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ABSTRACT

The vulnerability of artificial neural networks to adversarial perturbations in the black-box setting
is widely studied in the literature. The majority of attack methods to construct these perturbations
suffer from an impractically large number of queries required to find an adversarial example. In
this work, we focus on knowledge distillation as an approach to conduct transfer-based black-box
adversarial attacks and propose an iterative training of the surrogate model on an expanding dataset.
This work is the first, to our knowledge, to provide provable guarantees on the success of knowledge
distillation-based attack on classification neural networks: we prove that if the student model has
enough learning capabilities, the attack on the teacher model is guaranteed to be found within the
finite number of distillation iterations.

1 INTRODUCTION

The robustness of deep neural networks to input perturbations is a crucial property to integrate them into various
safety-demanding areas of machine learning, such as self-driving cars, medical diagnostics, and finances. Although
neural networks are expected to produce similar outputs for similar inputs, they are long known to be vulnerable to
adversarial perturbations [Szegedy et al. (2014)] – small, carefully crafted input transformations that do not change
the semantics of the input object, but force a model to produce a predefined decision. The majority of methods to
study the adversarial robustness of neural networks are aimed at crafting adversarial perturbations which indicate that,
in general, the predictions of a neural network are unreliable. The most effective and stealthy attacks require access
to the model’s gradients and are therefore of little practical use on their own [Goodfellow et al. (2014); Madry et al.
(2017); Carlini & Wagner (2016)]. However, in real-world scenarios, machine learning models are often deployed
as services that are available via APIs. This setting, although poses certain limitations to exploring the robustness of
machine learning as a service (MLaaS) models, does not make the computation of adversarial perturbations impossible
[Chen et al. (2020); Andriushchenko et al. (2020); Qin et al. (2023); Vo et al. (2024)]. It is possible to compute an
adversarial perturbation for the black-box model by either estimating its gradient in the vicinity of the target point Ilyas
et al. (2018); Bai et al. (2020) or using random search Andriushchenko et al. (2020) or applying knowledge transfer to
obtain an auxiliary model to attack in the white-box setting Li et al. (2023); Gubri et al. (2022).

However, these methods may require a lot of queries to the target model and, in general, are not guaranteed to find an
adversarial example. In this paper, we focus on the following research question: is it possible to provably compute an
adversarial example for a given black-box classification neural network for a finite number of queries? To answer this
question, we propose Model Mimic Attack, the framework for conducting a black-box model transfer attack through
multiple knowledge distillations.

Knowledge distillation attack methods have been studied extensively in recent years. It is used, for example, to protect
intellectual property: the surrogate model obtained by extracting the knowledge of the source one and then is used
to create watermarks that help to link the generated content and determine its origin [Yuan et al. (2022); Lukas et al.
(2019); Kim et al. (2023); Pautov et al. (2024)]. This approach is also used in attacks on black-box models [Li et al.
(2023); Gubri et al. (2022)]. We propose iterative training of a series of surrogate models on an expanding dataset.
This approach allows each subsequent surrogate model to better mimic the behavior of the black-box model.

Our contributions are summarized as follows:

1. We propose Model Mimic Attack, a score-based black-box model transfer attack via knowledge distillation.
The algorithm exploits the behavior of the target teacher network in the vicinity of the target point and yields
the set of surrogate student models, which copy the predictions of the target model in the finite set of points.
Then, the set of student models is used to compute an adversarial perturbation in the white-box setting, which
transfers to the teacher model over a finite number of distillation iterations.
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Figure 1: The illustration of the proposed method. Given the black-box teacher model T , the set of student models
S1, . . . , SN is obtained via the soft-label knowledge distillation. Each student model is attacked in a white-box manner,
and the set of adversarial examples x1, . . . , xN is computed. Note that, according to theoretical analysis, there is an
adversarial example xN for the student model SN which is transferable to the teacher model T for some N ∈ N.

2. We are the first, to our knowledge, to theoretically show that the distillation-based model transfer attack is
guaranteed to find an adversarial perturbation for the black-box teacher model.

3. We experimentally demonstrate the efficiency of the proposed approach over other black-box attack methods
in the image classification domain.

