(s) Testing Time(s) Accuracy1(%) True

Positive
False

Positive Precision Recall F1 score

E3-TRACE FastText* 114.06 3.62 92.08 1403 47 0.9676 0.8182 0.8866
FastText(weight) 57.21 2.73 91.76 1374 424 0.7642 0.8182 0.7903

E3-THEIA FastText* 207.60 8.63 86.73 123 0 1.0000 0.7692 0.8695
FastText(weight) 316.29 8.36 86.43 121 2 0.9837 0.6154 0.7571
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Figure 4. Ablation Study

the database or occurs infrequently, the prediction relied
on the frequency database often exhibits considerable bias
or is entirely inaccurate. While the database can provide
frequency of known events, there is no effective strategy to
predict the frequency of unseen or less frequent events in
history.
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