2 RELATED WORK

In this section, we provide a brief overview of existing black-box adversarial attacks and applications of knowledge
distillation.

2.1 TRANSFERABLE ADVERSARIAL PERTURBATIONS

In this work, we focus on the transferability of an adversarial attack from a white-box model to a black-box one,
emulating a black-box attack. Black-box adversarial attacks can be divided into two categories: query-based and
transfer-based. In a query-based attack, an adversary uses an output of the target model to compute an adversarial
example. One way to do this is to estimate the gradient of the model to the input object [Bhagoji et al. (2018); Chen
et al. (2017); Ilyas et al. (2019); Guo et al. (2019)]. However, these methods usually require a lot of queries to the
target model, which makes them infeasible in practice. In a transfer-based attack, an adversary generates adversarial
examples by attacking one or several surrogate models [Liu et al. (2022); Qin et al. (2023)]. The transferability of
adversarial examples generated for surrogate models to the target model can be improved by utilizing data augmenta-
tions [Xie et al. (2019)], exploiting gradients [Wu et al. (2020)], gradient aggregation [Liu et al. (2023)] or direction
tuning [Yang et al. (2023)].

There are plenty of black-box attack methods known, for example, ZOO [Chen et al. (2017)] and NES [Ilyas et al.
(2018)]. ZOO attack sequentially adds a small positive or negative perturbation to each pixel of the target image. It then
queries the black-box model to estimate the gradient in the vicinity of the target image. NES attack works similarly.
However, instead of changing pixel by pixel, a set of random images is generated, which are used to approximately
estimate the gradients.

Current SOTA methods are Square Attack [Andriushchenko et al. (2020)], NP-Attack [Bai et al. (2020)], MCG [Yin
et al. (2023)] and Bayesian attack [Li et al. (2023)]. Square Attack works differently. The attack selects an area of the
image that is subject to attack and then gradually changes this area as the algorithm runs. And within the selected area,
random pixels are selected that are changed. NP-Attack leverages a neural predictor model to guide the search for
adversarial perturbations by predicting the model’s output with fewer queries. MCG is a meta-learning-based black-
box attack that leverages a meta-classifier to generalize adversarial attacks across different black-box models. The idea
is to train a meta-classifier to guide the adversarial example generation. Bayesian attack enhances the transferability
of adversarial examples by using a substitute model with Bayesian properties. The key idea is to make the substitute
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model more Bayesian through techniques like Monte Carlo dropout or stochastic weights, which results in better
uncertainty estimation. This improved uncertainty estimation enhances the transferability of adversarial examples
crafted on the substitute model to the target black-box model.

Note that Bayesian attack [Li et al. (2023)] belongs to the transfer-based category and implies access to part of the
training data of the black-box model. In our work, we assume that an adversary has no access to the training data and,
thus, we do not compare our approach against methods from the transfer-based category.

2.2 KNOWLEDGE DISTILLATION AND ADVERSARIAL ROBUSTNESS

Knowledge distillation (KD) is a method to transfer the performance of a large teacher neural network to a smaller,
lightweight student neural network [Hinton (2015)]. Given a teacher model T , the framework is used to train a student
network S by solving an optimization problem:

S = argmin
S′

E(x,y)∼D
[
αL(S′(x), y) + (1− α)τ2KL(S′(x), T (x))

]
, (1)

where D is the distillation dataset, L is the classification loss function used to assess the performance of the student
model, KL is the Kullback-Leibler divergence and α, τ are the scalar parameters. Knowledge distillation has been
used in a large scope of problems, such as model compression [Sun et al. (2019); Wang et al. (2019); Li et al. (2020)],
data privacy [Lyu & Chen (2020); Chourasia et al. (2022); Galichin et al. (2024); Pautov et al. (2024)], adapted for
large language models [McDonald et al. (2024); Gu et al. (2024); Kang et al. (2024)] and diffusion models [Huang
et al. (2024); Yao et al. (2024); Yin et al. (2024)].

It has recently been shown that knowledge distillation can be used to enhance the adversarial robustness of additive
perturbations [Papernot et al. (2016); Kuang et al. (2024); Huang et al. (2023)]. In contrast to a large teacher model
which can attain a satisfactory level of adversarial robustness, it is challenging to make a small student model both
robust and similar to the teacher one in performance [Huang et al. (2023)]. To deal with this issue, adversarially robust
distillation was proposed [Goldblum et al. (2020)]. This approach takes into account clean predictions [Goldblum
et al. (2020)] or probability vectors [Zi et al. (2021)] of robust teacher model during the distillation procedure.

3 PROBLEM STATEMENT

In this section, we formally discuss a problem statement, introduce the notations used throughout the paper, and
formulate the research question.

3.1 ADVERSARIAL EXAMPLE FOR A CLASSIFICATION NEURAL NETWORK

Suppose that f : Rd → ∆K is the classification neural network that maps input object x ∈ Rd to the vector f(x) ∈ ∆K

of probabilities of K classes and

h(f, x) = arg max
i∈[1,...,K]

f(x)i (2)

is the associated classification rule. We begin by formally defining an adversarial example for the given classification
neural network and the transferability of an adversarial example between the two networks.

Definition 3.1 (Adversarial Example). Suppose that x ∈ Rd is the input object correctly assigned to class y ∈
[1, . . . ,K] by the network f , namely, h(f, x) = y. Let δ > 0 be a fixed constant. Then, the object x′ ∈ Rd :
∥x− x′∥2 ≤ δ is the untargeted adversarial example for f at point x, if

h(f, x′) ̸= h(f, x). (3)

If h(f, x′) = t for some predefined class index t, then x′ is called targeted adversarial example.

Definition 3.2 (Transferable Adversarial Example). Let x′ be the adversarial example computed for the network f at
point x and let g : Rd → ∆K be the separate network. Then, x′ is transferable from f to g, if{

h(f, x) = h(g, x),

h(f, x′) = h(g, x′).
(4)
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3.2 KNOWLEDGE DISTILLATION OF A BLACK-BOX MODEL

In this paper, we focus on using knowledge distillation [Hinton (2015)] to construct adversarial perturbations for the
given classification model deployed in the black-box setting. Namely, let T : Rd → ∆K be the black-box teacher
model trained on an unknown datasetD(T ) and S : Rd → ∆K be the white-box student model, possibly of a different
architecture, and let D(S) be its training dataset. To approximate the teacher model, we apply soft-label knowledge
distillation, which is done in two steps. Firstly, the teacher model is used to collect the training dataset for the student
model. In our setting, we use a hold out dataset Dh = {(xi, yi)}mi=1 to construct D(S) :

D(S) = {(xi, T (xi))}mi=1, (5)

where xi ∈ Dh and T (xi) ∈ ∆K . Then, the student network S is trained on the dataset D(S) by minimizing an
empirical risk

L(S,D(S)) = 1

m

∑
(xi,yi)∈D(S)

l(S, xi, yi), (6)

where l(S, x, y) = − log(S(x)y) is the cross-entropy loss function.

When the student model is trained, we ask the following research question. Given x ∈ Rd : h(S, x) = h(T, x) and
δ > 0 from the definition 3.1, is it possible to compute an adversarial example for the model S at point x which is
provably transferable to T ? In the next section, we answer this question and propose a knowledge distillation-based
adversarial attack with transferability guarantees.

4 METHODOLOGY

In this section, we describe the proposed approach to generate adversarial examples for the black-box teacher model
via knowledge distillation. In the last subsection, we prove that, under several assumptions, our approach generates an
adversarial example that is transferable to the teacher model within the finite number of iterations.

4.1 MODEL MIMIC ATTACK: STUDENT FOLLOWS ITS TEACHER

To perform an adversarial attack on the black-box teacher model T , we first apply soft-label knowledge distillation
and obtain the white-box student model S. The training dataset for the student model is constructed by querying the
teacher model and collecting its predictions for the points from the hold-out dataset Dh, possibly disjoint from the
teacher’s training dataset (D(T ) : Dh ∩ D(T ) = ∅). In our setup, we use the test subset of the teacher’s dataset as the
hold-out dataset Dh.

Recall that D(S) = {(xi, T (xi))}mi=1, according to equation 5. Assuming that the student model has enough learning
capability, we train it until it perfectly matches the teacher model on D(S), namely,{

h(S, xi) = h(T, xi) = yi
∥S(xi)− T (xi)∥∞ < ε

4 ,
(7)

for all (xi, yi) ∈ D(S), where ε > 0 is the predefined constant. In equation 7, the second condition reflects the ability
of the student model to confidently mimic the teacher model on D(S).

4.2 MODEL MIMIC ATTACK: STUDENT UNDER ATTACK

In this subsection, we describe a procedure to generate a single adversarial example for the student model.

When the student model is trained, we perform the white-box adversarial attack on it. To do so, we use Projected
Gradient Descent [PGD, Madry et al. (2018)]. Given input object x ∈ Rd of class y ∈ [1, . . . ,K] correctly predicted
by both teacher and student models, PGD performs iterative gradient ascent to find an adversarial example x′ within
Uδ(x), the δ−neighborhood of x. Namely, for all t ∈ [1, . . . ,M ],{

xt+1 = ProjUδ(x)
[xt + α sign∇xtL(S, xt, y)] ,

x1 = x, x′ = xM ,
(8)

where α > 0 is the value of a single optimization step, M is the maximum number of PGD iterations, ProjUδ(x)
is the

projection onto Uδ(x), defined as
Uδ(x) = {x′ : ∥x− x′∥2 ≤ δ}, (9)
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and L(S, xt, y) is the loss function reflecting the error of the model S on the sample (xt, y). In our setting, L(S, xt, y)
is the cross-entropy loss.

When the adversarial example x′ for the student model S is found, we verify if it transfers to the teacher model, namely,
if h(S, x′) = h(T, x′). Not that x′ does not have to be a transferable adversarial example. If h(S, x′) ̸= h(T, x′), then
we add x′ to the training dataset D(S) of the student model and repeat both the training of S and adversarial attack on
it.

Remark. To increase the computational efficiency of the attack, we generate not a single adversarial example x′ for
the student model, but a batch {x′

1, . . . , x
′
l} of l adversarial examples. The pseudo-code of the proposed method is

presented in the Algorithm 1. Note that we use a Projected Gradient Descent attack because of its simplicity; our
approach is not limited to a specific type of white-box attack.

Algorithm 1 Model Mimic Attack
Require: Black-box teacher model T , input object x of class y, distance threshold δ, gradient step α, maximum

number of PGD iterations M , maximum number of distillation iterations N , hold-out dataset Dh, the number l of
adversarial examples to generate for the student model Si

Ensure: Set of student models S1, . . . , SN , the set AE(T ) of adversarial examples for the teacher model T
1: z ← (x, T (x)) ▷ compute the logits of T at the target point
2: D(S)← {(xi, T (xi))}mi=1 ▷ compute the training set D(S) according to the equation 5
3: D(S1)← D(S) ∪ z ▷ initialize the training set for the first student model S1

4: AE(T )← ∅ ▷ initialize the set of adversarial examples for the teacher model T
5: for i = 1 to N do
6: Si ← train(D(Si)) ▷ train the student model Si using D(Si)
7: for j = 1 to l do
8: (x′

j , y
′
j)← PGD(α, δ, Si, (x, y)) ▷ compute an adversarial example for the student model Si according

to equation 8
9: if h(Si, x

′
j) = h(T, x′

j) then ▷ check if the adversarial example transfers from Si to T
10: AE(T )← AE(T ) ∪ {(x′

j , y
′
j)} ▷ update the set of adversarial examples for the model T

11: end if
12: D(Si+1)← D(Si) ∪ {(x′

j , T (x
′
j))} ▷ update the training set for the model Si+1

13: end for
14: end for

4.3 MODEL MIMIC ATTACK: PROVABLY TRANSFERABLE ADVERSARIAL EXAMPLES

It should be mentioned that, under several assumptions, the Algorithm 1 is guaranteed to find an adversarial example
that is transferable from the student model to the teacher model within the finite number of iterations. Namely, let
T be the teacher model and Si be the student model on i′th iteration with the corresponding training dataset D(Si).
Let x ∈ Rd be the input object correctly assigned by the teacher model to class y ∈ [1, . . . ,K], and δ > 0 be the
distance threshold. Suppose that for every i ∈ Z+, the learning capability conditions from the equation 7 hold. Then,
the following theorem holds.

Theorem 4.1. If fi = Si − T be the functions with the bounded gradient in Uδ(x) for every i ∈ Z+ and let

β = sup
fi

sup
x′∈Uδ(x)

∥∇fi(x′)∥F . (10)

Suppose that for every i ∈ Z+, Algorithm 1 yields an adversarial example for the model Si within the δ−neighborhood
of x. Then, exists N ∈ Z+ such that Algorithm 1 on N ′th iteration yields an adversarial example transferable from
SN to T .

Proof. Let {x′
i}∞i=1 be the sequence of adversarial examples generated by Algorithm 1 such that ∥x′

i−x∥2 ≤ δ and x′
i

is the adversarial example for the model Si. Then, the sequence {x′
i}∞i=1 is bounded in Uδ(x) and, hence, there exists

the subsequence {x′
ij
}∞j=1 such that exists

lim
j→∞

x′
ij = z ∈ Uδ(x). (11)

Without the loss of generality, assume that z ̸= x and let {x′
ij
}∞j=1 = {zi}∞i=1.
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Then,
|∥fi+1(x)∥∞ − ∥fi+1(zi+1)∥∞| ≤ ∥fi+1(x)− fi+1(zi+1)∥∞ ≤ (12)
≤ ∥fi+1(x)− fi+1(zi)∥∞ + ∥fi+1(zi)− fi+1(zi+1)∥∞ ≤
≤ ∥fi+1(x)∥∞ + ∥fi+1(zi)∥∞ + ∥fi+1(zi)− fi+1(zi+1)∥∞ ≤ (13)

≤ ε

4
+

ε

4
+ ∥fi+1(zi)− fi+1(zi+1)∥∞,

where the last inequality is due to conditions from equation 7.

According to the mean value theorem,
fi+1(zi)− fi+1(zi+1) = ∇fi+1(τi+1)

⊤(zi − zi+1), (14)
for some τi+1 ∈ [zi, zi+1] ⊂ Uδ(x).

Since limi→∞ zi = z, then limi→∞ ∥zi − zi+1∥F = 0 and ∃N ∈ Z+ : ∥zN−1 − zN∥F < ε
4β .

Then,
∥fN (zN−1)− fN (zN )∥∞ ≤ ∥fN (zN−1)− fN (zN )∥F ≤ ∥∇fN (τN )∥F ∥zN−1 − zN∥F < (15)

<
ε

4
.

Substituting equation 15 into equation 12, we get

|∥fN (x)∥∞ − ∥fN (zN )∥∞| <
3ε

4
, yielding ∥fN (zN )∥∞ < ∥fN (x)∥∞ +

3ε

4
= ε. (16)

By setting ε to be small enough, for example,

ε <
p1 − p2

2
, where p1, p2 are the two largest components of SN (zN ), (17)

we get h(SN , zN ) = h(T, zN ), what finalizes the proof.

5 EXPERIMENTS

This section will describe the experiments and everything needed to reproduce them. In particular, a description of the
datasets, a method for evaluating the experiments, a description of the methods we compare with, and the methodology
for conducting the experiments.

5.1 SETUP OF EXPERIMENTS

Datasets and Training. In our experiments, we use CIFAR-10 and CIFAR-100 [Krizhevsky et al. (2009)] as the
training datasets for the teacher model. We use ResNet50 [He et al. (2016)] as the teacher model T , which was trained
for 250 epochs to achieve high classification accuracy (namely, 82% for CIFAR-10 and 47% for CIFAR-100. To
train the teacher model, we use the SGD optimizer with the learning rate of 0.1, the weight decay of 10−4, and the
momentum of 0.9.

MMAttack Setup. We use ResNet18 and SmallCNN as the white-box student models. The architecture of Small-
CNN is presented in the Appendix. We conduct the PGD attack on the student models with the following parameters:
the number of PGD steps is set to be M = 10, the gradient step is set to be α = 0.005, the distance threshold is set to
be δ = 0.05. The detailed architecture of the Small CNN model is presented in the appendix A.

Methods for Comparison. In this section, we briefly list the set of methods we compare our approach against. We
evaluate MMAttack against ZOO [Chen et al. (2017)], NES [Ilyas et al. (2018)] as the main competitors. Among
the black-box attack methods based on a random search, we choose Square attack [Andriushchenko et al. (2020)] as
the state-of-the-art in terms of an average number of queries to conduct an attack. In the group of methods using
gradient estimation, NP-Attack [Bai et al. (2020)] is among the most efficient attacks. In the category of combined
methods, we choose MCG [Yin et al. (2023)]. The hyperparameters that were used in the experiments with Methods
for Comparison are described in detail in the appendix B.

Note that the MCG algorithm originally assumes the training on the data from a distribution that is close to the teaches
model’s one, which in general may not be known. Here, we highlight that our method does not have such a limitation.
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Table 1: Comparison of black-box attack methods. We report the average number of queries (AQN) required to
generate the first adversarial example for the black-box model. Here, δ denotes the value of the maximum possible
distance from the target point in terms of l∞ norm. (Lit) denotes the metric values taken from the literature.

D Attack δ AQN (↓)

CIFAR-10

ZOO [Chen et al. (2017)] 0.05 ≥ 3× 105

NES [Ilyas et al. (2018)] 0.1 3578
Square [Andriushchenko et al. (2020)] 0.1 368

NP-Attack [Bai et al. (2020)] (Lit) 0.05 500
MCG [Yin et al. (2023)] (Lit) 0.1 130

MMAttack resnet18 (ours) 0.05 530
MMAttack SmallCNN (ours) 0.05 32.8

CIFAR-100

ZOO [Chen et al. (2017)] 0.05 ≥ 3× 105

NES [Ilyas et al. (2018)] 0.1 4884
Square [Andriushchenko et al. (2020)] 0.1 193

NP-Attack [Bai et al. (2020)] 0.05 325
MCG [Yin et al. (2023)] (Lit) 0.1 48

MMAttack resnet18 (ours) 0.05 407
MMAttack SmallCNN (ours) 0.05 24

Evaluation Protocol. To illustrate the efficiency of the proposed approach, we report the Average Query Number
(AQN) and demonstrate the trade-off between AQN and the Average Success Rate (ASR). AQN denotes the number
of queries required to generate all the adversarial examples for the black-box model, averaged over all the examples.
ASR measures the fraction of adversarial examples assigned to a different class in an untargeted attack setting or to the
predefined other class in the targeted attack setting. For AQN, a lower value indicates better attack performance, while
for ASR, a higher value indicates a better attack performance. Note that both metrics are calculated over successful
adversarial attacks only. In this paper, the emphasis is made on minimizing the AQN.

5.2 RESULTS OF EXPERIMENTS

In the experiments, ZOO, NES, and Square attack methods were executed 100 times with different random seeds,
NP-Attack, MCG, MMA methods were executed 30 times.

Table 1 shows a comparison of existing SOTA methods and the MMAttack method proposed in this work with two
different substitute model architectures on the CIFAR-10 and CIFAR-100 datasets. The best results are highlighted
in bold. It can be seen that the MMAttack method with the substitute model SmallCNN outperforms the competitors
in terms of the AQN metric. (Table data for the MCG method on the CIFAR-100 dataset was taken from [Yin et al.
(2023)]. Table data for the MCG and NP-Attack methods for the CIFAR-10 dataset were taken from [Zheng et al.
(2023)]).

Note that if the results of a method presented in the literature do not match the results obtained in our implementation,
then the result with the smallest number of average queries is reported. In the tables, the results taken from the
literature are marked as (Lit).

5.3 ABLATION STUDY

Note that the success of our black-box attack crucially depends on the architecture of the white-box student model.
On the one hand, the student model does not have to have many training parameters since it implies several retraining
iterations. On the other hand, it has to have enough learning capacity to mimic the behavior of the black-box model
in the vicinity of the target point. In Table 2, we report the AQN values for the different pairs of teacher and student
models on the CIFAR-10 dataset. Together with the average number of queries, we report the size of the initial training
dataset D(S1) of the student model and the number of adversarial examples to generate for the student model, l. We
found that the simpler the architecture of the student model, the fewer queries to the teacher model are required to
conduct a successful attack.
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Table 2: Impact of hyperparameters on the performance of the MMAttack.

Teacher model, T Student model, S Initial dataset size, |D(S1)| l AQN (↓)

ResNet101 ResNet34 800 400 4520
ResNet50 ResNet34 600 400 4160

ResNet101 ResNet18 600 300 1560
ResNet50 ResNet18 600 200 530
ResNet34 ResNet18 300 30 455

ResNet101 SmallCNN 10 10 37.7
ResNet50 SmallCNN 10 10 32.8
ResNet34 SmallCNN 10 10 34
ResNet50 SmallCNN 5 5 −

The initial set size, |D(S1)|, represents the number of random data points to be included in the initial training dataset
of the white-box student model. It can be seen from Table 2, that the more complex the student model is, the larger
this parameter should be. The same is true for the number of adversarial examples for the student model, l.

Note that there is no AQN value corresponding to |D(S1)| = 5 and l = 5. This is because the Algorithm 1 does
not succeed in finding a single adversarial example for the black-box teacher model until it reaches the maximum
iterations threshold.

It is also worth mentioning that Model Mimic Attack implies a certain trade-off between ASR and AQN metrics. At the
start, when the size of the training dataset of the student model is relatively small and very few iterations of knowledge
distillation are passed, the algorithm is less likely to find an adversarial example for the teacher model. In contrast,
after more distillation iterations, the algorithm tends to find more transferable adversarial examples on each iteration.
In tables 3 and 4, we show the trade-off between the ASR and AQN metrics from one distillation iteration to another:
when the number of passed distillation iterations increases, so does the number of queries to the teacher model used
to collect additional training samples for the student model by that iteration, QN1. In contrast, the number of queries
remaining to find an attack on the black-box model, QN2, decreases (here, we fix the total number of queries to be
QN1 +QN2 = 200).

However, if the goal is not to obtain the minimum value of the AQN metric, but to improve the trade-off between the
ASR and AQN metrics, one could run several cycles of the algorithm to better study the behavior of the teacher model
in the vicinity of the target point.

The choice of the white-box attack method plays an important role in finding the transferable adversarial example: on
one hand, the more powerful the white-box attack is, the more frequently an adversarial example will be found for
the student model; on the other hand, the faster the attack is, the more distillation iterations can be performed within
a limited time. In this work, a projected gradient descent (PGD) attack with the l∞ norm constraint is used, but the
method is not limited to any specific type of white-box attack. It is possible to use variants of the white-box attack
with l2 or l1 constraints, to conduct an attack in a targeted setting or use more complicated attack methods. In any
case, MMAttack is expected to have similar properties. The optimal choice depends on the specific domain and the
effectiveness of each white-box attack method on a given dataset.

6 LIMITATIONS

Note that the transferability guarantee from Theorem 4.1 is given for the soft-label distillation. It is worth mentioning
that the Theorem can not be adapted to the hard-label distillation without significant changes. Instead, to provide
the transferability guarantee in hard-label distillation, when the teacher model outputs the predicted class label only,
one can estimate the probability of transferability of an adversarial example within the finite number of iterations,
conditioned on the white-box attack. If the lower bound of this probability is separated from zero, one can estimate
the expected number of distillation iterations required to yield the transferable adversarial example.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose the Model Mimic Attack, the first framework to compute adversarial perturbations for a
black-box neural network that is guaranteed to find an adversarial example for the latter. To conduct an attack, we
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Table 3: Trade-off between ASR and AQN metrics for MMAttack, CIFAR-10 dataset. QN1 represents the number of
data points added to the training dataset of the student model by corresponding iteration; QN2 represents the attack
budget, or upper bound of the number of queries to find an attack on the black-box model.

Iteration number QN1 QN2 Number of generated attacks ASR (↑) AQN (↓)
1 10 190 121.67 0.66 2.36
2 20 180 112.05 0.68 2.50
3 30 170 105.57 0.67 2.67
4 40 160 99.38 0.67 2.86
5 50 150 93.10 0.67 3.03
6 60 140 87.48 0.67 3.24
7 70 130 81.00 0.67 3.49
8 80 120 75.14 0.68 3.74
9 90 110 69.19 0.68 4.05
10 100 100 62.81 0.68 4.43
11 110 90 56.43 0.70 4.83
12 120 80 50.43 0.69 5.50
13 130 70 43.62 0.69 6.35
14 140 60 37.43 0.68 7.42
15 150 50 30.95 0.67 9.13
16 160 40 25.00 0.68 11.16
17 170 30 19.05 0.68 14.62
18 180 20 12.62 0.74 20.39
19 190 10 6.86 0.72 38.38

Table 4: Trade-off between ASR and AQN metrics for MMAttack, CIFAR-100 dataset. QN1 represents the number
of data points added to the training dataset of the student model by corresponding iteration; QN2 represents the attack
budget, or upper bound of the number of queries to find an attack on the black-box model.

Iteration number QN1 QN2 Number of generated attacks ASR (↑) AQN (↓)
1 10 190 163.17 0.84 1.38
2 20 180 153.17 0.85 1.46
3 30 170 144.90 0.85 1.54
4 40 160 135.86 0.85 1.64
5 50 150 127.34 0.85 1.75
6 60 140 119.14 0.85 1.87
7 70 130 110.48 0.85 2.02
8 80 120 102.03 0.85 2.19
9 90 110 93.59 0.85 2.39
10 100 100 85.52 0.85 2.63
11 110 90 76.97 0.84 2.92
12 120 80 68.48 0.85 3.25
13 130 70 59.97 0.86 3.69
14 140 60 51.62 0.86 4.30
15 150 50 42.97 0.86 5.14
16 160 40 34.72 0.86 6.37
17 170 30 26.41 0.85 8.42
18 180 20 17.66 0.88 12.28
19 190 10 8.72 0.90 24.08

apply knowledge distillation to obtain the student model, which is essentially the functional copy of the black-box
teacher network. Then, we perform the white-box adversarial attack on the student model and theoretically show that,
under several assumptions, the attack transfers to the teacher model. We demonstrate experimentally that a successful
adversarial attack can be found within a small number of queries to the target model, making the approach feasible
for practical applications. Possible directions for future work include an extension of the transferability guarantees to
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the hard-label distillation and adaptation of the proposed method for other domains, in particular, for attacking large
language models.
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A APPENDIX: ARCHITECTURE OF SMALLCNN

SmallCNN(
(features): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1))

(1): ReLU(inplace)
(2): MaxPool2d(kernel_size=2, stride=2, padding=0,

dilation=1, ceil_mode=False)
(3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1),

padding=(1, 1))
(4): ReLU(inplace)
(5): MaxPool2d(kernel_size=2, stride=2, padding=0,

dilation=1, ceil_mode=False)
(6): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1),

padding=(1, 1))
(7): ReLU(inplace)
(8): MaxPool2d(kernel_size=2, stride=2, padding=0,

dilation=1, ceil_mode=False)
)
(classifier): Sequential(

(0): Linear(in_features=4096, out_features=512, bias=True)
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(1): ReLU(inplace)
(2): Linear(in_features=512, out_features=10 or 100,

bias=True)
)

)

B APPENDIX: HYPERPARAMETERS OF THE COMPARED ATTACK METHODS

Table 5: Hyperparameters of the compared attack methods
Method Hyperparameters

ZOO attack
ϵ = 0.05
num iterations = 5000
learning rate = 0.01

NES attack

ϵ = 0.1
num samples = 50
num iterations = 300
σ = 0.01
α = 0.03

Square attack
ϵ = 0.1
num queries = 5000
p init = 0.8

NP attack
ϵ = 0.05
num iterations = 1000
learning rate = 0.01

MCG

down sample x = 1
down sample y = 1
finetune grow = True
finetune reload = True
finetune perturbation = True
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